Values of the Dedekind Eta Function at Quadratic Irrationalities: Corrigendum

Alfred J. van der Poorten and Kenneth S. Williams

Abstract. Habib Muzaffar of Carleton University has pointed out to the authors that in their paper [A] only the result

$$
\pi_{K, d}(x)+\pi_{K^{-1}, d}(x)=\frac{1}{h(d)} \frac{x}{\log x}+O_{K, d}\left(\frac{x}{\log ^{2} x}\right)
$$

follows from the prime ideal theorem with remainder for ideal classes, and not the stronger result

$$
\pi_{K, d}(x)=\frac{1}{2 h(d)} \frac{x}{\log x}+O_{K, d}\left(\frac{x}{\log ^{2} x}\right)
$$

stated in Lemma 5.2. This necessitates changes in Sections 5 and 6 of [A]. The main results of the paper are not affected by these changes. It should also be noted that, starting on page 177 of [A], each and every occurrence of $o(s-1)$ should be replaced by $o(1)$.

Sections 5 and 6 of [A] have been rewritten to incorporate the above mentioned correction and are given below. They should replace the original Sections 5 and 6 of [A].

5 Estimation of a Certain Infinite Product

Our aim in this section is to prove the following result. We make use of the ideas in [4, pp. 346-353].

Proposition 5.1 Let $K \in H(d)$. Let ω be a complex number with $|\omega|=1$. Then there exists a nonzero complex number $C(K, d, \omega)$ depending only on K, d and ω such that

$$
\prod_{\substack{p \\\left(\frac{d}{p}\right)=1 \\ K_{p}=K}}\left(1-\frac{\omega}{p^{s}}\right) \prod_{\substack{p \\\left(\frac{d}{p}\right)=1 \\ K_{p}=K^{-1}}}\left(1-\frac{\omega}{p^{s}}\right)=(s-1)^{\omega / h(d)} C(K, d, \omega)(1+o(1)),
$$

as $s \rightarrow 1^{+}$, where p runs through prime numbers.

[^0]This proposition will be used in the proof of Proposition 6.1. In order to prove Proposition 5.1 we require a number of lemmas. For $x \in R$ and $K \in H(d)$ we set

$$
\begin{aligned}
\pi_{K, d}(x) & :=\sum_{\substack{p \leq x \\
K_{p}=K}} 1, \\
\theta_{K, d}(x) & :=\sum_{\substack{p \leq x \\
K_{p}=K}} \log p, \\
\kappa_{K, d}(x) & :=\sum_{\substack{p \leq x \\
K_{p}=K}} \frac{\log p}{p}, \\
\lambda_{K, d}(x) & :=\sum_{\substack{p \leq x \\
K_{p}=K}} \frac{1}{p},
\end{aligned}
$$

where p runs through prime numbers.
Lemma 5.2 Let $K \in H(d)$. Then

$$
\pi_{K, d}(x)+\pi_{K^{-1}, d}(x)=\frac{1}{h(d)} \frac{x}{\log x}+O_{K, d}\left(\frac{x}{\log ^{2} x}\right)
$$

where the constant implied by the O-symbol depends on K and d, and not on x.

Proof We have

$$
\pi_{K, d}(x)=\sum_{\substack{p \leq x \\ K_{p}=K}} 1=\sum_{\substack{p \leq x \\ K_{p}=K \\\left(\frac{d}{p}\right)=1}} 1+\sum_{\substack{p \leq x \\ K_{p}=K \\\left(\frac{d}{p}\right)=0}} 1 .
$$

Clearly

$$
0 \leq \sum_{\substack{p \leq x \\ K_{p}=K \\\left(\frac{d}{p}\right)=0}} 1 \leq \sum_{p \mid d} 1=\tau(d)=O_{d}(1)
$$

Thus

$$
\pi_{K, d}(x)=\sum_{\substack{p \leq x \\ K_{p}=K \\\left(\frac{d}{p}\right)=1}} 1+O_{d}(1)
$$

Hence

$$
\begin{equation*}
\pi_{K, d}(x)+\pi_{K^{-1}, d}(x)=\sum_{\substack{p \leq x \\ K_{p}=K \\\left(\frac{d}{p}\right)=1}} 1+\sum_{\substack{p \leq x \\ K_{p}=K^{-1} \\\left(\frac{d}{p}\right)=1}} 1+O_{d}(1) \tag{5.1}
\end{equation*}
$$

As d is the discriminant of the imaginary quadratic field F, we have $F=(\mathbb{O})(\sqrt{d})$. In the ring O_{F} of integers of F the prime p factors into prime ideals as follows:

$$
p O_{F}= \begin{cases}P P^{\prime}, P \neq P^{\prime}, N(P)=N\left(P^{\prime}\right)=p, & \text { if }\left(\frac{d}{p}\right)=1 \tag{5.2}\\ P^{2}, P=P^{\prime}, N(P)=p, & \text { if }\left(\frac{d}{p}\right)=0 \\ P, P=P^{\prime}, N(P)=p^{2}, & \text { if }\left(\frac{d}{p}\right)=-1\end{cases}
$$

where P^{\prime} denotes the conjugate ideal of P and $N(P)$ denotes the norm of P from F to $\left(\mathbb{O}\right.$. For primes p with $\left(\frac{d}{p}\right)=1$ we distinguish between the prime ideals P and P^{\prime} as follows. In this case the congruence $u^{2} \equiv d(\bmod 4 p)$ has exactly two solutions satisfying $0 \leq u<2 p$, and we denote the smaller of these two solutions by t. Then

$$
P_{1}=\left[p, \frac{-t+\sqrt{d}}{2}\right]
$$

is a prime ideal of O_{F} uniquely determined by p and d. The conjugate ideal of P_{1} is

$$
P_{1}^{\prime}=\left[p, \frac{-t-\sqrt{d}}{2}\right]=\left[p, \frac{t+\sqrt{d}}{2}\right] .
$$

Moreover,

$$
\begin{equation*}
P_{1} P_{1}^{\prime}=p O_{F}, \quad P_{1} \neq P_{1}^{\prime} \tag{5.3}
\end{equation*}
$$

Thus in the first line of (5.2) we have $P=P_{1}$ or P_{1}^{\prime}. We let $C(F)$ denote the ideal class group of F. If A is an ideal of O_{F} we denote its class in $C(F)$ by \bar{A}. Recall that $H(d)$ denotes the form class group of discriminant d. Then it is well known that

$$
\alpha: H(d) \rightarrow C(F)
$$

defined by

$$
\alpha([a, b, c])=\overline{\left[a, \frac{-b+\sqrt{d}}{2}\right]}
$$

is an isomorphism. For p a prime with $\left(\frac{d}{p}\right)=1$ we have

$$
\alpha\left(K_{p}\right)=\alpha\left(\left[p, t,\left(t^{2}-d\right) / 4 p\right]\right)=\overline{\left[p, \frac{-t+\sqrt{d}}{2}\right]}=\bar{P}_{1} .
$$

From (5.3) we see that

$$
\overline{P_{1}^{\prime}}={\overline{P_{1}}}^{-1}
$$

so that

$$
\alpha\left(K_{p}\right)^{-1}=\overline{P_{1}^{\prime}}
$$

Thus

$$
\begin{aligned}
& \sum_{\substack{p \leq x \\
\left(\frac{d}{p}\right)=1 \\
K_{p}=K}} 1+\sum_{\substack{p \leq x \\
\left(\frac{d}{p}\right)=1 \\
K_{p}=K^{-1}}} 1=\sum_{\substack{p \leq x \\
\left(\frac{d}{p}\right)=1 \\
\alpha\left(K_{p}\right)=\alpha(K)}} 1+\sum_{\substack{p \leq x \\
\left(\frac{d}{p}\right)=1 \\
\alpha\left(K_{p}\right)=\alpha(K)^{-1}}} 1 \\
&=\sum_{\substack{p \leq x \\
\left(\frac{d}{p}\right)=1 \\
P_{1}=\alpha(K)}} 1+\sum_{\substack{p \leq x \\
\left(\frac{d}{p}\right)=1 \\
P_{1}^{\prime}=\alpha(K)}} 1 \\
&=\sum_{\substack{p \leq x \\
\left(\frac{d}{p}\right)=1 \\
P_{1} \in \alpha(K)}} 1+\sum_{\substack{p \leq x \\
\left(\frac{d}{p}\right)=1 \\
P_{1}^{\prime} \in \alpha(K)}} 1 \\
&=\sum_{\substack{P \\
P \neq P^{\prime} \\
N(P)=p \leq x \\
P \in \alpha(K)}} 1 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{\substack{p \leq x \\\left(\frac{d}{p}\right)=1 \\ K_{p}=K}} 1+\sum_{\substack{p \leq x \\\left(\frac{d}{p}\right)=1 \\ K_{p}=K^{-1}}} 1=\sum_{\substack{P \\ P \neq P^{\prime} \\ N(P)=p \leq x \\ P \in \alpha(K)}} 1 . \tag{5.4}
\end{equation*}
$$

Now by the prime ideal theorem with remainder for ideal classes of F (see for example [7, Corollary (i), p. 369]), we have with $h(F)=|C(F)|$

$$
\sum_{\substack{P \\ N(P) \leq x \\ P \in \alpha(K)}} 1=\frac{\operatorname{li} x}{h(F)}+O_{F, \alpha(K)}\left(x e^{-B(F, \alpha(K)) \sqrt{\log x}}\right)
$$

for some positive constant B depending only on the field F and the class $\alpha(K)$ of $C(F)$, that is,

$$
\begin{equation*}
\sum_{\substack{P \\ N(P) \leq x \\ P \in \alpha(K)}} 1=\frac{\operatorname{li} x}{h(d)}+O_{K, d}\left(x e^{-b(K, d) \sqrt{\log x})}\right. \tag{5.5}
\end{equation*}
$$

for some positive constant b depending only on the discriminant d and the class K of $H(d)$. Next

$$
\begin{equation*}
\sum_{\substack{P \\ N(P) \leq x \\ P \in \alpha(K)}} 1=\sum_{1}+\sum_{2}+\sum_{3} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \sum_{1}:=\sum_{\substack{P \\
P \neq P^{\prime} \\
N(P)=p \leq x \\
P \in \alpha(K)}} 1, \tag{5.7}\\
& \sum_{2}:=\sum_{\substack{P \\
P=P^{\prime} \\
N(P)=p \leq x \\
P \in \alpha(K)}} 1, \tag{5.7}\\
& \sum_{3}:=\sum_{\substack{P \\
P=P^{\prime} \\
N(P)=p^{2} \leq x \\
P \in \alpha(K)}} 1 . \tag{5.7}
\end{align*}
$$

Clearly

$$
\begin{equation*}
0 \leq \sum_{2} \leq \sum_{p \mid d} 1=\tau(d)=O_{d}(1) \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq \sum_{3} \leq \sum_{p \leq x^{1 / 2}} 1=O\left(x^{1 / 2}\right) \tag{5.9}
\end{equation*}
$$

Hence, by (5.1), (5.4), (5.7), (5.6), (5.5), (5.8), (5.9), we have

$$
\begin{aligned}
\pi_{K, d}(x) & +\pi_{K^{-1}, d}(x) \\
= & \sum_{1}+O_{d}(1) \\
= & \sum_{\substack{P \\
N(P) \leq x \\
P \in \alpha(K)}} 1-\sum_{2}-\sum_{3}+O_{d}(1) \\
= & \frac{\operatorname{li}(x)}{h(d)}+O_{K, d}\left(x e^{-b(K, d) \sqrt{\log x}}\right)+O_{d}(1)+O\left(x^{1 / 2}\right) \\
= & \frac{1}{h(d)}\left\{\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)\right\}+O_{K, d}\left(\frac{x}{\log ^{2} x}\right)+O_{d}(1)+O\left(x^{1 / 2}\right) \\
= & \frac{1}{h(d)} \frac{x}{\log x}+O_{K, d}\left(\frac{x}{\log ^{2} x}\right)
\end{aligned}
$$

where we note that

$$
\operatorname{li} x=x / \log x+O\left(x / \log ^{2} x\right) \quad \text { and } \quad \exp (-b(K, d) \sqrt{\log x})=O_{K, d}\left(1 / \log ^{2} x\right)
$$

This completes the proof of Lemma 5.2.
Lemma 5.3 Let $K \in H(d)$. Then

$$
\theta_{K, d}(x)+\theta_{K^{-1}, d}(x)=\frac{1}{h(d)} x+O_{K, d}\left(\frac{x}{\log x}\right)
$$

Proof By partial summation we have

$$
\theta_{K, d}(x)=\pi_{K, d}(x) \log x-\int_{2}^{x} \frac{\pi_{K, d}(t)}{t} d t, \quad x \geq 2
$$

see for example [4, Theorem 421, p. 346]. Thus

$$
\theta_{K, d}(x)+\theta_{K^{-1}, d}(x)=\left(\pi_{K, d}(x)+\pi_{K^{-1}, d}(x)\right) \log x-\int_{2}^{x} \frac{\pi_{K, d}(t)+\pi_{K^{-1}, d}(t)}{t} d t
$$

and the result follows using Lemma 5.2.
Lemma 5.4 Let $K \in H(d)$. Then

$$
\kappa_{K, d}(x)+\kappa_{K^{-1}, d}(x)=\frac{1}{h(d)} \log x+O_{K, d}(\log \log x)
$$

Proof By partial summation we have

$$
\kappa_{K, d}(x)=\frac{\theta_{K, d}(x)}{x}+\int_{2}^{x} \frac{\theta_{K, d}(t)}{t^{2}} d t
$$

and similarly for K^{-1}. Thus

$$
\kappa_{K, d}(x)+\kappa_{K^{-1}, d}(x)=\frac{\theta_{K, d}(x)+\theta_{K^{-1}, d}(x)}{x}+\int_{2}^{x} \frac{\theta_{K, d}(t)+\theta_{K^{-1}, d}(t)}{t^{2}} d t
$$

and the result follows on using Lemma 5.3.
Lemma 5.5 Let $K \in H(d)$. Then there exists a constant $c(K, d)$ depending only on K and d such that

$$
\lambda_{K, d}(x)+\lambda_{K^{-1}, d}(x)=\frac{1}{h(d)} \log \log x+c(K, d)+O_{K, d}\left(\frac{1}{\log \log x}\right)
$$

Proof Set

$$
\kappa_{K, d}(x)+\kappa_{K^{-1}, d}(x)=\frac{1}{h(d)} \log x+\tau_{K, d}(x)
$$

By Lemma 5.4 we have $\tau_{K, d}(x)=O_{K, d}(\log \log x)$. Next, by partial summation, we have

$$
\lambda_{K, d}(x)=\frac{\kappa_{K, d}(x)}{\log x}+\int_{2}^{x} \frac{\kappa_{K, d}(t)}{t \log ^{2} t} d t
$$

and similarly for K^{-1}. Thus

$$
\lambda_{K, d}(x)+\lambda_{K^{-1}, d}(x)=\frac{\kappa_{K, d}(x)+\kappa_{K^{-1}, d}(x)}{\log x}+\int_{2}^{x} \frac{\kappa_{K, d}(t)+\kappa_{K^{-1}, d}(t)}{t \log ^{2} t} d t
$$

Appealing to Lemma 5.4, we obtain

$$
\begin{aligned}
\lambda_{K, d}(x)+\lambda_{K^{-1}, d}(x)= & \frac{1}{h(d)}+O_{K, d}\left(\frac{\log \log x}{\log x}\right) \\
& +\frac{1}{h(d)}(\log \log x-\log \log 2)+\int_{2}^{x} \frac{\tau_{K, d}(t)}{t \log ^{2} t} d t
\end{aligned}
$$

As $\tau_{K, d}(t)=O_{K, d}(\log \log t)$ the integrals $\int_{2}^{\infty} \frac{\tau_{K, d}(t)}{t \log ^{2} t} d t$ and $\int_{x}^{\infty} \frac{\tau_{K, d}(t)}{t \log ^{2} t} d t$ are convergent. Moreover

$$
\int_{x}^{\infty} \frac{\tau_{K, d}(t) d t}{t \log ^{2} t}=O_{K, d}\left(\frac{1}{\log \log x}\right)
$$

so

$$
\lambda_{K, d}(x)+\lambda_{K^{-1}, d}(x)=\frac{1}{h(d)} \log \log x+c(K, d)+O_{K, d}\left(\frac{1}{\log \log x}\right)
$$

with

$$
c(K, d)=\frac{1}{h(d)}(1-\log \log 2)+\int_{2}^{\infty} \frac{\kappa_{K, d}(t)+\kappa_{K^{-1}, d}(t)-\frac{1}{h(d)} \log t}{t \log ^{2} t} d t
$$

Lemma 5.6 Let $K \in H(d)$. Then

$$
\sum_{K_{p}^{p}=K} \frac{1}{p^{s}}+\sum_{\substack{p \\ K_{p}=K^{-1}}} \frac{1}{p^{s}}=-\frac{1}{h(d)} \log (s-1)+\left(c(K, d)-\frac{\gamma}{h(d)}\right)+o(1)
$$

as $s \rightarrow 1^{+}$.

Proof Let δ be a real number satisfying $0<\delta<1 / 4$. By partial summation we have

$$
\sum_{\substack{p \leq x \\ K_{p}=K}} \frac{1}{p^{1+\delta}}=\frac{\lambda_{K, d}(x)}{x^{\delta}}+\delta \int_{2}^{x} \frac{\lambda_{K, d}(t)}{t^{1+\delta}} d t, \quad x \geq 2
$$

Let $x \rightarrow \infty$. By the definition of $\lambda_{K, d}(x)$ we obtain

$$
\sum_{\substack{p \\ K_{p}=K}} \frac{1}{p^{1+\delta}}=\delta \int_{2}^{\infty} \frac{\lambda_{K, d}(t)}{t^{1+\delta}} d t
$$

We set

$$
\lambda_{K, d}(x)+\lambda_{K^{-1}, d}(x)=\frac{1}{h(d)} \log \log x+c(K, d)+E_{K, d}(x)
$$

By Lemma 5.5 we have $E_{K, d}(x)=O_{K, d}(1 / \log \log x)$, say

$$
\left|E_{K, d}(x)\right| \leq \frac{e(K, d)}{\log \log x}, \quad x>e(=2.7182818284 \cdots)
$$

for some positive number $e(K, d)$. Then

$$
\begin{aligned}
\sum_{\substack{p \\
K_{p}=K}} \frac{1}{p^{1+\delta}}+\sum_{\substack{p \\
K_{p}=K^{-1}}} \frac{1}{p^{1+\delta}} & =\delta \int_{2}^{\infty} \frac{\lambda_{K, d}(t)+\lambda_{K-1}(t)}{t^{1+\delta}} d t \\
& =\delta \int_{2}^{\infty} \frac{\frac{1}{h(d)} \log \log t+c(K, d)+E_{k, d}(t)}{t^{1+\delta}} d t \\
& =\frac{\delta}{h(d)} \int_{2}^{\infty} \frac{\log \log t}{t^{1+\delta}} d t+\frac{c(K, d)}{2^{\delta}}+\delta \int_{2}^{\infty} \frac{E_{K, d}(t)}{t^{1+\delta}} d t
\end{aligned}
$$

as

$$
\delta \int_{2}^{\infty} \frac{d t}{t^{1+\delta}}=\frac{1}{2^{\delta}}
$$

Now

$$
\left|\int_{1}^{2} \frac{\log \log t}{t^{1+\delta}} d t\right| \leq \int_{1}^{2} \frac{|\log \log t|}{t} d t=\text { constant }
$$

so that

$$
\delta \int_{1}^{2} \frac{\log \log t}{t^{1+\delta}} d t=O(\delta)
$$

Further, putting $t=e^{u / \delta}$, we obtain

$$
\begin{aligned}
\delta \int_{1}^{\infty} \frac{\log \log t}{t^{1+\delta}} d t & =\int_{0}^{\infty} e^{-u} \log \left(\frac{u}{\delta}\right) d u \\
& =\int_{0}^{\infty} e^{-u} \log u d u-\log \delta \int_{0}^{\infty} e^{-u} d u \\
& =-\gamma-\log \delta
\end{aligned}
$$

as

$$
\int_{0}^{\infty} e^{-u} \log u d u=-\gamma
$$

see for example [3, p. 602]. Hence

$$
\delta \int_{2}^{\infty} \frac{\log \log t}{t^{1+\delta}} d t=-\gamma-\log \delta+O(\delta)
$$

Now set $T=e^{1 / \sqrt{\delta}}$ so that

$$
\log T=1 / \sqrt{\delta}, \log \log T=\frac{1}{2}|\log \delta|, \quad T>e^{2}
$$

We also set

$$
g(K, d)=\int_{2}^{e^{2}} \frac{\left|E_{K, d}(t)\right|}{t} d t
$$

Then

$$
\begin{aligned}
\left|\delta \int_{2}^{\infty} \frac{E_{K, d}(t)}{t^{1+\delta}} d t\right| \leq & \delta \int_{2}^{e^{2}} \frac{\left|E_{K, d}(t)\right|}{t^{1+\delta}} d t+\delta \int_{e^{2}}^{T} \frac{\left|E_{K, d}(t)\right|}{t^{1+\delta}} d t+\delta \int_{T}^{\infty} \frac{\left|E_{K, d}(t)\right|}{t^{1+\delta}} d t \\
\leq & \delta \int_{2}^{e^{2}} \frac{\left|E_{K, d}(t)\right|}{t} d t+\delta \frac{e(K, d)}{\log \log \left(e^{2}\right)} \int_{e^{2}}^{T} \frac{d t}{t^{1+\delta}} \\
& +\delta \frac{e(K, d)}{\log \log T} \int_{T}^{\infty} \frac{d t}{t^{1+\delta}} \\
\leq & \delta g(K, d)+\delta \frac{e(K, d)}{\log 2} \int_{e^{2}}^{T} \frac{d t}{t}+\delta \frac{e(K, d)}{\log \log T} \frac{1}{\delta T^{\delta}} \\
\leq & \delta g(K, d)+\delta \frac{e(K, d)}{\log 2} \log T+\frac{e(K, d)}{\log \log T} \\
\leq & \delta g(K, d)+2 \delta e(K, d) \log T+\frac{2 e(K, d)}{|\log \delta|} \\
= & g(K, d) \delta+2 e(K, d) \sqrt{\delta}+\frac{2 e(K, d)}{|\log \delta|}
\end{aligned}
$$

so that

$$
\delta \int_{2}^{\infty} \frac{E_{K, d}(t)}{t^{1+\delta}} d t=o(1), \quad \text { as } \delta \rightarrow 0^{+}
$$

Hence

$$
\begin{aligned}
\sum_{\substack{p \\
K_{p}=K}} \frac{1}{p^{1+\delta}}+\sum_{\substack{p \\
K_{p}=K^{-1}}} \frac{1}{p^{1+\delta}} & =\frac{1}{h(d)}(-\gamma-\log \delta+O(\delta))+c(K, d)(1+o(1))+o(1) \\
& =-\frac{1}{h(d)} \log \delta+\left(c(K, d)-\frac{\gamma}{h(d)}\right)+o(1)
\end{aligned}
$$

as $\delta \rightarrow 0^{+}$. Finally we set $s=1+\delta$ to obtain the asserted result.
Lemma 5.7 Let $K \in H(d)$. Let ω be a complex number such that $|\omega|=1$.
(i) The series

$$
\sum_{\substack{p \\ K_{p}=K}}\left(\sum_{n=2}^{\infty} \frac{\omega^{n}}{n p^{n}}\right)
$$

converges.
(ii) Denoting the sum of the series in (i) by $A(K, d, \omega)$, we have

$$
\sum_{\substack{p \\ K_{p}=K}}\left(\sum_{n=2}^{\infty} \frac{\omega^{n}}{n p^{n s}}\right)=A(K, d, \omega)+o(1), \quad \text { as } s \rightarrow 1^{+} .
$$

Proof For $s \geq 1$ we have

$$
\left|\sum_{n=2}^{\infty} \frac{\omega^{n}}{n p^{n s}}\right| \leq \sum_{n=2}^{\infty} \frac{1}{n p^{n s}} \leq \sum_{n=2}^{\infty} \frac{1}{n p^{n}} \leq \frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{p^{n}}=\frac{1}{2} \frac{1 / p^{2}}{1-1 / p} \leq \frac{1}{p^{2}}
$$

so the series $\sum_{p: K_{p}=K}\left(\sum_{n=2}^{\infty} \omega^{n} / n p^{n s}\right)$ is uniformly convergent for $s \geq 1$. Thus, in particular, $\sum_{p: K_{p}=K}\left(\sum_{n=2}^{\infty} \omega^{n} / n p^{n}\right)$ converges, proving (i). Moreover, the uniform convergence ensures that

$$
\lim _{s \rightarrow 1^{+}} \sum_{\substack{p \\ K_{p}=K}}\left(\sum_{n=2}^{\infty} \frac{\omega^{n}}{n p^{n s}}\right)=\sum_{\substack{p \\ K_{p}=K}}\left(\sum_{n=2}^{\infty} \frac{\omega^{n}}{n p^{n}}\right)=A(K, d, \omega)
$$

proving (ii). We note that $\overline{A(K, d, \omega)}=A(K, d, \bar{\omega})$.
Lemma 5.8 Let $K \in H(d)$. Let ω be a complex number with $|\omega|=1$. Then there exists a nonzero complex number $B(K, d, \omega)$ depending only on K, d and ω such that

$$
\prod_{\substack{p \\ K_{p}=K}}\left(1-\omega p^{-s}\right) \prod_{\substack{p \\ K_{p}=K^{-1}}}\left(1-\omega p^{-s}\right)=(s-1)^{\omega / h(d)} B(K, d, \omega)(1+o(1))
$$

as $s \rightarrow 1^{+}$.

Proof Let s be a real number with $s>1$. We have

$$
\sum_{\substack{p \\ K_{p}=K}}\left|-\omega p^{-s}\right|=\sum_{\substack{p \\ K_{p}=K}} p^{-s} \leq \sum_{p} p^{-s} \leq \zeta(s)
$$

so that the infinite series $\sum_{p: K_{p}=K}-\omega p^{-s}$ converges absolutely. Hence the infinite product $\prod_{p: K_{p}=K}\left(1-\omega p^{-s}\right)$ converges absolutely and thus converges. Similarly the
corresponding product, over the primes p such that $K_{p}=K^{-1}$, converges. We have, noting that $\left|\omega p^{-s}\right|<1$, and appealing to Lemmas 5.6 and 5.7(ii),

$$
\begin{aligned}
& \prod_{\substack{p \\
K_{p}=K}}\left(1-\omega p^{-s}\right) \prod_{\substack{p \\
K_{p}=K^{-1}}}\left(1-\omega p^{-s}\right) \\
& =\prod_{\substack{p \\
K_{p}=K}} e^{\log \left(1-\omega p^{-s}\right)} \prod_{\substack{p \\
K_{p}=K^{-1}}} e^{\log \left(1-\omega p^{-s}\right)} \\
& =\exp \left\{\sum_{\substack{p \\
K_{p}=K}} \log \left(1-\omega p^{-s}\right)+\sum_{\substack{p \\
K_{p}=K^{-1}}} \log \left(1-\omega p^{-s}\right)\right\} \\
& =\exp \left\{-\sum_{\substack{p \\
K_{p}=K}} \sum_{n=1}^{\infty} \frac{\omega^{n}}{n} p^{-n s}-\sum_{\substack{p \\
K_{p}=K^{-1}}} \sum_{n=1}^{\infty} \frac{\omega^{n}}{n} p^{-n s}\right\} \\
& =\exp \left\{-\omega \sum_{\substack{p \\
K_{p}=K}} p^{-s}-\omega \sum_{\substack{p \\
K_{p}=K^{-1}}} p^{-s}-\sum_{\substack{p \\
K_{p}=K}} \sum_{n=2}^{\infty} \frac{\omega^{n}}{n} p^{-n s}\right. \\
& \left.-\sum_{\substack{p \\
K_{p}=K^{-1}}} \sum_{n=2}^{\infty} \frac{\omega^{n}}{n} p^{-n s}\right\} \\
& =\exp \{-\omega(-\log (s-1) / h(d)+(c(K, d)-\gamma / h(d))+o(1)) \\
& \left.-\left(A(K, d, \omega)+A\left(K^{-1}, d, \omega\right)+o(1)\right)\right\} \\
& =(s-1)^{\omega / h(d)} B(K, d, \omega)(1+o(1)), \quad \text { as } s \rightarrow 1^{+},
\end{aligned}
$$

where

$$
B(K, d, \omega):=\exp \left(\omega(\gamma / h(d)-c(K, d))-\left(A(K, d, \omega)+A\left(K^{-1}, d, \omega\right)\right)\right) \neq 0
$$

We note that $\overline{B(K, d, \omega)}=B(K, d, \bar{\omega})$.
Proof of Proposition 5.1 Let $K \in H(d)$. If p is a prime with $K_{p}=K$ then $\left(\frac{d}{p}\right)=0$ or 1 . Hence

$$
\begin{aligned}
& \prod_{\substack{p \\
\left(\frac{d}{p}\right)=1 \\
K_{p}=K}}\left(1-\omega p^{-s}\right) \prod_{\substack{p \\
\left(\frac{d}{p}\right)=1 \\
K_{p}=K^{-1}}}\left(1-\omega p^{-s}\right) \\
&=\frac{\prod_{K_{p}=K}^{p}\left(1-\omega p^{-s}\right) \prod_{\substack{p \\
K_{p}=K^{-1}}}^{p}\left(1-\omega p^{-s}\right) \prod_{\substack{p \\
\left(\frac{d}{p}\right)=0 \\
K_{p}=K}}\left(1-\omega p^{-s}\right)=0}{K_{p}=K^{-1}} ⿺
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(s-1)^{\omega / h(d)} B(K, d, \omega)(1+o(1))}{\prod_{\substack{\left(\frac{d}{p}\right)=0 \\
K_{p}=K}}^{p}\left(1-\omega p^{-1}\right)(1+o(1)) \prod_{\substack{\left(\frac{d}{p}\right)=0 \\
K_{p}=K^{-1}}}^{p}\left(1-\omega p^{-1}\right)(1+o(1))} \\
& =(s-1)^{\omega / h(d)} C(K, d, \omega)(1+o(1)), \quad \text { as } s \rightarrow 1^{+},
\end{aligned}
$$

where

$$
C(K, d, \omega):=\frac{B(K, d, \omega)}{\prod_{\substack{\left(\frac{d}{p}\right)=0 \\ K_{p}=K}}\left(1-\omega p^{-1}\right) \prod_{\substack{p \\\left(\frac{d}{p}\right)=0 \\ K_{p}=K^{-1}}}\left(1-\omega p^{-1}\right)} \neq 0 .
$$

We note that $\overline{C(K, d, \omega)}=C(K, d, \bar{\omega})$.

6 The Quantity $j(K, d)$

In this section we make use of Proposition 5.1 to determine the limiting behaviour of the infinite product

$$
\prod_{\substack{p \\\left(\frac{d}{p}\right)=1}}\left(1-\frac{f\left(K, K_{p}\right)}{p^{s}}\right)\left(1-\frac{f\left(K, K_{p}\right)^{-1}}{p^{s}}\right)
$$

as $s \rightarrow 1^{+}$for $K(\neq I) \in H(d)$. We prove
Proposition 6.1 If $K(\neq I) \in H(d)$ then

$$
\lim _{s \rightarrow 1^{+}} \prod_{\substack{p \\\left(\frac{d}{p}\right)=1}}\left(1-\frac{f\left(K, K_{p}\right)}{p^{s}}\right)\left(1-\frac{f\left(K, K_{p}\right)^{-1}}{p^{s}}\right)
$$

exists and is a nonzero real number which we denote by $j(K, d)$.

Proof Let s be a real number with $s>1$. Then, by (2.21), (2.20), (2.19), and Proposition 5.1, we obtain

$$
\begin{aligned}
& \prod_{\substack{p \\
\left(\frac{d}{p}\right)=1}}\left(1-\frac{f\left(K, K_{p}\right)}{p^{s}}\right)\left(1-\frac{f\left(K, K_{p}\right)^{-1}}{p^{s}}\right) \\
& =\prod_{\substack{p \\
\left(\frac{d}{p}\right)=1}}\left(1-\frac{\exp \left(2 \pi i\left[K, K_{p}\right]\right)}{p^{s}}\right)\left(1-\frac{\exp \left(-2 \pi i\left[K, K_{p}\right]\right)}{p^{s}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{\substack{p \\
\left(\frac{d}{p}\right)=1}}\left[1-\frac{\exp \left(2 \pi i \sum_{j=1}^{\ell} \operatorname{ind}_{A_{j}}(K) \operatorname{ind}_{A_{j}}\left(K_{p}\right) / h_{j}\right)}{p^{s}}\right] \\
& \times\left[1-\frac{\exp \left(-2 \pi i \sum_{j=1}^{\ell} \operatorname{ind}_{A_{j}}(K) \operatorname{ind}_{A_{j}}\left(K_{p}\right) / h_{j}\right)}{p^{s}}\right] \\
& =\prod_{\substack{b_{1}, \ldots, b_{\ell}=0}}^{h_{1}-1, \ldots, h_{\ell}-1} \prod_{\substack{p \\
\left(\frac{d}{p}\right)=1 \\
K_{p}=A_{1}^{b_{1}} \cdots A_{\ell}{ }_{\ell}}}\left[1-\frac{\exp \left(2 \pi i \sum_{j=1}^{\ell} k_{j} b_{j} / h_{j}\right)}{p^{s}}\right] \\
& \times\left[1-\frac{\exp \left(-2 \pi i \sum_{j=1}^{\ell} k_{j} b_{j} / h_{j}\right)}{p^{s}}\right] \\
& =\prod_{b_{1}, \ldots, b_{\ell}=0}^{h_{1}-1, \ldots, h_{\ell}-1}(s-1)^{\frac{1}{h(d)}} \exp \left(2 \pi i \sum_{j=1}^{\ell} k_{j} b_{j} / h_{j}\right) \\
& \times C\left(A_{1}^{b_{1}} \cdots A_{\ell}^{b_{\ell}}, d, \exp \left(2 \pi i \sum_{j=1}^{\ell} k_{j} b_{j} / h_{j}\right)\right)(1+o(1)) \\
& =(s-1)^{\frac{1}{n(d)}} \prod_{j=1}^{\ell}\left(\sum_{b_{j}=0}^{h_{j}-1} \exp \left(2 \pi i k_{j} b_{j} / h_{j}\right)\right) \\
& \times \prod_{b_{1}, \ldots, b_{\ell}=0}^{h_{1}-1, \ldots, h_{\ell}-1} C\left(A_{1}^{b_{1}} \cdots A_{\ell}^{b_{\ell}}, d, \exp \left(2 \pi i \sum_{j=1}^{\ell} k_{j} b_{j} / h_{j}\right)\right)(1+o(1)) .
\end{aligned}
$$

As $K \neq I$, at least one of k_{1}, \ldots, k_{ℓ} is nonzero, say k_{j}, in which case $0<k_{j}<h_{j}$ and

$$
\sum_{b_{j}=0}^{h_{j}-1} \exp \left(2 \pi i k_{j} b_{j} / h_{j}\right)=0
$$

Thus

$$
\begin{aligned}
\prod_{\substack{p \\
\left(\frac{d}{p}\right)=1}} & \left(1-\frac{f\left(K, K_{p}\right)}{p^{s}}\right)\left(1-\frac{f\left(K, K_{p}\right)^{-1}}{p^{s}}\right) \\
& =\prod_{b_{1}, \ldots, b_{\ell}=0}^{h_{1}-1, \ldots, h_{\ell}-1} C\left(A_{1}^{b_{1}} \cdots A_{\ell}^{b_{\ell}}, d, \exp \left(2 \pi i \sum_{j=1}^{\ell} k_{j} b_{j} / h_{j}\right)\right)(1+o(1)) \\
& =\prod_{L \in H(d)} C(L, d, f(K, L))(1+o(1))
\end{aligned}
$$

as $s \rightarrow 1^{+}$, by (2.18)-(2.21). Hence

$$
\lim _{s \rightarrow 1^{+}} \prod_{\substack{p \\\left(\frac{d}{p}\right)=1}}\left(1-\frac{f\left(K, K_{p}\right)}{p^{s}}\right)\left(1-\frac{f\left(K, K_{p}\right)^{-1}}{p^{s}}\right)
$$

exists and is equal to

$$
\begin{equation*}
j(K, d):=\prod_{L \in H(d)} C(L, d, f(K, L)) \tag{6.1}
\end{equation*}
$$

Since each $C(L, d, f(K, L))$ with $L \in H(d)$ is a nonzero complex number, $j(K, d)$ is a nonzero complex number. However, by the limit form above, $j(K, d)$ is real as $\left.f\left(K, K_{p}\right)^{-1}=\overline{f\left(K, K_{p}\right.}\right)$. Hence $j(K, d)$ is a nonzero real number.

Again from the limit form of $j(K, d)$ above, we see that

$$
\begin{equation*}
j(K, d)=j\left(K^{-1}, d\right) . \tag{6.2}
\end{equation*}
$$

It is convenient to set

$$
\begin{equation*}
m(K, d):=\frac{t_{1}(d)}{j(K, d)}, \quad K \in H(d) \tag{6.3}
\end{equation*}
$$

where $t_{1}(d)$ is defined in (2.32). Thus, appealing to (2.32), Proposition 6.1, and (6.3), we obtain

$$
m(K, d)=\frac{\prod_{p:\left(\frac{d}{p}\right)=1}\left(1-\frac{1}{p^{2}}\right)}{\lim _{s \rightarrow 1^{+}} \prod_{p:\left(\frac{d}{p}\right)=1}\left(1-\frac{f\left(K, K_{p}\right)}{p^{s}}\right)\left(1-\frac{f\left(K, K_{p}\right)^{-1}}{p^{s}}\right)}
$$

so that

$$
m(K, d)=\frac{\lim _{s \rightarrow 1^{+}} \prod_{p:\left(\frac{d}{p}\right)=1}\left(1-\frac{1}{p^{2 s}}\right)}{\lim _{s \rightarrow 1^{+}} \prod_{p:\left(\frac{d}{p}\right)=1}\left(1-\frac{f\left(K, K_{p}\right)}{p^{s}}\right)\left(1-\frac{f\left(K, K_{p}\right)^{-1}}{p^{s}}\right)}
$$

that is

$$
\begin{equation*}
m(K, d)=\lim _{s \rightarrow 1^{+}} \prod_{\substack{p \\\left(\frac{d}{p}\right)=1}} \frac{\left(1-\frac{1}{p^{s}}\right)\left(1+\frac{1}{p^{s}}\right)}{\left(1-\frac{f\left(K, K_{p}\right)}{p^{s}}\right)\left(1-\frac{f\left(K, K_{p}\right)^{-1}}{p^{s}}\right)} \tag{6.4}
\end{equation*}
$$

From (6.2) and (6.3) we deduce that

$$
\begin{equation*}
m(K, d)=m\left(K^{-1}, d\right) \tag{6.5}
\end{equation*}
$$

References

[A] A. J. van der Poorten and K. S. Williams, Values of the Dedekind eta function at quadratic irrationalities. Canad. J. Math. 51(1999), 176-224.

Centre for Number Theory Research
School of Mathematics, Physics, Computing and Electronics
Macquarie University
Sydney, NSW
Australia 2109
email: alf@math.mq.edu.au

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario
K1S 5B6
email: williams@math.carleton.ca

[^0]: Received by the editors July 31, 2000.
 The first author was supported in part by a grant from the Australian Research Council and the second author was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233. AMS subject classification: 11F20, 11E45.
 Keywords: Dedekind eta function, quadratic irrationalities, binary quadratic forms, form class group. (C)Canadian Mathematical Society 2001.

