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Utilizing the joint singular natures of electric field and hydrodynamic flow around a
sharp nanotip, we report new electrohydrodynamic Landau–Squire-type flows under the
actions of alternating current (AC) electric fields, markedly different from the classical
Landau–Squire flow generated by pump discharge using nanotubes or nanopores. Making
use of the locally diverging electric field prevailing near the conical tip, we are able
to generate a diversity of AC electrohydrodynamic flows with the signature of a 1/r
point-force-like decay at distance r from the tip. Specifically, we find AC electrothermal
jet and Faradaic streaming out of the tip at applied frequencies in the MHz and 102 Hz
regimes, respectively. Yet at intermediate frequencies of 1–100 kHz, the jet flow can be
reversed to an AC electro-osmotic impinging flow. The characteristics of these AC jet
flows are very distinct from AC flows over planar electrodes. For the AC electrothermal
jet, we observe experimentally that its speed varies with the driving voltage V as V3,
in contrast to the common V4 dependence according to the classical theory reported
by Ramos et al. (J. Phys. D: Appl. Phys, vol. 31, 1998, pp. 2338–2353). Additionally,
the flow speed does not increase with the solution conductivity as commonly thought.
These experimental findings can be rationalized by means of local Joule heating and
double layer charging mechanisms in such a way that the nanotip actually becomes
a local hotspot charged with heated tangential currents. The measured speed of the
AC Faradaic streaming is found to vary as V3/2 logV, which can be interpreted by
the local Faradaic leakage in balance with tangential conduction. These unusual flow
characteristics signify that a conical electrode geometry may fundamentally alter the
features of AC electrohydrodynamic flows. Such peculiar electrohydrodynamic flows may
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also provide new avenues for expediting molecular sensing or sample transport in prevalent
electrochemical or microfluidic applications.

Key words: electrokinetic flows

1. Introduction

When pumping a fluid through a narrow tube into a large reservoir, one will generally
observe a jet emerging from the end of the tube. Unlike a flow emanating from a
point-mass source, such a jet is discharged in a manner that the fluid momentum is
concentrated at the tip of the tube. When this momentum is released from the tip into
the vast bulk region, it will entrain and eject fluid around the edge, emitting a jet out
of the tip. This is the well-known Landau–Squire (LS) jet driven by a point source of
(constant) momentum. It has been shown that this particular jet flow admits an exact
(self-similar) solution of the Navier–Stokes equation (Squire 1951; Landau & Lifshitz
1959). The solution is constructed by assuming that the flow is symmetric about the polar
angle in the direction of the jet. Expressed in axisymmetric spherical polar coordinates
(r,θ ) with the tip as the origin, the fluid velocity (ur, uθ ) in the weak jet limit due to a
small point force F takes the following form (Landau & Lifshitz 1959):

(ur, uθ ) = F
4πηr

(
cos θ, −1

2
sin θ

)
, (1.1)

where η denotes the dynamic viscosity of the fluid. The velocity (1.1) is shown to decay
as 1/r away from the tip. From a dimensional point of view, this is the only plausible
solution because the force F under the creeping flow condition is expressed as the product
of viscosity, velocity and length scale.

Experimentally, LS flows are commonly realized by pressure discharge using
nanopipettes or conical nanopores that are able to render pressure buildup at their tips,
as seen for example in nanovelocimetry or nanofluidic ionic diodes (Laohakunakorn et al.
2013; Lan et al. 2016; Secchi et al. 2016; Wu, Rajasekaran & Martin 2016). In contrast to
such familiar pump discharge LS flows at nanoscales, in this work we demonstrate both
experimentally and theoretically that a new class of LS-type flow can be generated in a
purely electrohydrodynamic (EHD) manner. This can be done by applying an ambient
uniform AC electric field over a sharp conducting needle at microscales. The effect is
capable of producing not only a jet-like streaming from the tip but also a reverse flow
pattern, which is very distinct from the classical LS flow. Prior to presenting our results,
we explain below our incentives for studying such EHD LS-type flows.

The typical 1/r velocity field divergence of the LS flow at the discharge tip is a result of
the point momentum exerted at the conical tip. This 1/r velocity dependence is exactly the
signature of the fundamental Stokeslet point-force solution of the Stokes equation under
the creeping flow condition (Kim & Karrila 1991). However, such a singular behaviour is
not limited only to hydrodynamic flows. It can also occur in electric fields by virtue of the
analogy between hydrodynamics and electrostatics. A well-known example is the strong
local electric field induced by the presence of a conducting conical tip (Jackson 1998), as
occurs in a Taylor cone during electrospray ionization (Gañán-Calvo et al. 2018) or in an
ultra-sharp scanning probe in scanning tunnelling microscopy (STM) (Binnig & Rohrer
1987).
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AC electrohydrodynamic Landau–Squire flows

The present work is motivated by a possible issue arising from the use of a sharp metal
tip for performing electrochemical STM (ECSTM) probing in an aqueous solution (Itaya
& Tomita 1988). In such probing, the excess charges induced by the applied electric field
might generate nonlinear electrokinetic flows. Since such flows could be further amplified
near the tip, these effects can strongly influence the sample transport and detection in the
solution.

How the strength of the local electric field E varies with the distance r from the tip can
be described as follows according to Jackson (1998):

E ∼ (V/r0)(r/r0)
−n. (1.2)

Here V denotes the applied voltage, r0 is the local length scale around the tip (e.g. the
curvature of the tip), and n ( > 0) is an exponent depending on the opening angle 2θ0 of
the cone. For a sharp (slender) cone with θ0 � 1, the exponent in (1.2) behaves as (Jackson
1998)

n ≈ 1 − [2 ln(2/θ0)]−1, (1.3)

which approaches 1 as θ0 → 0. It means that E will change nearly as 1/r as the sharp
tip is approached, unlike the plasmonic 1/r3/2 decay when the sharp tip is subjected to a
transverse electromagnetic field (Miloh 2016). The question one may ask then is: can such
a diverging electric field be effectively used to generate a LS-like flow?

We first inspect how the electric force near the tip behaves due to the local electric field
E that changes nearly as 1/r. Since the electric (Columbic) force density f e = ρeE has
to acquire a non-zero charge density ρe resulting from charging by E, f e generally varies
nonlinearly with E, decaying at a rate of at least 1/r2. If fe decays as 1/r3, the total electric
force F e = ∫

f e dV , defined over a volume V enclosing the tip, varies slowly with the size
of V and hence is roughly a constant. In the case where f e happens to decay faster than
1/r3 or to act within a region of a finite extent near the tip, F e will become a constant
around the tip. In either case, F e is concentrated at the tip (located at xtip), rendering a
fluid motion governed by the following point-force-driven Stokes equation:

− ∇p + η∇2v = −F eδ(x − xtip), (1.4)

where v is the fluid velocity field and p is the pressure. The flow field v around the tip can
then be described by the well-known Stokeslet solution (Kim & Karrila 1991):

v = F e

8πη
·
[

I
r

+ (x − xtip)(x − xtip)

r3

]
, (1.5)

making the fluid speed u = |v| ∝ 1/r. In other words, to realize a point-force-like flow
u ∝ 1/r, f e has to decay as 1/r3 or faster.

Such EHD LS flows in character will be very distinct from the usual pump discharge
LS flows. First, they differ by how their velocities behave in terms of the driving force.
Under the creeping flow assumption, because of the nonlinear dependence of f e on E,
an EHD LS flow field will be generally nonlinear in E, in contrast to the usual LS
velocity field which is linear in the driving pressure head (Landau & Lifschitz 1959).
Second, these effects can be manifested by imposing high-frequency AC electric fields
under which charge polarization can occur to render a field-dependent charge density ρe
and hence a nonlinear f e needed for producing these EHD flows. In addition, by utilizing
such nonlinear electric forcing, one is able to generate a variety of EHD flows such as AC
electro-osmosis (Ramos et al. 1999; González et al. 2000), AC Faradaic streaming (Olesen,
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Bruus & Ajdari 2006; García-Sánchez, Ramos & González 2011) and AC electrothermal
flows (Ramos et al. 1998; Green et al. 2001; Gagnon & Chang 2009). Moreover, the
characteristics of such EHD flows can be effectively tuned and controlled by adjusting
AC frequencies, making EHD forcing more desirable compared with pressure forcing for
more precise manipulations of fluid flows.

The present work is organized as follows. We begin with the experimental section
in § 2 by detailing how we prepare the sharp nanotip and conduct the experiments. In
§ 3, we provide an overview for the variety of EHD LS flow patterns observed in this
work. In §§ 4–6, we present the detailed features for three distinct EHD LS flows: AC
electrothermal jet, AC electro-osmotic impinging flow and AC Faradaic streaming. New
physical mechanisms and models are also proposed in line to account for these flows.
Finally, § 7 summarizes our new findings in comparison with existing studies. Possible
impacts on technological applications are also put forward.

2. Experimental section

In this work, we used tungsten wires (of 250 μm in diameter) to construct an electrode
system for generating EHD LS flows. The electrode pair consisted of a conical needle and
a cylindrical wire in an orthogonal arrangement of 180 μm in separation (see figure 1a).
The conical needle was made by using the drop-off electrochemical etching technique (Ibe
et al. 1990) with a strong electrolyte solution (1.5 M KOH). Specifically, having dropped
off a tungsten wire vertically through the centre of a film of the solution held by a metal
cathodic ring (subjected to 3 Vrms under 50 Hz), an ultrasharp needle having an opening
angle 2θ0 ∼ 10◦ (measured from the apparent opening angle of the microscopic spine
shown in figure 1b) and a small tip of ∼25 nm in radius of curvature was readily produced
(see figure 1c). The needle and another untreated wire were then inserted in precut cracks
in a reservoir (of ∼4 mm in both diameter and depth) made of a PDMS block. How to
position the needle and the wire are described in more detail below.

We first inserted the wire into a vertical crack across the reservoir’s diameter. Then we
placed the needle over the wire in an orthogonal manner and had the former embedded
into a horizontal crack along the central line of the reservoir on a glass slide. This step
was a prepositioning between the needle and the wire. The entire body of the needle had
to be sufficiently long so that the other end of the needle was left outside the PDMS block.
This allowed us to adjust the needle’s position by gently pulling the other end outward.
After reaching the desired distance to the wire, we pressed the needle down by clamping
the two ends of the needle using separate forceps at the same time. One end remained on
the exterior side outside the PDMS block and the other lay on the interior side close to
the reservoir wall away from the tip. When both the needle and the vertical wire’s outline
could be seen clearly on the same focal plane under a microscope, it could be assured that
the needle was centred on the midplane through the wire’s diameter.

Both the needle and the vertical wire were placed at a distance from the bottom surface
which was approximately 1/3 the reservoir depth (∼4 mm). Further with proper sealing
and wiring, the whole device was ready for the experiment (see figure 1d). Prior to the
experiment, we treated the entire device with O2 plasma for approximately 10 min, and
then injected the desired solution and tracer particles. We employed green fluorescent
polystyrene beads (of 0.92 μm in diameter, Thermo Fisher Scientific) to trace flow
streamlines and measure fluid speeds. Note that at the high AC frequencies of 102 Hz–MHz
used here, the flows were not time oscillatory in synchronization with the applied AC field.
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AC electrohydrodynamic Landau–Squire flows

(a) (b)

100 µm

Vertical wire

PDMS

block

Needle

0.5 cm

20 µm

(c) (d )

500 nmSU8010 10.0 kV 9.4 mm × 100k SE(U)

Figure 1. (a) The electrode pair made of a sharp tungsten needle in an orthogonal arrangement with another
tungsten wire. (b) The zoomed-in image of the highlighted area in (a), revealing the microscopic spine at the
front end of the needle. (c) A close-up view of the tip of a sharp tungsten needle, taken by SEM at × 105

magnification. (d) The needle-wire electrode system embedded in a PDMS block on a glass slide.

The reason is that the fluid motion was not driven by linear electric forces due to fixed
charge but by nonlinear electric forces due to induced charge polarization. Therefore, what
we observed here were actually time-averaged flow phenomena driven by time-averaged
electric forces.

To make EHD LS flows more apparent, we mainly used relatively low conductivity
solutions such as deionized water and low concentration NaCl solutions (of
conductivity σ0 = 1.5 − 150 μS cm−1), so that the electric fields were less screened
by counterions because of the relatively thick double layer (of the Debye screening
length λ0 = 7–70 nm according to λ0 ≈ (Dε0/σ0)

1/2, where ε0 is the solution
permittivity and D is the ion diffusion coefficient of ∼10−5 cm2 s−1). After
making the electrode system connected to a function generator (at 5–20 Vpp
and 100–10 MHz, Agilent 33220A), we observed fluid flows using an inverted
microscope (Nikon TE2000S) with a fluorescent lamp (Nikon C-SHG1). The images
were captured using a CCD camera (of 30 frames s−1 under the exposure time
5–200 ms, CoolSNAP HQ2, Photometrics) though a × 20 or × 100 objective and
a fluorescence filter (450–490 nm excitation/505 nm dichroic/520 nm emission).
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Fluid streamlines were obtained by tracking the movements of the tracer particles using
an image analysis software (Image-Pro Plus). Since our main interest here is to look at
a LS-like flow near the tip, we focussed on the region (−90° <θ < 90°) ahead of the tip
and measured how the fluid speed U (i.e. the magnitude of the fluid velocity) varied with
distance r to the tip. This was to prevent a possible intervention by the electrokinetic slip
flow generated from the needle surface behind the tip. Such a procedure also helped to
reduce the unwanted dielectrophoretic (DEP) effect on the tracer particles for preventing
their trajectories from being deviated from streamlines. We have identified experimentally
that the tracer particles merely migrated at an order of 10 μm s−1 due to DEP, as seen
at 10 MHz. Such DEP velocity was also consistent with the estimated DEP velocity scale
for micron-sized particles according to UDEP ∼ (a2/3η)ε0∇|E|2 (Morgan & Green 2003)
with |E| ∼ V/L by applying voltage V ∼ 10 V over the typical electrode separation L ∼
10 2 μm in an aqueous solution. This velocity was much slower than the typical fluid speed
by an order of 102 μm s−1 observed in most of the situations. Electrophoresis due to native
surface charge will not take place at all. This is because the system was operated under
high frequency AC fields, so the time-averaged electrophoretic velocity was identically
zero.

3. Distinct AC Landau–Squire flows

Figure 2 shows some representative images for the observed flow phenomena (figure 1a–e)
together with the flow map (figure 2f ). There are mainly three types of EHD LS flows:
AC electrothermal flow (ACET) (figure 2a), AC electro-osmotic flow (ACEO) (figure 2b)
and AC Faradaic streaming (ACFS) (figure 2c), depending on the applied AC voltage and
frequency. All these flows display the signature of the classical LS flow pattern: i.e. an
abrupt entrainment toward the tip followed by immediate ejection from the tip as tracer
particles are moving in and out of the region near the tip.

In terms of the appearance of these flows, they can take different forms and sometimes
co-exist. For a given AC voltage, ACET and ACFS display the typical LS-like jetting from
the tip, dominating respectively at high frequencies ( > 1 MHz) and at low frequencies
(< 1 kHz). ACEO, on the contrary, appears as a reverse form impinging over the tip,
occurring in the intermediate frequency regime (1–100 kHz). However, if the frequency is
selected in the range near the borders between these flows, different flow types can emerge
jointly. Such mixed flows can happen in two ways. The first occurs at a frequency slightly
lower than that of ACET, showing a suppression of the ACET jet by a much stronger ACEO
impinging flow (figure 2d). The second happens at a frequency slightly higher than that
of ACFS. This results in a violent ACFS jet opposed by an ACEO impinging flow, giving
rise to a swirling flow around the tip (figure 2e). Note that because of the axisymmetric
needle geometry, such a swirling should appear as a single toroidal vortex.

While qualitatively these three EHD LS flow types appear in different forms, it
is necessary to identify quantitatively whether they all exhibit the point-force-like
flow characteristic u ∝ 1/r described by (1.1). In the experiments, we used tracer
particles to determine their trajectories along LS-like streamlines (figure 2a–c) near
the tip and measured the displacements between consecutive movements in the region
(−90° < θ < 90°) ahead of the tip. The speed at a given value of r can readily be
determined in a forward difference manner with the measured displacement divided by
the time interval.
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(a)

1 MHz 15 Vpp 1 kHz 5 Vpp
100 µm 100 µm

100 Hz 15 Vpp 100 kHz 15 Vpp

ACET

20

15

10

V
(Vpp)

5

101 102 103 104

ω (Hz)
105 106 107

Ohmic ACEO

Ohmic ACEO

impinging

ACET jetting

Faradaic ACEO

100 µm

1 kHz 20 Vpp
100 µm

100 µm

Faradaic jetting

(b)

(c)

(e) ( f )

(d )

Figure 2. Three typical types of AC Landau–Squire flows observed in the experiments: (a) AC electrothermal
(ACET) jetting, (b) AC electro-osmotic (ACEO) impinging flow and (c) AC Faradaic streaming (ACFS). Mixed
flows can also occur: panel (d) shows a suppression of (a) by (b), and panel (e) displays a concurrence of (b) and
(c). Arrows indicate flow directions. These different flow patterns depend on the ranges of the applied voltage
V (in peak-to-peak voltage Vpp) and frequency (ω), as shown in the flow map in panel ( f ). These images and
data are collected using deionized water.

The results are presented in figure 3 by plotting the measured speed U against distance
to the tip, r. Each set of data points for given applied voltage and frequency were taken
from all measurable LS-like paths in the movie recorded under that condition. As shown
in figure 3, the measured speeds for all the three flow types exhibited the point-force-like
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characteristic U ∝ 1/r. For the ACET jet (figure 3a), the 1/r decay only appeared in the
region near the tip. On the other hand, in the region far away from the tip, the velocity
decay became slower than 1/r, which may be a consequence of the global ACET set up by
temperature gradients in the bulk fluid. For the ACEO impinging flow (figure 3b) and the
ACFS jet (figure 3c), the 1/r decay prevailed, except in the region close to the tip where
these trends were reversed. The slowdown in the ACEO impinging flow near the tip was
attributed to the co-existing micro ACET ejection from the tip. The adverse effect on the
ACFS jet was caused by positive DEP on the tracer particles. This DEP effect acted to
oppose the jet and became stronger approaching toward the tip. The accumulation of the
tracer particles near the tip was the evidence of such a DEP effect (see figure 2c). Despite
the above, the observed 1/r decay indicated the existence of localized electric forces around
the tip. The appearance of this point-force flow characteristic in all these three flow types
also implied that it must be part of the universal singular features existing near the tip due
to the conical needle geometry albeit with different mechanisms governing these dissimilar
flow types.

It is also worth mentioning that the dependence of the actual fluid velocity U on the
polar angle θ may not agree with the common LS solution given by (1.1). The reason is
that while each flow type is pre-dominated by the flow generated by the more intensified
local electric force around the tip, it is often accompanied by an electrokinetic slip flow set
up by an electric force acting over the thin electric double layer around the needle surface
away from tip. The latter may significantly change how the fluid velocity varies with θ .
Nevertheless, this will not change the prevailing point-force flow characteristic u ∝ 1/r.

We should remark that these EHD LS flows were actually time-averaged nonlinear
electrokinetic phenomena arising from rapid charging and discharging by high-frequency
AC fields. Specifically, every one of them was driven by a non-zero time-averaged
electric force 〈 f e〉 = 〈ρeE〉, where the charge density ρe was field-dependent due to
charging/discharging by the applied electric field E. Similar nonlinear effects might arise
under DC fields. But they will not display any frequency dependence like those in DC
fields under which the amount of induced charges (i.e. ρe) can be further modulated by
the applied AC frequency. To see how each of these EHD LS flows arises under AC fields,
in the subsequent sections we will provide a more in-depth account for the physics behind
each flow type.

4. AC electrothermal jet

4.1. Atypical ACET flow
We begin by inspecting the observed ACET jet in more detail. This flow typically
occurs at frequencies around the characteristic RC frequency near the tip ωtip =
(2π)−1(σ0/ε0)(λ0/b0) (ranging from 100 kHz to 1 MHz) or higher, where σ 0 is the
solution conductivity, ε0 the permittivity, λ0 the corresponding electric double layer
(Debye) thickness and b0 is the tip radius of curvature. The flow of this sort is identified to
be mainly driven by solution conductivity gradients caused by intense Joule heating around
the tip, in contrast to the ACET flow around a conical tip due to permittivity gradients
which generally occur at much higher frequencies (Miloh 2016).

To identify the dependence of the ACET jet on the applied voltage V, we collect
the measured speed data at different positions at each value of V shown in figure 3(a)
and convert them into the corresponding values of the force strength exerted on the
jet, F = 4πηUr. Figure 4(a) plots F against V. It reveals that the data in the high
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(a)

(b)

(c)

200
15 Vpp
12.5 Vpp
10 Vpp
5 Vpp

12.5 Vpp

15 Vpp
13 Vpp
11 Vpp

10 Vpp
7.5 Vpp

150

100

10 20 30

10

1

1

20 30

100 200
r (µm)

U
(µm s–1)

U
(µm s–1)

50

100

50

U
(µm s–1)

100

200

300

1

Figure 3. Plots of measured flow speed (U) against distance from the tip (r) in deionized water: (a) AC
electrothermal jet (at 1 MHz), (b) AC electro-osmotic impinging flow (at 1 kHz) and (c) AC Faradaic streaming
(at 100 Hz). These plots basically display the point-force-like flow characteristic U ∝ 1/r. Exceptions occur in
regions either far away from the tip (in (a)) or near the tip (in (b) and (c)) due to other co-existing AC effects.
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3

4
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20
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20

40
50

30

V (Vpp)
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V (Vpp)
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(pN)

F 
×

 ω
(p

N
 ∙
 M

H
z)

3

10–3M NaCl(aq)

DI water

4

(a)

(b)

Figure 4. (a) Replot of the data in figure 3(a) in terms of the force F = 4πηUr against the applied voltage V
for AC electrothermal jet in deionized water (at 1 MHz) and 1 mM NaCl solution (at 6 MHz). The data in the
high-V regime appear to be more in favour of F ∝ V3 than F ∝ V4, as predicted by the standard ACET theory.
(b) Replot of the data in (a) with F × ω against V, showing a rough collapse of the data in the high-V regime.
This indicates that F varies inversely with the applied field frequency ω regardless of solution conductivity.
Multiple data points at a given value of V are the data points taken from different values of r shown in
figure 3(a).

V ( > 10 Vpp) regime seem to be more in favour of F ∝ V3 than the V4 dependence as
predicted by the standard ACET theory (Ramos et al. 1998; Green et al. 2001). A departure
from the V4 law has been observed for high-conductivity solutions ( > 104 μS cm−1)
in planar microelectrode systems (Sin et al. 2010). Here we find that a discrepancy
between the experimental data and the V4 law can also occur in low-conductivity solutions
( < 103 μS cm−1) using a conical needle. This discrepancy becomes even more evident in
the low V ( < 10 Vpp) regime in which F seems to be independent of V. Note that the
measured fluid speed U in this regime still behaves much like 1/r except for the region far
from the tip (see figure 3a). The unmatched data trend with the V3 law seen in the low-V
regime is attributed to the fact that the selected AC frequency here is close to the value
of a transition to an ACEO impinging flow, which partially suppresses the ACET ejection
from the tip. Furthermore, the force in an aqueous solution of conductivity 100 times
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AC electrohydrodynamic Landau–Squire flows

that of deionized water does not appear much greater than that in the latter case, as
can be seen in figure 4(b) in which the measured forces are normalized with respect to
the corresponding frequencies as F ×ω. This finding does not comply with the standard
ACET theory (Ramos et al. 1998) either since this theory predicts that the fluid speed is
always increased as solution conductivity is increased. In fact, from a dimensional point of
view, since this theory also predicts the V4 law, the fact that the measured force does not
increase with solution conductivity cannot be compatible with the V4 dependence. This is
another reason why we believe that the V3 law is more favoured than the V4 law in figure 4.
Below we offer an alternative explanation to rationalize these atypical results observed in
the experiment.

Similar to the situation of a conducting liquid cone dispersed by electrospray (Crowley
1977), the heat transfer around the needle tip in a low-conductivity solution is mainly
through internal Joule heating effects by the needle and its dissipation to the bulk fluid by
means of convection/conduction processes, as illustrated in figure 5(a). A simple energy
balance over the conical needle allows us to determine the temperature rise (Tw − T∞)
within the needle with respect to the bulk temperature T∞:

h(Tw − T∞)2πb = ṠohmA. (4.1)

Here Ṡohm = I2/σneedleA2 represents the Ohmic heat generation rate (per unit volume),
taking place within the needle of conductivity σ needle and carrying an electric current I
through the local cross-sectional area A =πb2 of radius b = z tanθ0 at a distance z from the
tip. Since b is assumed to be small, the heat transfer on the fluid side is mainly dominated
by conduction, thus yielding h ≈ k/b with k being the thermal conductivity of the fluid.
Therefore, the temperature rise 
T ≡ Tw − T∞ can be taken as


T = I2

2π2kσneedleb2 . (4.2)

Since b = z tanθ0, 
T ∝ z−2 will grow very rapidly as the tip is approached, turning the
tip into a local hotspot. Because the needle is generally covered by a thin oxide layer having
conductivity σneedle ≈ 6 S m−1, the temperature rise around the tip of b0 ≈ 25 nm in an
aqueous solution with thermal conductivity like that of water (k ≈ 0.6 W m−1 K−1) can
be as high as 
T ∼ 20 °C when subjected to a typical electric current I ∼ μA carried by
the needle. Note also that such a local Joule heating by the needle can be manifested only
in the region near the tip, where σ needle is significantly reduced due to the thin oxide layer
that is formed during the electrochemical etching process. As we move away from the tip,
the influence of this thin oxide layer is gradually diminished, making σ needle approach the
value of pure tungsten ∼107 S m−1 and hence rendering 
T ≈ 0.

Next, we consider the charge balance around the conical tip. Because of the slender
needle geometry in the region close to the tip, the current on the needle surface acts
virtually in a direction parallel to the cone. Since the tip now serves as a hotspot, it will
receive a hotter tangential current density j//(T) = (σ0 + 
σ(T))E// with a conductivity
increment 
σ(T) = σ0β
T where β = (1/σ0)(∂σ/∂T) (Ramos et al. 1998). On the
other hand, the normal current density j⊥ = σ0E⊥ leaving out of this hotspot region is
generally colder. As a result of these hot current charging and cold current discharging,
there is a substantial buildup of coions within the hotspot (figure 5b). The surface
heating by the needle also turns this local hotspot into a heated capacitor whose value
C(T) ≈ ε0/λ0(T) ≈ (ε0/λ0)(1 + β
T)1/2 is increased due to a decrease in the Debye
length λ0(T) ≈ (Dε0/σ(T))1/2 = λ0(1 + β
T)−1/2. Extending the study of Gagnon &
Chang (2009), we adopt a heated resistive capacitive model: C(T)∂
φ/∂t = j//(T) − j⊥,
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Cold

Cold

Hot

Hot

R

z
b(z)

Ṡohm
I

j⊥

j
//

j//
λ0

λ0

E
U

Fe +V

+V

(a)

(b)

(c)

Figure 5. Internal Joule heating and double layer charging mechanisms responsible for the observed ACET
jet. (a) The heating is generated from the Joule current passing through the needle, making the needle hotter
than the fluid. (b) This internal Joule heating gets more intensified approaching toward the tip, which turns
the tip into a local hotspot. As a result, the charging tangential current into the hotspot becomes hotter than
the discharging current out of the hotspot, which causes a coion buildup within the hotspot. (c) The resulting
electric force is concentrated at the tip and pointing outward, thereby drawing fluid from the bulk toward the
tip so as to produce an ACET jet emanating from the tip.

having an electric potential change 
φ across the double layer. Using this model, the local
hotspot will undergo charging according to

(ε0/λ0)(1 + β
T)1/2∂
φ/∂t ∼ σ0β
TE. (4.3)

Further making use of 
T ∝ I2 ∝ V2 from (4.2), we find 
φ ∝ ω−1σ0λ0V2 at sufficiently
high values of V. Having the charge density ρe ∼ ε0
φ/λ2

0 within the double layer of the
extent λ0(∝σ

−1/2
0 ), the electric force Fe ∼ ρeλ

3
0E ∼ ε0
φλ0E is found to behave as

Fe ∝ ω−1σ 0
0 V3. (4.4)
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This localized force acts in a direction pointing outward from the tip (see figure 5c) and
thus in turn drives the fluid to form an ACET jet emanating from the tip. Equation (4.4)
explains not only the measured force’s behaviour F ∝ V3, seen in figure 4, but also the
independence of F on σ 0. The latter is supported by the collapse of the data of different
solution conductivities shown in figure 4(b). It is plausible that the data behaviour is more
in favour of F ∝ V3 according to (4.4) than F ∝ V4 from the theory of Ramos et al. (1998),
since the latter always predicts an increase of F with σ 0 and thus basically cannot explain
the data shown in figure 4(b). In the next subsection, we will show the predictions of
this classical theory specifically applied to our conical needle system and provide further
clarifications for why such a theory cannot fully explain our experimental findings.

4.2. Classical ACET theory revisited
To better elucidate why the observed ACET jet does not behave according to the classical
ACET theory given by Ramos et al. (1998), it is necessary to revisit this commonly used
theory to see what it predicts for our conical needle electrode system.

In contrast to our heated double layer charging theory described in § 4.1, Ramos et al.’s
theory describes the ACET flow set up by an induced space charge in the bulk fluid due to
Joule heating. According to their theory, the effects at work generally involve a coupling
between electric field E, temperature field T and flow field v in the surrounding fluid,
governed by Gauss’s law (4.5a), dynamic charge balance (4.5b), heat balance (4.5c) and
equations of fluid motion (4.5d–f ):

∇ · (εE) = ρe, (4.5a)

∂ρe/∂t + ∇ · (σE) = 0, (4.5b)

∇ · (ρvT) = k∇2T + σ |E|2, (4.5c)

∇ · (ρv) = 0, (4.5d)

〈f e〉 − ∇p + η∇2v = 0, (4.5e)

f e = ρeE − (1/2)|E|2∇ε. (4.5f )

Here ε = ε0(1 + α
T) is the fluid’s permittivity that decreases linearly with temperature
rise 
T owing to the negative thermal coefficient α = (1/ε0)(∂ε/∂T) ≈ −0.004 K−1

(Lide 1994), whereas the fluid’s conductivity σ = σ 0(1 + β
T) increases with 
T
because of the positive thermal coefficient β = (1/σ0)(∂σ/∂T) ≈ 0.02 K−1 (Lide 1994).
The temperature rise 
T = T − T0 is defined with respect to the unheated state ‘0’. The
changes in ε and σ due to 
T will affect the charge density ρe through (4.5a) and (4.5b).
The temperature T is determined from (4.5c) with k being the thermal conductivity and ρ

the density of the fluid.
We restate that the key difference between Ramos et al.’s theory and ours is the

underlying concept. In their theory, the charging can occur both dielectrically and
conductively due to (4.5a) and (4.5b) everywhere in the bulk fluid. The force (4.5f ) thus
also acts everywhere on the bulk fluid. In contrast, in our theory the charging merely
happens within the thin double layer around the needle, and hence the resulting force
(4.5f ). To be more specific, the electric field in (4.5a) is actually the electric potential
gradient across the double layer in the Poisson–Boltzmann equilibrium, turning the
double layer into a dielectric capacitor whose charge density is determined by (4.5b) in a
conductive manner through the current injection/ejection σE from/to the bulk at the outer
edge of the double layer. Because of this conceptual difference, the outcomes predicted by
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these two theories will exhibit completely different dependences on the variables involved.
In this subsection, we will employ Ramos et al.’s theory to describe the ACET around a
conical needle. The focus here will be the use of this theory to demonstrate how the electric
force density f e in (4.5f ) varies with 
T and E so as to reveal how the fluid responds to
the time-averaged force density 〈f e〉 according to (4.5d) and (4.5e).

According to Ramos et al. (1998), because 
T is typically small and so are the
permittivity and conductivity variations 
ε and 
σ , the following assumptions can be
made to simplify (4.5a–f ): (i) variations of other fluid properties ρ, η and k due to 
T are
negligible; (ii) the electric field due to induced charges is much weaker than the applied
electric field; (iii) the transport of mobile ions are influenced by their electromigration
fluxes much stronger than diffusive and convective fluxes; and (iv) convective heat transfer
is negligibly small. Since the density variation 
ρ is negligible according to (i), the fluid
can be deemed virtually incompressible with ∇·v = 0 from (4.5d). For the same reason,
buoyancy and natural convection effects are not significant. Thus, (ii) allows a linearization
of (4.5a–c) and (4.5f ) with E coming mainly from the applied electric field. Together with
(iii), how induced charges are built up with respect to time can then be determined solely
by the injection/ejection of the electric current σE, as described by (4.5b). Assumption
(iv) implies that Joule heat generation is mainly dissipated by conduction (with constant k
because of (i)) in (4.5c).

Using the above assumptions, Ramos et al. (1998) were able to come up with the
following general formula for the electrothermal force density:

f e = ε0(α − β)

1 + iωτDebye
(∇T · E)E − 1

2ε0α|E|2∇T, (4.6)

where τDebye = ε0/σ0 represents the Debye relaxation time. Since (4.6) can be applied to
any electrode geometries, the precise behaviours of ∇T and E that determine the behaviour
of f e will also be geometry dependent. Ramos et al. (1998) used (4.6) to analyse ACET
flows on planar electrodes. Here we extend the analysis for a conical needle to see how the
needle geometry influences the features of ACET.

4.3. Outer ACET around a conical needle
We first look at the region sufficiently away from the tip such that the electric field around
the needle at a distance r = (z2 + R2)1/2 to the tip behaves like the electric field generated
by a line charge (see figure 6a), where the cylindrical coordinates z and R denote the
axial and radial positions, respectively. Thus, one can employ the slender-body theory
(Batchelor 1970) to describe the electric potential distribution Φ(z,R) around the needle as

Φ(z, R) = 1
4πε

∫ L

0

q(s) ds

[(z − s)2 + R2]
1/2 , (4.7)

where q(z) is the unknown charge distribution (per unit length) along the needle of length
L. For R � L, the integral in (4.7) can be approximated as q(z) ln[4z(L − z)/R2]. With
Φ = Vext denoting the potential exerted on the needle surface R = b(z), we find

q(z) ≈ 4πεVext[L(z)]−1, (4.8)

where L(z) = ln[4z(L − z)/b2(z)]. Following Batchelor (1970), we combine (4.7)
and (4.8) to determine both the radial field ER = −∂Φ/∂R and the axial field
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+V

Cold

Hot

R

z

∇RT < 0

(a)

(b)

Figure 6. Schematic illustrations of how the electric field and temperature behave around the needle in the
outer region sufficiently away from the tip. Their behaviours are the prerequisites of the use of the theory of
Ramos et al. (1998) in explaining the ACET around a conical needle. (a) The electric field around the needle
acts in a direction virtually perpendicular to the needle surface, as if the needle were a line charge. (b) The
conical geometry always makes the needle hotter than the fluid. Joule heating effects by the needle or/and by
the fluid will then create an outward temperature gradient dissipating heat into the fluid. The situation looks as
if there is a line heat source placed along the central line of the needle.

Ez = −∂Φ/∂z as

ER ≈ 2Vext

R
[L(z)]−1, Ez ≈ 0. (4.9a,b)

As the electric field given above essentially resembles that of a line source, we may
conclude that the temperature gradient ∇T in (4.6) is mainly due to its radial component
∇RT.

Next, we consider the linearized heat conduction equation (4.5c) subject to Joule
heating:

k∇2T + σ0|E|2 = 0. (4.10)

Similar to the study on a Joule-heated slender conic nanopore (Pan et al. 2016), slender
body theory implies that ∂/∂R � ∂/∂z and thus the conduction term in (4.10) is dominated
by the radial part k∇2T ≈ kR−1∂[R∂T/∂R]/∂R. Together with σ0|E|2 ≈ σ0E2

R, we solve
(4.10) in the approximate form: kR−1∂[R∂T/∂R]/∂R + σ0E2

R = 0 with the boundary
condition T = Tw at R = b(z). Thus the temperature distribution around the needle surface
can be determined as

T(R, b(z)) = Tw − TEX

2

(
ln

R
b

)2

− TIN ln
(

R
b

)
. (4.11)

Here TEX and TIN represent the effective temperatures respectively for external Joule
heating by the fluid and for internal Joule heating by the needle, defined as

TEX = 4(σ0/k)[Vext/L(z)]2, (4.12)

TIN = −b(∂T/∂R)R=b. (4.13)
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Note that TIN defined by (4.13) is essentially 
T given by (4.2) because kTIN /b = h
T on
the conical surface. Also because of (4.2) and of h ≈ k/b, TIN ≈ 
T ∝ V2

ext/b2 grows as
we move toward the tip. Thus, (4.11) indicates that the needle is always hotter than the
surrounding fluid with a radial temperature gradient given by

∇RT = −TEX

R
ln

(
R
b

)
− TIN

R
. (4.14)

It is also worth noting that the needle geometry always makes ∇RT < 0 point outward and
vary like 1/R, regardless of the amount of Joule heating generated from the needle or from
the fluid. This excessive heat will be eventually dissipated into the fluid that is gradually
cooled off with moving away from the needle. The situation looks as if there was a linear
distribution of heat sources placed along the central line of the needle, as illustrated in
figure 6(b).

To identify which heating mechanism dominates, we use the following temperature ratio
to reflect the importance of external heating compared with internal heating:

G = TEX/TIN . (4.15)

Since TIN ∝ V2
ext/b2, G is proportional to b2, which indicates that external heating will be

gradually diminished as the tip is approached and the internal heating will become more
important. This may explain why the temperature rise in our experiment mainly arises
from the heating by the slender needle, as conjectured by (4.2).

Prior to examining how each heating mechanism impacts the flow, we first provide
the proper scaling for the flow field v driven by a given local electric force density f e.
Let fe = |f e| be the strength of the force density. Since the electric field mainly acts
perpendicular to the needle surface in view of (4.9), it drives the fluid with the radial
velocity uR ∼ feR2/η and axial velocity uz ∼ −uR(z/R) ∼ −fezR/η due to the fluid’s
continuity ∇·v = 0 from (4.5d), namely,

(uR,, uz) ∼ fe(R2, −zR)/η. (4.16)

If G � 1, the heating is dominated by the needle with ∇RT ≈ −
T/R ∝ 1/z2R.
Together with ER ∼ Vext/R according to (4.9a,b), we have fe ∝ 1/z2R3 from (4.6). Since
∇RT < 0, the electric force f e will be acting outward if it is generated by conductivity
gradients, i.e. through the β term in (4.6). As this force will be pulling the fluid in the radial
direction and is becoming stronger as the tip is approached, an axial fluid entrainment from
the thicker end of the needle toward the tip will concurrently be established to fulfil the
requirement of fluid continuity. Following (4.16), the resulting fluid velocities behave as

(uR, uz) ∝ (1/z2R, −1/zR2). (4.17)

This indicates that both radial pulling and axial entrainment effects are getting stronger
as the tip is approached, thereby producing a vortical flow sweeping toward the tip, as
illustrated in figure 7(a). Because of the axisymmetric needle geometry assumed here, the
resulting vortical flow should appear as a single toroidal vortex.

However, for G � 1 external Joule heating (4.14) results in ∇RT = −(TEX/R)
ln(R/b) < 0 which varies roughly as 1/R but slowly increases in magnitude as approaching
toward the tip (due to the ln(R/b) term). The electric force density f e in (4.6) therefore
varies roughly as 1/R3 due to ER ∝ 1/R in (4.9a,b). Again, if f e is mainly sustained
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Figure 7. Schematic illustrations of the use of the theory of Ramos et al. (1998) in explaining the ACET
flows in both the outer and inner regions from the needle tip. (a) In the outer region, a fluid entrainment from
the thicker end of the needle toward the tip can result from the outward temperature gradient, as depicted in
figure 6(b). (b) In the inner region, the fluid can be pulled out of the hotspot tip to form a microjet and thus
reinforce the outer fluid entrainment toward the tip shown in (a).

by conductivity gradients, it will be acting outward under ∇RT < 0, making the fluid
velocities (4.16) vary according to

(uR, uz) ∝ (1/R, −z/R2). (4.18)

As shown above, either internal or external Joule heating will result in a flow sweeping
toward the tip (figure 7a) due to the conductivity gradients caused by the outward
temperature gradients ∇RT < 0. But in terms of the fluid velocities, the two cases vary
with z at different rates. By comparing (4.17) and (4.18), it can be deduced that the axial
velocity for the internal heating case behaves as uz ∝ 1/zR2, whereas the external heating
case renders uz ∝ z/R2. The former grows much more rapidly than the latter by a factor
of 1/z2 moving toward the tip. This can be understood by recalling that the characteristic
temperature due to internal heating varies as TIN ∝ 1/z2 according to (4.13) and (4.2),
whereas that due to external heating TEX varies slowly with z in (4.12).

4.4. Inner ACET around a sharp conducting nanotip
The previous section merely describes the features of the outer ACET away from the tip in
which the needle acts like a line charge with the electric field acting virtually normal to the
needle surface. While this can explain the observed flow sweeping and fluid entrainment
toward the tip, it cannot explain the ACET jet emanating from the tip with the point-force
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1/r velocity decay seen in the experiment. So it is necessary to look at what happens in the
inner region in the close proximity of the tip. The characteristics in the inner region will
be very distinct from those in the outer region. This is because not only will the electric
field become nearly parallel to the needle, but also the tip geometry will be critical to how
the electric and temperature fields behave around the tip.

In the inner region, we assume that the local electric field E =−∇Φ arises mainly from
the electric potential Φ imposed by the needle satisfying ∇2Φ = 0, while the temperature
field is still governed by (4.10). Our objective here is to determine the local electrothermal
force exerted on the fluid by the tip. We will also examine both external Joule heating by
the fluid and internal Joule heating by the needle to see which heating mechanism is more
favourable to driving the observed ACET jet.

According to Jackson (1998), the electric potential Φ and the components of the electric
field E = (Er, Eθ ) around a conical tip can be determined as

Φ = V0(r/r0)
1−nP1−n(cos θ), (4.19a)

Er = −(1 − n)(V0/r0)(r/r0)
−nP1−n(cos θ), (4.19b)

Eθ = (V0/r0)(r/r0)
−n sin θP′

1−n(cos θ). (4.19c)

In the above, V0 represents the electric potential at the tip, scaled as Vext. The prime in
the Legendre function P1−n(x) stands for the derivative with respect to x = cos θ . Recall
also that when the tip’s opening angle 2θ0 is small, the exponent n in (4.19) can be
approximated as (1.2) and hence is close to unity.

4.4.1. External Joule heating
Let us first inspect the scenario driven by external Joule heating by the fluid, where the heat
transfer is governed by (4.10). Since the expression for the Joule heat generation σ0(E2

r +
E2

θ ) now involves [P1−n(cos θ)]2 and [sin θP′
1−n(cos θ)]2 in view of (4.19b) and (4.19c), the

detailed temperature distribution for (4.10) cannot be solved analytically. Nevertheless, we
can take advantage of the fact that the actual electric field near the tip looks nearly radially
straight toward or out of the tip. Following Miloh (2016), we can restrict our attention to
the near-tip region located along the symmetry axis of the needle. In this region, where
θ is sufficiently close to 0° or 180°, we have the anticipated field behaviour |Er| � |Eθ |
according to (4.19). Also given that the exponent n is close to unity, the Joule heating
generation in (4.10) combined with (4.19) comes mainly from the radial field Er. Thus,
letting σ0|E|2 ≈ σ0E2

r in (4.10) with Er ≈ −(1 − n)(V0/r0)(r/r0)
−n from (4.19b), we can

solve (4.10) to obtain the temperature distribution around the tip as

T(r) = Ttip − (1/2)(1 − n)(3 − 2n)−1T∗
EX(r/r0)

2(1−n). (4.20)

Here Ttip = T(r ≤ r0) denotes the temperature at the tip and

T∗
EX = σ0V2

0/k, (4.21)

is the characteristic temperature scale due to external Joule heating by the fluid. As can
be clearly seen from (4.20), the tip is the hottest point having a diminishing temperature
moving away from the tip, which imparts a temperature gradient ∇rT < 0 around the tip.
If the electrothermal force is mainly sustained by conductivity gradients, the force density
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(4.6) with (4.20) and (4.19b) will be acting outward according to

f e ≈ ε0β(1 − n)4

1 + iωτDebye
(3 − 2n)−1(T∗

EX/r0)(V0/r0)
2(r/r0)

1−4ner. (4.22)

Carrying out the integral F e = 4π
∫

fer2 drer taken over a region from r = r0 to a large
value r∞(�r0), we find the electrothermal force to be

F e ≈ πε0β

1 + iωτDebye
(3 − 2n)−1c[2 ln(2/θ0)]−3T∗

EXV2
0 er, (4.23)

wherein we use (1 − n) ≈ [2 ln(2/θ0)]−1 because of (1.2) and c = (r∞/r0)
4(1−n) − 1.

Because n is close to unity here, the force given by (4.23) varies weakly with r∞ and hence
can be deemed as roughly a constant. It behaves like a point-like force acting outward and
hence in turn draws a microjet from the tip.

4.4.2. Internal Joule heating
Next, we consider the case of internal Joule heating by the needle. Recall that this case is
relevant to why the measured ACET speed does not grow with the solution conductivity
σ 0, as shown in figure 4(b). In this case, the distributions of the electric field components
are still given by (4.19b) and (4.19c). The temperature field T(r,θ ) around the tip is now
governed by ∇2T = 0. According to (4.2), T ∼ 1/r2 so the appropriate solution should
take the following decaying form:

T = T∞ + T∗
IN(r0/r)2 cos θ, (4.24)

where T∗
IN can be defined by (4.2) at b0 = r0 sin θ0 as

T∗
IN = 
T(b0) = I2

2π2kσneedleb2
0
. (4.25)

As a result, the local temperature field given by (4.24) essentially acts like a potential
dipole cos θ/r2 = z/r3 placed at the tip r = 0 with strength (output) T∗

INr2
0. Therefore, the

temperature will grow rapidly approaching the tip, turning the tip into a hotspot of size r0
(assuming cosθ0 ∼ 1) within which a finite temperature rise T(r = r0) − T∞ = T∗

IN given
by (4.25) can be assumed. Given that the finite-temperature hotspot poses an additional
point-like heat source with a temperature distribution (4.24), it may be more appropriate
to express the actual temperature distribution around the tip as

T = T∞ + c1T∗
IN(r/r0)

−1 + c2T∗
IN(r/r0)

−2 cos θ + · · · , (4.26)

where the coefficients c1 and c2 (< c1) are positive to ensure outward heat flows from both
the hotspot and the heated cone.

Substituting (4.19b) in (4.6) by taking P1−n(cos θ) ≈ 1 (since cos θ ∼ 1 near the axis),
the resulting radial force density can be evaluated as

f e ≈ ε0β(1 − n)2

1 + iωτDebye
(T∗

IN/r0)(V0/r0)
2[c1 + 2c2(r0/r) cos θ ](r0/r)2(1+n)er, (4.27)

which indicates that the dominant contribution is the hotspot source term c1(r0/r)2(1+n).
This hotspot-induced force density is always acting outward, whereas the heating dipole
c2 term can be acting inward when θ > 90°. In fact, the latter force distribution is nearly
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antisymmetric with respect to the tip (because θ ∈ [θ0, π] with θ0 being usually very
small) and hence contributes a little inward force (of O(θ2

0 ) smaller than the former) toward
the tip after performing a volume integration for f e.

In a similar manner to (4.23), one can deduce that the electrothermal force generated by
(4.27) will be concentrated at the near-tip hotspot of size r0 according to

F e ≈ 4πε0β

1 + iωτDebye
c1[2ln(2/θ0)]−2(2n − 1)−1T∗

INV2
0 er. (4.28)

This relation will again furnish a point-like force to draw and eject the fluid near the
tip according to (1.5). Compared with (4.23) with T∗

EX∼10−2 ◦C (according to (4.21) with
σ0 ∼ 1 μS cm−1 for deionized water), the force (4.28) due to internal heating with a much
higher temperature rise T∗

IN∼10 ◦C (according to (4.25)) is much stronger in magnitude by
a factor

[2ln(2/θ0)]
T∗

IN
T∗

EX
. (4.29)

This force will generally render a much faster fluid ejection from the tip, and hence
reinforce the fluid entrainment in the outer region (figure 7a), as illustrated in figure 7(b).

As such, either external or internal Joule heating in the vicinity of the tip can make the
tip hotter than the surrounding fluid to furnish a point-like electrothermal force and hence
result in a LS jetting phenomenon exhibiting a point-force velocity (1.5). Given that the
ratio (4.29) of internal to external heating in the inner region is much greater than unity
and so is 1/G in the outer region according to (4.15), we may conclude that internal Joule
heating by the needle will play a more dominant role compared with external Joule heating
by the fluid. Since the former can also cause a much stronger fluid entrainment toward the
tip in the outer region behind the tip, this together with the local fluid ejection from the
tip in the inner region may qualitatively explain the peculiar ACET flow pattern observed
near the tip, as shown in figure 2(a).

Yet, from a quantitative perspective, the present bulk charging model within the classical
framework of Ramos et al. (1998) still predicts the ACET velocity scaling u ∝ V4

according to (4.6), which cannot account for the V3 dependence for the measured fluid
speed U observed in the experiment (see figure 4a). In addition, if the heating is generated
merely by the bulk fluid, this classical theory predicts that u will at least increase linearly
with the fluid conductivity σ 0 because T∗

EX∝σ0 and 1/τDebye ∝ σ0 in (4.23). Yet these
relations cannot explain why U is not increased by increasing σ 0 (see figure 4b). Therefore,
to rationalize these disagreements with the classical theory, not only is a new heated
capacitive charging model (4.3) proposed, but also the surface heating by the needle (4.1)
is taken into account.

5. AC electro-osmotic impinging flow

When lowering the frequency below ωtip, the flow will be reversed to an ACEO that acts to
impinge over the tip. This flow can persist at a frequency as low as another characteristic
RC frequency ωspine = (2π)−1(σ0/ε0)(λ0/R0) (ranging from 500 Hz to 5 kHz) based on
the microscopic spine at the sharp end of the needle, where R0 ∼ 5 μm is the base radius
of the spine. The measured force F = 4πηUr in this case is found to vary as V2, like that
in the standard ACEO theory (González et al. 2000), as shown in figure 8(a). Hence, the
charge balance within the double layer having a surface charge density qs can be described
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Figure 8. (a) Plot of the measured force F = 4πηUr against the applied voltage V for AC electro-osmotic
impinging flow in deionized water (at 80 kHz) and 1 mM NaCl solution (at 100 kHz), which shows F ∝
V2. Multiple data points at a given value of V are the data points taken from different values of r shown in
figure 3(b). (b) Illustration of the flow mechanism, driven by an electric force within the double layer.

by the common capacitive model charged by the normal current (González et al. 2000):

∂qs/∂t = σ0E⊥, (5.1)

which yields qs ∼ ω−1σ0E⊥. For a conical region of length �(�λ0) near the tip
(figure 8b), the electric force Fe ∼ ∫

qsE//b dr ∝ V2 ln(�/λ0) varies weakly with �, thus
producing a point-force-like flow around the tip with U ∝ 1/r, in contrast to U ∝ 1/r2 or
a much faster velocity decay for typical ACEO vortices generated by planar electrodes. In
addition, we notice in figure 9 that while most of the flow is driven by ACEO, a tiny ACET
jetting may still exist in the proximity of the tip, which takes the form of a mass plume
ejecting from the tip. A reasonable explanation for this phenomenon may be connected to
our finding that the force driving an ACET jet is more concentrated at the tip compared
with the force driving ACEO. Therefore, as the tip is approached, it is more likely that an
ACET jet discharging from the tip will be observed. Such a fluid ejection due to ACET is
similar to a jet flow emerging from an open conical nanopipette due to a pressure forcing
concentrated at the tip (Secchi et al. 2017).
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100 µm

Figure 9. While the flow is dominated by AC electro-osmotic impinging flow over the tip, a mass plume
(illuminated by fluorescence-tagged DNA) can sometimes be ejected from the tip, incited by the local AC
electrothermal jetting.

6. AC Faradaic streaming

At frequencies lower than ωspine, especially near the inverse of the time scale associated
with the charge transfer from the Faradaic electrode reaction, Faradaic leakage currents can
be substantially enhanced by the applied field to cause a coion buildup within the double
layer. Such an effect reverses the ACEO impinging flow to an ACFS jet emanating from the
tip. We find that the measured point-force F = 4πηUr appears to vary at rates ranging from
V2 to V4, as shown in figure 10(a). Olesen et al. (2006) showed in their analysis for planar
electrodes that the ACFS velocity can vary as (logV)2 when V exceeds the thermal voltage
kBT/e = 25 mV. Their result was obtained by using the standard normal charging model
in which the Faradaic leakage current is balanced by the Ohmic current in the direction
normal to the electrode surface. Replotting the data by plotting F/logV against logV in
figure 10(b), we find that the measured point force F also seems to vary quadratically with
logV. However, because of the slender needle geometry, the Faradaic charging over the
sharp tip may be mainly sustained by the tangential current, as illustrated in figure 11(a).
Below we propose an alternative model to account for this tangential Faradaic charging.

First of all, the tangential current can be modelled as KsE///� in terms of surface
conductance Ks ≈ 4λ0σ sinh2(ζ/4kBT) (Lyklema 1995) and the size � of the charging
zone near the tip, wherein ζ is the zeta potential across the Debye diffuse layer and kBT is
the thermal energy. This current sustains the Faradaic current density jF leaked from the
needle surface:

KsE///� ∼ jF. (6.1)

Here we model jF by the following Bulter–Volmer equation (with the transfer coefficient
α = 1/2) for the one-step, one-electron redox process (Olesen et al. 2006):

jF = j0 e−eς/2kBT2 sinh
[

e
φ

2kBT

]
, (6.2)

where j0 denotes the characteristic exchange current.
Secondly, an occurrence of Faradaic reaction is typically realized at relatively

high potentials, i.e. e|
φ|/kBT � 1 within the Stern layer (of thickness λs) adjacent
to the electrode surface. Therefore, the potential drop 
φ ≈ qStern/Cs is mainly
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Figure 10. (a) Plot of the measured force F = 4πηUr against the applied voltage V for AC Faradaic jetting by
replotting the data in figure 3(c) for deionized water (at 100 Hz) and 1 mM NaCl solution (at 1 kHz). Multiple
data points at a given value of V are the data points taken from different values of r shown in figure 3(c). The
result shows that F seems to vary between V2 and V4. (b) Presenting the data by plotting F/log(V) against
log(V) shows that F varies roughly quadratically with log(V), as indicated by the dashed-line linear fit. (c) A
replot of (b) by plotting F/log(V) against V in a log–log plot, which shows that the data can also behave as
F/ log(V) ∝ V3/2.

taking place across the Stern layer with a capacitance Cs = ε0/λs. Using charge
conservation qStern = −qDebye and assuming that the surface charge density qDebye =
−(ε0/λ0)(2kBT/e) sinh(eζ/2kBT) within the Debye layer can be described by the classical
Gouy–Chapman–Stern model (Lyklema 1995), we obtain

e
φ/kBT ≈ δexp(eζ/2kBT). (6.3)
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Figure 11. (a) Charging mechanism for AC Faradaic jetting, involving a balance of Faradaic leakage to
tangential conduction. (b) The resulting electric force tends to drive the fluid away from the tip, thus producing
a jet-like streaming.

Equation (6.3) holds for a large positive value of eζ/kBT on the anode, where δ = λs/λ0
is the thickness ratio of the Stern layer to the Debye layer. Next, substituting (6.2) into
(6.1) with (6.3) for the ζ term and recognizing that e
φ/2kBT � ln(e
φ/kBT) for
e
φ/kBT � 1, we can approximately express 
φ in terms of E// as a Tafel-like equation:


φ ∼ 2(kBT/e) ln[KsE///�δj0]. (6.4)

Since E// ∼ V/� at a distance � from the tip, (6.4) indicates that the Faradaic current
will become stronger with increasing |
φ| as the tip is approached, thereby setting up
a violent ACFS jet emitting from the needle tip, as illustrated in figure 11(b). Given that
e
φ/kBT � 1 in (6.4), the Faradaic charging will be also confined within a near-tip region
of size � much smaller than the critical value

�∗ ∼ (KsV/j0δ)1/2, (6.5)

beyond which the Faradaic reaction will no longer be sustained by the applied electric
field. It follows then that the electric force Fe ∼ qStern�

∗2E// ∼ qStern�
∗V over that region

is practically localized near the conical tip. With qStern ≈ −Cs
φ ∝ log V taken from
(6.4), Fe is found to vary with V according to

Fe ∝ V3/2 log V. (6.6)

Figure 10(c) is a replot of figure 10(b) to depict how F/logV varies with V on a logarithmic
scale. While either (logV)2 or (6.6) can roughly capture the data trend, the data seem to
be more in favour of (6.6), especially in the high-V regime where the local tangential
Faradaic charging is more prevalent than the normal Faradaic charging to generate the
LS-like streaming observed in figure 2(c).
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AC electrothermal jet
AC electro-osmotic

impinging flow AC faradaic streaming

Frequency range ω > ωtip ωspine < ω < ωtip ω < ωspine
Charging mechanism Tangential double layer

charging to the hotspot
tip due to internal Joule
heating

Normal charging
within the Debye
diffuse layer

Tangential Faradaic
charging within the
Stern layer

Voltage dependence V3 V2 V3/2 log V

Table 1. Summary of the physical features of the three AC Landau–Squire flows observed in the
experiments. The occurrences of these flows are separated by two characteristic RC frequencies: ωtip =
(2π)−1(σ0/ε0)(λ0/b0) based on the nanoscale tip, and ωspine = (2π)−1(σ0/ε0)(λ0/R0) based on the
microscale spine at the front end of the needle, which characterize the high- and low-frequency regimes,
respectively.

7. Concluding remarks

In conclusion, utilizing the locally diverging electric field prevailing around a sharp
conducting nanotip, we discover a new class of Landau–Squire-type flows that can be
realized in a purely electrohydrodynamic manner under the actions of ambient AC electric
fields. We identify that the flow fields can display the signature of a point-force-like 1/r
decay, as in the classical pressure discharge Landau–Squire flow. But unlike the latter,
these AC flows are distinct and can behave rather differently, depending on the specific
AC forcing mechanisms. We find that a jet-like streaming from the needle tip can be
formed due to local Joule heating effects or to Faradaic reactions. Such a jet-like flow
pattern can be also reversed into an impinging flow over the tip as a result of the induced
AC electro-osmotic flow. In the former case, in particular, the measured fluid velocities
for the AC electrothermal jet and the AC Faradaic streaming can display distinctive
dependences on the applied voltage due to the conical needle geometry, very different
from those observed when using planar electrodes. Yet another distinctive feature of these
AC Landau–Squire flows is that they can be manipulated by the applied AC frequency
ω according to two characteristic frequencies: ωtip based on the nanoscale tip and ωspine
based on the microscale spine at the sharp end of the needle. The former controls the
occurrence of an AC electrothermal jet whereas the latter determines the reversal of AC
electro-osmotic impinging flow to AC Faradaic streaming. Since these two frequencies are
controlled by the nanoscopic and microscopic length scales of the needle and are well
separated, one may be able to design the needle geometry to tailor the frequency ranges of
these AC flows. Table 1 summarizes these findings, which indicates that a conical electrode
geometry may fundamentally change the main features of AC Landau–Squire flows in the
sense that tangential charging might play a more dominant role than normal charging that
commonly rules in common planar electrode systems. Similar characteristic changes due
to a conical geometry can also affect the ionic transport within a conical nanopore, which
exhibits nonlinear current responses to the applied pressure (Jubin et al. 2018).

It is also worth mentioning that the new AC Landau–Squire-type flow patterns reported
here are distinct from those observed around nearly insulated dielectric corners (Thamida
& Chang 2002; Zehavi & Yossifon 2014; Zehavi, Boymelgreen & Yossifon 2016).
The main differences are probably related to distinctive polarization mechanisms – the
latter’s flows are mostly triggered by dielectric polarization whereas the present ones are
predominantly driven by conductive polarization. As for the reported AC electrothermal
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jet, we find that it cannot be satisfactorily explained by using the fluid Joule heating model
of Ramos et al. (1998). Instead, it can be reasonably accounted for by incorporating the
local Joule heating inside the needle in conjunction with the familiar capacitive charging
model within the double layer. This implies that even in the case of planar electrodes,
such a local heating effect might play a role in regions near electrode corners or edges
and hence give rise to a possible enhancement of local electrothermal ejection. As such a
jet-like streaming can also be triggered by a Faradaic reaction within the Stern layer on the
needle surface, the features of these jet flows may also be sensitive to the surface conditions
of the tip, depending on the material used or detailed procedures for preparing the tip. We
have done some tests and found that using different etching conditions or plasma exposure
times may change these jet flows both qualitatively and quantitatively. How these factors
impact the features of such flows would require more systematic investigations, which will
be tackled in our future study.

From a technological perspective, as the present various nanotip-based AC
Landau–Squire flows can be precisely controlled by the applied AC voltage and frequency,
they could be well utilized to expedite fluid pumping or sample mixing in microfluidic
devices. Since the nanotip itself can also be employed to trap nanosized substances, it
is possible to turn such a tip into a molecular sensor like that in an ECSTM probe. The
newly reported AC flows may be able to facilitate the capture of selected target molecules
and hence improve the detection capability in such applications. Our study is also quite
relevant to the use of an atomic force microscopy tip in promoting trapping and assembly
of molecules or nanoparticles under ambient AC electric fields (Freedman et al. 2016;
Zhou et al. 2017). With the aid of the amplified electric field near the tip, such a process
is commonly achieved using DEP. Since AC Landau–Squire flows can also be present at
the same time, one may be able to utilize these flows to enhance the DEP trapping at the
tip. The reason is that convective effects by such flows are typically long-range because of
the slow 1/r decay in velocity. Therefore, samples in the bulk fluid can be rapidly brought
toward the tip, increasing their chance to be captured by the tip through DEP.
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