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UPPER BOUNDS ON jL(1Ò ü)j
AND APPLICATIONS

STÉPHANE LOUBOUTIN

ABSTRACT. We give upper bounds on the modulus of the values at s = 1 of Artin L-
functions of abelian extensions unramified at all the infinite places. We also explain how
we can compute better upper bounds and explain how useful such computed bounds are
when dealing with class number problems for CM-fields. For example, we will reduce
the determination of all the non-abelian normal CM-fields of degree 24 with Galois
group SL2(F3) (the special linear group over the finite field with three elements) which
have class number one to the computation of the class numbers of 23 such CM-fields.

1. Introduction. It is well known that there exists c Ù 0 such that for any primitive
Dirichlet character modulo f Ù 1 we have jL(1Ò ü)j � 1

2 log f + c. Letting êE, dE and hE

denote the Dedekind zeta function, the absolute value of the discriminant and the class
number of a number field E, in [Lou3] we generalized this result and proved:

THEOREM 1. Let k be a given number field. There exists a constant ñk Ù 0 (depending
on k only) such that for any non-trivial character ü on the Galois group of any abelian
extension KÛk which is assumed to be unramified at all the infinite places we have

jL(1Ò ü)j � Ress=1(êk)
�1

2
log fü + 2ñk

�
(1)

together with the following two improvements:

jL(1Ò ü)j � Ress=1(êk)
�1

2
log fü + ñk

�
if fü ½ e2ñk(2)

and
jL(1Ò ü)j � ñk Ress=1(êk) if fü = 1(3)

Here, we let Fü denote the conductor of ü and set fü = NkÛQ(Fü).

COROLLARY 2. Let KÛk be an unramified at all the infinite places abelian extension
of degree m. Then

Ress=1(êK) �
�
Ress=1(êk)

�m
 

1
2(m � 1)

log(dKÛdm
k ) + 2ñk

!m�1

(4)

Moreover, if KÛk is unramified at all the places, then

Ress=1(êK) � Ress=1(êk)Bm�1
k where Bk

def
== ñk Ress=1(êk)(5)
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PROOF. Use (1),

Ress=1(êK) = Ress=1(êk)
Y
ü6=1

L(1Ò ü) � Ress=1(êk)
� 1

m� 1

X
ü6=1

jL(1Ò ü)j
�m�1

and
Q
ü6=1 fü = dKÛdm

k to get (4). Use (3) and

Ress=1(êK) = Ress=1(êk)
Y
ü6=1

L(1Ò ü)

to get (5).

According to (2), for any primitive even Dirichlet character ü of conductor fü Ù 1
we have

jL(1Ò ü)j � 1
2

log fü + ñQ(6)

(and we will prove that ñQ =
�
2 + ç � log(4ô)

�
Û2 = 0023095708966 Ð Ð Ð). Hence, for

any real quadratic field k of discriminant dk we get

Ress=1(êk) � 1
2

log dk + ñQÒ(7)

and more generally, for any real abelian field k of degree n and conductor fk we have

Ress=1(êk) �
 

1
2(n� 1)

log dk + ñQ

!n�1

�
�1

2
log fk + ñQ

�n�1
(8)

(use (6), the conductor-discriminant formula and the arithmetic-geometric mean inequal-
ity). Moreover we proved in [Lou3] that if k is a real quadratic field then we have

Bk = ñk Ress=1(êk) � 1
8

log2 dk(9)

However, our proof of (9) in [Lou3] was not that enlightening and did not point to any
easy to handle method which would enable us to get a result similar to (9) for totally
real fields k of any degree n ½ 2. We then used (4), (5), (7) and (9) to get upper bounds
on residues at s = 1 of Dedekind zeta functions of various totally real number fields
which were abelian extensions of real quadratic fields k. These bounds were in turn
used to get lower bounds on relative class numbers of various CM-fields and, finally,
these lower bounds were used to solved various class number problems for non-abelian
CM-fields (see [Lef], [LLO], [LO] and [LOO]). We refer the reader to [Was] for all the
prerequisites on CM-fields we will assume him to be familiar with. Let us only mention
that the analytic relative class number formula

h�N =
QNwN

(2ô)n

vuut dN

dN+

Ress=1(êN)
Ress=1(êN+ )

Ò(10)

makes it reasonable to seek upper bounds on residues at s = 1 of Dedekind zeta functions
of totally real number fields N+ to obtain lower bounds on relative class numbers h�N of
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796 STÉPHANE LOUBOUTIN

CM-fields N (here, N is a CM-field of degree 2n and wN and QN 2 f1Ò 2g denote its
number of roots of unity and Hasse unit index, respectively). The general upper bound

Ress=1(êN+ ) �
 

e log dN+

2(n� 1)

!n�1

(11)

(see [Lou3] and [Lou4]) would provide worse lower bounds on h�N than the ones we
obtained above (for example, compare the two lower bounds (42) and (43)). Maybe the
best illustration of the usefulness of our bound (4) is the solution of the class number
one problem for the dihedral CM-fields (see [Lef]). For simplicity’s sake we assume
that N is a dihedral CM-field of degree 2n = 4m with m ½ 3 odd. We let M denote the
imaginary biquadratic bicyclic subfield of N and k denote the real quadratic subfield of
M. Then N+Ûk is cyclic of degree m. We note that h�M divides h�N and that (êNÛêM)(s) ½ 0
for any s 2 ]0Ò 1[. Now, assume that h�N = 1. Then h�M = 1. However, it is known that
there are exactly 147 imaginary biquadratic bicyclic fields M such that h�M = 1 and,
moreover, one can easily check that for all these 147 fields M we have êM(s) Ú 0 for
s 2 ]0Ò 1[. Therefore, if h�N = 1 then êN

�
1 � (2Û log dN)

�
� 0. However, it is known

that for any CM-field such that êN
�
1 � (2Û log dN)

�
� 0 we (roughly speaking) have

Ress=1(êN) ½ 2Ûe log dN. Now, noticing that we have dN ½ d2
N+ , if we use (10) and (11)

we get

h�N ½ 1
n� 1

p
dN+

( ôe
n�1 log dN+ )n Ò(12)

from which we can deduce that there are only finitely many dihedral CM-fields of degree
2n = 4m � 4 (mod 8) with relative class number one and that all satisfy d1Ûn

N+ � 30000,
too large a bound to enable us to solve the (relative) class number one problem for such
dihedral CM-fields. But now, using (4), noticing that there are at most 147 occurrences
for k (which all satisfy dk � 65689) and using the bounds (7) and (9) or, more efficiently,
computing numerically ñk and Ress=1(êk) for all of them, we end up with an explicit
upper bound

Ress=1(êN+ ) = O(logm�1 dN+ )Ò
hence with an explicit lower bound

h�N × cm

p
dN+

logm dN+
Ò

whose exponent m is half as large as the one n in (12). This lower bound is now good
enough to determine all the dihedral CM-fields with (relative) class numbers equal to
one (see [Lef]).

The first purpose of this paper is to prove Theorem 1 (see Section 1.4).
The second purpose of this paper is to give bounds on Bk = ñk Ress=1(êk) for totally

real fields k of degree n ½ 2 (see Theorems 5 and 11). Contenting ourselves with totally
real fields k is no serious restriction to us, for we aim at using our present results to get
good upper for residues at s = 1 of the Dedekind zeta functions of various totally real
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number fields K = N+ which are maximal totally real subfields of CM-fields N. We will
prove in Theorem 5 that we have

Bk = ñk Ress=1(êk) � 1
2nn!

logn dkÒ(13)

provided that dk is large enough. This will provide us with a less technical proof and a
generalization of (9) to any totally real number field. Moreover, Theorem 11 will provide
us with the better bound

Bk = ñk Ress=1(êk) � n� 1
2

 
1

2(n� 1)
log dk + ñQ

!n

� n� 1
2

�1
2

log fk + ñQ

�n
Ò(14)

provided that k is (real) abelian of conductor fk.
The third purpose of this paper is to explain how one can efficiently compute numer-

ically the value of any Bk = ñk Ress=1(êk) (see Sections 3.3 and 4.2). In fact, in the last
section of this paper, we will firstly use (5), (8) and (14) to determine the reasonable
bound fk � 83000 on the conductors fk of the real cyclic cubic subfields k of the normal
CM-fields N of degree 24 with Galois group SL2(F3) which have class number one (and
we will point out that N is well determined by k), and we will secondly compute numer-
ically all the Bk and Ress=1(êk) for the 4784 possible occurrences of k with fk � 105 and
we will then use (5) to prove that only 23 out of these 4784 cyclic cubic fields can be
cyclic cubic subfields of normal CM-fields N of degree 24 with Galois group SL2(F3)
and class number one (see Proposition 16). This example clearly shows how useful (13),
(14) and such computed bounds on residues can be, for it is much easier to compute Bk

than to compute h�N . We also refer the reader to [CK] and [Lef] for other examples.

1.1. Definition of ïk and ñk. Let k be a number field of degree n = r1 + 2r2, where r1

and r2 denote the number of real and complex places of k, respectively. Let êk and dk be
the Dedekind zeta function and the absolute value of the discriminant of k, respectively.
We set

Ak = 2�r2ô�nÛ2
p

dkÒ
Γk(s) = Γr1 (sÛ2)Γr2 (s)

and
Fk(s) = As

kΓk(s)êk(s)
It is well known that Fk satisfies the functional equation Fk(1� s) = Fk(s), has only two
poles, at s = 1 and s = 0, both simple, and we set

ïk = Ress=1(Fk) = AkΓk(1) Ress=1(êk) = (2ô)�r2
p

dk Ress=1(êk)Ò
which yields Ress=0(Fk) = �ïk. Note that we have ïk Ù 0. We finally set

ñk = lim
s&1

² 1
ïk

Fk(s)�
� 1

s � 1
� 1

s

�¦
(15)

In particular, we have ïQ = 1, ñQ =
�
2 + ç � log(4ô)

�
Û2 = 0023 Ð Ð Ð .
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1.2. Definition of the functions Hk, Sk, Λü and Sü. We set

êk(s) =
X
m½1

zmm�s

to define coefficients zm (and note that we have zm ½ 0) and define

Hk(x) =
1

2ôi

Z
<(s)=ã

Γk(s)x�s ds (x Ù 0 and ã Ù 0)

(and note that we have Hk(x) ½ 0 for x Ù 0) and

Sk(x) =
1

2ôi

Z
<(s)=ã

Fk(s)x�s ds =
X
m½1

zmHk(mxÛAk) (x Ù 0 and ã Ù 1)(16)

Now, letü denote a Dirichlet character associated to an abelian extension KÛk unramified
at all the infinite places, let Fü denote the conductor of ü (which is an integral ideal of
k) and set

fü = NkÛQ(Fü)Ò
L(sÒ ü) =

X
m½1

ûmm�s

with
ûm =

X
NkÛQ(I)=m

ü(I)

(where this sum ranges over all the integral ideals of k of norm m),

Aü = Ak

q
füÒ

and
Λü(s) = As

üΓk(s)L(sÒ ü)Ò
which is entire and satisfies the functional equation

Λü(1� s) = WüΛǖ(s)

for some root number Wü of absolute value equal to one. Notice that

L(1Ò ü) =
1

ïk

q
fü

Ress=1(êk)Λü(1)(17)

We finally set

Sü(x) =
1

2ôi

Z
<(s)=ã

Λü(s)x�s ds =
X
m½1

ûmHk(mxÛAü) (x Ù 0 and ã Ù 1)(18)

and notice that jûmj � zm yields

jSü(x)j � Sk(xAkÛAü) = Sk(xÛ
q

fü)
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Observe that it is of paramount importance that KÛk be unramified at all the infinite
places, for the proof of Theorem 1 stems from the fact that Γk is the Gamma factor
which appears in the functional equations of both Fk and Λü, which enables us first to
express both Sk and Sü in terms of Hk, and second to obtain jSü(x)j � Sk(xÛ

q
fü). We

refer the reader to [Lou1] and [Lou4, Th. 6] to see how complicated and less satisfactory
become generalizations of Theorem 1 when KÛk is not assumed to be unramified at all
the infinite places.

Notice that the choice k = Q the field of rational numbers yields

SQ(x) = 2
X
n½1

e�ôn2x2 (19)

1.3. Integral representations of Λü, Fk and ñk. By shifting the line of integration
<(s) = ã in (16) and (18) to the left to the line <(s) = 1�ã we pick up residues at s = 1
and s = 0, and by using the functional equations satisfied by Fk and Λü to come back to
the line of integration <(s) = ã, we obtain the following functional equations:

Sk(x) =
1
x

Sk

�1
x

�
� ïk +

ïk

x
and Sü(x) =

Wü

x
Sǖ
�1

x

�
(20)

Therefore, we finally obtain:

Λü(s) =
Z 1

0
Sü(x)xs dx

x

=
Z 1

1
Sü(x)xs dx

x
+
Z 1

1
Sü
�1

x

�
x�s dx

x

=
Z 1

1
Sü(x)xs dx

x
+ Wü

Z 1

1
Sǖ(x)x1�s dx

x

and

Λü(1) =
Z 1

1
Sü(x) dx + Wü

Z 1
1

Sǖ(x)
dx
x
(21)

In the same way, we get

ñk
def
== lim

s&1

² 1
ïk

Fk(s)�
� 1

s � 1
� 1

s

�¦
=

1
ïk

Z 1

1
Sk(x) dx +

1
ïk

Z 1

1
Sk(x)

dx
x
(22)

Notice that we get ñk Ù 0.

1.4. Definition of f 7! Ik(f ) and proof of Theorem 1. We set

f = AüÛAk =
q

fü ½ 1Ò

which yields
jSü(x)j � Sk(xÛf )

Setting

Ik(f ) =
Z 1

1
Sk(xÛf ) dx +

Z 1
1

Sk(xÛf )
dx
x

(23)

https://doi.org/10.4153/CJM-1998-042-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-042-2
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and using (22) and (21), we obtain

Ik(1) = ïkñk and jΛü(1)j � Ik(f )(24)

To begin with, if fü = 1 then f = 1 and using (24) and (17) we get

jL(1Ò ü)j =
1
ïk

Ress=1(êk)jΛü(1)j � 1
ïk

Ress=1(êk)Ik(1) = ñk Ress=1(êk)

and (3) is proved.
Now, for any ü, using (20), we have

Ik(f ) = f
Z 1

1Ûf
Sk(x) dx +

Z 1

1Ûf
Sk(x)

dx
x

= f
Z 1

1
Sk(x) dx +

Z 1

1
Sk(x)

dx
x

+ f
Z f

1
Sk(1Ûx)

dx
x2

+
Z f

1
Sk(1Ûx)

dx
x

= f
Z 1

1
Sk(x) dx +

Z 1

1
Sk(x)

dx
x

+ f
Z f

1
Sk(x)

dx
x

+
Z f

1
Sk(x) dx + ïk(f � 1) log f

� (f + 1)
�Z 1

1
Sk(x) dx +

Z 1

1
Sk(x)

dx
x

�
+ ïk(f � 1) log f

= (f + 1)Ik(1) + ïk(f � 1) log f

= fïk(log f + ñk) + ïk(ñk � log f )Ò

and using (24) and (17) we get

jL(1Ò ü)j =
1

fïk
Ress=1(êk)jΛü(1)j

� 1
fïk

Ress=1(êk)Ik(f ) � Ress=1(êk)
 �

1� 1
f

�
log f +

�
1 +

1
f

�
ñk

!

from which we get (1) and (2) of Theorem 1.
Let us point out that Theorem 5 and Lemma 10 will be proved in much the same way.

2. A bound on ñk Ress=1(êk) when k is totally real. From now on, we assume
that k is a totally real number field of degree n, which yields ïk =

p
dk Ress=1(êk) and

Ik(1) = ïkñk =
p

dkñk Ress=1(êk) =
p

dkBk. The aim of this section is to determine
bounds on Ik(1). We first set some notation. For n ½ 1 we define

FQ(s) = ô�sÛ2Γ(sÛ2)ê(s) =
1

s � 1
+
ç � log(4ô)

2
+ O(s � 1)Ò

Fn(s) = Fn
Q(s) = As

nΓn(sÛ2)ên(s) with An = ô�nÛ2Ò
ên(s) =

X
m½1

Zmm�sÒ

f = AkÛAn =
p

dkÒ
Hn(x) =

1
2ôi

Z
<(s)=ã

Γn(sÛ2)x�s ds (x Ù 0 and ã Ù 0)
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(note that Hk(x) = Hn(x)) and define

Sn(x) =
X
m½1

ZmHn(mxÛAn) =
1

2ôi

Z
<(s)=ã

Fn(s)x�s ds (x Ù 0 and ã Ù 1)(25)

Since 0 � zn � Zn, we get Sk(x) � Sn(xÛf ) and (23) yields

fñk Ress=1(êk) = Ik(1) �
Z 1

1

�
1 +

1
x

�
Sn(xÛf ) dx(26)

The aim of this section is to compute bounds on the right hand side of this inequality.
Shifting the line of integration <(s) = ã in (25) to the left to the line <(s) = 1 � ã we
pick up residues at s = 1 and s = 0, and using the functional equation Fn(1� s) = Fn(s)
to come back to the line of integration <(s) = ã, we obtain

Sn(x) = Ress=1

�
Fn(s)x�s

�
+ Ress=0

�
Fn(s)x�s

�
+

1
x

Sn

�1
x

�

and note that both these residues depend on x. Since Fn(s) = Fn(1 � s), we get

Ress=0

�
Fn(s)x�s

�
= �Ress=1

�
Fn(1 � s)xs�1

�
= �Ress=1

�
Fn(s)xs�1

�
Ò

setting
Gn(s) = Fn(s)(x�s � xs�1)(27)

we get

Sn(x) = Ress=1(Gn) +
1
x

Sn

�1
x

�
Ò(28)

(and note that this residue depends on x), which yields

Fn(S) =
Z 1

0
Sn(x)xS dx

x
=
Z 1

1
Sn

�1
x

�
x�S dx

x
+
Z 1

1
Sn(x)xS dx

x

=
Z 1

1
Sn(x)(x1�S + xS)

dx
x
�
Z 1

1
Ress=1(Gn)x�S dx

LEMMA 3. Set

In(S) =
Z 1

1
Sn(x)(x1�S + xS)

dx
x


Then, S Ù 1 implies

In(S) = Fn(S) + Ress=1

 
s 7! Fn(s)

S + s � 1

!
� Ress=1

 
s 7! Fn(s)

S� s

!
(29)

PROOF. Using (27), we have

In(S) = Fn(S) +
Z 1

1
Ress=1

�
s 7! Gn(s)

�
x�S dx

= Fn(S) + Ress=1

�
s 7!

Z 1
1

Gn(s)x�S dx
�
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= Fn(S) + Ress=1

�
s 7!

Z 1
1

Fn(s)(x�s�S � xs�S�1) dx
�

= Fn(S) + Ress=1

 
s 7! Fn(S)

� 1
S + s � 1

� 1
S� s

�!

= Fn(S) � Ress=1

 
s 7! Fn(s)

S� s

!
+ Ress=1

 
s 7! Fn(s)

S + s � 1

!


PROPOSITION 4. Set

In
def
== In(1) =

Z 1

1
Sn(x) dx +

Z 1
1

Sn(x)
dx
x


Then

In = Ress=1

 
s 7! Fn(s)

�1
s

+
1

s � 1

�!
(30)

PROOF. On the one hand we have

lim
S&1

Ress=1

 
s 7! Fn(s)

S + s � 1

!
= Ress=1

 
s 7! lim

S&1

Fn(s)
S + s � 1

!
= Ress=1

 
s 7! Fn(s)

s

!


On the other hand, using
1

S� s
=

1
S� 1

X
j½0

(
s � 1
S� 1

)j

and writing Fn(s) =
P

i½�n ai(n)(s � 1)i, we get

Fn(S) � Ress=1

�
s 7! Fn(s)

S� s

�
= Fn(S) �

�1X
i=�n

ai(n)(S � 1)i =
X
i½0

ai(n)(S � 1)i

and

lim
S&1

0
B@Fn(S) � Ress=1

 
s 7! Fn(s)

S� s

!1CA = a0(n) = Ress=1

 
s 7! Fn(s)

s � 1

!


Therefore, using (29) we get the desired result.

According to (26) and (28), we obtain:

Ik(1) �
Z 1

1

�
1 +

1
x

�
Sn(xÛf ) dx

=
Z 1

1Ûf

�
f +

1
x

�
Sn(x) dx

=
Z 1

1

�
f +

1
x

�
Sn(x) dx +

Z f

1
(f + x)Sn

�1
x

�dx
x2

=
Z 1

1

�
f +

1
x

�
Sn(x) dx +

Z f

1

� f
x

+ 1
�

Sn(x) dx �
Z f

1

� f
x

+ 1
�

Ress=1(Gn) dx

�
Z 1

1

�
f +

1
x

+
f
x

+ 1
�

Sn(x) dx �
Z f

1

� f
x

+ 1
�

Ress=1(Gn) dx

= (f + 1)In � Ress=1

 Z f

1

� f
x

+ 1
�

Gn(s) dx
!

= (f + 1)In � Ress=1

 
Fn(s)

�1
s

+
1

s � 1

�
(f + 1� f s � f 1�s)

!
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According to (30) and since
p

dkBk =
p

dkñk Ress=1(êk) = ïkñk = Ik(1), we get

THEOREM 5. Let k be a totally real number field of degree n and set f =
p

dk. We
have p

dkBk � Rn(f )
def
== Ress=1

 
Fn(s)

�1
s

+
1

s � 1

�
(f s + f 1�s)

!


Moreover, we have the following Table:
R1(f ) = (f � 1) log f + b1(f + 1)
with b1 =

�
2 + ç � log(4ô)

�
Û2 = 0023095 Ð Ð Ð,

R2(f ) = f +1
2 log2 f � c1(f � 1) log f + c2(f + 1)

with c1 = log(4ô) � 1� ç = 09538 Ð Ð Ð and c2 = 0001029 Ð Ð Ð,
R3(f ) = f�1

6 log3 f � d1(f + 1) log2 f + d2(f � 1) log f + d3(f + 1)

with d1 =
�

3
�
log(4ô) � ç

�
� 2

�
Û4 = 0965 Ð Ð Ð , d2 = 1933 Ð Ð Ð and d3 =

00000517 Ð Ð Ð .
Let n ½ 2 be given. There exists fn such that f ½ fn implies Rn(f ) � f

n! logn(f ). In other
words, if n is given then there exists dn such that

Bk = ñk Ress=1(êk) � 1
2nn!

logn dk(31)

holds for any totally real number field k of degree n such that dk ½ dn. In particular,
(31) holds for any totally real number field k of degree n = 2 or n = 3.

PROOF. One can easily check that Rn(f ) = f Pn(log f ) + Pn(� log f ) where

Pn(X) = Ress=0

 �1
s

+
1

s + 1

�
esXFn(s + 1)

!
=

nX
k=0

pk(n)
k!

Xk

with

pk(n) = Ress=0

 
sk
�1

s
+

1
s + 1

�
Fn(s + 1)

!


Since

Fn(s + 1) =
1
sn
� n

log(4ô) � ç
2

1
sn�1

+ Ð Ð Ð
and

1
s

+
1

s + 1
=

1
s

+
X
k½0

(�1)kskÒ

we get pn(n) = 1, pn�1(n) = �
�

n
�
log(4ô) � ç

�
� 2

�
Û2 and

Rn(f ) =
f + (�1)n

n!
logn f + pn�1(n)

f + (�1)n�1

(n � 1)!
logn�1 f + Ð Ð Ð

=
f
n!

logn f + pn�1(n)
f

(n� 1)!
logn�1 f + O(f logn�2 f )Ò

and the desired result follows from pn�1(n) � 1 + ç � log(4ô) Ú 0 for n ½ 2.
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3. Numerical computation of ñk Ress=1(êk).

3.1. The mean value ofñk Ress=1(êk) over real quadratic fields. According to the results
of the previous section, for any real quadratic field k we have Bk = ñk Ress=1(êk) �
1
8 log2 dk. However, numerical computation of Bk for various real quadratic fields k
suggests that in general this bound is poor. In fact, the following result says that, roughly
speaking, we may expect Bk to be close to c0 log dk where c0 = ô2

3 c = 145 Ð Ð Ð .
PROPOSITION 6. When k ranges over the real quadratic fields

f (x) =
X

dk�x
ñk Ress=1(êk)

is asymptotic to cx log x with c = 1
4
Q

p

�
1� (p3 + p2)�1

�
= 022037 Ð Ð Ð .

PROOF. According to Lemma 9 below, if k is quadratic then

ñk Ress=1(êk) = ñkL(1Ò ük) = L0(1Ò ük) +
�

1� log(4ô) +
1
2

log dk

�
L(1Ò ük)

We then argue as in [Jut1] and [Jut2] to prove that g(x) =
P

dk�x 1 which equals the
number of real quadratic fields of discriminants less than or equal to x is asymptotic to
3xÛô2, that

P
dk�x L(1Ò ük) is asymptotic to c1x, that

P
dk�x(log dk)L(1Ò ük) is asymptotic

to c1x log x, and that
P

dk�x L0(1Ò ük) is asymptotic to �c2x, with

am =
Y
pjm

(1 + p�1)�1Ò

c1 =
3
ô2

X
m½1

am
1

m2
=

3
ô2

Y
p

(1 � p�2)
�
1� (p3 + p2)�1

�
=

1
2

Y
p

�
1� (p3 + p2)�1

�

and

c2 =
X
m½1

am
log(m2)

m2
= 132 Ð Ð Ð 

Since we may expect Bk to be smaller than the bound (31) given in section above, let
us now explain on a particular example how useful it might be to compute numerically
Bk.

3.2. Usefulness of the numerical computation of ñk Ress=1(êk). Let N denote a dihedral
CM-field N of 2-power degree 2n = 8m = 2r ½ 8 and let k denote the only quadratic
subfield of N such that the extension NÛk is cyclic. Thus k is real. In [LO] we proved
that N has odd relative class number if and only if N is the narrow Hilbert 2-class field
of k, the 2-Sylow subgroup of the narrow ideal class group of k is cyclic of order 4m and
the norm of the fundamental unit of k is equal to +1 (which implies k = Q(

p
pq) for two

primes 2 � p Ú q not equal to 3 modulo 4 and such the Legendre symbols (p
q ) is equal

to +1), and we have the following lower bound:

h�N ½ èk
64
em

(dkÛ16ô4)m

B2m�2
k (log dk + 01)4

Ò(32)
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where

èk = max
�
1� (2ône1ÛnÛpdk)Ò 2

5
exp(2ônÛpdk)

�
is asymptotic to 1 when dk goes to infinity.

Now, using the bound Bk � 1
8 log2 dk (see (31)), we get

h�N ½ èk

em

 
4dk

ô4(log dk + 01)4

!m



Therefore, 8m ½ 16 and h�N = 1 imply dk � 3 Ð 106, and in [LO], thanks to an efficient
technique for computing relative class numbers of such narrow Hilbert 2-class fields, we
were able to compute the 9542 relative class numbers for all the k’s with dk � 3 Ð 106,
which enabled us to determine all the dihedral CM-fields of 2-power degrees with
relative class number one. But now, we can alleviate this amount of required relative
class number computation: we compute Bk for each possible k and get rid of the k’s for
which (32) yields h�N Ù 1. Note that it is much easier to compute Bk than to compute
h�N . For example, there are 105 real quadratic fields k with dk � 3 Ð 106 for which
[N : Q] ½ 128 and all of them are such that (32) yields h�N Ù 1. In particular, h�N = 1
implies [N : Q] = 2n � 64. Let us also mention that there are 462 real quadratic fields
k with dk � 3 Ð 106 for which [N : Q] = 64 and 443 of them are such that (32) yields
h�N Ù 1. This first example clearly shows that being able to compute numerically Bk

might be quite useful. In the last section of this paper we will give a still more convincing
example.

3.3. Numerical computation of ñk Ress=1(êk) when k is totally real. So, let us now
explain how, for any totally real number field k of degree n, we can compute the
numerical value of Bk = ñk Ress=1(êk). Since

p
dkBk =

p
dkñk Ress=1(êk) = ïkñk = Ik(1) =

Z 1
1

Sk(x) dx +
Z 1

1
Sk(x)

dx
x

and Sk(x) =
P

m½1 zmHn(mxÛAk) (with Ak =
q

dkÛôn), setting

KnÒ1(B) =
Z 1

1
BHn(Bx) dx =

1
2ôi

Z
<(s)=ã

Γn(sÛ2)
B1�s

s � 1
ds (B Ù 0 and ã Ù 1)(33)

and

KnÒ2(B) =
Z 1

1
BHn(Bx)

dx
x

=
1

2ôi

Z
<(s)=ã

Γn(sÛ2)
B1�s

s
ds (B Ù 0 and ã Ù 1)Ò(34)

we get

LEMMA 7. Let k be a totally real number field of degree n. We have

ñk Ress=1(êk) = ô�nÛ2 X
m½1

zm

m

�
KnÒ1(mÛAk) + KnÒ2(mÛAk)

�
(35)
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Now,
1

2ôi

Z
<(s)=ã

(YÛB2)sÛ2

s� 1
=
(q

YÛB2 if Y Ù B2,
0 if 0 Ú Y Ú B2,

and f(y1Ò    Ò yn), yi ½ 0 and
Qn

i=1 yi ½ B2g is included in f(y1Ò    Ò yn), yi ½ 0 and
9iÛyi ½ B2Ûng. Therefore, we get

KnÒ1(B) =
Z Z

y1y2ÐÐÐyn½B2
e�(y1+ÐÐÐ+yn) dy1p

y1
Ð Ð Ð dynp

yn

� nônÛ2
Z 1

B2Ûn
e�y dyp

y

� nônÛ2B�1Ûne�B2Ûn

and

KnÒ2(B) = B
Z Z

y1y2ÐÐÐyn½B2
e�(y1+ÐÐÐ+yn) dy1

y1
Ð Ð Ð dyn

yn
� KnÒ1(B)

In particular, (35) is a rapidly absolutely convergent series suitable for numerical com-
putations, each terms of which we can compute thanks to power series expansions of the
functions KmÒi. For example, we have:

PROPOSITION 8. Letç = 0577215664901532 Ð Ð Ðdenote Euler’s constant. Take BÙ 0
and set s1(0) = �ç, s2(0) = ô2Û6 and for k ½ 1, set

s1(k) = �ç +
kX

i=1

1
i


We have the following power series expansions:

K2Ò1(B) = ô + 4
X
k½0

�
� 1

2k + 1
� s1(k) + log B

� B2k+1

(2k + 1)(k!)2

and

K2Ò2(B) =
�ô2

6
+ 2ç2 + 4ç log B + 2 log2 B

�
B + 4

X
k½1

�
� 1

2k
� s1(k) + log B

� B2k+1

(2k)(k!)2


Set also

s2(k) =
ô2

6
+

kX
i=1

1
i2


We have the following power series expansions:

K3Ò1(B) = ô3Û2 �X
k½0

ak
(�1)kB2k+1

(2k + 1)(k!)3

and

K3Ò2(B) = �b0B�X
k½1

bk
(�1)kB2k+1

(2k)(k!)3
Ò
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with

ak =
8

(2k + 1)2
+

12s1(k)
2k + 1

+ 9
�
s1(k)

�2
+ 3s2(k) �

� 8
2k + 1

+ 12s1(k)
�

log B + 4 log2 BÒ

b0 =
3ô2ç

4
+

9ç3

2
+ ê(3) + (9ç2 +

ô2

2
) log B + 6ç log2 B +

4
3

log3 B

bk =
8

(2k)2
+

12s1(k)
2k

+ 9
�
s1(k)

�2
+ 3s2(k) �

� 8
2k

+ 12s1(k)
�

log B + 4 log2 B

Note that ê(3) = 1202056903159594 Ð Ð Ð .
PROOF. Let us only prove the first expansion. We shift the line of integration<(s) = ã

in (33) to the left to�1. We pick residues at s = 1 and at each non-positive even integer
s = �2k. Noticing that

Ress=1

�
Γ2(sÛ2)

B1�s

s � 1

�
= ô

and using the functional equation satisfied by the Gamma function we get

Ress=�2k

�
Γ2(sÛ2)

B1�s

s � 1

�
= �4

� 1
2k + 1

+
Γ0

Γ
(k + 1)� log B

� B2k+1

(2k + 1)(k!)2

from which we easily get the desired result.

4. The case where k is abelian. We improve our bounds on Bk and give a different
and more efficient technique for computing numerically Bk. Whenever ü is an even
primitive Dirichlet character of conductor fü Ù 1 we set

Λü(s) = (füÛô)sÛ2Γ(sÛ2)L(sÒ ü) =
Z 1

1
Sü(x)xs dx

x
+ Wü

Z 1
1

Sǖ(x)x1�s dx
x

(36)

(see (21))
¯
. Let xk be the group of primitive Dirichlet characters associated to k. Then

Fk(s) = FQ(s)
Y
ü2Xk
ü6=1

Λü(s) and ïk =
Y
ü2Xk
ü6=1

Λü(1)

Since

FQ(s) = ô�sÛ2Γ(sÛ2)ê(s) =
1

s � 1
� c + O(s � 1)

with c = 1� ñQ =
�
log(4ô) � ç

�
Û2 = 0976904291 Ð Ð Ð , using (15) we get

ñk = lim
s&1

² 1
ïk

Fk(s) �
� 1

s � 1
� 1

s

�¦

= 1 + lim
s&1

(
FQ(s)

 Y
ü2Xk
ü6=1

Λü(s)
Λü(1)

!
� 1

s � 1

)

= 1 + lim
s&1

(� 1
s � 1

� c + O(s � 1)
�
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1 + (s � 1)

� X
ü2Xk
ü6=1

Λ0
ü

Λü
(1)
�

+ O
�
(s � 1)2

�!
� 1

s � 1

)

= 1� c +
X
ü2Xk
ü6=1

Λ0
ü

Λü
(1) = ñQ +

X
ü2Xk
ü6=1

Λ0
ü

Λü
(1)

Using (Γ0ÛΓ)(1Û2) = �ç � log 4 and dk =
Q
ü2Xk
ü6=1

fü, we obtain

LEMMA 9. Let ç = 0577215 Ð Ð Ð denote Euler’s constant. Let k be a real abelian field
of degree n ½ 2 and let Xk be the group of primitive Dirichlet characters associated to
k. Then,

ñk = 1� n� 2
2

ç � n
2

log(4ô) +
1
2

log dk +
X
ü2Xk
ü6=1

L0(1Ò ü)
L(1Ò ü)

and

Bk = ñk Ress=1(êk) = ñQ
Y
ü2Xk
ü6=1

L(1Ò ü) +
X
ü2Xk
ü6=1

Λ0
ü(1)q
fü

Y
†2Xk
†6=1Òü

L(1Ò †)(37)

In particular, if k is a real quadratic field associated to a primitive quadratic Dirichlet
character ük of conductor fk = dk we get

ñk Ress=1(êk) = ñQL(1Ò ük) +
Λ0
ük

(1)p
fk

Ò(38)

and if k is a cyclic cubic field associated to a primitive cubic Dirichlet character ük of
conductor fk we get

ñk Ress=1(êk) = ñQjL(1Ò ük)j2 + 2<
 Λ0

ük
(1)p
fk

L(1Ò ǖk)
!
(39)

4.1. A better bound on ñk Ress=1(êk) when k is abelian.

LEMMA 10. Let ü be an even primitive Dirichlet character of conductor fü Ù 1. We
have

jΛ0
ü(1)jÛ

q
fü �

�1
8

log2 fü � 1
2
ñ2

Q

�
=
�1

4
log fü � 1

2
ñQ

��1
2

log fü + ñQ

�


PROOF. Noticing that jSü(x)j � SQ(xÛ
q

fü) and using (36) we obtain

jΛ0
ü(1)j �

Z 1
1

SQ(xÛ
q

fü)(log x)
�

1 +
1
x

�
dx

We set f =
q

fü and must prove jΛ0
ü(1)j � f

2 log2 f � f
2ñ2

Q. Using the functional equation
SQ(1Ûx) = xSQ(x) + x � 1 (see (20)), we obtain
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jΛ0
ü(1)j �

Z 1

1
SQ(xÛf )(log x)

�
1 +

1
x

�
dx

=
Z 1

1Ûf
SQ(x)

�
log(f x)

��
f +

1
x

�
dx

=
Z 1

1
SQ(x)

�
log(f x)

��
f +

1
x

�
dx +

Z f

1
SQ(1Ûx)

�
log(fÛx)

�� f
x2

+
1
x

�
dx

=
Z 1

1
SQ(x)

�
log(f x)

��
f +

1
x

�
dx +

Z f

1
SQ(x)

�
log(fÛx)

�� f
x

+ 1
�

dx

+
Z f

1

�
log(fÛx)

�
(x � 1)

� f
x2

+
1
x

�
dx

=
Z 1

1
SQ(x)

�
log(f x)

��
f +

1
x

�
dx +

Z f

1
SQ(x)

�
log(fÛx)

�� f
x

+ 1
�

dx

+
f � 1

2
log2 f � (f + 1) log f + 2(f � 1)

= (f + 1) log f
Z 1

1
SQ(x)

�
1 +

1
x

�
dx + (f � 1)

Z 1

1
SQ(x)(log x)

�
1� 1

x

�
dx

+
Z 1

f
SQ(x)

�
log(xÛf )

�� f
x

+ 1
�

dx +
f � 1

2
log2 f � (f + 1) log f + 2(f � 1)

=
f � 1

2
log2 f � (1� a)(f + 1) log f + (2 + b)(f � 1) + R(f )

where we have set

a =
Z 1

1
SQ(x)

�
1 +

1
x

�
dxÒ b =

Z 1

1
SQ(x)(log x)

�
1� 1

x

�
dx

and

R(f ) =
Z 1

f
SQ(x)

�
log(xÛf )

�� f
x

+ 1
�

dx = f
Z 1

1
xSQ(f x)

x + 1
x2

(log x) dx
Noticing that

FQ(s) �
� 1

s � 1
� 1

s

�
=
Z 1

1
SQ(x)(xs + x1�s)

dx
x

= ñQ + óQ(s � 1) + O
�
(s � 1)2

�

we obtain a = ñQ =
�
2 +ç� log(4ô)

�
Û2 = 0023095 Ð Ð Ð and b = óQ = 0000248155 Ð Ð Ð .

Finally, since x ½ 1 implies
�
(x + 1) log x

�
Ûx2 � 1, using (19) we have

R(f ) � 2f
X
n½1

Z 1

1
xe�ôn2f 2x2

dx =
X
n½1

1
ôn2f

e�ôn2f 2 � e�ôf 2 X
n½1

1
ôn2f

=
ô
6f

e�ôf 2

and

jΛ0
ü(1)j � f � 1

2
log2 f � (1� a)(f + 1) log f + (2 + b)(f � 1) +

ô
6f

e�ôf 2 

The desired result follows.
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THEOREM 11. Let k be a real abelian field of degree n ½ 2 and conductor fk. We have

Bk = ñk Ress=1(êk) � n� 1
2

 
1

2(n� 1)
log dk + ñQ

!n

� n� 1
2n+1

(log fk + 2ñQ)n(40)

PROOF. Using (37), (6) and previous lemma, we get

Bk � ñQ
Y
ü2Xk
ü6=1

�1
2

log fü + ñQ

�
+

X
ü2Xk
ü6=1

�1
4

log fü � 1
2
ñQ

� Y
†2Xk
†6=1

�1
2

log f† + ñQ

�

=
�1

4
log dk +

3� n
2

ñQ

� Y
ü2Xk
ü6=1

�1
2

log fü + ñQ

�

�
�1

4
log dk +

3� n
2

ñQ

� 1
2(n� 1)

log dk + ñQ

!n�1

� n� 1
2

 
1

2(n� 1)
log dk + ñQ

!n



4.2. Numerical computation of ñk Ress=1(êk) when k is abelian. According to (36), we
have

Λ0
ü(1) =

Z 1

1
Sü(x)(log x) dx �Wü

Z 1
1

Sǖ(x)(log x)
dx
x


Since

Sü(x) =
1

2ôi

Z
<(s)=ã

Λü(s)x�s dsÒ

setting

K1(B) =
1

2ôi

Z
<(s)=ã

Γ(sÛ2)
B1�s

(s � 1)2
ds

= 2B
Z 1

1
e�B2t2 log t dt � 2B

e

Z 1
1

te�B2t2 dt =
e�B2

eB

and

K2(B) =
1

2ôi

Z
<(s)=ã

Γ(sÛ2)
B1�s

s2
ds = 2B

Z 1
1

e�B2t2 log t
dt
t
� K1(B)Ò

we obtain:

LEMMA 12. Let ü be an even primitive Dirichlet character of conductor fü Ù 1. We
have

Λ0
ü(1)Û

q
fü =

1pô
 X

m½1

ü(m)
m

K1(Bm)� Wü

X
m½1

ǖ(m)
m

K2(Bm)
!

where Bm =
q
ôm2Ûfü.
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Note that if k is quadratic then this formula boils down to

Λ0
ük

(1)Ûpdk =
1pô

X
m½1

ük(m)
m

�
K1(Bm) � K2(Bm)

�


Setting

RM =
X

m�M

ü(m)
m

K1(Bm) �Wü

X
m½1

ǖ(m)
m

K2(Bm)Ò

we note that if M is any integer greater than or equal to
q
ïfÛô, then we have

jΛ0
ü(1)Û

q
fü � RMj �

X
mÙM

2e�B2
m

emBm
� 2

q
fÛô

eM3

Z 1

M
me�ôm2Ûf dm

=
(fÛô)3Û2

eM3
e�ôM2Ûf � e�ï

eï3Û2


Finally, as there is no known general formulas for Gauss sums we need compute

Wü =
1q
fü

fü�1X
x=1

ü(x)e2ôixÛfü =
2q
fü

X
1�xÚfüÛ2

ü(x) cos(2ôxÛfü)Ò

and it is not much more time consuming to also compute

L(1Ò ü) = �Wüq
fü

fü�1X
x=1

ǖ(x) log sin(ôxÛfü) = �2Wüq
fü

X
1�xÚfüÛ2

ǖ(x) log sin(ôxÛfü)

We note that if k is real quadratic then Wü = 1 need not be computed, and it is more
efficient to use [WB] to compute the regulator and class number of k, from which we
deduce the exact value of L(1Ò ük).

Moreover, in the same way we proved Proposition 8 we would prove:

PROPOSITION 13. We have

K1(B) = �pô
�ç

2
+ log 2 + log B

�
+ 2B + 2

X
k½1

(�1)kB2k+1

(2k + 1)2(k!)

and

K2(B) =
�ô2

24
+
ç2

4
+ ç log B + log2 B

�
B + 2

X
k½1

(�1)kB2k+1

(2k)2(k!)


PROPOSITION 14. If k is a real quadratic field, then dk � 105 implies ñk � 7,
Ress=1(êk) � 5 and ñk Ress=1(êk) � 11 (note that 1

8 log2(105) = 1656 Ð Ð Ð). If k is
cyclic cubic field of prime conductor p � 1 (mod 6), then p � 105 implies ñk � 12,
Ress=1(êk) � 21 and ñk Ress=1(êk) � 91 (note that 1

6 log3(105) = 25433 Ð Ð Ð).
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5. On the class number one problem for some non-abelian normal CM-fields of
degree 24. From now on, we let N be a non-abelian normal CM-field of degree 24 with
Galois group SL2(F3), the special linear group over the finite field with three elements,
and we let N+ be the maximal totally real subfield of N. Therefore, N+ is a non-abelian
normal field with Galois group A4, the alternating group of degree 4 and order 12. Since
A4 has a unique (normal) subgroup of index three, we let k denote the unique (cyclic)
cubic subfield of N+ and let fk denote the conductor of k. We note that the extension
N+Ûk is abelian with Galois group isomorphic to the four group (ZÛ2Z)2.

To begin with, we give lower bounds on the relative class numbers h�N of such N’s.
First, one proves that the Dedekind zeta function of N satisfies

êN
�
1� (2Û log dN)

�
� 0

Indeed, êN+Ûêk is the cube of the entire Artin’s L-function associated to the character
of degree 3 of the alternating group Gal(N+ÛQ) of degree 4 and order 12, and êk(s) =
ê(s)jL(sÒ ük)j2 � 0 for any s 2 ]0Ò 1[. Therefore, if êN+ (s0) Ù 0 for some s0 2 ]0Ò 1[, then
êN+ has at least a triple zero on ]s0Ò 1[. Now, one proves that the Dedekind zeta function
of any number field M has at most two real zeros in the range 1 � (1Û log dM) � s Ú 1.
Putting everything together, we deduce that êN+ does not have any real zero in the
range 1 � (1Û log dN+) � s Ú 1, hence in the range 1 � (2Û log dN) � s Ú 1, which
implies êN+

�
1 � (2Û log dN)

�
� 0. Since êNÛêN+ is the square of the entire Artin’s

L-function associated to the character of degree 2 of the quaternion group Gal(NÛk)
then êNÛêN+ is entire and (êNÛêN+ )(s0) � 0 for any s0 2 ]0Ò 1[. Hence, we do have
êN
�
1� (2Û log dN)

�
� 0.

Second, using êN
�
1 � (2Û log dN)

�
� 0 and setting èN = 1 � (24ôe1Û12Ûd1Û24

N ), we
have:

Ress=1(êN) ½ 2èNÛ log dN
Using (10), we get:

PROPOSITION 15 (SEE [LLO]). Let N be a normal CM-field of degree 24 with Galois
group isomorphic to SL2(F3). If the relative class number h�N of N is odd then the
quaternion octic extension NÛk is unramified at all the finite places, which yields dN =
d2

N+ = d8
k = f 16

k , and wN = QN = 2, which yields

h�N ½ èk
f 4
kÛ log fk

2e(2ô)12 Ress=1(êN+ )
(41)

where èk = 1� (24ôe1Û12Ûf 2Û3
k ) is asymptotic to 1 when fk goes to infinity.

Now, using (11) and (41), we get

h�N ½ èk
2f 4

k

11
�
(8ôeÛ11) log fk

�12(42)
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and obtain h�N Ù 1 for fk ½ 970000, quite a large bound.
But, using (5), (8) and (14), we get

Ress=1(êN+ ) � Ress=1(êk)
�
ñk Ress=1(êk)

�3 � 1
211

(log fk + 005)11

which together with (41) imply

h�N ½ èk
f 4
k

4e
�
ô(log fk + 005)

�12(43)

which yields h�N Ù 1 for fk ½ 83000, a much more reasonable bound. Neverthe-
less, this bound is still too large to solve easily the (relative) class number one prob-
lem for these N’s. Indeed, according to [Lou2] we would have to do at least ×q

dNÛdN+ log6 dNÛdN+ × f 4
k log6 fk elementary operations to compute each h�N and,

moreover, it is not that easy to explicitly construct N from k. However, according to
Section 4.2, the computation of each Bk can be done in − fk elementary operations and
we might expect that the lower bound

h�N ½ èk
f 4
kÛ log fk

2e(2ô)12 Ress=1(êk)B3
k

(44)

(use (41) and (5)) will imply h�N Ù 1 for most of the fields k with fk � 83000. To
simplify, we shall now focus on the class number one problem for these N’s (and refer
the reader to [LLO] for the solution of the relative class number one problem for these
N’s). To start with, we notice that thanks to class field theory and Proposition 15, if
hN = 1 then hk = 4, hence fk is a prime equal to 1 modulo 6. We computed the numerical
values of Ress=1(êk) and Bk = ñk Ress=1(êk) for the 4784 possible k of prime conductors
fk � 1 (mod 6) such that fk � 105 and found that (44) implies h�N Ù 1 except for 250
cyclic cubic fields k, the 56 of them with conductors greater than 5000 being given in
the following Table. Note that only 10 out of them are such that their class numbers are
equal to 4.

Case fk hk

250 21787
249 19843
248 18307 4
247 15973
246 15679
245 14407 4
244 14197
243 13063
242 12973
241 12799
240 12583
239 12391
238 12343
237 12163

Case fk hk

236 12007
235 11971
234 11923
233 11551
232 11149 4
231 11113
230 10957 4
229 10243
228 9973
227 9931
226 9817
225 9439
224 9109 4
223 8929

Case fk hk

222 8893
221 8779
220 8707
219 8629
218 8317
217 8191 4
216 8167
215 8011 4
214 7963
213 7723
212 7639 4
211 7369
210 7333
209 7213

Case fk hk

208 6967
207 6301
206 6271
205 6091
204 6079 4
203 5953
202 5821
201 5737
200 5569
199 5347
198 5323
197 5197 4
196 5113
195 5101
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Now, according to [Gra], there are 32 cyclic cubic fields of prime conductors fk � 5000
and class number 4, the ones given in the following Table and for 14 out of them (44)
implies h�N Ù 1

Case fk h�N
1 163
2 277
3 349
4 397
5 547
6 607
7 709
8 853

Case fk h�N
9 937

10 1009
11 1399
12 1699
13 1789
14 1879 Ù 1
15 1951 Ù 1
16 2131

Case fk h�N
17 2311 Ù 1
18 2689
19 2797 Ù 1
20 2803
21 3037 Ù 1
22 3271
23 3517 Ù 1
24 3727 Ù 1

Case fk h�N
25 4099 Ù 1
26 4261 Ù 1
27 4357 Ù 1
28 4561 Ù 1
29 4567
30 4639 Ù 1
31 4789 Ù 1
32 4801 Ù 1

Moreover, according to the following Table, only 23 out of these 28 = 10 + 18
remaining cubic fields k are such that their narrow class numbers are equal to 4:

Case fk h+
k

1 163 4
2 277 4
3 349 4
4 397 4
5 547 4
6 607 4
7 709 4

Case fk h+
k

8 853 4
9 937 4

10 1009 16
11 1399 4
12 1699 16
13 1789 4
14 2131 4

Case fk h+
k

15 2689 4
16 2803 4
17 3271 4
18 4567 4
19 5197 4
20 6079 4
21 7639 16

Case fk h+
k

22 8011 4
23 8191 16
24 9109 16
25 10957 4
26 11149 4
27 14407 4
28 18307 4

Hence, we finally get the following results which clearly show how useful our bounds
on Bk and our techniques for computing numerically Bk are:

PROPOSITION 16. Let N be a normal CM-field of degree 24 with Galois group iso-
morphic to SL2(F3), the special linear group over the finite field with three elements.
Assume that the class number of N is equal to 1. Then,

1. The class number hk and narrow class number h+
k of k are equal to 4, which implies

that the conductor fk of k is a prime equal to 1 modulo 6.

2. N+ is the narrow Hilbert 2-class field of k, the narrow class number of N+ is equal
to 2 and N is the second narrow Hilbert 2-class field of k.

3. Finally, fk is equal to one of the following 23 prime values: fk = 163, 277, 349,
397, 547, 607, 709, 853, 937, 1399, 1789, 2131, 2689, 2803, 3271, 4567, 5197, 6079,
8011r, 10957, 11149, 14407 or 18307.

PROOF. Use Proposition 15.

Finally, we refer the reader to [CK] and [Lef] for other examples of the use of the
techniques developed in this paper.
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