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Regular Points of a Subcartesian Space

Tsasa Lusala, Jędrzej Śniatycki, and Jordan Watts

Abstract. We discuss properties of the regular part Sreg of a subcartesian space S. We show that Sreg is

open and dense in S and the restriction to Sreg of the tangent bundle space of S is locally trivial.

1 Introduction

In 1967, Sikorski began to study smooth structures on topological spaces in terms

of their corresponding rings of smooth functions [3]. He introduced the concept

of a differential space which is a generalization of the notion of a smooth manifold.

This concept has the advantage that the category of differential spaces is closed under

the operation of taking subsets. In other words, every subset of a differential space

inherits a structure of a differential space such that the inclusion map is smooth,

[4,5]. The theory of differential spaces has been further developed by several authors.

Also in 1967, Aronszajn introduced the notion of a subcartesian space [1], which

can be described as a Hausdorff differential space that is locally diffeomorphic to a

differential subspace of a Euclidean space R
n. The original definition of Aronszajn

uses a singular atlas rather than the differential structure provided by the ring of

smooth functions. In the literature on differential spaces, subcartesian spaces as in-

troduced by Aronszajn are called differential spaces of class D0, [7, 8]. We use here the

term subcartesian (differential) spaces because it is more descriptive.

For a differential space S, with the ring C∞(S) of smooth functions on S, vectors

tangent to S at x ∈ S are defined as derivations of C∞(S) at x. They form a vector

space denoted by TxS. The tangent bundle space of S is the set TS =

⋃
x∈S TxS with

an induced structure of a differential space such that the map τ : TS → S, defined

by τ−1(x) = TxS for every x ∈ S, is smooth. It should be mentioned that the di-

mension of TxS may depend on x ∈ S . In the literature, TS is also called the tangent

pseudobundle of S, or the Zariski tangent bundle space of S and is denoted by TZS.

A point x ∈ S is said to be regular if there exists a neighbourhood U of x in S such

that dim TyS = dim TxS for all y ∈ U . Instead of using the dimension of the tangent

space TxS at x, we could use the structural dimension of S at x, which is defined as

the minimum of all natural numbers n for which there exists a diffeomorphism of a

neighbourhood of x in S onto a subset of R
n [2]. We will show that these two notions

of dimension are equivalent.

The regular component of a subcartesian space S is the set Sreg consisting of regular

points of S. The aim of this note is to show that for a subcartesian space S the regular
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component Sreg is an open and dense subset of S and that the restriction of TS to

Sreg is a locally trivial fibration. It should be noted that Sreg need not be a manifold.

For example, for commonly discussed fractals, like the Koch curve or the Sierpinski

gasket, all points are regular. Throughout this paper we follow the terminology and

notations from [6, 9].

2 Preliminaries

Let S be a subcartesian space, i.e., a Hausdorff differential space S such that for ev-

ery point p ∈ S, there exists n ∈ N and a neighbourhood of p diffeomorphic to a

differential subspace of R
n which need not be open. For a subcartesian space S, local

analysis in a sufficiently small open subset U of S can be performed in terms of its

diffeomorphic image embedded in R
n. Hence, most of our analysis will be done in

terms of differential subspaces of R
n.

Let S be a differential subspace of R
n. A function f : S → R is smooth if, for every

x ∈ S, there exists a neighbourhood U of x in R
n and a function fx ∈ C∞(R

n) such

that

f |U∩S = fx|U∩S.

Thus, the differential structure of S is determined by the ring

R(S) = { f |S : f ∈ C∞(R
n)}

consisting of restrictions to S of smooth functions on R
n. Let N(S) denote the ideal

of functions in C∞(R
n) which identically vanish on S:

N(S) = { f ∈ C∞(R
n) : f |S = 0}.

We can identify R(S) with the quotient C∞(R
n)/N(S).

Let S be a differential space and C∞(S) the ring of smooth functions on S. For

x ∈ S, a derivation of C∞(S) at x is a linear map u : C∞(S) → R, such that f 7→ u · f

satisfying Leibniz’ rule

u · ( f h) = (u · f )h(x) + (u · h) f (x)

for every f , h ∈ C∞(S). Derivations at x of C∞(S) form the tangent space of S at x

denoted by TxS. The union of the tangent spaces TxS, as x varies over S, is the tangent

bundle of S and is denoted by TS. We denote by τS : TS → S the tangent bundle

projection defined such that τS(u) = x if u ∈ TxS . The differential structure of the

tangent bundle space of a differential space and smoothness of the tangent bundle

projection have been discussed in [4]. For the sake of completeness, we describe the

differential structure of TS for a subcartesian space S.

Consider first a differential subspace S of R
n. We denote by q1, . . . , qn the re-

strictions to S of the canonical coordinate functions (x1, . . . , xn) on R
n. For every

function f ∈ C∞(S) and x ∈ S, there exists a neighbourhood U of x in R
n and

F ∈ C∞(R
n) such that

(2.1) f |U∩S = F(q1, . . . , qn)|U∩S.
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Consider v ∈ TxS, and let vi = v · qi for i = 1, . . . , n. Equation (2.1) yields

(2.2) v · f = (∂1|xF)(v · q1) + · · · + (∂n|xF)(v · qn) = v1∂1|xF + · · · + vn∂n|xF.

Equation (2.2) shows that v ∈ TxS can be identified with a vector (v1, . . . , vn) ∈ R
n.

Since TxS has the structure of a vector space, the set

Vx = {(v1, . . . , vn) ∈ R
n | v ∈ TxS}

is a vector subspace of R
n. The tangent bundle TS can be presented as a subset of R

2n

as follows:

TS = {(x, v) = (q1, . . . , qn, v1, . . . , vn) ∈ R
2n | x ∈ S and v ∈ Vx}.

We denote by τS : TS → S the tangent bundle projection given by τS(x, v) = x, for

every (x, v) ∈ TS.

For every f ∈ C∞(S), the differential of f is a function d f : TS → R given by

d f (v) = v · f

for every v ∈ TS. The differential structure of TS is generated by the family of

functions {q1 ◦ τS, . . . , qn ◦ τS, dq1, . . . , dqn}. In other words, a function h : TS → R

is smooth if, for every v ∈ TS, there is a neighbourhood W of v in R
2n and H ∈

C∞(R
2n) such that

h|W∩TS = H(q1 ◦ τS, . . . , qn ◦ τS, dq1, . . . , dqn)|W∩TS.

For f ∈ C∞(S) satisfying equation (2.1), we have

f ◦ τS|τ−1
S (U ) = F(q1 ◦ τS, . . . , qn ◦ τS)|τ−1

S (U ),

which implies that τ∗

S f = f ◦ τS ∈ C∞(TS). Thus, the tangent bundle projection τS

is smooth.

As before, let S be a differential subspace of R
n. A derivation v of C∞(S) at x ∈ S

restricts to a derivation of R(S) at x.

Proposition 2.1 Every derivation of R(S) at x extends to a unique derivation of C∞(S)

at x.

Proof Let w be a derivation of R(S) at x ∈ S. Consider f ∈ C∞(S) . There exist an

open neighbourhood U of x in R
n and a function fx ∈ C∞(R

n) such that f |U∩S =

fx|U∩S. Set w̃( f ) = w( fx|S). Let V be another open neighbourhood of x in R
n and

gx ∈ C∞(R
n) a function such that f |V∩S = gx|V∩S. We have that U ∩ V ∩ S is an

open subset of S and fx|U∩V∩S = gx|U∩V∩S. Therefore ( fx − gx)|U∩V∩S = 0, i.e.,

( fx − gx)|S ∈ R(S) ⊂ C∞(R
n) vanishes identically on the open subset U ∩ V ∩ S

of S. Hence, w( fx|S − gx|S) = 0. This proves that the extension w̃ is a well-defined

derivation of C∞(S) extending the derivation w of R(S) at x. Finally, it is clear that

such an extension w̃ of w is uniquely defined.
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Remark 2.2 Equation (2.2) shows that every derivation of C∞(S) at x ∈ S ⊆ R
n

can be extended to a derivation of C∞(R
n). We can ask the question under what

conditions a derivation w of C∞(R
n) at x ∈ S ⊆ R

n defines a derivation of C∞(S)

at x.

Proposition 2.3 A derivation w of C∞(R
n) at x ∈ S ⊆ R

n defines a derivation of

C∞(S) at x if and only if w annihilates N(S), i.e., w( f ) = 0 for all f ∈ N(S).

Proof It follows from Proposition 2.1 and Remark 2.2 that derivations at x of C∞(S)

can be identified with derivations at x of R(S). Now one uses the identification

R(S) ≡
C∞(R

n)

N(S)
=

C∞(R
n)

∼
,

where f ∼ g in C∞(R
n) if and only if f − g ∈ N(S). For a derivation w at x of

C∞(R
n), one defines w([ f ]) = w( f ). It is clear that this defines a derivation of R(S)

if and only if w( f ) = 0 for all f ∈ N(S).

3 The Regular Component of a Subcartesian Space

We now discuss the notion of structural dimension introduced by Marshall [2].

Definition 3.1 Let S be a subcartesian space. The structural dimension of a point

x ∈ S is the smallest integer, denoted by nx, such that for some open neighbourhood

U ⊆ S of x, there is a diffeomorphism ϕ : U → V for some arbitrary subset V ⊆ R
n.

A real-valued function f : D → R is upper semi-continuous if the subset of D

determined by {x ∈ D : f (x) < a}, for any a ∈ R, is open.

Lemma 3.2 The function N : S → N : x 7→ nx is upper semi-continuous.

Proof Let Si = {x ∈ S : nx ≤ i}. Assume that Si is not open. Then there exists a

point z ∈ Si such that there is no open neighbourhood U ⊆ Si of z. But then, there

is no open neighbourhood V ⊆ S of z diffeomorphic to an arbitrary subset of R
j for

any j ≤ i. Hence, nz > i, and so z is not in Si . Thus, Si is open, and so the structural

dimension serves as an upper semi-continuous function on S.

Definition 3.3 A point x ∈ S is called a structurally regular point if there is a

neighbourhood U of x in S such that ny = nx for all y ∈ U . A point that is not

structurally regular is called structurally singular.

The regular component Sreg of a subcartesian space S is the set of all structurally

regular points of S.

Lemma 3.4 For every point x of a subcartesian space S, the structural dimension of S

at x is equal to dim TxS.

Proof Let n = nx. So there is a neighbourhood U ⊆ S of x diffeomorphic to a differ-

ential subspace of R
n. Since any derivation of C∞(S) can be extended to a derivation

of C∞(R
n), we have dim TxS ≤ dim R

n
= n.
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Now assume that dim TxS < n. Then there exists a derivation u ∈ TxR
n that is not

an extension of a derivation of C∞(S). This implies by Proposition 2.3 that there is a

function f ∈ N(U ) such that u( f ) 6= 0. In this case, if p1, . . . , pn are the canonical

coordinate functions on R
n, then ∂p j |x f 6= 0, for some j ∈ {1, . . . , n}. Hence, there

is a neighbourhood V ⊆ f −1(0) of x that is a submanifold of R
n. It is clear that the

structural dimension of S at points in V is m < n (m being the dimension of V as

a manifold). There exists an open neighbourhood Ṽ ⊆ V of x diffeomorphic to an

open subset of R
m. Since f ∈ N(U ), there exists a neighbourhood W ⊂ U ⊂ f −1(0)

of x. So Ṽ ∩W is a neighbourhood of x in R
m. This is a contradiction as the structural

dimension nx = n > m. Therefore, dim TxS = nx.

Lemma 3.5 Let n be the maximum of the structural dimensions of S at points of

an open subset V ⊂ S. If every open subset contained in V has a point at which the

structural dimension is n, then V consists of regular points.

Proof The assumption implies that the subset W = {x ∈ V : nx = n} is dense in

V . For each x ∈ V , let Ox be an open neighbourhood of x in V diffeomorphic to a

subset of R
n. Take y ∈ V \ W . Then ny < n (by the definition of n). Let Oy be an

open neighbourhood of y in V diffeomorphic to a subset of R
ny . Since W is dense in

V , there exists x ∈ W ∩ Oy . So Ox ∩ Oy is diffeomorphic to a subset of R
ny . But n is

the minimum of all m such that a neighbourhood of x is diffeomorphic to a subset of

R
m. Since Ox ∩Oy is a neighbourhood of x diffeomorphic to a subset of R

ny , we have

n ≤ ny . But ny < n by assumption. Therefore, V \W is empty, i.e., the dimension of

S at a point of the open subset V is n. This implies that every point in V is structurally

regular.

Theorem 3.6 The set Sreg of all structurally regular points of a subcartesian space S is

open and dense in S.

Proof Let x ∈ Sreg. Since x is a structurally regular point, there exists an open neigh-

bourhood U ⊆ S of x such that for every y ∈ U , ny = nx. This implies that every

point of U is structurally regular. Hence, U ⊆ Sreg. Therefore, Sreg is an open subset

of S.

Now suppose that the subset Sreg of structural regular points is not dense in S. In

this case, there exists a non-empty open subset U ⊆ S such that U contains no struc-

turally regular points, i.e., every point in U is a structurally singular point. Without

loss of generality, we assume that U is diffeomorphic to a differential subspace of R
n

for some n > 0. In fact, n cannot be 0, otherwise U would be a set of isolated points

which are regular by the induced topology. Define Si = {x ∈ S : nx ≤ i}. Assume

that U ⊂ Sk (for some k > 0). It follows that if V1 ⊂ U is an open subset, then

V1 contains infinitely many points where the structural dimensions are at least two

different numbers from 0 to k. Let n1 be the maximum of these structural dimen-

sions at points in V1. By Lemma 3.5, there exists an open subset V2 ⊂ V1 such that

the maximum of structural dimensions of S at points in V2 is n2 < n1. Similarly,

there exists an open subset V3 ⊂ V2 with a maximum of structural dimensions at

its points n3 < n2. Thus, continuing this process, we have the decreasing sequence

n1 > n2 > n3 > · · · > ni , stopping at some ni ≥ 0. We reach some open subset
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Vi ⊂ U such that the structural dimension at all points of Vi is ni ≥ 0. Hence, all

points of Vi are regular points. As a consequence, since U contains no regular points,

U is not a subspace of Sk for any k ≥ 0. But we are dealing only with finite structural

dimensions, and U was chosen to be diffeomorphic to a differential subspace of R
n

for some n, so we have U ⊂ Sn, which is a contradiction. Therefore, a non-empty

open subset U ⊂ S containing no structurally regular points does not exist. This

completes the proof that the set Sreg of all structurally regular points of a subcartesian

space S is dense in S.

Theorem 3.7 Let S be a subcartesian space. Then the restriction of the tangent bundle

projection τ : TS → S to T(Sreg) is a locally trivial fibration over Sreg. For each x ∈
Sreg with structural dimension n, there is a neighbourhood W of x in S and a family

X1, . . . , Xn of global derivations of C∞(S) such that TW S = τ−1(W ) is spanned by the

restrictions X1, . . . , Xn to V .

Proof Let x ∈ Sreg with nx = n. Since Sreg is open, there exists a neighbourhood

V ⊂ Sreg of x such that ny = n for all y ∈ V . As S is a subcartesian space, we may

assume without loss of generality that there is an embedding ϕ of V into R
n. We first

prove that TV the set of all pointwise derivations of C∞(V ) is a trivial bundle.

Let R(V ) consist of restrictions to V of all smooth functions on R
n, and N(V ) be

the space of functions on R
n which vanish on V . We identify R(V ) with C∞(R

n)

modulo N(V ). It follows that ∂i |y( f |V ) = 0 for every i = 1, . . . , n, each f ∈ N(V )

and y ∈ V ⊂ R
n. By Proposition 2.3, we have that ∂1|y , . . . , ∂n|y define derivations

of C∞(V ) at each y ∈ V . Hence, there are n sections X1, . . . , Xn of the tangent bundle

projection τV : TV → V such that Xi |y(h mod N(V )) = (∂i |yh) for every i =

1, . . . , n, h ∈ R(V ) and y ∈ V . Now we need to prove that the sections X1, . . . , Xn

are smooth. Let q1, . . . , qn be restrictions to V of the coordinate functions on R
n.

For i = 1, . . . , n, we denote by dqi the function on TV such that dqi(w) = w(qi)

for every w ∈ TV . The differential structure of TV is generated by the functions

(τ∗

V q1, . . . , τ
∗

V qn, dq1, . . . , dqn) in the sense that every function f ∈ C∞(TV ) is of

the form f = F(τ∗

V q1, . . . , τ
∗

V qn, dq1, . . . , dqn) for some F ∈ C∞(R
2n). In order to

show that Xi : V → TV is smooth, it suffices to show that for every f ∈ C∞(TV ) the

pull-back X∗

i f is in C∞(V ) . Since

dqi ◦ X j = δi j =

{
1 if i = j,

0 if i 6= j,

it follows that

X∗

i f = f ◦ Xi = F(τ∗

V q1, . . . , τ
∗

V qn, dq1, . . . , dqn) ◦ Xi

= F(τ∗

V q1 ◦ Xi , . . . , τ
∗

V qn ◦ Xi , dq1 ◦ Xi , . . . , dqn ◦ Xi)

= F(q1 ◦ τV ◦ Xi , . . . , qn ◦ τV ◦ Xi , δ1i , . . . , δni)

= F(q1, . . . , qn, δ1i , . . . , δni).

Hence X∗

i f is in C∞(V ). This implies that the tangent bundle space TV is globally

spanned by n linearly independent smooth sections X1, . . . , Xn. Thus, TV is a trivial
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bundle. We can choose an open neighbourhood W of x contained in V such that its

closure W̄ is also in V . Using bump functions that are equal to 1 on W and 0 outside

of V , we can construct derivations of C∞(S) that extend restrictions of X1, . . . , Xn to

W . Hence TW is spanned by the restrictions to W of global derivations of C∞(S).
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