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Rotation Algebras and the
Exel Trace Formula

Jiajie Hua and Huaxin Lin

Abstract. We show that if u and v are any two unitaries in a unital C∗-algebra such that ‖uv−vu‖ < 2
and uvu∗v∗ commutes with u and v, then the C∗-subalgebra Au,v generated by u and v is isomorphic
to a quotient of some rotation algebra Aθ , provided that Au,v has a unique tracial state. We also show
that the Exel trace formula holds in any unital C∗-algebra. Let θ ∈ (−1/2, 1/2) be a real number. For
any ε > 0, we prove that there exists δ > 0 satisfying the following: if u and v are two unitaries in any
unital simple C∗-algebra A with tracial rank zero such that

‖uv − e2πiθvu‖ < δ and
1

2πi
τ (log(uvu∗v∗)) = θ,

for all tracial states τ of A, then there exists a pair of unitaries ũ and ṽ in A such that

ũṽ = e2πiθ ṽũ, ‖u− ũ‖ < ε and ‖v − ṽ‖ < ε.

1 Introduction

Let θ be a real number in (−1/2, 1/2) and let Aθ be the corresponding rotation al-
gebra, defined as the universal C∗-algebra generated by a pair of unitaries uθ and vθ
subject to the relation uθvθ = e2πiθvθuθ. Let A be a unital C∗-algebra and let u and v
be two unitaries with ‖uv − vu‖ < 2. Consider the C∗-subalgebra Au,v generated by
u and v. One might ask when Au,v is isomorphic to a quotient of Aθ if uvu∗v∗ com-
mutes with u and v. This may seem like a rather unreasonable question; however, if
Au,v has a unique tracial state, the answer is always “yes”, and it has a simple proof.

This brings us to the following question.

(Q1): Let ε > 0. Is there a δ > 0 such that if u and v are two unitaries in a unital
simple C∗-algebra A with tracial rank zero satisfying

(1.1) ‖uv − e2πiθvu‖ < δ and
1

2πi
τ (log(uvu∗v∗)) = θ

for all tracial state τ of A, then there exists a pair of unitaries ũ and ṽ in A such that

ũṽ = e2πiθ ṽũ, ‖u− ũ‖ < ε and ‖v − ṽ‖ < ε ?
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Note that δ is a universal constant independent of u, v, and C∗-algebra A.

A related old problem from the 1950s, popularized by Halmos, asks: if a pair
of hermitian matrices almost commute, then are they necessarily close to a pair of
commuting hermitian matrices [1, 5, 16, 32]? Voiculescu realized that the answer is
negative if the word hermitian is replaced by unitary. In fact, Voiculescu showed that,
when θ = 0, something like (1.1) in question (Q1) is necessary.

However, despite Voiculescu’s example, the related problem about almost com-
muting hermitians was solved affirmatively by the second author in [20] (see also
[14] for a simplified exposition). The problem of whether a pair of almost com-
muting unitaries can be approximated by a pair of commuting unitaries was further
studied by [3,5,12,13,27] and others. Exel and Loring, following Voiculescu’s exam-
ple, showed that the condition (1.1) is necessary for (Q1) in the case that θ = 0, and
they recognized that the obstacle in Voiculescu’s example is the bott element ([13]).
Things moved quickly in the mid 1990’s resulting in the proof in ([20]). It has been
proved that (Q1) has an affirmative answer when θ = 0 (see [8, 15, 28]). The trace
formula for the bott element provided by Exel ([11]) is a very convenient tool. In
fact, the recent development in the connection to the Elliott program of classifica-
tion of amenable C∗-algebras shows that the Exel trace formula has many further
applications. The Exel trace formula brought together the bott element, a topologi-
cal obstruction, and rotation number, a dynamical description. Originally, the Exel
trace formula was proved in matrix algebras ([11]). We note that it in fact holds in
general C∗-algebras. One might say that this paper provides further understanding
of the Exel trace formula in the context of rotation algebras.

Shortly after the first version of these notes was posted, Terry Loring informed us
about his joint work on (Q1). In fact, Eilers and Loring showed in [6] that, for ratio-
nal values in (−1/2, 1/2) (Eilers, Loring and Pedersen showed that in [7] , for ratio-
nal value 1

2 ), the answer to (Q1) is affirmative if the class of all unital simple C∗-al-
gebras with real rank zero is replaced by the class of finite-dimensional simple C∗-al-
gebras. It should be noted that, when A is a matrix algebra Mn,

1
2πi τ (log(uvu∗v∗)) is

always a rational number. Moreover, when θ is an irrational number, Aθ is always in-
finite dimensional. Therefore, there is no homomorphism from Aθ into Mn. It seems
natural to study (Q1) in the class of unital simple AF-algebras, or even in the broader
class of unital simple C∗-algebras of tracial rank zero (see Definition 4.1). We show
that the answer to (Q1) is in the affirmative.

This paper is organized as follows. In Section 2, we list some notation and known
results about certain universal C∗-algebras generated by two unitaries. In Section 3,
we give a proof that the Exel trace formula holds for any unital C∗-algebra. In Section
4, we show that the answer to question (Q1) is affirmative for irrational numbers θ. In
the last section, we show that, when θ is rational, we also have an affirmative answer
to a version of (Q1). In fact, we allow a somewhat larger class of C∗-algebras, i.e., the
class of unital simple C∗-algebras of real rank zero and stable rank one.

2 Preliminaries

All statements in this section are known. We review them here for the convenience
of the reader.
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Definition 2.1 Let A be a unital C∗-algebra. Denote by T(A) the tracial state space
of A. We will use τ for τ ⊗ Tr on Mn(A), where Tr is the standard trace on Mn,
n = 1, 2, . . . . Denote by ρA : K0(A)→ Aff(T(A)) the order-preserving map induced
by ρA([p])(τ ) = τ (p) for all projections p ∈ A⊗Mn, n = 1, 2, . . . .

Definition 2.2 Let A be a unital C∗-algebra and let u ∈ A be a unitary. Define
Ad u(a) = u∗au for all a ∈ A.

The C∗-algebra C(T2) of all continuous complex valued functions on the two-
torus is well known to be the universal C∗-algebra generated by two commuting uni-
tary elements.

Definition 2.3 Let ε ∈ [0, 2). Recall that the soft torus Tε is the universal C∗-alge-
bra generated by a pair of unitaries uε and vε subject to ‖uεvε − vεuε‖ ≤ ε.

Given θ ∈ R, let Aθ be the universal C∗-algebra generated by a pair of unitaries
uθ and vθ subject to uθvθ = e2πiθvθuθ. If θ is irrational (resp., rational), Aθ is called
an irrational (resp., rational) rotation algebra. The algebras Aθ are usually called
noncommutative tori, since C(T2) ∼= A0, the C∗-algebra of continuous functions on
the two-torus T2.

Let Bε be the universal C∗-algebra generated by a set of unitaries {xn : n ∈ Z}
subject to ‖xn+1 − xn‖ ≤ ε for all n ∈ Z.

Let αε be the automorphism of Bε specified by αε(xn) = xn+1.More details for the
soft torus Tε and Bε can be found in [11].

Theorem 2.4 ([11, Theorem 2.2]) Let z denote the canonical generator of the C∗-
algebra C(T), and letψε : Bε → C(T) be the unique homomorphism such thatψε(xn) =
z for all n. If ε < 2, then ψε is a homotopy equivalence between Bε and C(T).

Proposition 2.5 ([11, Proposition 2.3]) For all ε ∈ [0, 2) one has an isomorphism
ϕ : Tε → Bε oαε Z such that ϕ(uε) = x0 and ϕ(vεuεv

∗
ε ) = x1.

This is proved in [11, Proposition 2.3], but we would like to emphasize that
ϕ(uε) = x0 and ϕ(vεuεv

∗
ε ) = x1.

In what follows we will identify x0 with uε and x1 = vεuεv
∗
ε .

Let z and w denote the coordinate functions on T2 so that z and w represent two
unitaries in C(T2). There is a unital homomorphism ϕε : Tε → C(T2) such that
ϕε(uε) = z and ϕε(vε) = w.

By the proof of [11, Theorem 2.4], we have the following commutative diagram
with exact rows, where ψε∗ and ϕε∗ are isomorphisms:

0 // K0(Bε)

ψε∗
��

// K0(Tε)

ϕε∗
��

∂ // K1(Bε)

ψε∗
��

// 0

0 // K0(C(T)) // K0(C(T2))
∂ // K1(C(T)) // 0

https://doi.org/10.4153/CJM-2014-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-032-2


Rotation Algebras and the Exel Trace Formula 407

Definition 2.6 By the above diagram, there is an element b ∈ K0(C(T2)) such that
∂(b) = [z] in K1(C(T)).Denote by bε the element in K0(Tε) defined by bε = ϕ−1

ε∗ (b).
Then ∂(bε) = [x0] = [uε] in K1(Bε).

We may assume that there are projections pε, qε ∈ MK (Tε) such that [pε]−[qε] =
bε, where K is an integer. Note that

(2.1) |τ ◦ ρTε
(bε)| ≤ 2K

for all τ ∈ T(Tε).

Definition 2.7 (see [13] with reversed roles for u and v) Define

f (e2πit ) =

{
1− 2t, if 0 ≤ t ≤ 1/2,

−1 + 2t, if 1/2 < t ≤ 1,

g(e2πit ) =

{
( f (e2πit )− f (e2πit )2)

1
2 , if 0 ≤ t ≤ 1/2,

0, if 1/2 < t ≤ 1,

h(e2πit ) =

{
0, if 0 ≤ t ≤ 1/2,

( f (e2πit )− f (e2πit )2)
1
2 , if 1/2 < t ≤ 1.

These are non-negative continuous functions defined on the unit circle.
Let A be a unital C∗-algebra, and u, v ∈ A be two unitaries, define

e(u, v) =

(
f (u) g(u) + h(u)v∗

g(u) + vh(u) 1− f (u)

)
.

This is a self-adjoint element. Suppose that uv = vu, then e(u, v) is a projection.
In M2(C(T2)), e(z,w) is a non-trivial rank one projection. Then

(2.2) b = [e(z,w)]−
[(

1 0
0 0

)]
(where b is from Definition 2.6) is often called the bott element for C(T2).

There is δ0 > 0 (independent of unitaries u, v and A, see [29] for existence of δ0)
such that if ‖[u, v]‖ < δ0, then the spectrum of the element e(u, v) has a gap at 1/2.
The bott element of u and v is an element in K0(A) as defined by

bott(u, v) = [χ(1/2,∞)(e(u, v))]−
[(

1 0
0 0

)]
.

Note that (when ‖uv − vu‖ < δ0) there is a continuous function χ : [0,∞] →
[0, 1] such that

χ(e(u, v)) = χ(1/2,∞)(e(u, v)).

The reader is referred to [12,13,27] for more information about the bott element.
The following proposition is also known.

Proposition 2.8 If ε ∈ [0, δ0), then bε = bott(uε, vε).

Proof When ε ∈ [0, δ0),

(ϕε ⊗ idM2 )(χ(e(uε, vε))) = χ(e(ϕε(uε), ϕε(vε))) = χ(e(z,w)) = e(z,w).
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It follows that

ϕε∗

([
χ(e(uε, vε))

]
−
[(

1 0
0 0

)])
= b.

Therefore, bε = bott(uε, vε).

3 Exel Trace Formula

Let A be a unital C∗-algebra and let α : A → A be an automorphism. If τ is a trace
on A that is invariant under the action α and if u is an implementing unitary of α,
then τ ◦E gives a trace τ̃ on Aoα Z, where E : Aoα Z→ A is the expectation defined
by E(

∑n
i=−n aiui) = a0.

Definition 3.1 ([10, Definition II.9]) If τ ∈ T(A) is a fixed tracial state on a unital
C∗-algebra A, we say that the pair (A, τ ) is an integral C∗-algebra if ρA(x)(τ ) ⊂ Z for
all x ∈ K0(A).

Let A be a unital C∗-algebra and let Un(A) be the group of all unitary elements of
A ⊗Mn, n = 1, 2, . . . . We denote by U∞(A) the inductive limit of the sequence of
groups

U1(A)
i1

−→ U2(A)
i2

−→ · · ·
in−1

−→ Un(A)
in

−→ Un+1(A)
in+1

−→ · · · ,

where in is defined by

in(u) = u⊕ 1A ∈ Un+1(A) for all u ∈ Un(A) and all n ∈ N.

We often use U (A) for U1(A).

Definition 3.2 ([10, Definition II.2] and [17]) Let A be a unital C∗-algebra and
let τ ∈ T(A). We say that a group homomorphism

detτ : U∞(A) −→ T

is a determinant associated with the tracial state τ if for all self-adjoint elements h ∈
Mn(A), one has detτ (eih) = eiτ (h).

It is proved by Exel ([10, Theorem II.10]) that such a determinant exists if and
only if (A, τ ) is an integral C∗-algebra.

Let α be an automorphism of a unital C∗-algebra A.Denote by ∂ : K0(Aoα Z)→
K1(A) the connecting map of the Pimsner-Voiculescu sequence ([30]).

Let us recall the following two results.

Theorem 3.3 ([10, Theorem V.12]) Let (A, τ ) be an integral unital C∗-algebra and
let α be a trace-preserving automorphism of A. Then for every a in K0(Aoα Z) we have

exp
(

2πiτ̃ ◦ ρAoαZ(a)
)

= detτ
(
α(u−1)u

)
,

where u is any unitary element of U∞(A) whose K1-class is ∂(a).
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Lemma 3.4 ([11, Lemma 3.3]) Let α be an automorphism of a C∗-algebra A, and
let τ1 and τ2 be traces on Aoα Z such that τ1 = τ2 on A. Then τ1 ◦ ρAoαZ = τ2 ◦ ρAoαZ

on K0(A oα Z).

Note that if ε ∈ [0, 2), then ‖uvu∗v∗ − 1‖ = ε < 2. Then −1 is not in the
spectrum of uvu∗v∗. Therefore, there is a continuous branch of logarithm defined on
the compact subset Fε = {eit : t ∈ [−π + 2 arccos(ε/2), π− 2 arccos(ε/2)]}. In what
follows, unless otherwise stated, we use log defined on Fε. Moreover, if 0 < ε1 < ε,
we may assume that log is defined on Fε.

Theorem 3.5 Let ε ∈ [0, 2), uε, vε ∈ U (Tε) be generators of Tε. Then

ρTε
(bε)(τ ) =

1

2πi
τ (log(uεvεu

∗
ε v∗ε )) for all τ ∈ T(Tε).

In particular, when ε ∈ [0, δ0),

ρTε

(
bott(uε, vε)

)
(τ ) =

1

2πi
τ
(

log(uεvεu
∗
ε v∗ε )

)
for all τ ∈ T(Tε).

Proof Identify Bε as a subalgebra of Tε under the isomorphism of Proposition 2.5.
Let τ ∈ T(Tε). Then τ is given by restriction an αε-invariant trace on Bε. Moreover,
τ is an integral trace on Bε since any tracial state is an integral trace on the homotopy
class of C(T) by Theorem 2.4. Let τ̃ be the canonical extension of τ |Bε . By Lemma 3.4
and Theorem 3.3 we obtain

exp
(

2πiτ ◦ ρTε
(bε)
)

= exp
(

2πiτ̃ ◦ ρTε
(bε)
)

= detτ
(
αε(u∗ε )uε

)
= detτ

(
αε(x∗0 )x0

)
= detτ (x∗1 x0)

= detτ
(

exp
(

log(x∗1 x0)
))

= exp
(
τ
(

log(x∗1 x0)
))

= exp
(
τ
(

log(vεu
∗
ε v∗ε uε)

))
= exp

(
τ
(

log(uεvεu
∗
ε v∗ε )

))
.

So there is an integer kτ ∈ Z such that

ρTε
(bε)(τ )− 1

2πi
τ
(

log(uεvεu
∗
ε v∗ε )

)
= kτ .

Note that by (2.1),

|kτ | ≤ 2K + 1 for all τ ∈ T(Tε).

Fix ξ = (1, 1) ∈ T × T = T2. Let Pξ : C(T2) → C1Tε
⊂ Tε be the point-

evaluation defined by Pξ( f ) = f (ξ)1Tε
for all f ∈ C(T2). Define πξ : Tε → C by

πξ = Pξ ◦ ϕε, where ϕε : Tε → C(T2) is defined just before Definition 2.6. Note that
(πξ)∗0(bε) = (Pξ)∗(b) = 0, because f (1) = 1 and g(1) = h(1) = 0 using (2.2). Let
u = uε ⊕ Im and v = vε ⊕ Im, where Im is the identity of Mm(Tε), then

Φ(a) =


a 0 0 · · ·
0 πξ(a) 0 · · ·
...

...
. . .

πξ(a)


(m+1)×(m+1)
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defines a homomorphism Φ : Tε → Mm+1(Tε) such that Φ(uε) = u and Φ(vε) = v.
Let τ0 ∈ T(Mm+1(Tε)). Then τ0 ◦ Φ is an an integral trace on Bε, since any tracial

state is an integral trace on the homotopy class of C(T) by Theorem 2.4. It follows
that

τ0 ◦ ρMm+1(Tε)

(
Φ∗0(bε)

)
− 1

2πi
τ0 ◦ Φ

(
log(uεvεu

∗
ε v∗ε )

)
= kτ0◦Φ ∈ Z.

On the other hand, one may write τ0 = 1
m+1 (τ ⊕ · · · ⊕ τ ) for some τ ∈ T(Tε). We

compute that

τ0 ◦ Φ
(

log(uεvεu
∗
ε v∗ε )

)
=

1

m + 1
τ
(

log(uεvεu
∗
ε v∗ε )

)
.

By the definition of Φ and the fact that (πξ)∗0(bε) = 0, we also have

τ0 ◦ ρMm+1(Tε)

(
Φ∗0(bε)

)
=

1

m + 1
τ ◦ ρTε

(bε).

It follows, by combining this with (2.1), that (K only depends on ε)

(3.1) |kτ0◦Φ| = |
kτ

m + 1
| ≤ 2K + 1

m + 1
.

This holds for all integers m. It follows that kτ0◦Φ = 0. Then, by (3.1), kτ = 0 for all
τ ∈ T(Tε). Therefore,

ρTε
(bε)(τ ) =

1

2πi
τ
(

log(uεvεu
∗
ε v∗ε )

)
for all τ ∈ T(Tε).

Definition 3.6 Let A be a unital C∗-algebra and let u and v be two unitaries in A
such that ‖uv− vu‖ ≤ ε < 2. Denote by Au,v the C∗-subalgebra of A generated by u
and v. There is a surjective homomorphism φu,v : Tε → Au,v such that φu,v(uε) = u
and φu,v(vε) = v. Put bu,v = (φu,v)∗0(bε). If ‖uv − vu‖ < δ0, then

bu,v = bott(u, v).

Theorem 3.7 (The Exel trace formula) Let A be a unital C∗-algebra. Then for any
u, v ∈ U (A) and ‖uv − vu‖ < 2, we have

ρA

(
ı∗0(bu,v)

)
(τ ) =

1

2πi
τ
(

log(uvu∗v∗)
)

for all τ ∈ T(A),

where ı : Au,v → A is the unital embedding. If, in addition, ‖uv − vu‖ < δ0, then

ρA

(
bott(u, v)

)
(τ ) =

1

2πi
τ
(

log(uvu∗v∗)
)

for all τ ∈ T(A).

Proof Since ‖uv− vu‖ = ε < 2, there is a unique homomorphism φ : Tε → A such
that φ(uε) = u and φ(vε) = v. Then τ ◦ φ is a tracial state on Tε, and we get

ρTε
(bε)(τ ◦ φ) =

1

2πi
τ ◦ φ

(
log(uεvεu

∗
ε v∗ε )

)
for all τ ∈ T(A).

Note that φ(Tε) = Au,v. So

ρA(ı∗0(bu,v))(τ ) =
1

2πi
τ (log(uvu∗v∗)) for all τ ∈ T(A).
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Remark 3.8 The Exel trace formula was first found for matrix algebras ([11]). It
was later proved that the same formula also holds in unital simple C∗-algebras of
tracial rank no more than one ([26, Theorem 3.5]).

Theorem 3.9 Let A be a unital C∗-algebra, and assume u, v ∈ U (A) satisfy the con-
dition ‖uv−vu‖ < 2 and uvu∗v∗ commutes with u and v. Let Au,v be the C∗-subalgebra
generated by unitaries u and v. Suppose that θ ∈ (−1/2, 1/2). If 1

2πi τ (log(uvu∗v∗)) =
θ for all τ ∈ T(Au,v), then Au,v is isomorphic to a quotient of Aθ. Moreover, uv =
e2πiθvu.

In particular, if θ is an irrational number, then Au,v
∼= Aθ.

Proof Let w = uvu∗v∗. Suppose that the spectrum of w has more than one point,
say e2πiθ1 and e2πiθ2 , since ‖w − 1‖ = ‖uvu∗v∗ − 1‖ = ‖uv − vu‖ < 2, we have
|1− e2πiθ j | < 2 for j = 1, 2.

Note that w commutes with u and v. Working in the enveloping von Neumann
algebra A∗∗u,v, let pθ j ∈ A∗∗u,v be the spectrum projection of w associated with the point

{e2πiθ j}, j = 1, 2. Since e2πiθ j is in the spectrum of w, pθ j 6= 0 in A∗∗u,v, j = 1, 2.
Moreover, pθ j is a closed projection of Au,v. Since w commutes with u and v, pθ j is
central. Define ϕ j(a) = apθ j for all a ∈ Au,v, j = 1, 2. Then ϕ j(w) = pθ j w =

e2πiθ j pθ j , j = 1, 2. It follows that

ϕ j(u)ϕ j(v) = pθ j uv = pθ j wvu = e2πiθ jϕ j(v)ϕ j(u), j = 1, 2.

Thus, ϕ j : Au,v → ϕ j(Au,v) is a unital surjective homomorphism from Au,v onto
a quotient of Aθ j , j = 1, 2. We have T(ϕ j(Au,v)) 6= ∅, because ϕ j(Au,v) ∼= Aθ j

when θ j is irrational and all irreducible representations of quotients of Aθ j are finite
dimensional when θ j is rational.

Let τ j ∈ T(ϕ j(Au,v)). Then τ j ◦ ϕ j ∈ T(Au,v). We have

1

2πi

(
τ j ◦ ϕ j

(
log(uvu∗v∗)

))
=

1

2πi

(
τ j

(
log
(
ϕ j(u)ϕ j(v)ϕ j(u)∗ϕ j(v)∗

)))
= θ j .

By assumption, θ j = θ, j = 1, 2. So the spectrum of w has only one point, which is
equal to e2πiθ. In other words, w = e2πiθ. It follows that uv = e2πiθvu. Therefore, Au,v

is isomorphic to a quotient of Aθ.
If θ is an irrational number, it is well known that irrational rotation algebra Aθ is

simple, so Au,v
∼= Aθ.

Remark 3.10 One might ask what happens when θ = 1
2 in above theorem. In fact,

for any pair of unitaries u and v in a unital C∗-algebra A such that ‖uv + vu‖ < 2 and
uvu∗v∗ commutes with u and v, let Au,v be the C∗-subalgebra generated by u and v. If

1
2πi τ (log0(uvu∗v∗)) = 1/2 for all τ ∈ T(Au,v), where log0 is a continuous logarithm
defined on a compact subset F of {eit : t ∈ (0, 2π)} with values in {ri : r ∈ (0, 2π)},
then uv = −vu.
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Corollary 3.11 Let A be a unital C∗-algebra and let u, v ∈ U (A) satisfy the condition
‖uv − vu‖ < 2, and assume uvu∗v∗ commutes with u and v. Let Au,v be the C∗-sub-
algebra generated by unitaries u and v. If Au,v has a unique tracial state, then Au,v is
isomorphic to some irrational rotation algebra Aθ or some matrix algebra Mn.

Proof Let τ be the unique tracial state on Au,v. If 1
2πi τ (log(uvu∗v∗)) = θ is an

irrational number, then by Theorem 3.9, Au,v
∼= Aθ.

If 1
2πi τ (log(uvu∗v∗)) = θ is a rational number, then Au,v is isomorphic to a

quotient of rational rotation algebra Aθ. It follows from [31] that Aθ is strongly
Morita equivalent to C(T2). Therefore Aθ ⊗ K ∼= C(T2) ⊗ K, where K is the C∗-
algebra of compact operator on an infinite dimensional separable Hilbert space. Let
φ : Aθ ⊗K→ C(T2)⊗K denote the isomorphism. Then

Aθ = (1Aθ ⊗ e11)(Aθ ⊗K)(1Aθ ⊗ e11) ∼= φ(1Aθ ⊗ e11)(C(T2)⊗K)φ(1Aθ ⊗ e11).

Thus, we can find a projection P1 ∈ MN (C(T2)) that is equivalent to φ(1Aθ ⊗ e11)
for some N ∈ N. So Aθ

∼= P1MN (C(T2))P1, where N is an integer and P1 ∈
MN (C(T2)) is a projection. Since each quotient of P1MN (C(T2))P1 is isomorphic
to P1MN (C(X))P1 for some closed subset X ⊂ T2, we have Au,v

∼= P1MN (C(X))P1

for some closed subset X ⊂ T2. The assumption that Au,v has a unique tracial state
implies that X is only one point. It follows that Au,v

∼= Mn for some n ∈ N.

4 Stability of Irrational Rotation in Infinite Simple C∗-algebras

Eilers and Loring ([6, Corollary 7.6]) showed that the answer to (Q1) is affirmative
for all rational numbers in (−1/2, 1/2] if the class of unital simple C∗-algebras of
tracial rank zero is replaced by the class of all matrix algebras. As mentioned in the
introduction, to include irrational numbers, one may replace Mn, a finite dimen-
sional simple C∗-algebra , by a unital infinite dimensional simple AF-algebra. To
make it even more general, we will replace finite dimensional simple C∗-algebras
(matrix algebras) by unital simple C∗-algebras with tracial rank zero.

We would also remark that an affirmative answer to (Q1) does not follow from
Theorem 3.9, even with the additional assumption that uvu∗v∗ commutes with u
and v. Note that in Theorem 4.5 and Theorem 5.3, the τ are tracial states on A, while
the τ in Theorem 3.9 are all tracial states on Au,v.

We recall the definition of tracial (topological) rank of C∗-algebras.

Definition 4.1 ([22]) Let A be a unital simple C∗-algebra. Then A is said to have
tracial (topological) rank zero if for any ε > 0, any finite set F ⊂ A and any nonzero
positive element c ∈ A, there exists a finite dimensional C∗-subalgebra B ⊂ A with
1B = p such that

(i) ‖pa− ap‖ < ε for all a ∈ F;
(ii) dist(pap,B) < ε for all a ∈ F;
(iii) 1A − p is Murray-von Neumann equivalent to a projection in cAc.

If A has tracial rank zero, we write TR(A) = 0.
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Definition 4.2 Let L : A → B be a linear map. Let δ > 0 and G ⊂ A be a (finite)
subset. We say L is G-δ-multiplicative if

‖L(ab)− L(a)L(b)‖ < δ for all a, b ∈ G.

We begin with the following lemma, which is known.

Lemma 4.3 ([24, Lemma 4.1]) Let A be a separable unital C∗-algebra. For any ε > 0
and any finite subset F ⊂ As.a., there exists δ > 0 and a finite subset G ⊂ As.a satisfying
the following. For any G-δ-multiplicative, contractive, completely positive, linear map
L : A → B, any unital C∗-algebra B with T(B) 6= ∅, and any tracial state t ∈ T(B),
there exists a τ ∈ T(A) such that

||t ◦ L(a)− τ (a)‖ < ε for all a ∈ F.

Let θ ∈ (−1/2, 1/2) be an irrational number and ε = |1 − e2πiθ|. Recalling Defi-
nition 2.6, we write

pε = (ai, j)K×K , qε = (ci, j)K×K and bε = [pε]− [qε]

where ai, j , bi, j ∈ Tε.
Let φθ : Tε → Aθ be the homomorphism such that φθ(uε) = uθ and φθ(vε) =

vθ. Let A be a unital C∗-algebra and let u, v ∈ A be two unitaries. Let Au,v be the
C∗-subalgebra of A generated by u and v. If ‖uv − vu‖ < ε, then there is a surjective
homomorphism φu,v : Tε → Au,v such that φu,v(uε) = u and φu,v(vε) = v.

Lemma 4.4 Let θ ∈ (−1/2, 1/2). For any ε0 > 0, any η1 > 0, and any finite subset
G ⊂ Aθ, there exists δ00 > 0 satisfying the following. For any unital C∗-algebra A
and any pair of unitaries u, v ∈ A, if ‖uv − e2πiθvu‖ < δ00, then there exists a unital
G-η1-multiplicative, contractive, completely positive, linear map L : Aθ → A such that
‖L(uθ)− u‖ < ε0, ‖L(vθ)− v‖ < ε0 and

(ı ◦ φu,v)∗0([pε]) = [L ◦ φθ]([pε]),

(ı ◦ φu,v)∗0([qε]) = [L ◦ φθ]([qε]) in K0(A),

where ı : Au,v → A is the unital embedding map. Moreover, if θ = p/q ∈ (−1/2, 1/2],
where p and q are non-zero integers with (p, q) = 1 and q > 0, we may also assume
that

(4.1) [L]
(

bott(uq
θ, v

q
θ)
)

= bott(uq, vq).

Proof Let η > 0 be any positive number with η < ε0/2 and let N ≥ 1 be an integer.
There is δ00 > 0 such that if ‖uv − e2πiθvu‖ < δ00, then there exist a surjective
homomorphism φu,v : Tε → Au,v such that φu,v(uε) = u and φu,v(vε) = v, and a
G-η1-multiplicative, contractive, completely positive, linear map L : Aθ → A such
that

‖ı ◦ φu,v(ai, j)− L(φθ(ai, j))‖ < 1/(4K2),

‖ı ◦ φu,v(ci, j)− L(φθ(ci, j))‖ < 1/(4K2)

for all i, j ∈ {1, 2, . . . ,K}.
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Moreover, we may also assume that

‖L(uθ)− u‖ < η/4N < ε0 and ‖L(vθ)− v‖ < η/4N < ε0,(4.2)

‖L(uN
θ )− L(uθ)

N‖ < η/4 and ‖L(vN
θ )− L(vθ)

N‖ < η/4.

We then obtain∥∥ [(ı ◦ φu,v)⊗ idMK ](pε)− [(L ◦ φθ)⊗ idMK ](pε)
∥∥ < 1/4,∥∥ [(ı ◦ φu,v)⊗ idMK ](qε)− [(L ◦ φθ)⊗ idMK ](qε)
∥∥ < 1/4.

It follows that

(ı ◦ φu,v)∗0([pε]) = [L ◦ φθ]([pε]) and (ı ◦ φu,v)∗0([qε]) = [L ◦ φθ]([qε]).

In the case where θ = p/q, as described in the lemma, we choose N = q. By (4.2),
we have

‖L(uq
θ)− uq‖ < η/2 and ‖L(vq

θ)− vq‖ < η/2.

Therefore, with sufficiently small η, by the definition of the bott element in Defi-
nition 2.7, (4.1) also holds.

Theorem 4.5 Let θ ∈ (−1/2, 1/2) be an irrational number. For any ε > 0, there
exists δ > 0 satisfying the following. For any unital simple infinite dimensional C∗-al-
gebra A with tracial rank zero and any pair of unitaries u, v ∈ A such that

‖uv − e2πiθvu‖ < δ and
1

2πi
τ
(

log(uvu∗v∗)
)

= θ

for all τ ∈ T(A), there exists a pair of unitaries ũ, ṽ ∈ A such that

ũṽ = e2πiθ ṽũ, ‖ũ− u‖ < ε, and ‖ṽ − v‖ < ε.

Proof Let ε0 = |1 − e2πiθ| < 2. We will apply [25, Theorem 3.2]. Let Aθ be the
irrational rotation algebra generated by a pair of unitaries uθ and vθ such that uθvθ =
e2πiθvθuθ. By [9], Aθ is a unital simple AT-algebra of real rank zero with(

K0(Aθ),K0(Aθ)+, [1Aθ ]
)

=
(

Z + Zθ, (Z + Zθ)+, 1
)

and K1(Aθ) = Z⊕ Z.

To apply [25, Theorem 3.2], put C = Aθ. Let τ be the unique tracial state on C.
For each t ∈ T(A), define γ : Cs.a. → Aff(T(A)) by γ(c)(t) = τ (c) for all c ∈ Cs.a.

and all t ∈ T(A), where Cs.a. is the set of all self-adjoint elements of C.
Fix 1 > ε > 0 and let F = {1Aθ , uθ, vθ}. Let η > 0, δ0 > 0 (in place of δ), G1 ⊂ C

(in place of G) be a finite subset, let H ⊂ Cs.a. be a finite subset, and let P ⊂ K(C) be
a finite subset required by [25, Theorem 3.2] for ε/2 (in place of ε) and F given.

Note that τ ◦ ρC (buθ ,vθ ) = θ. Therefore, K0(C) is generated by [1C ] and buθ ,vθ .
Thus, we may assume, without loss of generality, that P = {[1C ], buθ ,vθ , [uθ], [vθ]}.

It follows from Lemma 4.3 that there exists a finite subset H1 ⊂ Cs.a. and δ2 > 0
satisfying the following. For any H1-δ2-multiplicative, contractive, completely pos-
itive linear map L : C → A, for any unital C∗-algebra A with T(A) 6= ∅, and any
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tracial state t ∈ T(A), we have

|t ◦ L(c)− τ (c)| < η for all c ∈ H.

Let G2 = H1 ∪ G1 and let δ3 = min{δ1, δ2}. Choose 1 > δ > 0 such that there
is a G2-δ3-multiplicative, contractive, completely positive, linear map L : C → A (for
any unital C∗-algebra A) such that

(4.3) ‖L(uθ)− u‖ < ε/2 and ‖L(vθ)− v‖ < ε/2

for any pair of unitaries u and v in A with ‖uv − e2πiθvu‖ < δ. Furthermore, by
Lemma 4.4, we may also assume, by choosing even smaller δ, that

[L ◦ φθ]([pε0 ]) = (ı ◦ φu,v)∗0([pε0 ]),(4.4)

[L ◦ φθ]([qε0 ]) = (ı ◦ φu,v)∗0([qε0 ]).(4.5)

Now suppose that A is a unital simple C∗-algebra with tracial rank zero and let
u, v ∈ A be two unitaries such that

‖uv − e2πiθvu‖ < δ and
1

2πi
t(log(uvu∗v∗)) = θ

for all t ∈ T(A). Therefore, there exists a G2-δ3-multiplicative, contractive, com-
pletely positive, linear map L : C → A such that (4.3)–(4.5) hold. Moreover, by the
choices of δ and G,

|t ◦ L(c)− τ (c)| < η for all c ∈ H and t ∈ T(A).

It follows from (4.4) and (4.5) that

[L](buθ ,vθ ) = (ı ◦ φu,v)∗0(bε0 ).

Thus, by the Exel trace formula of Theorem 3.5,

ρA

(
[L](buθ ,vθ )

)
(t) = ρA

(
(ı ◦ φu,v)∗0(bε0 )

)
(t)(4.6)

= ρA

(
ı∗0(bu,v)

)
(t) =

1

2πi
t
(

log(uvu∗v∗)
)

= θ

for all t ∈ T(A). Define κ : Z + Zθ → K0(A) by κ([1]) = [1A] and κ(θ) = ı∗0(bu,v).
Since t(ı∗0(bu,v)) = θ = τ (buθ ,vθ ) for all t ∈ T(A), κ is an order preserving homo-
morphism. Now, by [25, Theorem 5.2], we have a unital homomorphism h : Aθ → A
such that

h∗0 = κ(4.7)

h∗1([uθ]) = [u] and h∗1([vθ]) = [v].(4.8)

It follows from (4.7) and (4.8) that [h]|P = [L]|P. Moreover, by (4.6),

|t ◦ L(c)− γ(c)(t)| < η and |t ◦ h(c)− γ(c)(t)| < η

for all c ∈ H and all t ∈ T(A). It follows from [25, Theorem 3.2] that there exists a
unitary W ∈ A such that

(4.9) ‖W ∗h(uθ)W − L(uθ)‖ < ε/2 and ‖W ∗h(vθ)W − L(vθ)‖ < ε/2.
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Let

ũ = W ∗h(uθ)W and ṽ = W ∗h(vθ)W.

Then, since h is a homomorphism, ũṽ = e2πiθ ṽũ. By (4.9) and (4.3),

‖ũ− u‖ < ε and ‖ṽ − v‖ < ε.

Remark 4.6 A version of Theorem 4.5 also holds in unital, amenable, purely infi-
nite, simple C∗-algebras (see [23]).

5 Stability of Rational Rotation in Infinite Simple C∗-algebras

Now we consider the case where θ is a rational number.
Recall that the rational rotation C∗-algebra associated with the rational number

θ is the universal C∗-algebra Aθ generated by a pair uθ, vθ of unitaries with uθvθ =
e2πiθvθuθ, where θ is a rational number. When θ = 0, A0

∼= C(T2). If θ 6= 0, write
θ = ±p/q with p, q coprime and 0 < 2p ≤ q. Let λ = e2πiθ, and define q × q
matrices

(5.1) S1 =


1

λ1

λ2

. . .
λq−1

 and S2 =


0 1
1 0

1 0
. . .

. . .
1 0

 .

Then S1S2 = e2πiθS2S1. By the universal property, there is a unital homomorphism
π(0) : Aθ → Mq such that π(0)(uθ) = S1 and π(0)(vθ) = S2. Since S1 and S2 generate
Mq, this gives an irreducible representation of Aθ. Fix a pair of complex numbers
(t1, t2) ∈ T2 and choose a pair of q-th roots (r1, r2) ∈ T2 such that rq

1 = t1 and
rq

2 = t2. Define an automorphism αr1,r2 : Aθ → Aθ such that αr1,r2 (uθ) = r1uθ and
αr1,r2 (vθ) = r2vθ. Then π(0) ◦ αr1,r2 also gives an irreducible representation. It is easy
to verify that if (r′1, r

′
2) ∈ T2 and (r′1)q = t1 and (r′2)q = t2, then π(0) ◦ αr1,r2 and

π(0) ◦ αr′1,r
′
2

are unitarily equivalent (by considering permutations of the q-th roots).
In particular, they have the same kernel It1,t2 . Note that

π(0) ◦ αr1,r2 (uq
θ) = t1 · 1Mq = π(0) ◦ αr′1,r

′
2
(uq
θ)

and

π(0) ◦ αr1,r2 (vq
θ) = t2 · 1Mq = π(0) ◦ αr′1,r

′
2
(vq
θ).

Therefore, if (t1, t2) 6= (t ′1, t
′
2) in T2, then It1,t2 6= It′1 ,t

′
2
. In particular, they are not

unitarily equivalent.
The following lemma will be used in the sequel. It is certainly known to many

experts and should follow from [31] and the discussion in [2,4]. To clarify the matter,
we include the proof here.

Lemma 5.1 Let θ = p/q ∈ (−1/2, 1/2] be a non-zero rational number, where p
and q are two integers, p 6=0, q > 0, and (p, q) = 1.
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Then there exist an integer N and a projection P ∈ MN (C(T2)) (of rank q) and
an isomorphism H : Aθ → PMN (C(T2))P such that πξ ◦ H(uq

θ) = t1P(t1, t2) and
πξ ◦H(vq

θ) = t2P(t1, t2) for any ξ = (t1, t2) ∈ T2, where πξ is the evaluation map at ξ.

Proof It follows from [31] and the proof of Corollary 3.11 that

Aθ
∼= P1MN (C(T2))P1,

where N is an integer and P1 ∈ MN (C(T2)) is a projection. Let ψ denote the isomor-
phism.

Let π be any irreducible representation of Aθ. Let λ = e2πiθ. Since uq
θvθ =

λqvθu
q
θ = vθu

q
θ, we have that uq

θ lies in the center of Aθ and π(uθ)q lies in the cen-
ter of π(Aθ), whence π(uθ)q is a scalar. Similarly, π(vθ)q is also a scalar. Let t1, t2 ∈ T
such that π(uq

θ) = t1I and π(vq
θ) = t2I. Thus π(uθ) has possible eigenvalues r1λ

j for
0 ≤ j < q and for some r1 ∈ T such that rq

1 = t1. Let E j = Eπ(uθ)(r1λ
j) be the

corresponding spectral projections in π(Aθ) (which we do not know are non-zero at
moment). We may write

π(uθ) =
q−1∑
j=0

r1λ
jE j .

Since
q−1∑
k=0

(λl)k = 0

for all l ∈ {1, . . . , q− 1}, we obtain that

Ei =
1

q

q−1∑
k=0

(r1λ
i)−kπ(uθ)

k.

Therefore, for 0 ≤ i < q,

π(vθ)Ei =
1

q

q−1∑
k=0

(r1λ
i)−kπ(vθ)π(uθ)

k =
1

q

q−1∑
k=0

(r1λ
i)−kλ−kπ(uθ)

kπ(vθ)

=
1

q

q−1∑
k=0

(r1λ
i+1)−kπ(uθ)

kπ(vθ) = Ei+1π(vθ).

Let r2 ∈ T such that rq
2 = t2. We then verify that Ei j = (r2π(vθ))i− jE j are partial

isometries for 0 ≤ i, j < q. Since (r2π(vθ))q = I, it is easy to verify that these form a
set of matrix units for Mq. Moreover,

π(vθ) =
q−1∑
j=0

π(vθ)E j = r2

q−1∑
j=0

E j+1, j ,

where we interpret Eq,q−1 as E0,q. Hence C∗(π(uθ), π(vθ)) is isomorphic to Mq. It
follows that Ei are all one dimensional.

We have just proved that π = Ad U ◦ π(0) ◦ αr1,r2 for some unitary U ∈ Mq and
with the primitive ideal space It1,t2 .

Let ξ ∈ T2. Define πξ(a) = a(ξ) for all a ∈ P1MN (C(T2))P1. Then πξ ◦ ψ
gives an irreducible representation of Aθ. From what we have proved, there is
(t(ξ)1, t(ξ)2) ∈ T2 such that πξ has the kernel It(ξ)1,t(ξ)2 . We will show that the map
σ : ξ → (t(ξ)1, t(ξ)2) is a homeomorphism. From the discussion preceding this
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lemma, we know that σ is injective and, from what we proved above, it is also surjec-
tive. Since T2 is a compact Hausdorff space, it suffices to show that σ is continuous.

For that, we assume that ξn → ξ0 in T2. Then

‖πξn (ψ(uq
θ))− πξ0 (ψ(uq

θ))‖ = ‖t(ξn)1 · 1Mq − t(ξ0)1 · 1Mq‖ → 0,

‖πξn (ψ(vq
θ))− πξ0 (ψ(vq

θ))‖ = ‖t(ξn)2 · 1Mq − t(ξ0)2 · 1Mq‖ → 0.

Therefore,

|t(ξn)1 − t(ξ0)1| → 0 and |t(ξn)2 − t(ξ0)2| → 0.

This proves that σ is continuous. Therefore, σ is a homeomorphism. Define

ψ1 : P1MN (C(T2)P1 −→ P1MN (C(T2)P1

by ψ1( f )(x) = f (σ−1(x)) for all x ∈ T2 and all f ∈ P1MN (C(T2))P1, then ψ1 is
an isomorphism. Put H = ψ1 ◦ ψ. Let (t1, t2) ∈ T2 and y = σ−1((t1, t2)), i.e.,
(t(y)1, t(y)2) = (t1, t2). Then

π(t1,t2) ◦H(uq
θ) = π(t1,t2) ◦ ψ1 ◦ ψ(uq

θ) = πy ◦ ψ(uq
θ) = t1 · 1Mq

and

π(t1,t2) ◦H(vq
θ) = π(t1,t2) ◦ ψ1 ◦ ψ(vq

θ) = πy ◦ ψ(vq
θ) = t2 · 1Mq .

Put P = ψ1(P1), and the lemma follows.

The following is a consequence of [21, Theorem 2.7].

Lemma 5.2 Let P ∈ MN (C(T2)) be a projection of rank q (for some integer N > q)
and let C = PMN (C(T2))P. For any ε > 0 and finite subsetF ⊂ C, there exists δ(ε) > 0
and finite subset G(ε) satisfying the following. For any unital simple infinite dimensional
C∗-algebra A with real rank zero and stable rank one, if L : C → A is a contractive,
completely positive, linear map that is G-δ-multiplicative and [L]|ker ρC ⊂ ker ρA, then
there exists a unital homomorphism φ : C → A such that ‖L( f ) − φ( f )‖ < ε for all
f ∈ F.

Proof First consider the case C = C(T2).Note that K0(C) = Z⊕Z with ker ρC = Z
(which may be identified with the second copy of Z) and K1(C) = Z ⊕ Z. Thus
KL(C,A) ∼= Hom(K0(C),K0(A))⊕Hom(K1(C),K1(A)). Let α ∈ KL(C,A). Then, it
follows from [19] that there is a unital homomorphism h : C → A such that [h] = α
if and only if α([1C ]) = [1A] and α(ker ρC ) ⊂ ker ρA. Thus this theorem follows im-
mediately from [21, Theorem 2.7] when C = C(T2). It is then clear that the theorem
holds in the case where C = Mn(C(T2)) for any integer n ≥ 1.

For the general case, we note that there exists an integer N1 ≥ 1 and a rank one
projection e ∈ MN1 (C) such that eMN1 (C)e ∼= C(T2). Therefore, there is a projection
Q ∈ MN2 (C(T2)) ⊂ MN1N2 (C) for some integer N2, and there is a unitary W ∈
MN2N1 (C) such that W ∗QW = P. Define L1 = L ⊗ idMN1

: MN1 (C) = C ⊗MN1 →
A ⊗ MN1 . Let ε1 > 0 be given. If L is a G-δ-multiplicative, contractive, completely
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positive, linear map with sufficiently small δ and sufficiently large G, then there exists
a unitary V ∈ A⊗MN1N2 such that

‖(L⊗ idMN1N2
)(W )−V‖ < ε1.

Then L2 = L1|eMN1 (C)e is close to a unital completely positive linear map L3 from
eMN1 (C)e ∼= C(T2) into EMN1 (A)E for some projection E ∈ MN1 (A) that is
close to L2(e), whenever δ is sufficiently small and G is sufficiently large. Put
B = MN2 (eMN1 (C(T2))e). Then B ∼= MN2 (C(T2)). Define L4 = L3 ⊗ idMN2

: B →
MN1 (A)⊗MN2 . If L4 is close to a unital homomorphism, say ψ : B→ MN1 (A)⊗MN2 ,
then L4|QBQ is close to ψ|QBQ. Note that there is a unitary V1 ∈ A ⊗ MN1N2 ,
which is close to 1MN1N2

such that V ∗1 (V ∗ψ(Q)V )V1 = L(Q) = 1A. Therefore L is
close to Ad(VV1) ◦ ψ|QBQ. Therefore, the general case can be reduced to the case
C = Mn(C(T2)) for some integer n.

Theorem 5.3 Let θ ∈ (−1/2, 1/2) be a rational number. Then for any ε > 0 there
exists δ > 0 satisfying the following. For any unital simple C∗-algebra A with real rank
zero and stable rank one and for any pair of unitaries u and v in A such that

‖uv − e2πiθvu‖ < δ and
1

2πi
τ
(

log(uvu∗v∗)
)

= θ

for all τ ∈ T(A), there exists a pair of unitaries ũ, ṽ ∈ A such that

ũṽ = e2πiθ ṽũ, ‖u− ũ‖ < ε, and ‖v − ṽ‖ < ε.

Proof For the sub-class of simple finite dimensional C∗-algebras, the theorem fol-
lows from [6, Corollary 7.6]. In what follows we will assume that A is infinite dimen-
sional.

The statement for θ = 0 follows from [21, Corollary 2.11] immediately, or from
Lemma 5.2. So, for the rest of the proof, we may assume that θ = ±p/q, where p
and q are non-zero integers with (p, q) = 1, 0 < 2p < q. By Lemma 5.1, we may
write Aθ = PMN (C(T2))P, where N is an integer and P ∈ MN (C(T2)) is a projection
of rank q. Moreover, πξ(uq

θ) = t1 ◦ Pξ and πξ(vq
θ) = t2Pξ for all ξ = (t1, t2) ∈ T2.

Therefore ker ρAθ is generated by a single element bott(uq
θ, v

q
θ). Let ε > 0 and let

F = {uθ, vθ, 1Aθ}. Let δ1 > 0 (in place of δ(ε)) be a positive number and G1 ⊂ Aθ (in
place of G(ε)) be finite subset required by Lemma 5.2 for C = Aθ = PMN (C(T2))P,
ε/2 and F.

Let δ00 be as required by Lemma 4.4 for ε0 = min{δ1, ε/2} and G1 (in place of G).
Let

δ = min{δ00/2q2, δ0/2q2, 1/2q2},

where δ0 is defined in Proposition 2.8. Suppose that A is a unital simple C∗-algebra
of real rank zero and stable rank one and suppose that u, v ∈ A are two unitaries
such that

‖uv − e2πiθvu‖ < δ and
1

2πi
τ
(

log(uvu∗v∗)
)

= θ.
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It follows from Lemma 4.4 that there exists a unital δ1-G1-multiplicative contractive,
completely positive, linear map L : Aθ → A such that
(5.2)
‖L(uθ)− u‖ < ε/2, ‖L(vθ)− v‖ < ε/2 and [L]

(
bott(uq

θ, v
q
θ)
)

= bott(uq, vq).

Let S1, S2 ∈ Mq be as in (5.1). Put U = u ⊗ S2 and V = v ⊗ S1 in A ⊗ Mq. We
compute that

UV = uv ⊗ S2S1 ≈δ e2πiθvu⊗ (e−2πiθ)S1S2 = VU .

Denote

Z = (u⊗ 1Mq )(v ⊗ 1Mq )(u∗ ⊗ 1Mq )(v∗ ⊗ 1Mq ).

Then

1

2πi
(τ ⊗ Tr)

(
log(UVU ∗V ∗)

)
=

1

2πi
(τ ⊗ Tr)

(
log
(

(u⊗ S2)(v ⊗ S1)(u∗ ⊗ S∗2 )(v∗ ⊗ S∗1 )
))

=
1

2πi
(τ ⊗ Tr)

(
log(Z(1A ⊗ S2)(1A ⊗ S1)(1A ⊗ S∗2 )(1A ⊗ S∗1 ))

)
=

1

2πi
(τ ⊗ Tr)(log(Z · e−2πiθ · 1Mq(A))),(5.3)

for all τ ∈ T(A). Since e−2πiθ · 1Mq(A) is in the center of Mq(A), (5.3) equals

1

2πi
(τ ⊗Tr)(log Z)− qθ =

1

2πi
(τ ⊗Tr)

(
log(uvu∗v∗)⊗ 1Mq )

)
− qθ = qθ− qθ = 0.

By the Exel trace formula, we conclude that

(5.4) bott(U ,V ) ∈ ker ρA.

It follows that

bott(U q,V q) = q2 bott(U ,V ) ∈ ker ρA.

Note that U q = uq ⊗ 1Mq and V q = vq ⊗ 1Mq . It follows that

q bott(uq, vq) = bott(U q,V q) ∈ ker ρA.

This implies that for all τ ∈ T(A),

qτ
(

bott(uq, vq)
)

= 0,

which implies that

(5.5) bott(uq, vq) ∈ ker ρA.

It follows from (5.5) and (5.2) that

[L](bott(uq
θ, v

q
θ)) = bott(uq, vq) ∈ ker ρA.
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Consequently, [L]|ker ρAθ
⊂ ker ρA. By applying Lemma 5.2, we obtain a unital homo-

morphism φ : Aθ → A such that

(5.6) ‖L(uθ)− φ(uθ)‖ < ε/2 and ‖L(vθ)− φ(vθ)‖ < ε/2.

Put ũ = φ(uθ) and ṽ = φ(vθ). Note that, since φ is a unital homomorphism,

ũṽ = e2πiθ ṽũ.

We also have, by (5.6) and (5.2),

‖ũ− u‖ < ε and ‖ṽ − v‖ < ε.

Next we consider that θ = 1
2 .

Theorem 5.4 For any 1 > ε > 0, there exists δ > 0 satisfying the following. For any
unital simple infinite dimensional C∗-algebra A with real rank zero and stable rank one
and for any pair of unitaries u and v in A such that

‖uv + vu‖ < δ and
1

2πi
τ (log0(uvu∗v∗)) = 1/2

for all τ ∈ T(A), where log0 is a continuous logarithm defined on a compact subset F of
{eit : t ∈ (0, 2π)} with values in {ri : r ∈ (0, 2π)}, then there exists a pair of unitaries
ũ, ṽ ∈ A such that

ũṽ = −ṽũ, ‖u− ũ‖ < ε and ‖v − ṽ‖ < ε.

Proof The case that A is a unital simple finite dimensional C∗-algebra follows from
[7, Theorem 8.3.4]. We will consider only infinite dimensional simple C∗-algebras
of real rank zero and stable rank one. The proof is exactly the same as that of Theo-
rem 5.3 except the part to verify (5.4), i.e.,

bott(U ,V ) ∈ ker ρA.

In other words, using the Exel trace formula, we need to show that

(5.7) (τ ⊗ Tr)(log(UVU ∗V ∗)) = 0 for all τ ∈ T(A).

We compute

UV = uv ⊗ S2S1 ≈δ e2πiθvu⊗ (e−2πiθ)S1S2 = VU .

We may assume that

(5.8) ‖uv + vu‖ < 1/10

and

(5.9)
1

2πi
τ (log0(uvu∗v∗) = 1/2.

for all τ ∈ T(A). Therefore (by (5.8))

uvu∗v∗ = exp(ia),
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for some a ∈ As.a. with spec(a) ⊂ (π − π/10, π + π/10). Moreover, by (5.9)

τ (a) = π,

for all τ ∈ T(A).
For any τ ∈ T(A), we have

1

2πi
(τ ⊗ Tr)

(
log(UVU ∗V ∗)

)
=

1

2πi
(τ ⊗ Tr)

(
log
(

(u⊗ S2)(v ⊗ S1)(u∗ ⊗ S∗2 )(v∗ ⊗ S∗1 )
))

=
1

2πi
(τ ⊗ Tr)

(
log
(

(uvu∗v∗ ⊗ 1M2 ) · (e−πi · 1M2(A))
))

=
1

2πi
(τ ⊗ Tr)

(
log
(

(e−πi/3 · (eia ⊗ 1M2 )
)
· (e−πi+πi/3 · 1M2(A))

))
.

Note that spec
(

(u ⊗ S2)(v ⊗ S1)(u∗ ⊗ S∗2 )(v∗ ⊗ S∗1 )
)

, spec(e
−πi

3 · eia ⊗ 1M2 ), and

spec(e−2πi/3 · 1M2(A)) are all in {eit : t ∈ [−2π/3, π + π/10− π/3]}.
Since e−πi/3 · eia ⊗ 1M2 commutes with e−πi+πi/3 · 1M2(A), we have

(τ ⊗ Tr)
(

log
(

(e−πi/3 · eia ⊗ 1M2 ) · (e−πi+πi/3 · 1M2(A))
))

= (τ ⊗ Tr)
(

log(e−πi/3 · eia ⊗ 1M2 )
)

+ (τ ⊗ Tr)
(

log(e−πi+πi/3 · 1M2(A))
)

= (τ ⊗ Tr)
(

log(e−πi/3+ia ⊗ 1M2 )
)
− 2

2πi

3

= 2τ
( −πi

3
+ ai

)
− 2

2πi

3
= 0.

It follows that (5.7) holds.
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