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Abstract. Let k be a perfect field of a positive characteristic p, K – the fraction field of the ring of
Witt vectors W (k). Let X be a smooth and proper scheme over W (k). We present a candidate for a
cohomology theory with coefficients in crystalline local systems: p-adic étale local systems on XK
characterized by associating to them so called Fontaine-crystals on the crystalline site of the special
fiber Xk . We show that this cohomology satysfies a duality theorem.
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1. Introduction

In this article we prove a duality theorem in the cohomology of crystalline local
systems.

Let k be a perfect field of a positive characteristic p, K – the fraction field of
the ring of Witt vectors W (k). Let X be a smooth and proper scheme overW (k).
In [5] Faltings introduced the notion of crystalline local systems: p-adic étale local
systems onXK characterized by associating to them so called Fontaine-crystals on
the crystalline site of the special fiberXk. Étale cohomology sheaves, generic fibers
of finite flat p-group schemes on X , and Tate-twists tend to form such systems.

We present here a candidate for a cohomology theory with such coefficients. In
the particular case of the Tate-twists Z=pn(r), r > 0, it is equal to the syntomic
cohomology introduced by Fontaine and Messing [7]. In general, it should be
thought of as a p-torsion analogue of the arithmetic étale cohomology of X with
coefficients in locally constant sheaves with torsion different from p.

Pursuing this analogy one would expect that, in the case k is finite, these coho-
mology groups would satisfy certain duality. We show here that this is indeed the
case. This is done by a careful study of a map from our cohomology to the étale
cohomology of XK and follows from Faltings comparison theorem between crys-
talline and étale cohomologies, and the crystalline, étale, Galois, and Bloch–Kato
dualities. As an interesting byproduct of our computations we get a degeneration
of the Hochschild–Serre spectral sequence of crystalline local systems.
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68 WIESŁAWA NIZIOL

Throughout the paper p will be a fixed odd prime, for a field K ,Kwill denote
a fixed algebraic closure of K , and, for a scheme X , X will denote the associated
formal scheme. Locally constant étale sheaf on X will mean, depending on a
context, an element of the Ind-category of finite étale covers of X or the Ind-
category of finite étale commutative group schemes overX .

2. The categoriesMFr[a;b](X)

LetV denote a complete discrete valuation ring with a fraction fieldK of character-
istic 0 and a perfect residue field k of characteristic p. Assume that V is absolutely
unramified.

LetR be a smooth V -algebra. Fix a semilinear endomorphism �: bR! bR lifting
the Frobenius on R=pR. For all integers a, b, a 6 b, we have the following
category MFr[a;b](R;�) [5]: an object of MFr[a;b](R;�) is a p-torsion, finitely

generated R-module M with a descending filtration F iM such that F aM = M ,
F b+1M = 0 andR-linear maps �i:F iM
R�R!M such that �i(x) = p�i+1(x)

for x2F i+1M . Let R-module fM be the colimit of the following diagram

F i�1 MF i
p
�!MF i MF i+1 p

�!MF i+1M:

The above condition is equivalent to the fact that the maps �i induce an R-linear
homomorphism �: fM 
R� R!M . One additionaly requires this homomorphism
to be an isomorphism.
M is also equipped with an integrable nilpotent connection r:M!M 
R


1
R=V satisfying Griffiths transversality, i.e.,r(F iM) � F i�1M
R


1
R=V :More-

over the maps �i are parallel with respect to the map d��=p:
1
R=V 
R�R!
1

R=V .
In a more convenient form, the connection r induces a connection (integrable
and nilpotent) on fM 
R� R and the above condition is equivalent to the map
�: fM 
R� R �!M being parallel in the usual sense.

CategoryMFr[a;b](R;�) has many nice properties:

(1) it is Abelian;
(2) the filtration is by direct summonds;
(3) F iM is locally a direct sum of modules of the form R=peR;
(4) for b� a 6 p� 1; it is independent of the choice of the Frobenius lift �, i.e.,

if �1 is another Frobenius lift, then there is an equivalence of the categories
MFr[a;b](R;�) and MFr[a;b](R;�1) satisfying a cocycle condition. In fact,
there is a well defined parallel transition map

��;�1 : fM 
R� R �! fM 
R�1 R:

such that ��1;�2��;�1 = ��;�2 :
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COHOMOLOGY OF CRYSTALLINE LOCAL SYSTEMS 69

From now on we will assume that 0 6 b� a 6 p� 2:
Let X be a smooth and separated scheme over V . To globalize the above con-

struction one coversX with affinesUi = Spec(Ri) and chooses Frobenius lifts �i:bRi! bRi. MFr[a;b](X) is defined as the glueing of the categoriesMFr[a;b](Ri; �i)

via the maps��i;�j . ThusMFr[a;b](X) consists of filteredOX-modulesM equipped
with an integrable, quasi-nilpotent and Griffiths transversal connection, and, for
every i, a structure of an MFr[a;b](Ri; �i)-object on MUi such that on Uij the

two structures glue well under ��i;�j . It easily follows thatMFr[a;b](X) does not
depend on the choice of the data f(Ri); (�i)g and that it is an Abelian category.

Recall [3] that given a filtered OX -module M equipped with an integrable,
quasi-nilpotent and Griffiths transversal connection, there is a unique filtration on
the associated crystalM whose value on X is the given filtration and such that for
every thickening U ,! T in Cris(X=Spf(V )), and for every k,

JT \ F
kMT = J

[1]
T F

k�1MT + J
[2]
T F k�2MT + � � � ;

where JT is the ideal ofU in T . In addition, we also know that, for every morphism
f :T 0!T in Cris(X=Spf(V )),

F kMT 0 = F kfMT 0 + JT 0F
k�1
f MT 0 + � � � ;

where F ifMT 0 = Im(f�F iMT !MT 0).

The maps �i acting on objects of MFr[a;b](X) can also be lifted to some
thickenings. Take a smooth V -algebra R and an embedding Spec(R) ,!W into a
smooth V -scheme W . Choose Frobenius lifts � on bR and  on W – the p-adic
formal scheme associated to W . Let D be the p-adic completion of the divided
power envelope algebra of Spec(R) in W . Denote by  D the extension of  to D.
D being p-torsion free, we can give it a structure of anMF-object: set Di equal
to D if i 6 0, to the closure of the ideal J [i]

D if 0 6 i 6 p� 1, and to 0 otherwise,
and define  iD:Di!D as the divided Frobenius  D=pi:

LEMMA 2.1. For any M 2MFr[a;b](R;�), there is a canonical D-linear map

�D: gMD 
D D D!MD;

where, in the definition of gMD, the filtration onMD is cut by setting F iMD = 0
for i > p� 1 + a. Moreover, the map �D is independent of the choice of �.

Proof. Fix a retraction h: bR!D: Define gMh
D as f-object associated to the

filtration

Mi
D =

X
i�k6p�1

Di�kh�F kMbR
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70 WIESŁAWA NIZIOL

on MD . Since MbR ' gr�F (MbR), it easily follows that the natural map !:
gh�gMbR 
D eD! gMh

D sending xk 
 yj , xk 2h�F kMbR, yj 2Dj to xkyj inMk+j
D

is an isomorphism.
Define �D: gMD 
D D D!MD as the composition

gMD 
D D D!
gMh
D 
D D D

�!
�

(gh�gMbR 
D eD)
D D D

' h�gMbR 
D D D 
D D D 
D
eD

= gMbR 
bR D 
D D D 
D D D 
D
eD

� D;�

�
- gMbR 
bR� bR
bR D 
D D D 
D

eD
�bR
( i

D
)
-MbR 
bR D 
D D 'MD:

Here, �bR is the structural map �bR: gMbR 
bR� bR ' MbR, and the map � D;� is
the transition map of Faltings [5]: in local coordinates t1; : : : ; td on R and for
m2F iMbR ,

� D;�(m
 1) =
X
I

r(@I)(m)


 
( Dh(t)� h�(t))

I

(I ! pmin(i�a;jIj))

!
;

where, for any multindex I = (i1; : : : ; id), r(@I) is an endomorphism of MbR
corresponding to the PD-differential operator @I (@i = @=@ti). Here,r(@I)(m) is
considered as an element of F max(a;i�jIj)MbR.

As expected, in the case when � and  commute, the map �D is the obvious
composition of �bR and  D .

A transition map between the constructions corresponding to two different
choices of h can be induced from the transition map between two retractions of
MbR. That it commutes with our maps follows from the fact that fM is a Frobenius
twisted crystal, that the Frobeniuses acting onM are parallel and that the transition
maps � are compatible with the change of the retraction.

Independence of the construction from the choice of � is easily seen. 2

For anyM 2MFr[a;b](R;�), theD-moduleMD is equipped with anOW -connection
which is integrable, quasi-nilpotent, and compatible with the natural connection on
D. One easily checks that it is also Griffiths transversal. We will need the following
fact.

LEMMA 2.2. The maps�iD:F iMD
D�DD!MD are parallel, i.e., the following
diagram commutes
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COHOMOLOGY OF CRYSTALLINE LOCAL SYSTEMS 71

F iMD
r- F i�1MD 
OW 
1

W=V

MD

?
�i
D

r - MD 
OW 
1
W=V :

?
1
d �=p

Proof. Define a connection, that is compatible with the connection on D, er:gMD
D�DD!
gMD
D�DD
OW
1

W=V by sendingm
1 to (1
d �=p)(r(m)).
Both connections onMD andD being integrable, we get an integrable connection.
Griffiths transversality of r and the fact that gMD

g=p ' gr�F (MD=p) yield also
that er is nilpotent. We can thus look at the corresponding hyperstratifications "r
and "er and to see that they commute with �D it suffices to use that � itself is
parallel and that the maps � (being parallel) exhibit certain compatibility with the
transition maps between different retractions. R being smooth, the computations
are tedious but easy. 2

In what follows, we will denote byMFr[a;b](Xn) the subcategory of objects from

MFr[a;b](X) annihilated by pn.

LEMMA 2.3. If

0!L!M!N! 0

is exact in MFr[a;b](Xn), then, for every fundamental thickening U ,! T in
Cris(Xn=Vn), the sequence

0!LT !MT !NT ! 0

is exact in the filtered sense.
Proof. It is enough to argue locally. Assume thus that U is affine and that there

is a retraction h:T !U . We want an exactness of

0!
X
k

J
[k]
T F i�kh LT !

X
k

J
[k]
T F i�kh MT

f-
X
k

J
[k]
T F i�kh NT ! 0;

where JT is the ideal of U in T . First, we claim that, for every i; k, the sequence

0!J
[k]
T F ihLT !J

[k]
T F ihMT !J

[k]
T F ihNT ! 0

is exact. Note thatJ [k]
T 
OTF

i
hMT ' J

[k]
T F ihMT . Indeed, sinceF ihMT ' h

�F iM ,

it suffices to show that Tor1
OU (F iM;OT =J

[k]
T ) = 0, which follows by devissage

on OT =J
[k]
T , J [j]

T =J
[j+1]
T being locally free on U . This yields the exact sequence

J
[k]
T F ihLT !J

[k]
T F ihMT !J

[k]
T F ihNT ! 0:
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72 WIESŁAWA NIZIOL

Since LT ,!MT , we also get an injection. Returning to the previous sequence
we see that the only nontrivial fact is the exactness in the middle. We will argue by
induction ona 6 n 6 b such thatx2�k>nJ

[i�k]
T F khMT , f(x) = 0. The casen = b

follows from the above. Assume now that we know the exactness for the elements
of �k>nJ

[i�k]
T F khMT : Take x2�k>nJ

[i�k]
T F khMT such that f(x) = 0. Write

x = y+z, y2�k>nJ
[i�k]
T F khMT ; z 2J

[i�n]
T F nhMT . Since f(x) = f(y)+f(z) =

0, f(y)2J [i�n]
T F nhNT \ (�k>nJ

[i�k]
T F khNT ). But NT ' gr�FhNT , locally, so

f(y)2J
[i�n]
T F n+1

h NT . Take y0 2J [i�n]
T F n+1

h MT such that f(y0) = f(y). Set

x0 = y0� y. We have that f(x0) = 0 and x0 2�k>nJ
[i�k]
T F khMT : By induction, x0

comes from �k>nJ
[i�k]
T F khLT : Since x = y+ z = y0 � x0 + z = �x0 + (y0 + z),

f(y0+ z) = 0 and y0+ z 2J
[i�n]
T F nhMT ; y

0+ z comes from J
[i�n]
T F nh LT and we

are done. 2

3. Cohomology ofMFr[a;b](X)-crystals

Let V = W (k) be the ring of Witt vectors over a perfect field k of positive
characteristic p. Let X be a smooth, separated scheme over V of relative dimen-
sion d.

Choose a covering of X by a finite number of Ui = Spec(Ri), i2 I , and
embeddings Ui ,!Wi into affine, smooth V -schemes Wi = Spec(Ti). For every
J � I , set

UJ = Spec(RJ) =
\
j 2J

Uj ;

WJ = Spec(TJ ) =
Y
j 2J

Wj ; DJ = dDRJ (TJ):

Fix n. Let M2MFr[a;b](Xn); b � a 6 p � 2. We will reduce everything above
mod pn but, as long as this does not cause confusion, we will try to omit the indices.

Define 
(MJ)
� as the complex MDJ 
TJ 
�TJ=V . Filter the DJ -modules

MDJ
TJ

i
TJ=V

by submodulesF k(MDJ
TJ

i
TJ=V

) := F k�iMDJ
TJ

i
TJ=V

.

Griffiths transversality gives that, for fixed k, the submodulesF k(MDJ
TJ

i
TJ=V

)

form a subcomplex F k
(MJ)
� of 
(MJ)

�.
Choose Frobenius lifts �J on bRJ and  i on bTi and set  J = � i. For k 6

p� 1 + a, the maps

�
k;i
J :F k�iMDJ 
TJ 


i
TJ=V

!MDJ 
TJ 

i
TJ=V

;

�
k;i
J = �k�iDJ


 d J�=p
i; glue (Lemma 2.2) to a Frobenius �k:F k
(MJ)

�!

(MJ)

�:
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COHOMOLOGY OF CRYSTALLINE LOCAL SYSTEMS 73

Assume now that p� 1 + a > 0. Set

S(MJ)
� := Cone(F 0
(MJ)

� �0�1- 
(MJ)
�)[�1]:

This is independent of the choice of n such that pnM = 0.
Now we globalize. Take an index set K � J . There is the obvious restriction

map resK;J :
(MK)
�!
(MJ)

�. It clearly preserves the filtrations and it is easy
to see that it behaves well with respect to the connections. Also, since the following
diagram commutes

gMDK
f
DK K DK

- gMDJ
f
DJ J DJ

MDK

?
�DK

- MDJ

?
�DJ

(use the transition maps �), it behaves well with respect to the Frobenius.
The restriction maps satisfy the usual compatibilities, hence varying J we get

from the complexes S(MJ)
� a double complex. Denote by S(M)� the associated

simple complex.

LEMMA 3.1. For any two choices of the covering, there is a canonical quasi
isomorphism between the corresponding complexes S(M)�.

Proof. Assume that we have two choices A = (Ui; �I ;Wi;  i); B = (Vj; �J ;
Zj; j). Consider two new choices

C1 = (Ui \ Vj ; �I ;Wi � Zj;  i � j);

C2 = (Ui \ Vj ; �J ;Wi � Zj;  i � j):

The complexes associated to C1, C2 are in fact identical (Lemma 2.1). In studying
the pairs (A; C1) and (B; C2) we may disregard the Frobenius and then the required
quasi isomorphisms follow from filtered cohomological descent for crystalline
cohomology. 2

ForM2MFr[a;b](X), define

H�
f;a;b(X;M) := H�(S(M)�):

It follows from Lemma 2.3 that, for every n, H�
f;a;b(X; �) is a cohomology theory

onMFr[a;b](Xn).

Remark 1. Various generalizations of the syntomic cohomology of Fontaine
and Messing appear in the work of many people. In particular, we believe, although
we didn’t check the details, that our construction agrees with that of [14].

Remark 2. When the relative dimension of X over V is 0, our cohomology
theory H�

f;a;b(X; �) agrees with that of Bloch and Kato [3].
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74 WIESŁAWA NIZIOL

PROPOSITION 3.1. IfM2MFr[a;b](X), then Hi
f;a;b(X;M) = 0 for i > �a +

d+ 1.
Proof. We can assume that pM = 0. Consider a set of data (Ui; �J ;Wi;  i),

i2 I , J � I as above, and the associated complex S(M)�. Denote by S�et(M)�

the induced complex of étale sheaves on the special fiber Xk. By the last lemma
S�et(M)�, modulo quasi isomorphisms, is independent of all choices. We clearly
have that H�(Xk;S�et(M)�) ' H�(S(M)�): From the spectral sequence

Hp(Xk;H
q(S�et(M)�))) Hp+q(Xk;S�et(M)�)

and the fact that cdp(Xk) 6 d+1, we see that it suffices to show thatHq(S�et(M)�) =
0 for q > �a.

We can now assume that X = Spec(R) and M2MFr[a;b](R;�) for some

choice of the Frobenius lift �. We claim that the map �0� 1:F 0
(M)�!
(M)�

is an isomorphism in degrees strictly bigger than �a and a surjection in degree
�a. Indeed, in degree k > �a, �0� 1:F�kM
R=pR 


k
R=pR!M
R=pR 


k
R=pR

is equal to ��k 
 d��=p
k � 1. But �k < a, so F�kM = F aM = M and

��k = pa+k�a = 0. Hence �0 � 1 = �1. In degree k = �a, �0 � 1:M
R=pR

�a
R=pR

!M
R=pR 
�a
R=pR

is equal to �a 
 d��=p�a� 1. Looking at logarithmic
differentials we see that it suffices to prove that the morphism �a � 1:M!M
is surjective in the étale topology of R=pR. That easily follows from the fact that
M' �R=pR. 2

PROPOSITION 3.2. IfM2MFr[a;b](X), then the morphism

Hk
cr(X=V;M)!Hk+1

f (X;M)

is an isomorphism for �b > d or �b > k + 1. It is an injection for �b > k.
Proof. From the definition of S(M)� we get the long exact sequence

! Hk
f (X;M)!Hk

cr(X=V; F
0(M))

1��0
- Hk

cr(X=V;M)!Hk+1
f (X;M)! :

Let GriF

�
X=V

(M) be the complex

GriFMX
r- Gri�1

F MX 
 
1
X=V

r- � � �

We get the ‘Hodge spectral sequence’

E
ij
1 = Hi+j(X;GriF


�
X=V (M))) Hi+j

cr (X=V; F 0(M)):

SinceM2MFr[a;b](X), this thus yields that Hi
cr(X=V; F

0(M)) = 0 for �b >
min(i; d), from which the proposition follows. 2
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COHOMOLOGY OF CRYSTALLINE LOCAL SYSTEMS 75

4. The ring B+

In the next two sections p is allowed to be equal to 2. Let V be a complete discrete
valuation ring of mixed characteristic (0; p) with a perfect residue field k. LetR be
a smooth V -algebra such that R=pR 6= 0. Consider the p-adic completion bR. For
simplicity, we will assume that Spec(R=pR) is connected, which implies that bR is
a normal domain. In general, bR is a product of normal domains and what follows
applies to each factor.

We will briefly recall the construction and properties of the ring B+( bR) [5].

Denote by �bR the normalization of bR in the maximal étale extension of bR[1=p].
We will write x = pm=n if xn = pm and this does not cause problems. Let
S = proj lim �bR=p �bR, where the maps in the projective system are the pth power
maps. With addition and multiplication defined coordinatewise S is a ring of

characteristic p. We will also find useful the projective limit bS = proj lim �bR^,
where the transition maps are the pth power maps and multiplication is defined
coordinatewise. The projection bS!S is a multiplicative isomorphism: the inverse
(x(n)) of x is given by setting x(n) = limm!1 x̂

pm

n+m, where b means a lift from
�bR=p to �bR^.

The Frobenius ofS is bijective, so that the ring of Witt vectorsW (S) is p-torsion
free, complete and separated for the p-adic topology.

There is a homomorphism � from W (S) to �bR^: � maps (x0; x1; : : :)2W (S),

xn = (xnm)2S, to the limit over m of x̂p
m

0m + px̂
pm�1

1m + � � � + pmx̂mm. This is a

surjection if Frobenius is surjective on �bR=p. The kernel of � is being generated by
� = [(p)]+ p[(�1)], where (p); (�1)2S are the reductions mod p of sequences of
p-roots of p and (�1) respectively (if p 6= 2 we may and will choose (�1) = �1).
In what follows we fix p1=(p�1) 2S – a sequence of p-roots of a fixed element x
such that xp�1 = p and (p) is equal to (p1=(p�1))p�1.

We will need

LEMMA 4.1. Let 0 < " 6 1 be a rational number. Let p" be a sequence of p-roots
of p". The map S=(p")! �bR=p" sending x to x0 is always injective. It is surjective

if Frobenius on �bR=p is surjective.

Proof. It suffices to show that, ifx; y 2 �bR^; yp = x,x 2 p� �bR^, then y 2 p�=p �bR^.

Setn = b�=pc+1, and if x = p�r, r2 �bR^, take �r; �y 2 �bR such that �r � rmod pn �bR^,

�y � ymod pn �bR^. Then �yp � p��rmod pn �bR^, so �yp = p��r + pna, a2 �bR and

(�y=p�=p)p = �r + pn��=pa. �bR being normal, �y=p�=p 2 �bR, hence y2 p�=p �bR^ as
wanted. 2

The ring B+( bR) is defined as the p-adic completion of the divided power enve-
lope D�(W (S)) of the ideal �W (S) in W (S). Let J denote the PD ideal of
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D�(W (S)). B+( bR) is an algebra over B+(V ) having the following four pro-
perties:

(1) the Frobenius automorphism on S induces an automorphisms � on W (S) and
B+( bR);

(2) B+( bR) is equipped with a decreasing separated filtration F nB+( bR) such that
�(F nB+( bR)) � pnB+( bR) (in fact, F nB+( bR) is the closure of the ideal
consisting of those elements in the n-th divided power of J whose �-image is
divisible by pn);

(3) the Galois group Gal( �bR= bR) acts on B+( bR); the action is continuous, com-
mutes with � and preserves the filtration;

(4) there exists an element t2F 1B+( bR) such that �(t) = pt and Gal( �bR= bR) acts
on t via the cyclotomic character: if we fix "2S – a sequence of nontrivial
p-roots of unity, then t = log(["]).

5. The fundamental exact sequence

Recall thatR is called small if there is an étale map V [T�1
1 ; : : : ; T�1

d ]!R. If R is

small, Frobenius is surjective on �bR=p. For n > 0, write n = r(n) + (p� 1)q(n),
0 6 r(n) < p� 1 and set tfng = tr(n)q(n)(t

p�1=p).

PROPOSITION 5.1. For small R, there is an exact sequence of Gal( �bR= bR)-
modules

0!Zptfrg!F rB+( bR) p�r��1- B+( bR)! 0; for r > 0:

Proof. The proof follows closely that of Fontaine for the caseR = V . We advice
the reader to consult [9, 5.3.6] for details. The main point is that, assumingR small,
we can solve certain polynomials involving Frobenius already in �bR=p.

Set � = p�r��1. We will first show that ker � = Zptfrg. Clearly Zptfrg 2 ker �.
Assume that x2 ker �. Then

x2 I [r]
df
= fx2B+( bR) j�n(x)2dJ [r]; n2Ng:

To proceed we will need few more facts about the structure of the ring B+( bR).
Set �" = ["] � 12W (S), q = �a2Fp ["]

[a] if p 6= 2 and q = ["] + ["]�1 if p = 2,
and, for x2W (S), set x0 = ��1(x). One easily checks [8, 2.4] that the element

�n>0p
n[un]2W (S) generates the kernel of � if u(0)1 is a unit in �bR^. In particular,

that is true of �a2Fp ["
0][a].

Having that, the arguments of Fontaine [9, 5.2.7] suffice to prove that every
a2B+( bR) can be written as a = �n>0ann(t

p�1=p), where the coefficients
an 2W (S) converge p-adically to 0. We also have (cf., [9, 5.1.4]).
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LEMMA 5.1. The ideal I = I [1] \W (S) is generated by �" = ["]� 1.
Proof. Set � = p=(p�1). One checks as in [8, 4.16] that if x = (x0; x1; : : :)2 I ,

then x(0)0 2 p
1+���+p�r �bR^ for every r > 0. This gives that x(0)0 2 p

� �bR^: take �2 �bR
such that � � x

(0)
0 mod p� �bR^ and consider the element �=p� 2K(

�bR). Since

�=p� 2 p�"
�bR for arbitrarily small ", it lies in all the localizations of �bR at height

one primes. Hence �=p� 2 �bR, as wanted.
We claim that I � (�"; p). Take x = (x0; x1; : : :)2 I . We want to see that

x0 2 (" � 1)S or, since " � 1 = (p�) unit [9, 5.1.2], that x0 2 (p
�)S. We already

know that x(0)0 2 p
� �bR^. Since the composition

S=(p�)S
�

��1
- S=(p1=(p�1))S!

�bR=p1=(p�1) �bR;
where the last map sends u = (un) to u0, is injective, it suffices to prove that

x
(1)
0 2 p

1=(p�1) �bR^. But that follows from the proof of Lemma 4.1. Now, since
�(�n(�")) = �(["]p

n
� 1) = "p

n
� 1 = 0, �" 2 I . Thus, to finish it would suffice

to know that if px2 I , then x2 I: consider the map !:W (S)! (
�bR^)N sending

� to (�(�n(�)))n2N. Since px2 I , we have 0 = !(px) = p!(x). But ( �bR^)N is
p-torsion free, so !(x) = 0 as wanted. 2

Using the above lemma one can prove as in [9, 5.3.1] that I [r] is the closure
of the W (S)-module generated by tfsg, s > r. Hence we can write our x as
x = �s�rast

fsg, where the coefficients as 2W (S) converge p-adically to 0.
For n2N, (p�r�)n(x) � �n(ar)t

frg mod pnB+( bR). So, since x2 ker �, x �
�n(ar)t

frg mod pnB+( bR). If we set b = limn!1 �n(ar); b2W (S), we have that

x = btr, �(b) = b. �bR being a henselian domain (with respect to the ideal p �bR), we
get that b2Zp.

Remains to prove that � is surjective. Define N as the closure of the W (S)-
submodule of B+( bR) generated by q

0jn(t
p�1=p) with j + n(p� 1) > r. Clearly

N � F rB+( bR). Also, for p 6= 2, t=q0 2 B+( bR), thus Zptfrg � N . Since both
N and B+( bR) are p-adically complete and separated, it suffices to show that
the induced map N=p �

�! B+( bR)=p is surjective. Take a2B+( bR) and write it
as a = �n>0ann(t

p�1=p); an 2W (S). If a = �n>r=(p�1)ann(t
p�1=p); then

n(p � 1) > r, a2N , and we can take x = �a to get �(x) � a mod pB+( bR).
Remains to show that, for every i2N such that i(p�1) 6 r and all b2W (S), there
is an x2N such that the element �(x) � bi(tp�1=p), modulo pB+( bR), belongs
to the W (S)-submodule generated by n(tp�1=p); n > i.

First, let us prove the following

LEMMA 5.2. Let b2S and write q0 also for the reduction mod p of q0 2W (S).
Let k > 0 be an integer. Then, for n big enough, the polynomial P (X) = Xp �

q
0k
n X � bn 2

�bR=p[X], has a solution in �bR=p.
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Proof. Lift q0n to �V and bn to �bR. Consider the �bR-algebra A =
�bR[X]=(Xp �

q
0k
n X � bn). It is a finite, flat algebra with the discriminant �(A[1=p]= �bR[1=p]) =
(Xp�1 � q

0k
n =p). Easy computations all show that the element (q

0k
n =p)

p � (bn=

(p�1))p�1 belongs to �(A[1=p]= �bR[1=p]). Now, the reader will note [9, 5.1.2] that,
if n > 1, then v(q0n) = 1=pn�1 if p 6= 2 and v(q0n) = 1=pn�2 if p = 2, where v
is the p-adic valuation on �V normalized by v(p) = 1. In particular, q0n 6= 0. Also,
v(p=q

0k
n ) = 1� k=pn�1 if p 6= 2 and v(p=q

0k
n ) = 1� k=pn�2 if p = 2. Thus, for n

big enough, v(p=q
0k
n ) > 0. Hence 1� (bn=(p� 1))p�1(p=q

0k
n )

p is a unit in �bR and,

since q
0kp
n is a unit up to p-powers, we get that A[1=p] is étale over �bR[1=p]. The

lemma follows now from the definition of �bR. 2

Consider now the composition

S=(p)p
n �

��n
- S=(p)!

�bR=p;
where the last map sends x to x0. Since Frobenius is surjective on �bR=p, this
is an isomorphism. Take the polynomial P (Y ) = Y p � q

0kY � b2S[Y ], k =
r� (p� 1)i. By the above lemma and the isomorphism there are y; s2S such that
P (y) = (p)p

n
s for some big n > 2. Set x = [y]q

0ki(t
p�1=p). Compute

�(x)� bi(t
p�1=p)

= p�r�(x) � x� bi(t
p�1=p)

= p�r�([y])qkpi(p�1)i(t
p�1=p)� [y]q

0ki(t
p�1=p)� bi(t

p�1=p)

= [yp]qkp�ki(t
p�1=p)� [y]q

0ki(t
p�1=p)� bi(t

p�1=p):

Fontaine [9, 5.2.5] computed that, in the case p 6= 2, q=p can be written as
1 + u1(t

p�1=p) for some unit u2B+( bR) of the form u = �n>0ann(t
p�1=p)

for an 2W (k) converging p-adically to 0. The case p = 2 is simpler: (q=p �
1)2 pB+( bR). Thus, if we set u1 equal to u or 0 depending on the characteristic,
we get

�(x)� bi(t
p�1=p)

� (q
0k[y] + b+ [(p)p

n

][s])(1 + u11(t
p�1=p))ki(t

p�1=p)

�[y]q
0ki(t

p�1=p)� bi(t
p�1=p) mod pB+( bR)

= f(1 + u11(t
p�1=p))k � 1g(b+ q

0k)i(t
p�1=p)

+[(p)]p
n

[s](1 + u11(t
p�1=p))ki(t

p�1=p)

= f(1 + u11(t
p�1=p))k � 1g(b+ q

0k)i(t
p�1=p)

+pn!pn([(p)])[s](1 + u11(t
p�1=p))ki(t

p�1=p);
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which, modulo pB+( bR), belongs to theW (S)-submodule generated byj(tp�1=p),
j > i, as wanted. 2

Remark 3. Since we are dealing in this paper only with the integral theory, that
is, our r is never greater than p� 2, the above proposition states more than we will
need here. Proof of the proposition in the case r 6 p � 2 simplifies considerably
and can already be found in [5].

COROLLARY 5.1. Fix n > 0 and 0 6 r 6 p� 1. LetR be small and p > 2. There
exists an M such that for all m > M , there is an exact sequence of Gal( �bR= bR)-
modules

0!Z=pntfrg!F rB+( bR)n;m p�r��1- B+( bR)n;m! 0;

whereB+( bR)n;m = B+( bR)=(pnB+( bR) + J [m]).
Proof. We have�(�[r]) = p[r]([(p)][p](p�1)!+[(�1)]p)r. For p 6= 2, this imme-

diately gives that, for m big enough, �(J [m]) � pr+nB+( bR). Since F rB+( bR) is
equal to the closure of J [r] itself, the exactness of the above sequence follows from
the last proposition. 2

6. Étale cohomology and Galois cohomology

Let V be a complete discrete valuation ring of mixed characteristic (0; p) with a
perfect residue field k and a fraction fieldK . We will now introduce, after Faltings
[5], two auxiliary topoi, topoi of ‘sheaves of local systems’. Let X be a smooth,
separated scheme of finite type over V or a strict henselization of such.

Let eX be the following category. An object of eX is a collection L = ((LU );
(rU1U2)) of locally constant étale sheaves LU on UK , for every étale open U of
X and, for every pair U2!U1, a morphism rU1U2 :LU1 j (U1)K!LU2 such that
rU2U3rU1U2 = rU1U3 and rUU = id. One also requires that for every tranquated
étale hypercovering U1

!
!U0!U , LU is the maximal locally constant subsheaf

of ker(j0�LU0
!
!j1�LU1), where ji: (Ui)K!UK . Morphism f :L!M in eX is a

collection of morphisms of locally constant sheaves fU :LU!MU compatible
with rU1U2 .

The category eX is a topos. We will also denote by eX the equivalent topos,
where all U ’s are assumed to be affine.

The following notation will be useful. A presheaf on eX is a collection L =
((LU ); (rU1U2)) satisfying the usual compatibilities. Every presheafL has an asso-
ciated sheaf. First, define

(L+)U = inj lim ker(j0�LU0
!
!j1�LU1));

where the limit is over tranquated étale hypercoverings U = (U1
!
!U0!U),

ker refers to the maximal locally constant subsheaf of the sheaf kernel, and
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ji: (Ui)K! (U)K . It is a separated preasheaf (cf., [1]). We get a sheaf by
taking L++

U . This construction is functorial and has the expected adjointness
property.

For a map of schemes f :X!Y , we get an associated map of topoi
~f : eX! eY : the pushforward of L associates to U!Y the local system fU�LU ,
where fU :B((UX)K �B(UK), and, for a noetherian K-scheme Z , B(Z) is the
topos of locally constant sheaves on Z . The pullback is the sheaf associated to the
presheaf ( ~f�L)U = inj lim f�Z;KLZ , where the limit is over the diagrams

U
fZ - Z

X
?

f - Y :
?

There is a canonical map � from the étale topos ofXK to eX . First, one equippes
every étale and irreducible U!X with a geometric generic point, and every map
U1!U2 between two such étales with a path between the chosen points. Then
the inverse image of L by � is the direct limit over all tranquated hypercoverings
U1
!
!U0!XK of ker(j0�LU0

!
!j1�LU1); the direct image of F associates to U

the locally constant subsheaf corresponding to the global sections of F on the
universal covering ofUK . While computing cohomology of eX it is often convenient
to use the left exact functor  from eX to the étale topos of X , sending L to
the sheaf U 7!LU (UK). Since H0( eX;L) = LX(XK) = H0(X; L), we have
H�( eX;L) = H�(X;R L).

We also have a projection �: eX!B(XK). The inverse image ��L associates
to j:U!X , the local system j�KL, the direct image ��L is equal to LX .

One checks [5] that, for a locally constant sheaf L on XK , there is an isomor-
phism H�( eX; ��L) ' H�(XK ; L): it suffices to show that Rk��L = 0 for k > 0.
But (Rk��L)U = Rk!�LUK , where !:UK!B(UK). Hence it is trivial in the case
U is a K(�; 1) space. Since such U ’s form a base for the topology of X , we are
done.

Faltings also defines the geometric cohomology H�( eX �K ; L) := (R�e��L) �K ,
where e�: eX!B(K). Since B(K) is equivalent to the étale topos of Spec(K), we
have the following commutative diagram

XK
� - eX

@
@
@
@
@

�
R 	�

�
�
�
�

e�
K

Hence, by the above, we get an isomorphism H�( eX �K ; ��L) ' H�(X �K ; L), for
any locally constant sheaf L on XK .
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The cohomology H�( eX;L) (resp:H�( eX �K ; L)) can be computed as the limit
over the hypercoverings U� of X of the generalized Čech complexes of B(UK)-
cohomology (resp:B(U �K)-cohomology) complexes of LU . Also the construction
of eX can be done with the Zariski topology on X instead of the étale topology.

For X as before we also have a category eX . An object of eX is a collection
L = ((LU ); (rU1U2)) of locally constant étale sheaves LU on Spec(AK), for every
U = Spf(A) – an étale open of X with A – a p-adically separated, complete V -
algebra, and, for every pair U2!U1 = Spf(A2)!Spf(A1), a morphism rU1U2 :
f�U1U2

LU1!LU2 , where f�U1U2
is the induced map Spec(A2;K)! Spec(A1;K) sat-

isfying the usual compatibilities. Further the definition is analogous to that of eX .
In particular, we equip every irreducibleA as above with aK(A)-point, and every
map A!A0 between two such algebras with a map between K(A) and K(A0).

The category eX is a topos. As before, to an affine morphism of schemes
f :X!Y , we can associate a map of topoi f̂ : eX ! eY , and, for an affine scheme
X , we can define a projection b�: eX !B(A(X )K). Also, there is a map {: eX ! eX .
The inverse image {�L is the sheaf associated to the presheaf sending SpfB!X
to the direct limit over the diagrams

Spf B
f - SpecA

X
?

- X
?

of the local systems f�KLA, where fK : Spec(BK)! Spec(AK). The direct image
{�L therefore associates to Spec(A)!X the induced local system under the map
Spec( bAK)! Spec(AK).

PROPOSITION 6.1. For any proper, smooth scheme X over V and any sheaf L
on eX , the inverse image induces an isomorphism H�( eX ;�{�L) � H�( eX;L). In
particular, for a local system L on XK , H�(XK ; L) can be computed on eX .

Proof. We can write

H�( eX ;�{�L) ' H�( eX;R�{��{�L) ' H�(X;R R�{��{
�L):

Similarly, H�( eX;L) �! H�(X;R L). It suffices thus to study the composition

H�(X;R L)
f
�! H�(X; �R L)

g
�! H�(X;R R�{��{

�L):

Here �R L is the complex of sheaves associated to the complex of presheaves
R L � �, where � maps U to the union of these connected components whose
special fiber is nontrivial. We will prove that both f and g are isomorphisms (f by
a global argument, g – by a local one).
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First, consider the map f . It fits into the sequence of morphisms

H�(X;R L)
f
�! H�(X; �R L)

t
�! H�(X; i�i

�R L);

with i:Xk ,!X . By proper base change theorem, the composition tf is an isomor-
phism. Also, the map t is an isomorphism. In fact, the morphism �R L! i�i

�R L
is an isomorphism, as one can easily check looking at stalks. Thus f itself is an
isomorphism.

Consider now the map g. We claim that the morphism �R L!R R�{��{
�L is

a quasi isomorphism. Take a geometric point �x over the special fiber. We have to
show that the map

inj limHq( eU;L)! inj limHq( eU ;�{�L);
where the limit is over affine connected étale neighborhoods of �x in X , is an
isomorphism. Consider the commutative diagram

eU �{ - eU

Spf(O^X;�x)e
6
~̂pU

�{�x- Spec(OX;�x)e;
6
~pU

and the induced commutative diagram of maps

inj limHq(eU; L) �{� - inj limHq(eU ;�{�L)

Hq(Spec(OX;�x)e; ep �L)?

inj lim ~p�
U

�{�
�x- Hq(Spf(O^X;�x)e;ebp ��{ �L) ' Hq(Spf(O^X;�x)e;�{ ��x ep �L);

?
inj lim ~̂p

�

U

where ep: Spec(OX;�x)e! eX; ebp: Spf(O^X;�x)e! eX . By Elkik’s theorem [4, Theo-
rem 5] �{ ��x is an isomorphism (both cohomologies being isomorphic to the corres-
ponding Galois group cohomologies). Remains to show that both inj lim ebp �U and
inj lim ep �U are isomorphisms. The arguments being similar, we present here only
the one for inj lim ebp �U . We claim that for a sheaf F on eX , there is an isomorphism

inj limHq( eU ;F)!Hq(Spf(O^X;�x)e; ebp �F):
Since both sides define cohomological functors it suffices to check their behaving
for q = 0 and for injectives. We thus have inj limH0( eU ;F) = inj limFU (A(U)K).
On the other hand

H0(Spf(O^X;�x)e; ebp �F) = H0(Spec(O^X;�x[1=p]); (ebp �F)O^X;�x)
= H0(Spec(O^X;�x[1=p]); inj lim f�UFU )

= H0(B(O^X;�x[1=p]); inj lim f�UFU );
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where fU : Spec(O^X;�x[1=p])!Spec(A(U)K).
We claim now that there is an equivalence of topoi

B(O^X;�x[1=p])
�! proj limB(A(U)K):

Indeed, consider the following commutative diagram

proj limB(A(U)K)
B(i)- proj limB(A(U)hK)

B(O^X;�x[1=p])

6
B(p̂)

B(i�x) - B(OX;�x[1=p]);

6
B(ph)

where h denotes the henselization at p. In view of the fact that all the rings in sight
are noetherian, we can again use Elkik’s theorem to conclude that both B(i) and
B(i�x) are equivalences. Also, since OX;�x;K

�! inj limA(U)hK , the same is true of
B(ph) and finally of B(bp).

The above yields

H0(B(O^X;�x[1=p]); inj lim f�UFU )

' inj limH0(B(A(U)K);FU ) = inj limFU (A(U)K)

as wanted.
Now, let I be an injective sheaf on eX and q > 0. Clearly, inj limHq( eU ; I) = 0.

On the other hand, we have

Hq(Spf(O^X;�x)e; ebp �I) = Hq(B(O^X;�x[1=p]); (ebp �I)O^X;�x)
' Hq(B(O^X;�x[1=p]); inj lim f�UIU )

' inj limHq(B(A(U)K); IU ) = 0

as well. 2

There is also the geometric cohomology H�( eX �K ; L) := (R��̂�L) �K , where b�:eX !Spec(K), b� = e��{. The above then yields, for a proper X , an isomorphism
H�( eX �K ;�{

�L) � H�( eX �K ; L):

Since the cohomology H�( eX ; L) can be computed as the limit over the hyper-
coverings U� of X of the generalized Čech complexes of B(A(U)K)-cohomology
complexes of LU , the above proposition asserts that, in the case X is proper, in
computing H�( eX;L) we can use, instead of the B(UK)-group cohomology, the
‘completed’ B(A(U)K)-group cohomology. Same for the geometric cohomology
H�( eX �K ; L).

As before we can use the Zariski topology on X instead of the étale topology.
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PROPOSITION 6.2. Let X be a smooth, separated scheme over V . Let L be a
local system on XK . Then there is an isomorphism H�( eXZar; L)

�! H�( eX�et; L).
Proof. The functor  reduces the question to a local one, namely, that, for every

point x2X , the map inj limH�( eUZar; L)! inj limH�( eU�et; L), where the limit is
over affine, Zariski neighborhoods of x, is an isomorphism. We will prove that both
limits are isomorphic (via the inverse images of the projections b�) to

inj limH�(B(A(U)[1=p]); L) ' H�(B(O^X;x[1=p]); L):

For the Zariski limit, since the ring O^X;x is local, one can argue as in the proof
of Proposition 6.1. For the étale one, note that the inverse image �{ � induces an
isomorphism inj limH�( eU�et; L)

� inj limH�( eUh�et; L). Indeed, the arguments from
the proof of Proposition 6.1 will work as soon as we know that a ‘proper’ base
change theorem holds for Uh. But this was proved by Gabber in [10]. Now,
since, by Elkik, H�(B(A(U)h[1=p]); L) �! H�(B(A(U)[1=p]); L), and also, by
a K(�; 1) argument, H�( eUh�et; L)

�! H�(Uh[1=p]; L), it suffices to show that the
inverse image of the projection! induces an isomorphismH�(B(OhX;x[1=p]); L)

�!

H�(OhX;x[1=p]; L). But the ring OhX;x can be represented as a direct limit of rings
of the same form as OX;x. It is thus a K(�; 1) space and we are done. 2

7. Cohomology supported on the special fiber

Assume now that V is a complete, absolutely unramified discrete valuation ring
of mixed characteristic (0; p) with a perfect residue field k and a fraction field K .
Let X be a smooth, separated V -scheme. We choose, once and for all, for every
irreducible, étale Spf(A)=X , a K(A)-point, and for every map A!A0 between
two such étales a map betweenK(A) andK(A0). Everything below is independent
of this choice.

Consider a set of data (Ui; �I ;Wi;  i); i2L; I � L, where Ui = Spec(Ri) is
assumed to be small. For every I � L, we have the following commutative diagram

b�UI - dD�(W (SI))

UI

?
- V
?

TakeM2MFr[a;b](X). We can evaluateM on B+
I := B+( bRI) = dD�(W (SI))

Choose a retraction h: bRI!B+
I (such a retraction always exists, UI=pn being

V=pn-projective). SetMB+
I
= h�MbRI . Filter it by the saturation of the filtration

defined by h�F iMbRI , i.e., F iM
B+
I

:= �kJ
[k]

B+
I

h�F i�kMbRI , where J
B+
I

is the

PD ideal of B+
I .
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As in [13] one checks that Griffiths transversality yields that these definitions
are, up to canonical isomorphism, independent of the choice of the retraction h.

Concerning the Frobenius, from the structural maps �I : gMbRI 
bRI�I bRI �!

MbRI and the divided Frobenius �B+
I
=pi:F iB+

I !B+
I , i 6 p� 1, we can induce,

as we did before (Lemma 2.1), a canonical compatible family of maps �i
B+
I

:

F iMB+
I

B+

I
�
B
+
I

B+
I !MB+

I
, i 6 p�1+a. Again, up to canonical isomorphism,

this does not depend on h and the Frobenius lift on bRI .
LEMMA 7.1. If

0!L!M!N ! 0

is exact inMFr[a;b](Xn), then

0!LB+
I;n
!MB+

I;n
!NB+

I;n
! 0

is exact in the filtered sense.
Proof. First, we claim that for any retraction h: bRI;n!B+

I;n the sequence

0!h�LRI;n!h�MRI;n!h�NRI;n! 0

is exact. Suffices to prove that Tor1
RI;n(NRI;n ; B

+
I;n) = 0. Since, locally, N '

�RI;k this reduces us to proving that Tor1
RI;n(RI;k; B

+
I;n) = 0. But, B+

I;n being
flat Vn-module, we get the exact sequence

0!RI;k0 
RI;nh B
+
I;n!RI;n 
RI;nh B

+
I;n!RI;k 
RI;nh B

+
I;n! 0;

where k0 = n� k. In particular, Tor1
RI;n(RI;k; B

+
I;n) = 0 as wanted.

Next, we will need the fact that, for any k there is an exact sequence

0!J
[k]

B+
I;n

h�F iLRI;n!J
[k]

B+
I;n

h�F iMRI;n!J
[k]

B+
I;n

h�F iNRI;n! 0:

Since, by the above (and the fact that, locally, LRI;n ' gr�FLRI;n), the injection

is clear, it suffices to show that J [k]

B+

I;n

h�F iMRI;n ' J
[k]

B+

I;n


B+
I;n

h�F iMRI;n ;

or, that Tor1
RI;n(F iMRI;n ; B

+
I;n=J

[k]

B+
I;n

) = 0. By devissage on B+
I;n=J

[k]

B+
I;n

, we

reduce the question to the computation of Tor1
RI;n(F iMRI;n ; J

[j]

B+
I;n

=J
[j+1]
B+
I;n

). Since

J
[j]

B+
I;n

=J
[j+1]
B+
I;n

'
�bRI;n is a flat RI;n-module, the last group is clearly 0. The rest of

the argument follows the proof of Lemma 2.3. 2
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Fix now n. Consider the resolution ofOUI;n=Vn by the linearization of the de Rham
complex 
�WI;n=Vn

0!OUI;n=Vn!L(

�
WI;n=Vn

):

It is a locally free resolution, acyclic for the projection into the Zariski topos of
UI;n.

TakeM2MFr[a;b](Xn) and fix I � L. We get a resolution

0!MUI;n=Vn!MUI;n=Vn 
OUI;n=Vn
L(
�WI;n=Vn

):

The complexL(
�WI;n=Vn
) is equipped with a canonical filtration. If we induce the

tensor product filtration onMUI;n=Vn 
OUI;n=Vn
L(
�WI;n=Vn

), the above turns out

to be a resolution in the filtered sense as well. Evaluate it on B+
I;n. L(
�WI;n=Vn

)

being flat we get a filtered resolution

0!MB+
I;n
!MB+

I;n

B+

I;n
L(
�WI;n=Vn

)B+
I;n
:

To study the Frobenius note that

L(
�WI;n=Vn
)B+

I;n
' B+

I;n h
RI;n L(

�
WI;n=Vn

)UI;n

' B+
I;n hi
TI;n DWI;n=Vn(1)
TI;n=Vn 


�
WI;n=Vn

;

where h is, say, the reduction mod pn of a retraction h: bRI!B+
I and i is the map

i:UI ,!WI .
A well-known formula [2, p. 275] gives a filtered isomorphismB+

I;n hi
TI;n �

DWI;n=Vn(1)
�! D �bRI;n(B+

I;n �Vn TI;n), where D �bRI;n(B+
I;n �Vn TI;n) is the PD-

enveloping algebra of �UI;n in Spec(B+
I;n) �Vn WI;n compatible with the PD-

structure on JB+
I;n

+ pB+
I;n. This yields a filtered resolution

0!MB+
I;n
!MB+

I;n

B+

I;n
D �bRI;n(B+

I;n �Vn TI;n)
TI;n=Vn 

�
WI;n=Vn

:

Consider now �DI = proj lim nD �bRI;n(B+
I;n �Vn TI;n). It is p-torsion free V -

algebra. Take M2MFr[a;b](X). It can be evaluated on �D: choose a retraction

h: bRI! �DI and setM �DI
= h�MbRI . Define the filtration as the saturation of the

filtration coming fromMbRI and induce, in the usual way, a compatible family of

maps �i�DI :F iM �DI

 �DI  I

�DI!M �DI
, i 6 p � 1 + a, from the corresponding

maps onM �bRI and �DI . Here  I : �DI! �DI is the Frobenius coming fromWI and

B+
I . Up to canonical isomorphism this definition does not depend on the choice of

h and the Frobenius lifts.
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LEMMA 7.2. If

0!L!M!N ! 0

is exact inMFr[a;b](Xn), then

0!L �DI;n
!M �DI;n

!N �DI;n
! 0

is exact in the filtered sense.
Proof. Note that locally �D

[k�1]
I;n = �D

[k]
I;n is a direct sum of free modules over

J
[i]

B+
I;n

=J
[i+1]
B+
I;n

, 0 6 i � k � 1. Since J [i]

B+
I;n

=J
[i+1]
B+
I;n

�=
�bRI;n, this yields that �D

[k�1]
I;n =

�D
[k]
I;n is a flat RI;n-module and the lemma follows as in the case of B+

I;n. 2

Think now aboutM �DI;n
as coming fromMDI;n . Equip it with the integrable TI;n-

connection induced from the one on MDI;n and compatible with the canonical
TI;n-connection on �DI;n. Note also that the natural isomorphismMB+

I;n

B+

I;n
�

�DI;n
�!M �DI;n

is compatible with the Frobenius, identifies the filtration onM �DI;n
with the tensor product filtration and yields an isomorphism of filtered, Frobenius
equivariant resolutions

0 - MB+
I;n

- MB+
I;n

B+

I;n

�DI;n 
TI;n 

�
WI;n=Vn

0 - MB+
I;n

wwwww
- M �DI;n


TI;n 

�
WI;n=Vn

:
?
o

Everything above is equipped with an action of the fundamental group of bRI;K
and it is easy to check that the Frobenius, filtration and the resolutions behave
well with respect to this action (use compatibility of the transition maps � with
the change of the retraction). An important thing to note is that though the Galois
action on MB+

I;n
involves connection, the Galois action on M �DI;n

comes only

from the action on �DI;n (the map DI;n! �DI;n being Galois equivariant).
Define the following complex of sheaves on B( bRI;K)

(M

B+
I
)� :=M �DI;n


TI;n 

�
WI;n=Vn

:

It is independent of the choice of n such that pnM = 0.
Choose now a number m > p � 1 such that �(J [m]

B+
I

) � pn+(p�1)B+
I . Set

B+
I;n;m = B+

I;n=J
[m]

B+
I;n

. Since, by the choice of m, for i 6 p� 1 + a,
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F iMB+
I;n;m

= F iMB+
I;n
=J

[m]

B+
I;n

MB+
I;n

and �i
B+
I;n

jJ
[m]

B+
I;n

MB+
I;n

= 0;

all of the above goes through forMB+
I;n;m

in a manner compatible withMB+
I;n

.

Assume now thatX is smooth and proper overV . Leta; b be such that�a 6 p�1
and b� a 6 p� 2. Fix a positive integer n. TakeM2MFr[a;b](Xn). We will now
define a morphism from S(M)� to a complex computing the étale cohomology
groups H�(XK ;L(M)) of the crystalline local system L(M) associated to M
by Faltings [5]. Recall that the local system L(M) on XK is the unique local
system inducing a compatible family of local systems L(MbRi) on Spec( bRi[1=p]),
where L(MbRi) = Hom(M

B+(bRi); B+( bRi)fag(a) 
 Qp=Zp)�. Here, the homo-

morphisms are supposed to beB+( bRi)-linear, respecting the filtrations and Frobe-
niuses. The symbols fag; (a) are theMF-twist and the Tate-twist respectively.

First, fix 
, a sufficiently big algebraically closed field of characteristic 0. In
particular, we require that, for all étale Spf(A)=X , the 
-points of Spec(AK) form
a conservative family of the associated étale topos. Also, for any étale Spf(A)
over X and a sheaf F on B(AK), denote by G�(F) the Godement resolution of
F . It is a complex of locally constant sheaves on Spec(AK), acyclic for B(AK)-
cohomology.

Next, fix a sufficiently big number m. For each J � L, we have a sequence of
morphisms between complexes of sheaves on B( bRJ;K).


(MJ)
� ! 
(MB+

J;n
)�!G�(
(MB+

J;n
)�)

! G�(
(MB+
J;n;m

)�)
(1)
 � G�(MB+

J;n;m
)

! G�(L(MJ )
Zp B
+
J;n;mfag(a)):

By the above, the morphism (1) is a quasi isomorphism. This sequence yields a
morphism

S(MJ)
�!Cone(G�(L(MJ )
Zp F

(�a)B+
J;n;m(a))(

bRJ;K)
pa��1- G�(L(MJ)
Zp B

+
J;n;m(a))(

bRJ;K))[�1];

which is functorial with respect to the change of J (note that the restriction maps
are independent of the choice of the path between the base points).

To proceed, define the sheaf B+
n;m on the topos eX by associating to Spf( bR),

for Spec(R)!X small, affine and étale, the locally constant sheaf on Spec( bRK)
defined by the Galois module B+( bR)n;m = B+( bR)=(pnB+( bR) + J

[m]

B+(bR)
). For

any R as above, we can use the fundamental exact sequence (of locally constant
sheaves on Spec( bRK))
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0!L(M)bR!L(M)bR 
Zp F
(�a)B+( bR)n;m(a)

1�pa�- L(M)bR 
Zp B
+( bR)n;m(a)! 0

to construct a quasi isomorphism

G�(L(M)bR)( bRK)
!Cone(G�(L(M)bR 
Zp F

(�a)B+
n;m(a)bR)( bRK)

pa��1- G�(L(M)bR 
Zp B
+
n;m(a)bR)( bRK))[�1]:

Denote by U�!X the chosen hypercovering of X . We find the desired mor-
phism l into the étale cohomology as the composition

S(M)�!Cone(G�(L(MU )
Zp F
(�a)B+

n;m(a)U )(A(U)K�)

pa��1- G�(L(MU )
Zp B
+
n;m(a)U )(A(U)K�))[�1]

' Cone(G�(L(M)U 
Zp F
(�a)B+

n;m(a)U )(A(U)K�)

pa��1- G�(L(M)U 
Zp B
+
n;m(a)U )(A(U)K�))[�1]

� G�(L(M)U )(A(U)K�)

!
inj lim

V� 2HR(X)
G�(L(M)V)(A(V)K�):

Here HR(X) denotes the homotopy category of affine hypercoverings of X . By
Lemmas 7.1 and 7.2, l defines a natural transformation of cohomology theories

l:H�
f;a;b(X; �)!H�(XK ;L(�)):

Everything above is independent of choices.
We will now treat products.

PROPOSITION 7.1. IfM 2MFr[a;b](X), N 2 MFr[c;d](X), then there exists a
canonical product

[:Hp
f;a;b(X;M) 
Hq

f;c;d(X;N )!H
p+q
f;a+c;b+d(X;M
N )

which is anticommutative and associative. Moreover, it commutes with the mor-
phism l:H�

f (X; �)!H�(XK ;L(�)).
Proof. Consider a set of data (Ui; �I ;Wi;  i), i2L, I � L, where Ui’s are

assumed to be small. For a givenJ � L, we can use [12, Prop. 3.1] and the de Rham
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product 
(MJ)
� 
 
(NJ)

�!
((M
 N )J )
� to define a homotopic family of

maps of complexes[
�

:S(MJ)
� 
 S(NJ)

�!S(MJ 
NJ)
�; �2Zp;

(x1; x2)
[
�

(y1; y2) = (x1 [ y1; x2 [ (��
0(y1) + (1� �)y1)

+ (�1)deg x1((1� �)�0(x1) + �x1) [ y2):

Moreover, the maps [0; [1 are associative and [�; [1�� anticommute.
Everything behaving well with respect to the change of the index set J , we

can combine, by [12, Prop. 3.1], the above family and Čech products to define
a homotopic family of maps of complexes [�:S(M)� 
 S(N )�!S(M
N )�,
�2Zp: The maps [0; [1 are associative and [�, [1�� anticommute modulo a
homotopic to the identity transposition operator. This induces a cup product

[:Hp
f;a;b(X;M) 
Hq

f;c;d(X;N )!H
p+q
f;a+c;b+d(X;M
N ):

We can now follow step by step the definition of the map l, use the de Rham, C̆ech
and Godement products, and [12, Prop. 3.1] to induce, at every step, compatible
families of homotopic pairings. This will show compatibility of the map l with
products. 2

ForM 2 MFr[a;b](X), define the cohomology with support on the special fiber
Xk as

sH
�
f;a;b(X;M)

:= H�(Cone(S(M)�
l
�!

inj lim
V� 2HR(X)

G�(L(M)V)(A(V)K�))[�1]):

From this definition we get the long exact sequence

!Hi�1(XK ;L(M))! sH
i
f;a;b(X;M)

!Hi
f;a;b(X;M)

l
�! Hi(XK ;L(M))! :

As we will see in the next section, for sufficiently big p, this long exact sequence
splits into short exact sequences.

Remark 4. Note that the cohomology groupsH�
f;a;b(X;M) and sH�

f;a;b(X;M),
and the map l do not really depend on the a and b chosen.

PROPOSITION 7.2. IfM2MFr[a;b](X), then

sH
i
f;a;b(X;M) � Hi�1(XK ;L(M)) for i > �a+ dimX + 2:
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Proof. It follows from the fact thatHi
f;a;b(X;M) = 0 for i > �a+ dimX + 1

(Proposition 3.1). 2

8. Duality

Assume that X is proper and smooth over V , of pure relative dimension d. Set
GK = Gal( �K=K) and B+(V )m = B+(V )=J

[m]
B+(V ).

LEMMA 8.1. For any M 2 MFr[a;b](X) annihilated by pn, b � a 6 p � 2,
�a 6 p� 1, and sufficiently big m, the morphism

Hi( eX �K ;L(M));!Hi( eX �K ;L(M)
Zp F
(�a)B+

n;m(a))

is an injection.
Proof. We have the following commutative diagram

Hi( eX �K ;L(M)) - Hi( eX �K ;L(M)
Zp F
(�a)B+

n;m(a))

0 - Hi(X �K ;L(M))

o
6

- Hi(X �K ;L(M))
Zp F
(�a)B+(V )m(a):

6

The left vertical morphism is an isomorphism by Proposition 6.1. The right
one is an almost isomorphism by [5, Th. 3.3], i.e., its kernel and cokernel are
killed by a power of mB , where mB is the preimage of the maximal ideal of
�V ^ via the map B+(V )! �V ^. It is, in fact, an injection: it suffices to check
that there is no elements x in Hi(X �K ;L(M)) 
Zp F

(�a)B+(V )m(a) annihilat-
ed by mk

B for some k, or, since Hi(X �K ;L(M)) is finitely generated, that that

is the case for F (�a)B+(V )m=p
j = (J

[�a]
B+(V )=J

[m]
B+(V ))=p

j for any j. Filtering

(J
[�a]
B+(V )=J

[m]
B+(V ))=p

j with divided powers of JB+(V ), we reduce to showing that

if x 2 �V and p"x2 pj �V for every ", then x2 pj �V , which is clear. 2

Hence, the short exact sequence of sheaves on eX , for n such that pnL(M) = 0,
for sufficiently big m, and�a 6 p� 1,

0!L(M)!L(M)
Zp F
(�a)B+

n;m(a)

1�pa�- L(M)
Zp B
+
n;m(a)! 0;

yields the short exact sequences of GK-modules

0!Hi( eX �K ;L(M))!Hi( eX �K ;L(M)
Zp F
(�a)B+

n;m(a))

1�pa�- Hi( eX �K ;L(M) 
Zp B
+
n;m(a))! 0:
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Recall that, by Faltings [5], for everyM 2 MFr[a;b](X), b � a + d 6 p � 2,

the crystalline cohomology groups Hi
cr(X=V;M) are in MF[a;b+d](V ). More-

over [5, 5.3], the crystalline GK-representation L(Hi
cr(X=V;M)) associated to

Hi
cr(X=V;M) is canonically isomorphic toHi(X �K ;L(M)). In particular, we can

apply to Hi
cr(X=V;M) the results of [3] and [12].

LEMMA 8.2. ForM 2MFr[a;b](X), b � a+ d 6 p� 2, �a 6 p� 1, there is a
long exact sequence

!Hi
f;a;b(X;M)!F 0Hi

cr(X=V;M)

1��0
- Hi

cr(X=V;M)!Hi+1
f;a;b(X;M)! :

Proof. From the definition of S(M)� we get the long exact sequence

!Hi
f;a;b(X;M)!Hi

cr(X=V; F
0(M))

1��0
- Hi

cr(X=V;M)!Hi+1
f;a;b(X;M)! ;

and we know, from [5], that the morphismHi
cr(X=V; F

0(M))!Hi
cr(X=V;M) is

an injection, i.e., that Hi
cr(X=V; F

0(M)) �! F 0Hi
cr(X=V;M). 2

Let c = max(b+d; 0). The complexF 0Hi
cr(X=V;M)

1��0
- Hi

cr(X=V;M) com-
putes the cohomology groups H�

f;a;c(V;H
i
cr(X=V;M)). Hence, the above lemma

yields the short exact sequences

0! H1
f;a;c(V;H

i�1
cr (X=V;M))!Hi

f;a;b(X;M)

! H0
f;a;c(V;H

i
cr(X=V;M))! 0 :

PROPOSITION 8.1. ForM2MFr[a;b](X), b� a+ d 6 p� 2, and�a 6 p� 2,
there is a commutative diagram

H0
f;a;c(V;H

i
cr(X=V;M))

l

�
- H0(GK ;H

i(X �K ;L(M)))

Hi
f;a;b(X;M)

6

l - Hi(XK ;L(M)):

6

Proof. For n such that pnM = 0 and sufficiently big m, we have the following
commutative diagram
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F
0
H
i
cr(X=V;M) - H

i( eX ;L(M)
 F
(�a)

B
+
n;m(a)) -

Hi
f;a;b(X;M)

6

l - Hi( eX ;L(M))

6

-

-Hi( eX �K ;L(M)
 F (�a)B+
n;m(a)) � Hi(X �K ;L(M))
 F (�a)B+(V )m(a)

- Hi( eX �K ;L(M))

6

� �
Hi(X �K ;L(M)) :

6

Recall [12] that the map l:H0
f (V;H

i
cr(X=V;M))!H0(GK ;H

i(X �K ;L(M))) is
induced from the morphism

Hi
cr(X=V;M) 
V B

+(V )m(a)!Hi(X �K ;L(M))
Zp B
+(V )m(a)

fitting into the commutative diagram

Hi
cr(X=V;M)
VB

+(V )m(a) - Hi( eX �K ;L(M)
ZpB
+
n;m(a))

@
@
@
@R �

�
�
��

Hi(X �K ;L(M))
Zp B
+(V )m(a)

The statement of the proposition follows now easily from the above commutative
diagram and the injectivity of the map

Hi(X �K ;L(M)) 
Zp F
(�a)B+(V )m(a)

!Hi( eX �K ;L(M)
Zp F
(�a)B+

n;m(a)):
2

COROLLARY 8.1. LetM2MFr[a;b](X), b� a+ d 6 p� 2, and�a 6 p� 2. If
the residue field of V is finite, then the Hochschild–Serre spectral sequence

Hi(GK ;H
j(X �K ;L(M)))) Hi+j(XK ;L(M))

degenerates.
Proof. Here since H0

f(V;H
i
cr(X=V;M)) �! H0(GK ;H

i(X �K ;L(M))) and
Hi
f (X;M)!!H0

f (V;H
i
cr(X=V;M)), the proposition gives that

Hi(XK ;M)!!H0(GK ;H
i(X �K ;L(M))):

By Poincaré duality,H2(GK ;H
i(X �K ;L(M))) ,!Hi+2(XK ;M). The groupGK

having cohomological dimension 2 we are done. 2
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PROPOSITION 8.2. ForM2MFr[a;b](X), b� a+ d 6 p� 2, and �a 6 p� 2,

the morphism l:Hi
f (X;M)!Hi(XK ;L(M))) is an injection.

Proof. Let x2Hi
f (X;M) map to 0 in Hi(XK ;L(M)). First, note that, by the

last proposition, the image of x in F 0Hi
cr(X=V;M) is trivial. Hence x comes from

Hi�1
cr (X=V;M). Take n such that pnM = 0 and sufficiently big m, and consider

the following commutative diagram

Hi
f(X;M)

l - Hi( eX ;L(M))

Hi�1
cr (X=V;M)

6

- Hi�1( eX ;L(M)
B+
n;m(a))!

6

Hi�1( eX ;L(M)
 F (�a)B+
n;m(a))!

6

H1(GK ; H
i�1( eX �K ;L(M))) � �

H1(GK ; H
i�1(X �K ;L(M)))

- Hi�1( eX �K ;L(M)
B+
n;m(a))

GK

6

� (Hi�1(X �K ;L(M))
B+(V )m(a))
GK

6

-Hi�1( eX �K ;L(M)
 F (�a)B+
n;m(a))

GK

6

� (Hi�1(X �K ;L(M))
 F (�a)B+(V )m(a))
GK :

6

A diagram-chase shows that the image of any lifting of x to Hi�1
cr (X=V;M) in

H1(GK ;H
i�1(X �K ;L(M))) is zero. Since the map

l:H1
f (V;H

i�1
cr (X=V;M))!H1(GK ;H

i�1(XK ;L(M)))

mapping crystalline extensions to unrestricted extensions is injective, x itself is
zero. 2

Assume now that the residue field of V is finite, and for M2MFr[a;b](X) let

MD 2 MFr[�b�d�1;�a�d�1](X) denote M�f�d � 1g, where M� denotes the
MF-dual [5] (assuming, of course, that the width of the crystal does not exceed
the admissible range).

THEOREM 8.1. Let�(p�2) 6 a 6 0; b�a+d 6 p�3. For anyM2MFr[a;b](X)
annihilated by pn, there is a perfect pairing

sH
i
f;a;b(X;M)
H2d+3�i

f;�b�d�1;�a�d�1(X;M
D)

-
sH

2d+3
f;a�b�d�1;�d�1(X;OX=p

nf�d� 1g)

tr- Z=pn:
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Proof. Concerning the trace map, we have

sH
2d+3

f;a�b�d�1;�d�1(X;OX=p
nf�d� 1g)

� H2d+2(XK ;Z=pn(d+ 1)) � H2(GK ;H
2d(X �K ;Z=p

n(d+ 1)))

tr- H2(GK ;Z=pn(1)))
inv

�
- Z=pn:

Here, the first isomorphism now follows, since Hi
f (X;OX=p

nf�d � 1g) = 0 for
i > 2d+ 1. This, in turn, holds because we have the long exact sequence

!Hi
f (X;OX=p

nf�d� 1g)!F 0Hi
cr(X=V;OX=p

nf�d� 1g)

!Hi
cr(X=V;OX=p

nf�d� 1g)!Hi+1
f (X;OX=p

nf�d� 1g)

and Hi
cr(X=V;OX=p

nf�d � 1g) = 0 for i > 2d. We also have the commutative
diagram

Hi
f(X;M)
H2d+2�i

f (X;MD) - H2d+2
f (X;OX=p

nf�d� 1g) = 0

Hi(XK ;L(M))
H2d+2�i(XK ;L(MD))

l
l

?
- H2d+2(XK ;Z=pn(d+ 1));

?

which shows that Hi
f (X;M) and H2d+2�i

f (X;MD) annihilate each other. Since
the morphism lM:Hi

f (X;M)!Hi(XK ;L(M)) is an injection, this diagram and
the products on étale cohomology and on f -cohomology induce a product

sH
i
f;a;b(X;M)
H2d+3�i

f;�b�d�1;�a�d�1(X;M
D)

! sH
2d+3
f;a�b�d�1;�d�1(X;OX=p

nf�d� 1g):

We have a complex

0!Hi�1
f (X;M)

lM- Hi�1(XK ;L(M))

t- H2d+3�i
f (X;MD)�! 0;

where the map t is induced by the étale product. It is a surjection since via étale
duality (Hi�1(XK ;L(M)) ' H2d+3�i(XK ;L(MD))�) t = l�

MD .
It remains to prove that the Zp-length of Hi�1(XK ;L(M)) is equal to the sum

of the Zp-lengths of Hi�1
f (X;M) and H2d+3�i

f (X;MD). I hope that the reader
will forgive somewhat abusive notation in the following computations.
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We have

Hi
f (X;M) +H2d+2�i

f (X;MD)

= H0
f (V;H

i
cr(X=V;M)) +H1

f (V;H
i�1
cr (X=V;M))

+H0
f (V;H

2d+2�i
cr (X=V;MD)) +H1

f(V;H
2d+1�i
cr (X=V;MD))

= H0
f (V;H

i
cr(X=V;M)) +H1(GK ;H

i�1(X �K ;L(M)))

�H1
f (V;H

i�1
cr (X=V;M)) +H0

f (V;H
2d+2�i
cr (X=V;MD))

+H1
f (V;H

i�1
cr (X=V;M));

by crystalline duality [5] (Hi�1
cr (X=V;M) �= H2d+1�i

cr (X=V;MD)D) and the
isomorphism [12] H1

f (V;N
D)� �= H1(GK ;N )=H1

f (V;N ); for N 2MF[i;j](V )
such that i 6 0; j > 0 and j � i 6 p� 3.

For a local system L on XK annihilated by pn denote by LD the local system
Hom(L;Z=pn(d+ 1)). We get

Hi
f (X;M) +H2d+2�i

f (X;MD)

= H0
f (V;H

i
cr(X=V;M)) +H1(GK ;H

i�1(X �K ;L(M)))

+H0
f (V;H

2d+2�i
cr (X=V;MD))

= H0(GK ;H
i(X �K ;L(M))) +H1(GK ;H

i�1(X �K ;L(M)))

+H0(GK ;H
2d+2�i(X �K ;L(M)D))

= H0(GK ;H
i(X �K ;L(M))) +H1(GK ;H

i�1(X �K ;L(M)))

+H2(GK ;H
i�2(X �K ;L(M)))

= Hi(XK ;L(M));

by étale Poincaré duality, Galois duality and the degeneration of the Hochschild–
Serre spectral sequence. 2

COROLLARY 8.2. Let�(p�2) 6 a 6 0; b�a+d 6 p�3. ForM2MFr[a;b](X),

sH
i
f;a;b(X;M) = 0 for i < �b+ 1:

In particular, there are isomorphisms

Hi�1
cr (X=V;M) �! Hi

f;a;b(X;M) �! Hi(XK ;L(M))

for i < �b:

Proof. By the above theorem, we have that

sH
i
f;a;b(X;M) �= H2d+3�i

f;�b�d�1;�a�d�1(X;M
D)�:
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But, by Proposition 3.1., H2d+3�i
f;�b�d�1;�a�d�1(X;M

D) = 0 for 2d + 3 � i >
b+ d + 1 + d+ 1, or for i < �b+ 1. The last statement of the corollary follows
from Proposition 3.2. 2

Remark 5. The above result for L(M) = Z=pn(b), 0 6 b 6 p�2, was obtained
earlier by Kurihara [11] as a consequence of his study of the relation between the
syntomic sheaves and the sheaves of p-adic vanishing cycles.
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10. Gabber, O.: Affine analogue of the proper base change theorem, Israel J. Math 87(1–3) (1994)

325–335.
11. Kurihara, M.: A note on p-adic étale cohomology, Proc. Japan Acad. 63 (1987) 275–278.
12. Nizioł, W.: Cohomology of crystalline representations, Duke Math. J. 71 (1993) 747–791.
13. Ogus, A.: F -crystals, Griffiths transversality, and the Hodge decomposition, Astérisque 221,
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