
12
QCD in loop space

QCD can be entirely reformulated in terms of the colorless composite field
Φ(C) – the trace of the Wilson loop for closed contours. This fact involves
two main steps:

(1) all of the observables are expressed via Φ(C);

(2) the dynamics is entirely reformulated in terms of Φ(C).

This approach is especially useful in the large-N limit where everything
is expressed via the vacuum expectation value of Φ(C) – the Wilson loop
average. Observables are given by summing the Wilson loop average over
paths with the same weight as in free theory. The Wilson loop average
itself obeys a close functional equation – the loop equation.
We begin this chapter by presenting the formulas which relate observ-

ables to Wilson loops. Then we translate the quantum equation of motion
of Yang–Mills theory into loop space. We derive the closed equation for
the Wilson loop average as N → ∞ and discuss its various properties,
including a nonperturbative regularization. Finally, we briefly comment
on what is known concerning solutions of the loop equation.

12.1 Observables in terms of Wilson loops

All observables in QCD can be expressed via the Wilson loops Φ(C)
defined by Eq. (11.115). This property was first advocated by Wilson
[Wil74] on a lattice. Calculation of QCD observables can be divided into
two steps:

(1) calculation of the Wilson loop averages for arbitrary contours;

(2) summation of the Wilson loop averages over the contours with some
weight depending on a given observable.
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Fig. 12.1. Contours in the sum over paths representing observables: (a) in
Eq. (12.3) and (b) in Eq. (12.4). The contour (a) passes x1 and x2. The contour
(b) passes x1, x2, and x3.

At finite N , observables are expressed via the n-loop averages

Wn(C1, . . . , Cn) = 〈Φ(C1) · · ·Φ(Cn) 〉 , (12.1)

which are analogous to the n-point Green functions (2.45). The appro-
priate formulas for the continuum theory can be found in [MM81].
Great simplifications occur in these formulas at N = ∞, when all ob-

servables are expressed only via the one-loop average

W (C) = 〈Φ(C) 〉 ≡
〈
1
N
trP eig

∮
C
dxµAµ

〉
. (12.2)

This is associated with the quenched approximation discussed in the Re-
mark on p. 158.
For example, the average of the product of two colorless quark vector

currents (11.92) is given at large N by〈
ψ̄γµψ(x1) ψ̄γνψ(x2)

〉
=
∑

C�x1,x2

Jµν(C) 〈Φ(C) 〉 , (12.3)

where the sum runs over contours C passing through the points x1 and
x2 as is depicted in Fig. 12.1a. An analogous formula for the (connected)
correlators of three quark scalar currents can be written as〈

ψ̄ψ(x1) ψ̄ψ(x2) ψ̄ψ(x3)
〉
conn

=
∑

C�x1,x2,x3

J(C) 〈Φ(C) 〉 , (12.4)

where the sum runs over contours C passing through the three points x1,
x2, and x3 as depicted in Fig. 12.1b. A general (connected) correlator of
n quark currents is given by a similar formula with C passing through n
points x1, . . . , xn (some of them may coincide).
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12.1 Observables in terms of Wilson loops 251

The weights Jµν(C) in Eq. (12.3) and J(C) in Eq. (12.4) are completely
determined by free theory. If quarks were scalars rather than spinors, then
we would have

J(C) = e−
1
2
m2τ− 1

2

∫ τ
0 dt ż

2
µ(t) = e−mL(C) scalar quarks , (12.5)

where L(C) is the length of the (closed) contour C, as was shown in
Sect. 1.6. Using the notation (1.156), we can rewrite Eq. (12.4) for scalar
quarks as〈

ψ†ψ(x1)ψ†ψ(x2)ψ†ψ(x3)
〉
conn

=
∑

C�x1,x2,x3

′
〈Φ(C) 〉 . (12.6)

Therefore, we obtain the sum over paths of the Wilson loop, likewise in
Sect. 1.7 and Problem 5.4 on p. 91.
For spinor quarks, an additional disentangling of the γ-matrices is

needed. This can be done in terms of a path integral over the momentum
variable, with kµ(t) (0 ≤ t ≤ τ) being an appropriate trajectory. The
result is given by [BNZ79]

J(C) =
∫
Dkµ(t) spP e−

∫ τ
0 dt {ikµ(t)[ẋµ(t)−γµ(t)]+m} (12.7)

and

Jµν(C) =
∫
Dkµ(t) spP

[
γµ(t1) γν(t2) e−

∫ τ
0 dt {ikµ(t)[ẋµ(t)−γµ(t)]+m}

]
,

(12.8)
where the values t1 and t2 of the parameter t are associated with the
points x1 and x2 in Eq. (12.3), and the symbol of P -ordering puts the
matrices γµ and γν at a proper order.

Problem 12.1 Derive Eqs. (12.7) and (12.8).

Solution Since the spinor field ψ enters the QCD action quadratically, it can
be integrated out in the correlators (12.3) and (12.4), so that they can be rep-
resented, in the first quantized language, via the resolvent of the Dirac operator
in the external field Aµ, with subsequent averaging over Aµ. Proceeding as in
Chapter 1, we express the resolvent by〈

y

∣∣∣∣ 1

∇̂+m

∣∣∣∣x〉 =

∞∫
0

dτ
〈
y
∣∣∣ e−τ(∇+m)

∣∣∣x〉 (12.9)

and represent the matrix element of the exponential of the Dirac operator as〈
y
∣∣∣ e−τ(∇+m)

∣∣∣x〉 = e−τmP e−
τ
0 dt∇(t)δ(d)(x− y) . (12.10)
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252 12 QCD in loop space

In order to disentangle the RHS, we insert unity, represented by

1 =
∫

zµ(0)=xµ

Dzµ(t)
∫
Dpµ(t) e−i τ

0 dt pµ(t)żµ(t), (12.11)

where the path integration over pµ(t) is unrestricted, i.e. the integrals over pµ(0)
and pµ(τ) are included. Then we obtain〈

y
∣∣∣ e−τ(∇+m)

∣∣∣ x〉 = e−τm
∫

zµ(0)=xµ

Dzµ(t)
∫
Dpµ(t)

× P e−
τ
0 dt {ipµ(t)żµ(t)−[ipµ(t)+iAµ(t)]γµ(t)+∂µ(t)żµ(t)} δ(d)(x− y) ,

(12.12)

the equivalence of which to the original expression is obvious since everything
commutes under the sign of the P -ordering (so that we can substitute pµ(t) =
−i∂µ(t) in the integrand).
By making the change of the integration variable, pµ(t) = kµ(t)−Aµ(t), and

proceeding as in Problem 1.13 on p. 29, we represent the RHS of Eq. (12.12) by〈
y
∣∣∣ e−τ(∇+m)

∣∣∣ x〉 = e−τm
∫

zµ(0)=xµ

Dzµ(t)
∫
Dkµ(t)

× P e−
τ
0 dt {ikµ(t)[żµ(t)−γµ(t)]−iżµ(t)Aµ(t)+∂µ(t)żµ(t)} δ(d)(x− y)

= e−τm
∫

zµ(0)=xµ

zµ(τ)=yµ

Dzµ(t)
∫
Dkµ(t)P ei

y
x
dzµ Aµ(z)P e−i τ

0 dt kµ(t)[żµ(t)−γµ(t)] ,

(12.13)

where the first P -exponential on the RHS depends only on color matrices (it is
nothing but the non-Abelian phase factor), and the second one depends only on
spinor matrices. In [BNZ79], Eq. (12.13) is derived by discretizing paths.
Equation (12.13) leads to Eqs. (12.7) and (12.8).

Remark on renormalization of Wilson loops

Perturbation theory for W (C) can be obtained by expanding the path-
ordered exponential in the definition (12.2) in g (see Eq. (11.46)) and
averaging over the gluon field Aµ. Because of ultraviolet divergences, we
need a (gauge-invariant) regularization. After such a regularization has
been introduced, the Wilson loop average for a smooth contour C of the
type in Fig. 12.2a reads as

W (C) = exp
[
−g2 (N

2 − 1)
4πN

L(C)
a

]
Wren(C) , (12.14)

where a is the cutoff, L(C) is the length of C, and Wren(C) is finite when
expressed via the renormalized charge gR. The exponential factor is a
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Fig. 12.2. Examples of (a) a smooth contour and (b) a contour with a cusp.
The tangent vector to the contour jumps through an angle γ at the cusp.

result of the renormalization of the mass of a heavy test quark, which was
already discussed in the Remark on p. 113. This factor does not emerge
in the dimensional regularization where d = 4 − ε. The multiplicative
renormalization of the smooth Wilson loop was shown in [GN80, Pol80,
DV80].
If the contour C has a cusp (or cusps) but no self-intersections as is

illustrated by Fig. 12.2b, then W (C) is still multiplicatively renormaliz-
able [BNS81]:

W (C) = Z(γ)Wren(C) , (12.15)

while the (divergent) factor of Z(γ) depends on the cusp angle (or angles)
γ (or γs) andWren(C) is finite when expressed via the renormalized charge
gR.

Problem 12.2 Calculate the divergent parts of the Wilson loop average (12.2)
for contours without self-intersections to order g2. Consider the cases of a smooth
contour C and a contour with a cusp.

Solution Expanding the Wilson loop average (12.2) in g2 (see Eq. (11.46) and
Problem 5.2 on p. 89), we obtain

W (C) = 1 +W (2)(C) +O
(
g4
)

(12.16)

with

W (2)(C) = −g2 (N
2 − 1)
2N

∮
C

dxµ
∮
C

dyν Dµν(x− y) , (12.17)

where Dµν(x− y) is the gluon propagator (11.4).
Since the contour integral in Eq. (12.17) diverges for x = y, we introduce the

regularization by

Dµν(x− y)
reg.
=⇒ 1

4π2
δµν

[(x− y)2 + a2]
(12.18)
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254 12 QCD in loop space

with a being the ultraviolet cutoff. Parametrizing the contour C using the func-
tion zµ(σ), we rewrite the contour integral in Eq. (12.17) as∮
C

dxµ
∮
C

dyµ
1

(x− y)2 + a2
=
∫
ds
∫
dt

żµ(s)żµ(s+ t)

[z(s+ t)− z(s)]2 + a2
. (12.19)

Choosing the proper-length parametrization (1.101) when żµ(s)z̈µ(s) = 0, ex-
panding in powers of t, and assuming that the contour C is smooth as is depicted
in Fig. 12.2a, we obtain for the integral (12.19)∫

ds ẋ2(s)
∫
dt

1
ẋ2(s)t2 + a2

=
π

a

∫
ds
√
ẋ2(s) =

π

a
L(C) . (12.20)

Typical values of t in the last integral are ∼ a, which justifies the expansion in
t: the next terms lead to a finite contribution as a→ 0.
Thus, we find

W (2)(C) = −g2 (N
2 − 1)
4πN

L(C)
a

+ finite term as a→ 0 (12.21)

for a smooth contour. This is precisely the renormalization of the mass of a
heavy test quark owing to the interaction.
If the contour C is not smooth and has a cusp at some value s0 of the pa-

rameter, as depicted in Fig. 12.2b, then an extra divergent contribution in the
integral (12.19) emerges when s ≈ s0, t ≈ t0. Introducing ∆s = s − s0 and
∆t = t− t0, we represent this extra divergent term by

ẋµ(s0 + 0)ẋµ(s0 − 0)
∫
d∆s
∫
d∆t

1
[ẋµ(s0 + 0)∆s− ẋµ(s0 − 0)∆t]2 + a2

= (γ cotγ − 1) ln L(C)
a

, (12.22)

where γ is the angle of the cusp (cos γ ≡ ẋµ(s0+0)ẋµ(s0−0)) and the upper limit
of the integrations is chosen to be L(C) with logarithmic accuracy. Collecting
all of this together, we obtain finally for the divergent part of W (2)(C):

W (2)(C) = −g2 (N
2 − 1)
4πN

[
L(C)
a

+
1
π
(γ cotγ − 1) ln L(C)

a

]
+ finite term as a→ 0 . (12.23)

The second term in square brackets is associated with the bremsstrahlung radi-
ation of a particle changing its velocity when passing the cusp. The answers in
the Abelian and non-Abelian cases coincide to this order in g2.

Problem 12.3 Obtain Coulomb’s law of interaction in Maxwell’s theory by
calculating the average of a rectangular Wilson loop.
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12.2 Schwinger–Dyson equations for Wilson loop 255

Solution Performing the Gaussian averaging over Aµ in Maxwell’s theory, we
obtain from Eqs. (6.50) and (6.51)

− lnW (C) =
1
2

∫
d4x
∫
d4y Jµ(x)Dµν(x− y)Jν(y)

=
e2

2

∮
C

dxµ
∮
C

dyν Dµν(x− y) . (12.24)

The interaction potential is now determined by Eq. (6.43) for a rectangular con-
tour depicted in Fig. 6.6 on p. 111 as T $ R. The contribution to the interaction
potential arises when the photon line is emitted by the upper part of the rect-
angular contour and absorbed by the lower part. Otherwise, we obtain singular
terms associated with the renormalization of the Wilson loop as discussed in the
previous Problem.
Choosing the parametrization with xµ = (R, . . . , s) for the upper part and

xµ = (0, . . . , t) for the lower part of the rectangular contour with 0 ≤ s, t ≤ T ,
we have

V (R) T =
e2

4π2

T∫
0

ds

T∫
0

dt
1

(s− t)2 +R2
. (12.25)

Introducing u = (s+ t)/2 and v = s− t, we obtain

V (R) T =
e2

4π2

T∫
0

du

T∫
−T

dv
1

v2 +R2
=

e2

4πR
T (12.26)

which reproduces Coulomb’s law.

12.2 Schwinger–Dyson equations for Wilson loop

The dynamics of (quantum) Yang–Mills theory is described by the quan-
tum equation of motion

−∇ab
µ F

b
µν(x)

w.s.= �
δ

δAa
ν(x)

(12.27)

which is analogous to Eq. (2.27) for the scalar field, and is again under-
stood in the weak sense, i.e. for the averages

−
〈
∇ab

µ F
b
µν(x)Q [A]

〉
= �

〈
δ

δAa
ν(x)

Q [A]
〉
. (12.28)

The standard set of Schwinger–Dyson equations of Yang–Mills theory
emerges when the functional Q[A] is chosen in the form of the product of
Aµi as in Eq. (11.45).
Strictly speaking, the last statement is incorrect, since in Eqs. (12.27)

and (12.28) we have not added contributions coming from the variation
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256 12 QCD in loop space

of gauge-fixing and ghost terms in the Yang–Mills action. However, these
two contributions are mutually canceled for gauge-invariant functionals
Q[A]. We shall deal only with such gauge-invariant functionals (the Wil-
son loops). This is why we have not considered the contribution of the
gauge-fixing and ghost terms.
It is also convenient to use the matrix notation (5.5), when Eq. (12.27)

for the Wilson loop takes the form

−
〈
1
N
trP ∇µFµν(x) ei

∮
C dξ

µAµ

〉
=
〈
g2

N
tr

δ

δAν(x)
P ei
∮
C dξ

µAµ

〉
,

(12.29)

where we have restored the units with � = 1.
The variational derivative on the RHS can be calculated by virtue of

the formula

δAij
µ (y)

δAkl
ν (x)

= δµν δ
(d)(x− y)

(
δilδkj − 1

N
δijδkl
)

(12.30)

which is a consequence of

δAa
µ(y)

δAb
ν(x)

= δµν δ
(d)(x− y) δab . (12.31)

The second term in the parentheses in Eq. (12.30) – same as in Eq. (11.6)
– is because Aµ is a matrix from the adjoint representation of SU(N).
By using Eq. (12.30), we obtain for the variational derivative on RHS

of Eq. (12.29):

tr
δ

δAν(x)
P ei
∮

C dξ
µAµ = i

∮
C

dyν δ(d)(x− y)

×
[
1
N
trP ei

∫
Cyx

dξµAµ 1
N
trP ei

∫
Cxy

dξµAµ − 1
N3

trP ei
∫
C dξ

µAµ

]
.

(12.32)

The contours Cyx and Cxy, which are depicted in Fig. 12.3, are the parts
of the loop C: from x to y and from y to x, respectively. They are always
closed owing to the presence of the delta-function. It implies that x and
y should be the same points of space but not necessarily of the contour
(i.e. they may be associated with different values of the parameter σ).
Finally, we rewrite Eq. (12.29) as

i
〈
1
N
trP ∇µFµν(x) ei

∮
C
dξµAµ

〉
= λ

∮
C

dyν δ(d)(x− y)
[
〈Φ(Cyx)Φ(Cxy) 〉 −

1
N2

〈Φ(C) 〉
]
, (12.33)
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Fig. 12.3. Contours Cyx and Cxy which enter the RHSs of Eqs. (12.29) and
(12.33).

where we have introduced the ’t Hooft coupling

λ = g2N . (12.34)

Note that the RHS of Eq. (12.33) is completely represented via the
(closed) Wilson loops.

Problem 12.4 Prove the cancellation of the contributions of the gauge-fixing
and ghost terms in the Lorentz gauge.

Solution The Yang–Mills action, associated with the Lorentz gauge, is given
by

Sgf =
1
g2

∫
ddx
[
1
4
trF2

µν +
1
2α
tr (∂µAµ)

2

]
. (12.35)

Since Φ(C) is gauge invariant, the (infinite) group-volume factors, in the numer-
ator and denominator in the definition of the average, cancel when fixing the
gauge (see the Remark on p. 109), and we obtain

W (C) ≡

∫
DAµ e−S Φ(C)∫
DAµ e−S

=

∫
DAµ det (∂µ∇µ) e−Sgf Φ(C)∫
DAµ det (∂µ∇µ) e−Sgf

, (12.36)

where det (∂µ∇µ) is associated with ghosts.
The Schwinger–Dyson equation for the Yang–Mills theory in the Lorentz gauge

is

−∇ab
µ F b

µν(x)
w.s.= �

δ

δAa
ν(x)

+
1
α
∂ν∂µA

a
µ(x) +

∂

∂xν
fabcGbc(x′ = x, x;A) ,

(12.37)

where Gbc (x′, x;A) is the Green function of the ghost in an external field Aµ.
Applying this equation to the Wilson loop and using the gauge Ward identity
(the Slavnov–Taylor identity), we transform the contribution from the second
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term on the RHS to

i
α

〈
1
N
tr ∂ν∂µAµU(Cxx)

〉
gf

= g2
∮
C

dξµ

〈
1
N
tr
[
U(Cξx)taU(Cxξ)tb

] ∂

∂xν
∇bc
µ (ξ)G

ca(ξ, x;A)
〉
gf

= g2
∮
C

dξµ
∂

∂ξµ

〈
1
N
tr
[
U(Cξx)taU(Cxξ)tb

] ∂

∂xν
Gba(ξ, x;A)

〉
gf

= g2
〈
1
N
tr
{
U(Cxx)

[
ta, tb
]} ∂

∂xν
Gba(x′ = x, x;A)

〉
gf

(12.38)

which exactly cancels the contribution from the ghost term in Eq. (12.37).
We have thus proven that the contribution of gauge-fixing and ghost terms

in Eq. (12.37) are mutually canceled, when applied to the Wilson loop (and, in
fact, to any gauge-invariant functional).

12.3 Path and area derivatives

As we already mentioned, the RHS of Eq. (12.33) is completely repre-
sented via the (closed) Wilson loops. It is crucial for the loop-space
formulation of QCD that the LHS of Eq. (12.33) can also be represented
in loop space as some operator applied to the Wilson loop. To do this we
need to develop a differential calculus in loop space.
Loop space consists of arbitrary continuous closed loops, C. They can

be described in a parametric form by the functions xµ(σ) ∈ L2,∗ where
σ0 ≤ σ ≤ σ1 and µ = 1, . . . , d, which take on values in a d-dimensional
Euclidean space. The functions xµ(σ) can be discontinuous, generally
speaking, for an arbitrary choice of the parameter σ. The continuity of
the loop C implies a continuous dependence on parameters of the type of
proper length

s(σ) =

σ∫
σ0

dσ′
√
ẋ2µ(σ′) , (12.39)

where ẋµ(σ) = dxµ(σ)/dσ.
The functions xµ(σ) ∈ L2 which are associated with the elements of

loop space obey the following restrictions.

(1) The points σ = σ0 and σ = σ1 are identified: xµ(σ0) = xµ(σ1) – the
loops are closed.

∗ Let us remind the reader that L2 denotes the Hilbert space of functions xµ(σ), the
square of which is integrable over the Lebesgue measure:

∫ σ1
σ0
dσ x2

µ(σ) < ∞. We
have already mentioned this in the Remark on p. 19.
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(2) The functions xµ(σ) and Λµνxν(σ) +αµ, with Λµν and αµ indepen-
dent of σ, represent the same element of the loop space – rotational
and translational invariance.

(3) The functions xµ(σ) and xµ(σ′) with σ′ = f(σ), f ′(σ) ≥ 0 describe
the same loop – reparametrization invariance.

An example of functionals which are defined on the elements of loop
space is the Wilson loop average (12.2) or, more generally, the n-loop
average (12.1).
The differential calculus in loop space is built out of the path and area

derivatives.
The area derivative of a functional F(C) is defined by the difference

δF(C)
δσµν(x)

≡ 1
δσµν

 F
 x ✲✚✚❃

µ
ν

 − F

 x

 ,
(12.40)

where an infinitesimal loop δCµν(x) is attached to a given loop at the point
x in the (µ, ν)-plane and δσµν denotes the area enclosed by δCµν(x). For
a rectangular loop δCµν(x), one finds

δσµν = dxµ ∧ dxν , (12.41)

where the symbol ∧ implies antisymmetrization. The sign of δσµν is
determined by the orientation of δCµν(x).
Analogously, the path derivative is defined by

∂xµ F(Cxx) ≡
1
δxµ

 F
 x � ✲

µ

 − F

 x �  ,
(12.42)

where the point x is shifted from the loop along an infinitesimal path δΓµ
and δxµ denotes the length of δΓµ. The sign of δxµ is determined by the
direction of δΓµ.
As is usual in quantum field theory, the typical size of δCµν in the def-

inition of the area derivative as well as the length of δΓµ in the definition
of the path derivative should be smaller than the size of an ultraviolet
cutoff.
These two differential operations are well-defined for so-called function-

als of the Stokes type which satisfy the backtracking condition – they do
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260 12 QCD in loop space

not change when a small path passing back and forth is added to the loop
at some point x:

F

 x

 = F

  . (12.43)

This condition is equivalent to the Bianchi identity of Yang–Mills theory
and is obviously satisfied by the Wilson loop (12.2) owing to the properties
of the non-Abelian phase factor (see Eq. (5.47)). Such functionals are
known in mathematics as Chen integrals.∗

A simple example of the Stokes functional is the area of the minimal
surface, Amin(C). It obviously satisfies Eq. (12.43). Otherwise, the length
L(C) of the loop C is not a Stokes functional, since the lengths of contours
on the LHS and RHS of Eq. (12.43) are different.
For the Stokes functionals, the variation on the RHS of Eq. (12.40) is

proportional to the area enclosed by the infinitesimally small loop δCµν(x)
and does not depend on its shape. Analogously, the variation on the RHS
of Eq. (12.42) is proportional to the length of the infinitesimal path δΓµ
and does not depend on its shape.
If x is a regular point (such as any point of the contour for the func-

tional (12.2)), the RHS of Eq. (12.42) vanishes owing to the backtracking
condition (12.43). In order for the result to be nonvanishing, the point x
should be a marked (or irregular) point. A simple example of the func-
tional with a marked point x is

Φa[Cxx] ≡ 1
N
tr
(
taP ei

∫
Cxx

dξµAµ(ξ)
)

(12.44)

with the SU(N) generator ta being inserted in the path-ordered product
at the point x.
The area derivative of the Wilson loop is given by the Mandelstam

formula

δ

δσµν(x)
1
N
trP ei

∮
C dξ

µAµ =
i
N
trP Fµν(x) ei

∮
C dξ

µAµ . (12.45)

In order to prove this, it is convenient to choose δCµν(x) to be a rectangle
in the (µ, ν)-plane, as was done in Problem 5.8 on p. 94, and use straight-
forwardly the definition (12.40). The sense of Eq. (12.45) is very simple:

∗ See, for example, [Tav93] which contains definitions of path and area derivatives in
this language.
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12.3 Path and area derivatives 261

Table 12.1. Vocabulary for translation of Yang–Mills theory from ordinary
space into loop space.

Ordinary space Loop space

Φ[A] Phase factor Φ(C) Loop functional

Fµν(x) Field strength
δ

δσµν(x)
Area derivative

∇x
µ Covariant derivative ∂xµ Path derivative

∇∧ F = 0 Bianchi identity Stokes functionals

−∇µFµν Schwinger–Dyson Loop
= δ/δAν equations equations

Fµν is a curvature associated with the connection Aµ, as we discussed in
the Remark on p. 95.
The functional on the RHS of Eq. (12.45) has a marked point x, and

is of the same type as in Eq. (12.44). When the path derivative acts on
such a functional according to the definition (12.42), the result is given
by

∂xµ
1
N
trP B(x) ei

∮
C dξ

µAµ =
1
N
trP ∇µB(x) ei

∮
C dξ

µAµ , (12.46)

where

∇µB = ∂µB − i [Aµ, B] (12.47)

is the covariant derivative (5.10) in the adjoint representation (see also
Problem 5.7 on p. 93).
Combining Eqs. (12.45) and (12.46), we finally represent the expression

on the LHS of Eq. (12.29) (or Eq. (12.33)) as

i
N
trP ∇µFµν(x) ei

∮
C dξ

µAµ = ∂xµ
δ

δσµν(x)
1
N
trP ei

∮
C dξ

µAµ , (12.48)

i.e. via the action of the path and area derivatives on the Wilson loop. It
is therefore rewritten in loop space.
A summary of the results of this section is presented in Table 12.1 as

a vocabulary for translation of Yang–Mills theory from the language of
ordinary space in the language of loop space.
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Remark on Bianchi identity for Stokes functionals

The backtracking condition (12.43) can be represented equivalently as

εµνλρ ∂
x
µ

δ

δσνλ(x)
Φ(C) = 0 , (12.49)

by choosing the small path in Eq. (12.43) to be an infinitesimal straight
line in the ρ-direction and applying Stokes’ theorem geometrically. Using
Eqs. (12.45) and (12.46), Eq. (12.49) can in turn be rewritten as

εµνλρ
1
N
trP ∇µFνλ(x) ei

∮
C dξ

µAµ = 0 . (12.50)

Therefore, Eq. (12.49) represents the Bianchi identity (5.18) in loop space.

Remark on the regularized length

The length L(C) can be approximated by the Stokes functional

La(C)
def=
∮
C

dxµ
∮
C

dyµ
1√
2πa

e−(x−y)2/2a2 a→0−→ L(C) . (12.51)

This works for the contours, the size of which is much larger than the
ultraviolet cutoff a. The area derivative of the functional La(C) is finite
at finite a but does not commute with taking the limit a → 0. This
illustrates the above statement that the size of the variation should be
much smaller than the ultraviolet cutoff.

Problem 12.5 Prove Eq. (12.51).

Solution The calculation is similar to that in Problem 12.2 on p. 253. We have∫
ds ẋµ(s)

∫
dt ẋµ(s+ t)

1√
2πa

e−(x(s+t)−x(s))2/2a2

a→0−→
∫
ds ẋ2(s)

+∞∫
−∞

dτ
1√
2π
e−ẋ

2(s) τ2/2

=
∫
ds
√
ẋ2(s) = L(C) , (12.52)

where τ = t/a. This proves Eq. (12.51).

Remark on the relation with the variational derivative

The standard variational derivative, δ/δxµ(σ), can be expressed via the
path and area derivatives using the formula

δ

δxµ(σ)
= ẋν(σ)

δ

δσµν(x(σ))
+

m∑
i=1

∂xi
µ δ(σ − σi) , (12.53)
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where the sum on the RHS is present for the case of a functional hav-
ing m marked (irregular) points xi ≡ x(σi). The simplest example of
the functional with m marked points is just a function of m variables
x1, . . . , xm.
Using Eq. (12.53), the path derivative can be calculated as the limiting

procedure

∂ x(σ)
µ =

σ+0∫
σ−0

dσ′ δ

δxµ(σ′)
. (12.54)

The result is obviously nonvanishing only when ∂xµ is applied to a func-
tional with x(σ) being a marked point.
It is nontrivial that the area derivative can also be expressed via the

variational derivative [Pol80]:

δ

δσµν(x(σ))
=

σ+0∫
σ−0

dσ′(σ′ − σ)
δ

δxµ(σ′)
δ

δxν(σ)
. (12.55)

The point is that the six-component quantity, δ/δσµν(x(σ)), is expressed
via the four-component one, δ/δxµ(σ), which is possible because the com-
ponents of δ/δσµν (x(σ)) are dependent owing to the loop-space Bianchi
identity (12.49).

12.4 Loop equations

By virtue of Eq. (12.48), Eq. (12.33) can be represented completely in
loop space:

∂xµ
δ

δσµν(x)
〈Φ(C) 〉

= λ

∮
C

dyν δ(d)(x− y)
〈[
Φ(Cyx) Φ(Cxy)−

1
N2

Φ(C)
]〉

, (12.56)

or, using the definitions (12.1) and (12.2) of the loop averages, as

∂xµ
δ

δσµν(x)
W (C) = λ

∮
C

dyν δ(d)(x− y)
[
W2(Cyx, Cxy)−

1
N2

W (C)
]
.

(12.57)
This equation is not closed. Having started from W (C), we obtain

another quantity, W2(C1, C2), so that Eq. (12.57) connects the one-loop
average with a two-loop one. This is similar to the case of the (quantum)
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264 12 QCD in loop space

ϕ3-theory, whose Schwinger–Dyson equations (2.47) connect the n-point
Green functions with different n. We shall derive this complete set of
equations for the n-loop averages later in this section.
However, the two-loop average factorizes in the large-N limit:

W2(C1, C2) = W (C1)W (C2) +O
(
N−2) , (12.58)

as was discussed in Sect. 11.6. Keeping the constant λ (defined by
Eq. (12.34)) fixed in the large-N limit as prescribed by Eq. (11.13), we
obtain [MM79]

∂xµ
δ

δσµν(x)
W (C) = λ

∮
C

dyν δ(d)(x− y)W (Cyx)W (Cxy) (12.59)

as N →∞.
Equation (12.59) is a closed equation for the Wilson loop average in

the large-N limit. It is referred to as the loop equation or the Makeenko–
Migdal equation.
To find W (C), Eq. (12.59) should be solved in the class of Stokes func-

tionals with the initial condition

W (0) = 1 (12.60)

for loops which are shrunk to points. This is a consequence of the obvious
property of the Wilson loop

ei
∮
0 dξ

µAµ = 1 (12.61)

and the normalization 〈 1 〉 = 1 of the averages.
The factorization (12.58) can itself be derived from the chain of loop

equations. Proceeding as before, we obtain

1
λ
∂xµ

δ

δσµν(x)
Wn(C1, . . . , Cn)

=
∮
C1

dyν δ(d)(x− y)
[
Wn+1(Cxy, Cyx, . . . , Cn)−

1
N2

Wn(C1, . . . , Cn)
]

+
∑
j≥2

1
N2

∮
Cj

dyν δ(d)(x− y)
[
Wn−1
(
C1Cj , . . . , Cj , . . . , Cn

)
−Wn(C1, . . . , Cn)

]
. (12.62)

Here x belongs to C1; C1Cj denotes the joining of C1 and Cj; Cj denotes
that Cj is omitted.
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12.4 Loop equations 265

Equation (12.62) looks like Eq. (2.47) for ϕ3-theory. Moreover, the
number of colors N enters Eq. (12.62) simply as a scalar factor, N−2,
likewise Planck’s constant � enters Eq. (2.47). It is the major advantage
of the use of loop space. What was mentioned in Sect. 11.8 concerning the
“semiclassical” nature of the 1/N -expansion of QCD is realized explicitly
in Eq. (12.62). Its expansion in 1/N is straightforward.
At N =∞, Eq. (12.62) is simplified to

∂xµ
δ

δσµν(x)
Wn(C1, . . .) = λ

∮
C1

dyν δ(d)(x− y)Wn+1(Cyx, Cxy, . . .) .

(12.63)
This equation possesses [Mig80] a factorized solution

Wn(C1, . . . , Cn) = 〈Φ(C1)〉 · · · 〈Φ(Cn)〉+O
(
N−2)

≡ W (C1) · · ·W (Cn) +O
(
N−2) (12.64)

provided W (C) obeys Eq. (12.59) which plays the role of a “classical”
equation in the large-N limit. Thus, we have given a nonperturbative
proof of the large-N factorization of the Wilson loops.

Problem 12.6 Derive a lattice analog of the loop equation.

Solution The derivation is similar to that in Problem 6.3 on p. 105 for the
classical case. We perform the shift (6.22) in the definition (6.42) of the lattice
Wilson loop average. Similarly to Eqs. (6.24) and (12.59), we obtain

β

2N2

∑
p

[
W (C ∂p)−W

(
C ∂p−1

)]
=
∑
l∈C

δxyτν(l)W (Cyx)W (Cxy) .

(12.65)
Here we use the notations of Problem 5.6 on p. 92 so that the contours C ∂p and
C ∂p−1 are obtained from Cxx by adding the boundary of the plaquette p (∂p−1

denotes that the orientation of the boundary is opposite) and the sum over p
goes over the 2(d − 1) plaquettes involving the link at which the shift of Uν(x)
is performed. These contours are depicted in Fig. 12.4.
The sum on the RHS goes over the links belonging to the contour C. The

unit vector τν(l) = 0,±1 denotes the projection of the (oriented) link l ∈ C on
the axis ν (τν(l) = 1, −1 or 0 when the directions are parallel, antiparallel, or
perpendicular, respectively). The point y is defined as the beginning of the link
l if it has positive direction, or as the end of l if it has negative direction. Such
an asymmetry arises from the fact that we have performed the right shift (6.22)
of Uν(x). The Kronecker symbol δxy guarantees that Cyx and Cxy are always
closed.
Equation (12.65) is a lattice regularization of the continuum loop equation

(12.59). The loop equation on the lattice was first discussed in [Foe79, Egu79]
and with quarks in [Wei79].
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Fig. 12.4. Contours (a) C ∂p and (b) C ∂p−1 on the RHS of the lattice loop
equation (12.65).

Problem 12.7 Find a solution to the lattice loop equation (12.65) at small
β/N2.

Solution A strong-coupling solution to Eq. (12.65) can be obtained iteratively
in β/N2. Let us choose the contour C to be the boundary ∂p0 of a plaquette p0.
Since δxy on the RHS of Eq. (12.65) is nonvanishing only when y coincides with
x, we rewrite Eq. (12.65) as

W (∂p0) =
β

2N2

∑
p

[
W (∂p0 ∂p)−W (∂p0 ∂p−1)

]
. (12.66)

One of the terms on the RHS is

............
......
..................

....................

..................
.. ........
............ ..................

.. ........
............

....................

....................
.................... )

= W (0) = 1 ,W (∂p0 ∂p) = W
(

(12.67)

when p and p0 have opposite orientations as depicted in Fig. 6.7 on p. 115, owing
to the backtracking condition (12.43) and the initial condition (12.60). We thus
obtain

W (∂p) =
β

2N2
(12.68)

to the leading order in β/N2, which reproduces Eq. (6.72). The other terms on
the RHS of Eq. (12.66) are of the next order in β/N2.
Analogously, Eq. (6.73) is reproduced for a general contour C to the leading

order in β/N2, since

min {A (C ∂p)} = Amin (C)− 1 (12.69)

in the lattice units.
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Fig. 12.5. Graphical representation of the terms on the RHS of Eq. (12.70).

12.5 Relation to planar diagrams

The perturbation-theory expansion of the Wilson loop average can be
calculated from Eq. (11.46), which we represent in the form

W (C) = 1 +
∞∑
n=2

in
∮
C

dxµ1
1

∮
C

dxµ2
2 · · ·
∮
C

dxµn
n

× θc(1, 2, . . . , n)G
(n)
µ1µ2···µn(x1, x2, . . . , xn) , (12.70)

where θc(1, 2, . . . , n) orders the points x1, . . . , xn along the contour in
cyclic order and G(n)µ1···µn is given by Eq. (11.71). This θ-function has the
meaning of the propagator of a test heavy particle on contour C (see
Problem 5.3 on p. 90).
We assume, for definiteness, dimensional regularization throughout this

section to make all the integrals well-defined.
Each term on the RHS of Eq. (12.70) can be conveniently represented

by the diagram in Fig. 12.5, where the integration over contour C is
associated with each point xi lying on contour C.
These diagrams are analogous to those discussed in Sect. 11.3 with one

external boundary – the Wilson loop in the given case. This was already
mentioned in the Remark on p. 227. In the large-N limit, only planar
diagrams survive. Some of them, which are of the lowest order in λ,
are depicted in Fig. 12.6. The diagram in Fig. 12.6a has already been
considered in Problem 12.2 (see Eq. (12.17)).
The large-N loop equation (12.59) describes the sum of the planar di-

agrams. Its iterative solution in λ reproduces the set of planar diagrams
for W (C) provided the initial condition (12.60) and some boundary con-
ditions for asymptotically large contours are imposed.
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(a) (b) (c)

Fig. 12.6. Planar diagrams for W (C): (a) of order λ with a gluon propagator,
and of order λ2 (b) with two noninteracting gluons and (c) with the three-gluon
vertex. Diagrams of order λ2 with one-loop insertions to the gluon propagator
are not shown.

Equation (12.70) can be viewed as an ansatz for W (C) with some un-
known functionsG(n)µ1···µn(x1, . . . , xn) to be determined by substitution into
the loop equation. To preserve symmetry properties of W (C), the func-
tions G(n) must be symmetric under a cyclic permutation of the points
1, . . . , n and depend only on xi− xj (translational invariance). The main
advantage of this ansatz is that it corresponds automatically to a Stokes
functional, owing to the properties of vector integrals, and the initial
condition (12.60) is satisfied.
The action of the area and path derivatives on the ansatz (12.70) is

easily calculable. For instance, the area derivative is given by

δW (C)
δσµν(z)

=
∞∑
n=1

i(n+1)
∮
C

dxµ1
1 . . .

∮
C

dxµn
n θc(1, 2, . . . , n)

×
[(
∂zµδνα − ∂zνδµα

)
G
(n+1)
αµ1···µn(z, x1, . . . , xn)

+ i (δµβδνα − δµαδνβ)G
(n+2)
αβµ1···µn

(z, z, x1, . . . , xn)
]
.

(12.71)

The analogy with the Mandelstam formula (12.45) is obvious.
More concerning solving the loop equation by the ansatz (12.70) can

be found in [MM81, BGS82, Mig83].

Problem 12.8 Solve Eq. (12.59) to order λ using the ansatz (12.70).

Solution To order λ, we can restrict ourselves by the n = 2 term in the
ansatz (12.70). For the θ-function, we have

θc(1, 2) ≡
1
2
[θ(1, 2) + θ(2, 1)] =

1
2
. (12.72)
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The meaning of this formula is obvious: there is no cyclic ordering for two points.
We therefore rewrite the ansatz as

W (C) = 1− λ

2

∮
C

dxµ
∮
C

dyν Dµν(x − y) +O
(
λ2
)

(12.73)

with some unknown function Dµν(x− y). Its tensor structure reads

Dµν(x − y) = δµνD(x− y) + ∂µ∂νf(x− y) . (12.74)

The second (longitudinal) term in this formula does not contribute to W (C)
since the contour integral of this term vanishes in Eq. (12.73). We can thus
write

W (C) = 1− λ

2

∮
C

dxµ
∮
C

dyµD(x− y) +O
(
λ2
)
. (12.75)

The area derivative can be calculated easily using Stokes’ theorem, which gives

δ

δσµν(z)

∮
C

dxρ
∮
C

dyρD(x− y) = 2
[∮
C

dyν ∂µD(z − y)−
∮
C

dyµ ∂νD(z − y)
]

(12.76)
and

∂zµ
δ

δσµν (z)

∮
C

dxρ
∮
C

dyρD(x− y) = 2
∮
C

dyν ∂2D(z − y) (12.77)

since

∂µ

∮
dyµ ∂νD(x− y) = 0 . (12.78)

Substituting into the loop equation (12.59), we find

−
∮
C

dyν ∂2D(x− y) =
∮
C

dyν δ(d)(x− y) (12.79)

which is equivalent to

−∂2D(x− y) = δ(d)(x− y) (12.80)

since the contour C is arbitrary. The solution to Eq. (12.80) is unique, provided
D(x − y) decreases for large x− y, and recovers the propagator (11.4).

12.6 Loop-space Laplacian and regularization

The loop equation (12.59) is not yet entirely formulated in loop space. It
is a d-vector equation, both sides of which depend explicitly on the point
x which does not belong to loop space. The fact that we have a d-vector
equation for a scalar quantity means, in particular, that Eq. (12.59) is
overspecified.
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A practical difficulty in solving Eq. (12.59) is that the area and path
derivatives, δ/δσµν (x) and ∂xµ, which enter the LHS are complicated, gen-
erally speaking, noncommutative operators. They are intimately related
to the Yang–Mills perturbation theory where they correspond to the non-
Abelian field strength Fµν and the covariant derivative ∇µ. However, it
is not easy to apply these operators to a generic functional W (C) which
is defined on elements of loop space.
A much more convenient form of the loop equation can be obtained by

integrating both sides of Eq. (12.59) over dxν along the same contour C,
which yields∮
C

dxν ∂xµ
δ

δσµν(x)
W (C) = λ

∮
C

dxµ
∮
C

dyµ δ(d)(x− y)W (Cyx)W (Cxy) .

(12.81)

Now both the operator on the LHS and the functional on the RHS are
scalars without labeled points and are well-defined in loop space. The
operator on the LHS of Eq. (12.81) can be interpreted as an infinitesimal
variation of elements of loop space.
Equations (12.59) and (12.81) are completely equivalent. A proof of

equivalence of the scalar Eq. (12.81) and original d-vector Eq. (12.59) is
based on the important property of Eq. (12.59), for which both sides are
identically annihilated by the operator ∂xν . It is a consequence of the
identity (see Sect. 5.1)

∇µ∇ν Fµν = − 1
2
[Fµν ,Fµν ] = 0 (12.82)

in ordinary space. Owing to this property, the vanishing of the contour
integral of some vector is equivalent to the vanishing of the vector itself,
so that Eq. (12.59) can in turn be deduced from Eq. (12.81).
Equation (12.81) is associated with the second-order Schwinger–Dyson

equation

−
∫
ddx∇µF

a
µν (x)

δ

δAa
ν(x)

w.s.= �

∫
ddxddy δ(d)(x− y)

δ

δAa
ν(y)

δ

δAa
ν(x)

(12.83)

in the same sense as Eq. (12.59) is associated with Eq. (12.27). It is
called “second order” since the RHS involves two variational derivatives
with respect to Aν .
The operator on the LHS of Eq. (12.81) is a well-defined object in

loop space. When applied to regular functionals which do not have
marked points, it can be represented, using Eqs. (12.54) and (12.55),
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in an equivalent form

∆ ≡
∮
C

dxν ∂xµ
δ

δσµν(x)
=

σ1∫
σ0

dσ

σ+0∫
σ−0

dσ′ δ

δxµ(σ′)
δ

δxµ(σ)
. (12.84)

As was first pointed out by Gervais and Neveu [GN79b], this operator
is nothing but a functional extension of the Laplace operator, which is
known in mathematics as the Lévy operator.∗ Equation (12.81) can be
represented in turn as an (inhomogeneous) functional Laplace equation

∆W (C) = λ

∮
C

dxµ
∮
C

dyµ δ(d)(x− y)W (Cyx)W (Cxy) . (12.85)

We shall refer to this equation as the loop-space Laplace equation.
The form (12.85) of the loop equation is convenient for a nonperturba-

tive ultraviolet regularization.
The idea is to start from the regularized version of Eq. (12.83), replacing

the delta-function on the RHS by the kernel of the regularizing operator:

δabδ(d)(x− y)
reg.
=⇒
〈
y
∣∣∣Rab
∣∣∣ x〉 = Rab δ(d)(x− y) (12.86)

with

Rab =
(
ea

2∇2/2
)ab

, (12.87)

where ∇µ is the covariant derivative in the adjoint representation. The
regularized version of Eq. (12.83) is

−
∫
ddx∇µF

a
µν(x)

δ

δAa
ν(x)

w.s.= �

∫
ddxddy

〈
y
∣∣∣Rab
∣∣∣ x〉 δ

δAa
ν(y)

δ

δAb
ν(x)

.

(12.88)

To translate Eq. (12.88) in loop space, we use the path-integral repre-
sentation (see Problem 5.5 on p. 91)〈

y
∣∣∣Rab
∣∣∣ x〉 =

∫
rµ(0)=xµ

rµ(a2)=yµ

Drµ(t) e−
1
2

∫ a2

0 dt ṙ2µ(t) tr
[
taU(ryx)tbU(rxy)

]
(12.89)

with

U(ryx) = P ei
∫ y
x dr

µAµ(r), (12.90)

∗ See the book by Lévy [Lev51] and the review [Fel86].
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x

y

Cxy

Cyx rxy ryx
✻

❄

Fig. 12.7. Contours Cyxrxy and Cxyryx which enter the RHSs of Eqs. (12.92)
and (12.93).

where the integration is over regulator paths rµ(t) from x to y, for which
the typical length is ∼ a. The conventional measure is implied in (12.89)
so that∫

rµ(0)=xµ

rµ(a2)=yµ

Drµ(t) e−
1
2

∫ a2

0
dt ṙ2µ(t) tr

[
tatb
]
= δab

1

(2πa2)d/2
e−(x−y)2/2a2

.

(12.91)

Calculating the variational derivatives on the RHS of Eq. (12.88), using
Eq. (12.89) and the completeness condition (11.6), we obtain as N →∞∫

ddxddy
〈
y
∣∣∣Rab
∣∣∣x〉 δ

δAa
ν(y)

δ

δAb
ν(x)

Φ(C)

= λ

∮
C

dxµ

∮
C

dyµ

∫
rµ(0)=xµ

rµ(a2)=yµ

Drµ(t) e−
1
2

∫ a2

0 dt ṙ2µ(t) Φ(Cyxrxy) Φ(Cxyryx) ,

(12.92)

where the contours Cyxrxy and Cxyryx are depicted in Fig. 12.7.
Averaging over the gauge field and using the large-N factorization, we
arrive at the regularized loop-space Laplace equation [HM89]

∆W (C)

= λ

∮
C

dxµ
∮
C

dyµ
∫

rµ(0)=xµ

rµ(a2)=yµ

Drµ(t) e−
1
2

∫ a2

0 dt ṙ2µ(t)W (Cyxrxy)W (Cxyryx)

(12.93)

which manifestly recovers Eq. (12.85) when a→ 0.
The constructed regularization is nonperturbative, while perturbatively

it reproduces regularized Feynman diagrams. An advantage of this regu-
larization of the loop equation is that the contours Cyxrxy and Cxyryx on
the RHS of Eq. (12.93) are both closed and do not have marked points if C
does not have one. Therefore, Eq. (12.93) is written entirely in loop space.
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Remark on functional Laplacian

It is worth noting that the representation of the functional Laplacian
on the RHS of Eq. (12.84) is defined for a wider class of functionals
than Stokes functionals. The point is that the standard definition of
the functional Laplacian from the book by Lévy [Lev51] uses solely the
concept of the second variation of a functional U [x], namely the term in
the second variation which is proportional to [δxµ(σ)]2:

δ2U [x] =
1
2

σ1∫
σ0

dσ [δxµ(σ)]
2 U ′′

xx[x] + · · · . (12.94)

The functional Laplacian ∆ is then defined by the formula

∆U [x] =

σ1∫
σ0

dσ U ′′
xx[x] . (12.95)

Here U [x] can be an arbitrary, not necessarily parametric invariant, func-
tional. To emphasize this obstacle, we use the notation U [x] for generic
functionals which are defined on L2 space in comparison with U(C) for
the functionals which are defined on elements of loop space. It is easier
to deal with the whole operator ∆, rather than separately with the area
and path derivatives.
The functional Laplacian is parametric invariant and possesses a num-

ber of remarkable properties. While a finite-dimensional Laplacian is a
second-order operator, the functional Laplacian is of first order and sat-
isfies the Leibnitz rule

∆ (UV ) = (∆U)V + U (∆V ) . (12.96)

The functional Laplacian can be approximated [Mak88] in loop space by
a (second-order) partial differential operator in such a way as to preserve
these properties in the continuum limit. This loop-space Laplacian can
be inverted to determine a Green function G (C,C ′) in the form of a sum
over surfaces SC,C′ connecting two loops:

G
(
C,C ′) =

∑
SC,C′

· · · , (12.97)

which is analogous to the representation (1.102) of the Green function of
the ordinary Laplacian. The standard perturbation theory can then be
recovered by iterating Eq. (12.85) (or its regularized version (12.93)) in λ
with the Green function (12.97).
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12.7 Survey of nonperturbative solutions

While the loop equations were proposed long ago, not much is known
concerning their nonperturbative solutions except in two dimensions. We
briefly list some of the available results.
It was shown [MM80] that the area law

W (C) ≡ 〈Φ(C)〉 ∝ e−K·Amin(C) (12.98)

satisfies the large-N loop equation for asymptotically large C. However, a
self-consistency equation for K, which should relate it to the bare charge
and the cutoff, was not investigated. In order to do this, one needs more
detailed information concerning the behavior of W (C) for intermediate
loops.
The free bosonic Nambu–Goto string which is defined as a sum over

surfaces spanned by C

W (C) =
∑

S:∂S=C

e−K·A(S) , (12.99)

with the action being the area A(S) of the surface S, is not a solution
for intermediate loops. Consequently, QCD does not reduce to this kind
of string, as was expected originally in [GN79a, Nam79, Pol79]. Roughly
speaking, the ansatz (12.99) is not consistent with the factorized structure
on the RHS of Eq. (12.59).
Nevertheless, it was shown that if a free string satisfies Eq. (12.59),

then the same interacting string satisfies the loop equations for finite N .
Here “free string” means, as is usual in string theory, that only surfaces of
genus zero are present in the sum over surfaces, while surfaces or higher
genera are associated with a string interaction. The coupling constant of
this interaction is O

(
N−2).

A formal solution of Eq. (12.59) for all loops was found by Migdal
[Mig81] in the form of a fermionic string

W (C) =
∑

S:∂S=C

∫
Dψ e−

∫
d2ξ [ψ̄σk∂kψ+ψ̄ψm 4

√
g], (12.100)

where the world sheet of the string is parametrized by the coordinates ξ1
and ξ2 for which the two-dimensional metric is conformal, i.e. diagonal.
The field ψ(ξ) describes two-dimensional elementary fermions (elves) liv-
ing in the surface S, and m denotes their mass. Elves were introduced to
provide a factorization which now holds owing to some remarkable prop-
erties of two-dimensional fermions. For large loops, the internal fermionic
structure becomes frozen, so that the empty string behavior (12.98) is re-
covered. For small loops, the elves are necessary for asymptotic freedom.
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However, it is unclear whether or not the string solution (12.100) is prac-
tically useful for a study of multicolor QCD, since the methods of dealing
with the string theory in four dimensions have not yet been developed.
A very interesting solution of the large-N loop equation on a lattice,

found by Eguchi and Kawai [EK82], shows that the SU(N) gauge theory
on an infinite lattice and a unit hypercube are equivalent at N = ∞.
With slight modifications this large-N reduction holds in the continuum
theory as well, so that the space-time can be absorbed by the internal
symmetry group. More concerning the large-N reduction will be said in
Part 4.

12.8 Wilson loops in QCD2

Two-dimensional QCD (QCD2) has been popular since the paper by
’t Hooft [Hoo74b] as a simplified model of QCD4.
One can always choose the axial gauge

A1 = 0 , (12.101)

so that the commutator in the non-Abelian field strength (5.14) vanishes
in two dimensions. Therefore, there is no gluon self-interaction in this
gauge and the theory looks, at first glance, like the Abelian one.
The Wilson loop average in QCD2 can be calculated straightforwardly

via the expansion (12.70) where only disconnected (free) parts of the cor-
relators G(n) for even n should be left, since there is no interaction. Only
the planar structure of color indices contributes at N =∞. Diagrammat-
ically, the diagrams of the type depicted in Figs. 12.6a and b are relevant
for contours without self-intersections, while that in Fig. 12.6c should be
omitted in two dimensions.
The color structure of the relevant planar diagrams can be reduced by

virtue of the formula ∑
a

(ta)ik (ta)kj = Nδij , (12.102)

which is a consequence of the completeness condition (11.6) at large N .
We have

W (C) = 1 +
∞∑
k

(−λ)k
∮
C

dxµ1
1

∮
C

dxν12 · · ·
∮
C

dxµk
2k−1

∮
C

dxνk
2k

× θc(1, 2, . . . , 2k)Dµ1ν1(x1 − x2) · · ·Dµkνk
(x2k−1 − x2k) ,

(12.103)

where the points x1, . . . , x2k are still cyclic ordered along the contour.
Similarly to Problem 5.2 on p. 89, we can exponentiate the RHS of

https://doi.org/10.1017/9781009402095.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402095.013


276 12 QCD in loop space

........

........

........
.........
..........
...........

............
..................

.............................................................................................................................................................................................................................................................................
...............

...........
..........
.........
.........
........
........
....

x2 = y2

Fig. 12.8. Graphical representation of the contour integral on the LHS of
Eq. (12.108) in the axial gauge. The bold line represents the gluon propaga-
tor (12.105) with x2 = y2 owing to the delta-function.

Eq. (12.103) to obtain finally

W (C) = exp
[
−λ
2

∮
C
dxµ
∮
C
dyνDµν(x− y)

]
. (12.104)

This is the same formula as in the Abelian case if λ denotes e2.
The propagator Dµν(x, y) is, strictly speaking, the one in the axial

gauge (12.101) which is given by

Dµν(x− y) =
1
2
δµ2δν2 |x1 − y1| δ(1)(x2 − y2) . (12.105)

However, the contour integral on the RHS of Eq. (12.104) is gauge invari-
ant, and we can simply choose

Dµν(x− y) = δµν D(x− y) . (12.106)

In two dimensions∗ we have

D(x− y) =
1
4π
ln

O2

(x− y)2
, (12.107)

where O is an arbitrary parameter with dimension of length. Nothing
depends on it because the contour integral of a constant vanishes.
The propagator (12.106) is usually associated with the Feynman gauge.

The explicit form (12.104) indicates that a contribution of diagrams with
vertices, which are present in the Feynman gauge, vanishes in two dimen-
sions.
The contour integral in the exponent on the RHS of Eq. (12.104) can

be represented graphically as depicted in Fig. 12.8, where x2 = y2 owing

∗ In d dimensions

D(x− y) =
1

4πd/2
Γ

(
d

2
− 1
)

1[
(x− y)2

]d/2−1
.
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to the delta-function in Eq. (12.105) and the bold line represents |x1−y1|.
This gives ∮

C

dxµ
∮
C

dyνDµν(x− y) = A(C) , (12.108)

where A(C) is the area enclosed by the contour C. Finally, we obtain

W (C) = e−
λ
2
A(C) (12.109)

for contours without self-intersections.
Therefore, the area law holds in two dimensions both in the non-Abelian

and Abelian cases. This is, roughly speaking, because of the form of the
two-dimensional propagator (12.107), which decreases with distance only
logarithmically in the Feynman gauge.

Problem 12.9 Prove Eq. (12.109) in the Feynman gauge.

Solution To prove Eq. (12.108) in the Feynman gauge (12.106) and (12.107),
we note that the area element in two dimensions can be represented by

dσµν(x) ≡ dxµ ∧ dxν = εµνd2x , (12.110)

where εµν is the antisymmetric tensor ε12 = −ε21 = 1. Therefore, the area can
be represented by the double integral

A(C) =
1
2

∫
S(C)

dσµν(x)
∫

S(C)

dσµν(y) δ(2)(x− y) (12.111)

which goes along the surface S(C) enclosed by the (nonintersecting) loop C.
Applying Stokes’ theorem, we obtain∮
C

dxµ
∮
C

dyµD(x− y) =
∫

S(C)

dσµν(x) ∂ν
∮
C

dyµD(x− y)

= −
∫

S(C)

dσµν(x)
∫

S(C)

dσµρ(y) ∂ν∂ρD(x− y)

= −1
2

∫
S(C)

dσµν(x)
∫

S(C)

dσµν(y) ∂2D(x− y)

=
1
2

∫
S(C)

dσµν(x)
∫

S(C)

dσµν(y) δ(2)(x− y) .

(12.112)

Using Eq. (12.111) we prove Eq. (12.109) in the Feynman gauge.
It is worth noting that Eq. (12.112) is based only on Stokes’ theorem and holds

for contours with arbitrary self-intersections. In contrast, Eq. (12.111) itself is
valid only for nonintersecting loops.
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Fig. 12.9. Contours with one self-intersection: A1 and A2 denote the areas of
the proper windows. The total area enclosed by the contour in (a) is A1 + A2.
The areas enclosed by the exterior and interior loops in (b) are A1+A2 and A2,
respectively, while the total area of the surface with the folding is A1 + 2A2.

The difference between the Abelian and non-Abelian cases shows up
for the contours with self-intersections.
We first note that the simple formula (12.108) does not hold for con-

tours with arbitrary self-intersections.
The simplest contours with one self-intersection are depicted in

Fig. 12.9. There is nothing special about the contour in Fig. 12.9a.
Equation (12.108) still holds in this case with A(C) being the total area,
A(C) = A1 +A2.
The Wilson loop average for the contour in Fig. 12.9a coincides both

for the Abelian and non-Abelian cases and equals

W (C) = e−
λ
2
(A1+A2). (12.113)

This is nothing but the exponential of the total area.
For the contour in Fig. 12.9b, we obtain∮

C

dxµ
∮
C

dyνDµν(x− y) = A1 + 4A2 . (12.114)

This is easy to understand in the axial gauge where the ends of the propa-
gator line can lie both on the exterior and interior loops, or one end at the
exterior loop and the other end on the interior loop. These cases are illus-
trated by Fig. 12.10. The contributions of the diagrams in Figs. 12.10a–d
are A1+A2, A2, A2, and A2, respectively. The result given by Eq. (12.114)
is obtained by summing over all four diagrams.
For the contour in Fig. 12.9b, the Wilson loop average is

W (C) = e−
λ
2
(A1+4A2) (12.115)
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Fig. 12.10. Three type of contribution in Eq. (12.114). The ends of the propa-
gator line lie both on (a) exterior and (b) interior loops, or (c), (d) one end on
the exterior loop and another end on the interior loop.

in the Abelian case and

W (C) = (1− λA2) e−
λ
2
(A1+2A2) (12.116)

in the non-Abelian case at N =∞. They coincide only to order λ as they
should.
The difference to the next orders is because only the diagrams with one

propagator line connecting the interior and exterior loops are planar and,
therefore, contribute in the non-Abelian case. Otherwise, the diagram is
nonplanar and vanishes as N →∞.
Note that the exponential of the total area A(C) = A1 + 2A2 of the

surface with the folding, which is enclosed by the contour C, appears in
the exponent for the non-Abelian case. The additional pre-exponential
factor could be associated with the entropy of folding the surface.
The Wilson loop averages (12.113) and (12.116) in QCD2 at large N

as well as those for contours with arbitrary self-intersections, which have
a generic form

W (C) = P (A1, . . . , An) e−
λ
2
A(C), (12.117)

where P is a polynomial of the areas of individual windows and A(C) is
the total area of the surface with foldings, were first calculated in [KK80]
by solving the two-dimensional loop equation and in [Bra80] by applying
the non-Abelian Stokes theorem. The lattice version is given in [KK81].

Problem 12.10 Demonstrate that Eq. (12.104) satisfies the Abelian loop equa-
tion

∂xµ
δ

δσµν(x)
W (C) = λ

∮
C

dyν δ(d)(x− y)W (C) . (12.118)

Solution The calculation is the same as in Problem 12.8 on p. 268. In d = 2
one can alternatively use [OP81] the expression on the RHS of Eq. (12.112).
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Problem 12.11 Obtain Eqs. (12.113) and (12.116) for the contours with one
self-intersection by solving the loop equation (12.59).

Solution Let us multiply Eq. (12.59) in d = 2 by ερν and integrate over
dxρ along a small (open) piece C′ of the contour C including the point of self-
intersection. We obtain

ερν

∫
C′

dxρ ∂xµ
δ

δσµν(x)
W (C) = λερν

∫
C′

dxρ
∮
C

dyν δ(2)(x− y)W (Cyx)W (Cxy) .

(12.119)
The RHS of Eq. (12.119) can be calculated analogously to the known repre-

sentation for the number of self-intersections of a loop in two dimensions. For
the case of one self-intersection, we have

ερν

∫
C′

dxρ
∮
C

dyν δ(2)(x− y)W (Cyx)W (Cxy) = W (C1)W (C2) , (12.120)

where C1 and C2 denote, respectively, the upper and lower loops in Fig. 12.9a
or the exterior and interior loops in Fig. 12.9b.
The LHS of Eq. (12.119) can be transformed as

ερν

∫
C′

dxρ ∂xµ
δ

δσµν(x)
W (C) =

∫
C′

dxν ∂xν
δ

δσ(x)
W (C) , (12.121)

where δ/δσ(x) denotes the variational derivative with respect to the “scalar”
area

δσ(x) =
1
2
εµνδσ

µν(x) . (12.122)

The integrand on the RHS of Eq. (12.121) is a total derivative and the contour
integral reduces to the difference of the Ω-variations at the end points of the
contour C′, which would vanish if there were no self-intersections. The RHS
of Eq. (12.119) also vanishes if no self-intersections are present, so W (C) is
determined in this case by Eq. (12.118) rather than Eq. (12.119).
For the contour in Fig. 12.9a, this gives
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A2

−
A1 A1

A2

=
(
− ∂

∂A1
− ∂

∂A2

)
W (C) .

(12.123)

The Ω-variation of the contour on the LHS represents the variational derivative.
The minus sign in front of ∂/∂A1 on the RHS is because adding the Ω-variation
in the first term on the LHS decreases the area A1, while that in the second term
increases A2. Then, for the contour in Fig. 12.9a, Eq. (12.119) takes the form(

− ∂

∂A1
− ∂

∂A2

)
W (C) = λW (C1)W (C2) . (12.124)
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For the contour in Fig. 12.9b, we obtain quite similarly
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A2

−
A1

A2

A1 =
(
2

∂

∂A1
− ∂

∂A2

)
W (C) .

(12.125)

Now adding the Ω-variation in the first term on the LHS increases A1 and de-
creases A2, while that in the second term decreases A1. Equation (12.119) takes
the form (

2
∂

∂A1
− ∂

∂A2

)
W (C) = λW (C1)W (C2) . (12.126)

The RHSs of Eqs. (12.124) and (12.126) are known since C1 and C2 have
no self-intersections so that Eq. (12.109) holds for W (C1) and W (C2). Finally,
Eqs. (12.124) and (12.126) take the explicit form [KK80](

− ∂

∂A1
− ∂

∂A2

)
W (C) = λ e−

λ
2 (A1+A2) (12.127)

and (
2

∂

∂A1
− ∂

∂A2

)
W (C) = λ e−

λ
2 (A1+2A2), (12.128)

respectively. Their solution is given uniquely by Eqs. (12.113) and (12.116).
It is worth noting that the linear Abelian loop equation (12.118) can be written

for the contours in Figs. 12.9a and b as(
− ∂

∂A1
− ∂

∂A2

)
lnW (C) = λ , (12.129)(

2
∂

∂A1
− ∂

∂A2

)
lnW (C) = λ . (12.130)

The operators on the LHSs are always the same for the non-Abelian and
Abelian loop equations, which is a general property, but the RHSs differ gener-
ically: Eqs. (12.127) and (12.129) for the contour in Fig. 12.9a coincide, while
Eqs. (12.128) and (12.130) for the contour in Fig. 12.9b differ. The solution to
Eq. (12.130) is given by (12.115).

Problem 12.12 Prove Eq. (12.120) for the contours with one self-intersection.

Solution Let the intersection correspond to the values s1 and s2 of the parame-
ter s, i.e. xµ(s1) = xµ(s2). Noting that only the vicinities of s1 and s2 contribute
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to the integral on the LHS of Eq. (12.120), we obtain

ερν

∫
C′

dxρ
∮
C

dyν δ(2)(x− y)W (Cyx)W (Cxy)

= ερν ẋρ(s1) ẋν(s2)
∫
ds
∫
dt δ(2)((s− s1)ẋ(s1)− (t− s2)ẋ(s2))

×W
(
Cx(s2)x(s1)

)
W
(
Cx(s1)x(s2)

)
=

ερν ẋρ(s1) ẋν (s2)√
ẋ2µ(s1) ẋ2ν(s2)− (ẋµ (s1) ẋµ (s2))

2
W
(
Cx(s2)x(s1)

)
W
(
Cx(s1)x(s2)

)
= W

(
Cx(s2)x(s1)

)
W
(
Cx(s1)x(s2)

)
(12.131)

which is precisely the RHS of Eq. (12.120).

Remark on the string representation

A nice property of QCD2 at large N is that the exponential of the area
enclosed by the contour C emerges∗ for the Wilson loop average W (C).
This is as it should for the Nambu–Goto string (12.99). However, the
additional pre-exponential factors (such as that in Eq. (12.116)) are very
difficult to interpret in string language. They may become negative for
large loops, which is impossible for a bosonic string. This demonstrates
explicitly in d = 2 the statement of the previous section that the Nambu–
Goto string is not a solution of the large-N loop equation. An appropriate
string representation of two-dimensional large-N QCD was constructed by
Gross and Taylor [GT93].

12.9 Gross–Witten transition in lattice QCD2

The lattice gauge theory on a two-dimensional lattice is defined by the
partition function (6.31) with d = 2:

Z2D(β) =
∫ ∏

x

∏
µ=1,2

dUµ(x) e−βS[U ], (12.132)

where the action is given by Eq. (6.16).
A specific property of two dimensions is that the number of lattice sites

is equal to the number of plaquettes. For this reason, we can always
perform a gauge transformation such that the link variables are chosen to
be equal to unity along one of the axes, say

U1(x) = 1 . (12.133)

∗ This is not true, as has already been discussed, in the Abelian case for contours with
self-intersections.
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Hence, the partition function (12.132) factorizes:

Z2D = (Z1p)
Np , (12.134)

where Np denotes the number of plaquettes of the lattice and Z1p is the
one-matrix integral

Z1p(β) =
∫
dU eβ(

1
N
Re trU−1). (12.135)

In other words, the plaquette variables of the lattice gauge theory can be
treated in two dimensions as being independent.
The correct interpretation of Eq. (12.135) is that it is the partition

function of the one-plaquette model, i.e. the lattice gauge theory on a
single plaquette. This is consistent with the gauge invariance.
The unitary one-matrix model (12.135) can be easily solved in the large-

N limit using loop equations.
We first introduce the “observables” for the one-matrix model:

Wn =
〈
1
N
tr Un

〉
1p

, (12.136)

where the average is taken with the same weight as in Eq. (12.135). The
interpretation of Wn in the language of the single-plaquette model is that
these are the Wilson loop averages for contours which go along the bound-
ary of n stacked plaquettes.
In order to derive the loop equation for the one-matrix model, we pro-

ceed quite analogous to the derivation of the loop equation in the lattice
gauge theory (given in Problem 12.6 on p. 265).
Let us consider the obvious identity

0 = 〈 tr taUn〉1p , (12.137)

and perform the (infinitesimal) change

U → U (1− itaεa) , U † → (1 + itaεa)U † (12.138)

of the integration variable on the RHS of Eq. (12.137). Since the Haar
measure is invariant under the change (12.138), we finally obtain

β

2N2
(Wn−1 −Wn+1) =

n∑
k=1

WkWn−k for n ≥ 1 ,

W0 = 1 ,

 (12.139)

where∗ β = N2/λ and λ ∼ 1 as N →∞.

∗ In contrast to the previous section, here we include the factor of a2 in the definition
of λ to make it dimensionless.
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Equation (12.139) has the following exact solution:

W1 =
1
2λ
; Wn = 0 for n ≥ 2 , (12.140)

which reproduces the strong-coupling expansion. The leading order of the
strong-coupling expansion turns out to be exact at N =∞.
However, the solution (12.140) cannot be the desired solution at any

values of the coupling constant. Since Wk are (normalized) averages of
unitary matrices, they must obey

Wn ≤ 1 , (12.141)

which is not the case forW1, given by Eq. (12.140), at small enough values
of λ.
In order to find all solutions to Eq. (12.139), let us introduce the gen-

erating function

f(z) ≡
∞∑
n=0

Wnz
n (12.142)

and rewrite Eq. (12.139) as the quadratic equation

fz − 1
z
(f − 1) +W1 = 2λ

(
f2 − f

)
. (12.143)

A formal solution to Eq. (12.143) is

f(z) = −1− 2λz − z2

4λz
+

√
(1 + 2λz + z2)2 + 4z2 (2λW1 − 1)

4λz
,

(12.144)

where the positive sign of the square root is chosen to satisfy f(0) = 1.
The RHS of Eq. (12.144) depends on an unknown function W1(λ),

which must guarantee f(z) to be a holomorphic function of the complex
variable z within the unit circle |z| < 1. This is a consequence of the
inequality (12.141) which stems from the unitarity of U .
There exist two solutions for which f(z) is holomorphic inside the unit

circle: the strong-coupling solution given for λ ≥ 1 by Eq. (12.140) and
the weak-coupling solution given for λ ≤ 1 by

W1 = 1− λ

2
. (12.145)

A comparison with Eq. (7.1) for d = 2 shows that the leading order of the
weak-coupling expansion is now exact. Therefore, f(z) is given by two
different analytic functions for λ > 1 and λ < 1.
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At the point λ = 1, a phase transition occurs as was discovered by Gross
and Witten [GW80] who first solved lattice QCD2 in the large-N limit.
This phase transition is of the third order since both the first and second
derivatives of the partition function are continuous at λ = 1. The discon-
tinuity resides only in the third derivative. This phase transition is pretty
unusual from the point of view of statistical mechanics where phase tran-
sitions usually occur in the limit of an infinite volume (otherwise the par-
tition function is analytic in temperature). Now the Gross–Witten phase
transition occurs even for the single-plaquette model (12.135) in the large-
N limit. In other words, the number of degrees of freedom is now infinite
owing to the internal symmetry group rather than an infinite volume.
Finally, we mention that since plaquette variables are independent in

lattice QCD2, the Wilson loop average for a nonintersecting lattice con-
tour C takes the form

W (C) = (W1)
A , (12.146)

where A is the area (in the lattice units) enclosed by the contour C. W1 in
this formula is given by Eq. (12.140) in the strong coupling phase (λ ≥ 1)
and Eq. (12.145) in the weak-coupling phase (λ ≤ 1).
The continuum formula (12.109) can be recovered for small λ from

Eq. (12.146) as follows:

W (C) =
(
1− λa2

2

)A/a2

a→0−→ e−
λ
2
A , (12.147)

where we have restored the a-dependence as is prescribed by the dimen-
sional analysis.
The solution of N = ∞ lattice QCD2 by the loop equations, which is

described in this section, was given in [PR80, Fri81].
Problem 12.13 Calculate the density of eigenvalues for the matrix U in the
one-matrix model (12.135).
Solution Let us reduce U to the diagonal form

U = diag
(
eiα1 , . . . , eiαj , . . . , eiαN

)
. (12.148)

The density of eigenvalues (or the spectral density), ρ(α), is then defined as a
fraction of the eigenvalues which lie in the interval [α, α + dα]. In other words,
introducing the continuum variable x = j/N (0 ≤ x ≤ 1) in the large-N limit,
we have

ρ(α) =
dx
dα

≥ 0 (12.149)

which obeys the obvious normalization
π∫

−π

dαρ(α) =

1∫
0

dx = 1 . (12.150)
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Given ρ(α), we can calculate Wn by

Wn =

π∫
−π

dα ρ(α) cosnα . (12.151)

It is now clear from the definition (12.136) and (12.142) that

f(z) =

π∫
−π

dαρ(α)
1

1 − z e−iα
. (12.152)

Choosing z = exp (iω), we rewrite Eq. (12.152) as

f
(
eiω
)
=

1
2
+
i
2

π∫
−π

dαρ(α) cot
ω − α

2
. (12.153)

The discontinuity of this analytic function at ω = α± i0 then determines ρ(α).
Using the explicit solution (12.144), we formally find

ρ(α) =
1
2λπ

√(
cosα+ λ+

√
1− 2λW1

)(
cosα+ λ−

√
1− 2λW1

)
.

(12.154)
For W1 given by Eqs. (12.140) and (12.145) for the strong- and weak-coupling
phases, we finally obtain

ρ(α) =
1
2π

(
1 +

1
λ
cosα
)

for λ ≥ 1 , (12.155)

ρ(α) =
1
λπ

cos
α

2

√
λ− sin2 α

2
for λ ≤ 1 (12.156)

for the strong- and weak-coupling solutions, respectively. Note that (12.155) is
nonnegative for λ ≥ 1 as it should be because of the inequality (12.149). For
λ < 1, the strong-coupling solution (12.155) becomes negative somewhere in the
interval [−π, π] which cannot happen for a dynamical system. This is the reason
why the other solution (12.156) is realized for λ < 1. It has the support on the
smaller interval [−αc, αc], where 0 < αc < π is determined by the equation

sin2
αc
2

= λ (12.157)

which always has a solution for λ < 1. The weak-coupling spectral density
(12.156) is nonnegative for λ ≤ 1.
For small λ, αc = 2

√
λ so that

ρ(α) =
1
2λπ

√
4λ− α2 . (12.158)

As λ → 0, ρ(α) → δ(α) and U freezes, modulo a gauge transformation, near a
unit matrix. This guarantees the existence of the continuum limit of QCD2.
The spectral densities (12.155) and (12.156) were first calculated [GW80] by

a direct solution of the saddle-point equation at large N .
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