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Hausdorff and Quasi-Hausdorff Matrices
on Spaces of Analytic Functions

P. Galanopoulos and M. Papadimitrakis

Abstract. We consider Hausdorff and quasi-Hausdorff matrices as operators on classical spaces of an-

alytic functions such as the Hardy and the Bergman spaces, the Dirichlet space, the Bloch spaces and

BMOA. When the generating sequence of the matrix is the moment sequence of a measure µ, we find

the conditions on µ which are equivalent to the boundedness of the matrix on the various spaces.

1 Introduction

1.1 Hausdorff and Quasi-Hausdorff Matrices

Let ∆ be the forward difference operator, defined on scalar sequences {µn}+∞
0 by

∆µn = µn − µn+1, and its iterates ∆
0

= ∆,∆k
= ∆ ◦ ∆

k−1 for k = 1, 2, . . . .
The Hausdorff matrix H = H(µn), with generating sequence {µn}+∞

0 , is the infinite
lower-triangular matrix with entries cn,k =

(
n
k

)
∆

n−kµk, 0 ≤ k ≤ n.
An important special case occurs when {µn}+∞

0 is the moment sequence of a mea-
sure. That is, µn =

∫
(0,1]

tn dµ(t), where µ is a finite positive Borel measure on (0, 1].

These matrices are denoted by Hµ and their entries are easily found to be

cn,k =

(
n

k

) ∫ 1

0

tk(1 − t)n−k dµ(t), 0 ≤ k ≤ n.

They had been originally studied in connection with summability of series and later
on as operators on sequence spaces and on spaces of functions. See [3,8,9,11,12]. The
study of Hausdorff matrices Hµ as transformations on spaces of analytic functions
such as the Hardy spaces H p, 1 ≤ p ≤ +∞, was introduced for the first time in [5].

In general, let X be a Banach space of analytic functions on the unit disc D. We
consider a Hausdorff matrix Hµ = (cn,k) and for each function f (z) =

∑+∞
n=0 anzn ∈

X, we consider the formal power series

Hµ( f )(z) =

+∞∑

n=0

( n∑

k=0

cn,kak

)
zn

and also the transpose matrix Aµ = H∗
µ and the corresponding formal power series

Aµ( f )(z) =

+∞∑

k=0

( +∞∑

n=k

cn,kan

)
zk.
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The matrices Aµ are called quasi-Hausdorff matrices.

In this work we address the problem of finding, for various classical spaces X, the

exact necessary and sufficient conditions on the measure µ so that for every f ∈ X,
the series defining Hµ( f ) and Aµ( f ) converge in D, the resulting functions belong to
X and the operators Hµ and Aµ are bounded on X.

The spaces X we shall consider are the Hardy spaces, the Bergman spaces Ap, 1 ≤
p ≤ +∞, the disc algebra A0, the Dirichlet space D, the spaces BMOA and VMOA,
the Bloch-space B and the little-Bloch-space B0. For all the facts about these spaces
see [4, 7, 14].

In the rest of this work the symbol C stands for an absolute positive constant, while

C(k, l, . . . ) stands for a positive constant depending only on the parameters k, l, . . . .
These constants may not be the same on their various occurrences, even in the same
set of equalities and/or inequalities. The symbol a ≍ b means that a

b
is bounded from

above and from below by two positive absolute constants.

1.2 The Associated Integral Operators

For t ∈ (0, 1] we consider the two families of transformations

φt (z) =
tz

(t − 1)z + 1
, ψt (z) = tz + 1 − t, z ∈ D,

of the unit disc into itself and the family of weight functions

wt (z) =
1

(t − 1)z + 1
, z ∈ D.

If µ is a finite positive Borel measure on (0, 1], then we define

Sµ( f )(z) =

∫

(0,1]

wt (z) f (φt (z)) dµ(t), z ∈ D.

The integral is finite, since, by the lemma of Schwartz and φt (0) = 0, we have
|wt (z)|| f (φt (z))| ≤ 1

1−|z| sup|ζ|≤|z| | f (ζ)|.
We also define

Tµ( f )(z) =

∫

(0,1]

f (ψt (z)) dµ(t)

for those analytic functions f and points z for which the integral is defined.

The following result is proved in [5], but only under extra conditions on µ.

Lemma 1.1 Let µ be a finite positive Borel measure on (0, 1] and f be analytic in

D. Then the power series Hµ( f )(z) converges in D and Hµ( f )(z) = Sµ( f )(z) for every

z ∈ D.
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Proof The absolute convergence of Hµ( f )(z) is proved by

+∞∑

n=0

∣∣∣
n∑

k=0

cn,k ak

∣∣∣ |z|n ≤
∫

(0,1]

+∞∑

k=0

|ak|
( +∞∑

n=k

(
n

k

)
(1 − t)n−k|z|n−k

)
tk|z|k dµ(t)

=

∫

(0,1]

1

1 − (1 − t)|z|

+∞∑

k=0

|ak|
( t|z|

1 − (1 − t)|z|
) k

dµ(t)

≤ 1

1 − |z|µ(0, 1]

+∞∑

k=0

|ak||z|k < +∞.

The same calculation, without absolute values, gives Hµ( f )(z) = Sµ( f )(z).

Unlike the case of Hµ, the coefficients bk =
∑+∞

n=k cn,kan of the power series
Aµ( f )(z) may not converge. For the sake of completeness we state the following
trivial lemma, known from [5].

Lemma 1.2 Let µ be a finite positive Borel measure on (0, 1]. Then, for each poly-

nomial f , the function Aµ( f ) is also a polynomial and Aµ( f )(z) = Tµ( f )(z) for every

z ∈ D.

1.3 Previous Results and the Structure of This Paper

The operators Hµ and Sµ are identical (Lemma 1.1) and this we denote in the whole
work by Hµ ≡ Sµ. On the other hand, the operators Aµ and Tµ are not a priori

identical outside the linear space of polynomials (Lemma 1.2 ). The easiest of the
two is Tµ and its boundedness is studied first. One then needs an extra argument to

pass to Aµ and this becomes involved in certain cases, like H∞ ≡ A∞, BMOA and B,
where polynomials are not dense.

Section 2: In [5] a condition (depending on p) on µ was proved to be sufficient for
the boundedness of Hµ ≡ Tµ : H p → H p in all cases 1 ≤ p < +∞ and the same
condition was also proved necessary in case p = 1.

Independently, [13] gives the same sufficient condition for the boundedness of

Hµ ≡ Tµ : H p → H p when 2 ≤ p < +∞ and a weaker condition when 1 < p < 2.
In the present parer we prove (Theorem 2.4) that the condition in [5] and in [13]

(but, there, only when 2 ≤ p < +∞) is also necessary and we cover the full range
1 ≤ p ≤ +∞. We also give (Proposition 2.1) another proof for the sufficiency of the

condition, entirely different from the previous proofs in [5, 13].
Regarding the boundedness of Aµ and of Tµ on H p, [5] gave the condition on µ

which is necessary and sufficient in the case of Tµ and for 1 ≤ p < +∞ and [13]
gave the necessary and sufficient condition in the case of Aµ and for 1 < p < +∞.

Here we give (Proposition 2.2), in a different way, the necessary and sufficient
condition for the boundedness of Tµ in the range 1 ≤ p ≤ +∞ and (Theorem 2.3)
the necessary and sufficient condition for the boundedness of Aµ in the range 1 ≤
p < +∞. We also prove the equality of the two operators on H p when 1 ≤ p < +∞.
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Another result (Theorem 2.4) is that Hµ : H p → H p and Aµ : H p ′ → H p ′
are

adjoint when 1 < p < +∞ and p ′ is the exponent conjugate to p.

The boundedness of Tµ and Hµ on A0 is treated in Proposition 2.5 and Theorem
2.6. The more difficult cases of the disc algebra A0 and, especially, of H∞ for the
operator Aµ are covered by Theorems 2.7 and 2.8.

Section 3: In [13] there is a sufficient condition for the boundedness of Hµ on the
Bergman spaces Ap in the restricted range 4 ≤ p < +∞ and we give (Theorem 3.6)
the necessary and sufficient condition for the full range 1 ≤ p ≤ +∞. In order to

do this, it seemed technicaly necessary to introduce and study in detail (Proposition
3.4) the adjoint S∗µ of Hµ ≡ Sµ.

In [13] a sufficient condition for the boundedness of Aµ on Ap is given when 1 <
p < +∞. Here we give (Proposition 3.1) the necessary and sufficient conditions for

the boundedness of Tµ when 1 ≤ p ≤ +∞ and (Theorem 3.2) for the boundedness
of Aµ when 1 ≤ p < +∞. Observe that the case of p = +∞ for Aµ is already treated
in the previous section.

Sections 4, 5, 6: We prove the necessary and sufficient conditions for the boundedness
of Hµ and of Aµ on the Dirichlet spaces, BMOA, VMOA, the Bloch and the little-
Bloch spaces. For all these there were no previous results in the literature.

Section 7: Finally, we state, but without proof, our results concerning the Lipschitz

classes and a few open problems that might be interesting.
In all cases we give exact estimates, and in some instances the exact values, of the

norms of the operators on the various spaces.

2 The Hardy Spaces H p, 1 ≤ p ≤ +∞, and the Disc Algebra

In the following proposition we find sufficient conditions on µ for the boundedness
of Sµ on the H p spaces, giving a more direct proof than the one in [5].

Proposition 2.1 Let µ be a finite positive Borel measure on (0, 1] with

(i)
∫

(0,1]
t

1
p
−1 dµ(t) < +∞, for 1 < p ≤ +∞,

(ii)
∫

(0,1]
log 1

t
dµ(t) for p = 1.

Then Hµ ≡ Sµ : H p → H p is a bounded operator and

(iii) ‖Hµ‖H p→H p ≤ C max
(

1
p−1

, 1
) ∫

(0,1]
t

1
p
−1 dµ(t) < +∞, for 1 < p ≤ +∞,

(iv) ‖Hµ‖H1→H1 ≤ C
∫

(0,1]
(1 + log 1

t
) dµ(t) for p = 1.

Proof Let f ∈ H p, 1 ≤ p < +∞. Using the generalized Minkowski inequality,

(2.1) ‖Sµ( f )‖H p ≤
∫

(0,1]

{ 1

2π

∫ 2π

0

|wt (eiθ)|p| f (φt (eiθ))|p dθ
} 1

p

dµ(t).

We fix a t ∈ (0, 1] and work with the inner integral

A(t) =

∫ π

−π

1

|1 − (1 − t)eiθ|p

∣∣∣ f
( teiθ

1 − (1 − t)eiθ

)∣∣∣
p dθ

2π
.
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We define eiφ to be the radial projection of teiθ

1−(1−t)eiθ on the boundary ∂D of the

unit disc. This means eiφ
=

teiθ

1−(1−t)eiθ

|1−(1−t)eiθ|
t

and, either by trivial calculations or
geometrically, one can see that,

(2.2)
∣∣∣ dφ

dθ

∣∣∣ ≥ C

t
, 0 < t ≤ 1.

If N f (eiφ) = sup0≤r<1 | f (reiφ)| is the radial maximal function, then the above

estimate (2.2) gives for 1
2
≤ t ≤ 1,

(2.3) A(t) ≤ C p

∫ π

−π
|N f (eiφ)|p dφ

2π
≤ C p‖ f ‖p

H p .

Now, let 0 < t < 1
2

and write A(t) =
∫

0<|θ|≤t
+

∫
t<|θ|≤π = A1(t) + A2(t). For the

first integral, using (2.2), we find

A1(t) ≤ 1

t p

∫

0<|θ|≤t

|N f (eiφ)|p
∣∣∣ dθ

dφ

∣∣∣ dφ

2π
≤ C p

t p−1
‖ f ‖p

H p .

In A2(t) we have
∣∣ teiθ

1−(1−t)eiθ

∣∣ ≤ C < 1, implying
∣∣ f

(
teiθ

1−(1−t)eiθ

) ∣∣ ≤ C‖ f ‖H p .
Hence,

A2(t) ≤ C p

∫

t<|θ|≤π

1

θp
dθ‖ f ‖p

H p ≤
{

C p

p−1
1

t p−1 ‖ f ‖p
H p , if 1 < p < +∞,

C log 1
t
‖ f ‖H1 if p = 1,

and, finally, in case 0 < t < 1
2
,

A(t) ≤
{

C p

p−1
1

t p−1 ‖ f ‖p
H p , if 1 < p < +∞,

C(1 + log 1
t
)‖ f ‖H1 , if p = 1.

Together with (2.1) and (2.3), we get the announced estimates for p ∈ [1,+∞).
In case p = +∞ the estimate is immediate, since

|Sµ( f )(z)| ≤
∫

(0,1]

|wt (z)| | f (φt (z))| dµ(t) ≤
∫

(0,1]

1

t
dµ(t)‖ f ‖H∞ .

The following result is known from [5], where, in fact, the equality ‖Tµ‖H p→H p =∫
(0,1]

t−
1
p dµ(t) is proved for p ∈ [1,+∞) through the use of composition operators.

Here we present an alternative proof.

Proposition 2.2 Let 1 ≤ p ≤ +∞ and µ be a finite positive Borel measure on (0, 1].

Then Tµ : H p → H p defines a bounded operator if and only if
∫

(0,1]

t−
1
p dµ(t) < +∞.

Also ∫

(0,1]

t−
1
p dµ(t) ≤ ‖Tµ‖H p→H p ≤ C

∫

(0,1]

t−
1
p dµ(t).
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Proof It is easy to prove that there exists a fixed α > 1 such that for every θ ∈
[−π, π], every r ∈ [0, 1] and every t ∈ (0, 1), the point treiθ + 1 − t is contained in

the kite-shaped region Γα(eitθ) =
{

z ∈ D :
|eitθ−z|
1−|z| ≤ α

}
.

Now, it is implied that | f (treiθ + 1 − t)| ≤ Nα f (eitθ), where Nα f (ζ) =

supz∈Γα(ζ) | f (z)| is the well-known non-tangential maximal function.

Assuming that
∫

(0,1]
t−

1
p dµ(t) < +∞, and using Minkowski’s inequality,

‖Tµ( f )‖H p ≤
{∫ π

−π

{∫

(0,1]

Nα f (eitθ) dµ(t)
} p dθ

2π

} 1
p

≤
∫

(0,1]

{∫ tπ

−tπ

Nα f (eiθ)p dθ

2π

} 1
p

t−
1
p dµ(t) ≤ Cα

∫

(0,1]

t−
1
p dµ(t)‖ f ‖H p .

Assuming now that Tµ is bounded on H p and considering the functions fλ(z) =
1

(1−z)λ
, 0 < λ < 1

p
, it is clear that Tµ( fλ) =

∫
(0,1]

1
tλ

dµ(t) fλ. This implies∫
(0,1]

1
tλ

dµ(t) ≤ ‖Tµ‖H p→H p for all λ < 1
p

, finishing the proof.

Now we shall see that under the same conditions Aµ defines a bounded operator
on Hardy spaces.

Theorem 2.3 Let 1 ≤ p < +∞ and µ be a finite positive Borel measure on (0, 1].

Then Aµ : H p → H p defines a bounded operator if and only if

‖Aµ‖H p→H p =

∫

(0,1]

t−
1
p dµ(t) < +∞.

Moreover, under this condition, Aµ( f ) = Tµ( f ) for every f ∈ H p.

Proof Let 1 < p < +∞ and
∫

(0,1]
t−

1
p dµ(t) < +∞. If f (z) =

∑+∞
n=0 anzn ∈ H p,

then ‖sN − f ‖H p → 0, where sN (z) =
∑N

n=0 anzn are the partial sums of the Taylor
series of f . From Lemma 1.2 and Proposition 2.2 we get immediately that Aµ(sN ) =

Tµ(sN ) → Tµ( f ) in H p. Using series representation, this means that

+∞∑

k=0

( N∑

n=k

cn,kan

)
zk → Tµ( f )(z) =

+∞∑

k=0

bkzk

in H p. Thus, for each k, we get
∑+∞

n=k cn,k an = bk. Therefore, the series Aµ( f )(z)

is identical to the function Tµ( f )(z) and, combining this with Proposition 2.2, we
conclude that for each p ∈ (1,+∞), Aµ : H p → H p defines a bounded operator and

‖Aµ‖H p ≤ C

∫

(0,1]

t−
1
p dµ(t).
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Let p = 1 and
∫

(0,1]
1
t

dµ(t) < +∞. Let also f (z) =
∑+∞

n=0 anzn ∈ H1 and

consider the (C, 1) means σN (z) =
∑N

n=0

(
1 − n

N+1

)
anzn of the Taylor series of f .

Since ‖σN − f ‖H1 → 0, we get Aµ(σN ) = Tµ(σN ) → Tµ( f ) in H1. This means

+∞∑

k=0

( N∑

n=k

(
1 − n

N + 1

)
cn,kan

)
zk → Tµ( f )(z) =

+∞∑

k=0

bkzk

in H1, implying that for each k, the series
∑+∞

n=k cn,kan is (C, 1) summable to bk. In
order to get

∑+∞
n=k cn,kan = bk, it is enough to show Tauber’s condition: cn,kan =

O( 1
n

). Since |an| ≤ ‖ f ‖H1 , it is enough to show cn,k = O( 1
n

). Now

cn,k =

(
n

k

) ∫

(0,1]

∫

(0,t]

(
sk+1(1 − s)n−k

) ′
ds

dµ(t)

t

≤
(

n

k

) ∫

(0,1]

dµ(t)

t

∫

(0,1]

∣∣ (sk+1(1 − s)n−k) ′
∣∣ ds

≤ 2
(k + 1)k+1

k!

nk

(n + 1)k+1

∫

(0,1]

dµ(t)

t
= O

( 1

n

)
.

After having proved that bk =
∑+∞

n=k cn,kan, the rest of the argument is the same as in
the case 1 < p < +∞.

For the necessity, we assume that Aµ is bounded and consider the functions

fλ(z) =
1

(1−z)λ
=

∑+∞
n=0(−1)n

(−λ
n

)
zn, for 0 < λ < 1

p
. Since (−1)n

(−λ
n

)
≥ 0, we

find that

+∞∑

n=k

cn,k(−1)n

(−λ
n

)
=

∫

(0,1]

tk(−1)k

(−λ
k

) +∞∑

n=0

(−λ− k

n

)
(−1)n(1 − t)n dµ(t)

= (−1)k

(−λ
k

) ∫

(0,1]

t−λ dµ(t).

This implies that
∫

(0,1]
t−λ dµ(t) < +∞ for every λ,0 < λ < 1

p
, and

Aµ( fλ)(z) =

+∞∑

k=0

( +∞∑

n=k

cn,k(−1)n

(−λ
n

))
zk

=

∫

(0,1]

t−λ dµ(t) fλ(z).

Therefore
∫

(0,1]
t−λ dµ(t) ≤ ‖Aµ‖H p→H p , for every λ ∈ (0, 1

p
), finishing the proof.

For the exact value of the norm, see the remark before Proposition 2.2.

The proof of the case p = 1 in the following theorem is in [5], and we include it
for the sake of completeness.
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Theorem 2.4 Let 1 ≤ p ≤ +∞, p ′
=

p
p−1

and µ be a finite positive Borel measure

on (0, 1]. Then Hµ is bounded on H p if and only if

‖Hµ‖H p→H p =

∫

(0,1]

t
1
p
−1 dµ(t) < +∞, if 1 < p ≤ +∞

and

‖Hµ‖H1→H1 ≍
∫

(0,1]

(
1 + log

1

t

)
dµ(t) < +∞.

If 1 < p < +∞, then, under the above conditions, Hµ : H p → H p and Aµ : H p ′ →
H p ′

are adjoint.

Proof Proposition 2.1 proves the sufficiency part.
If p = +∞ and Hµ is bounded on H∞, then Hµ(1) ∈ H∞ and, hence,

∫

(0,1]

1

t
dµ(t) = lim

x→1−

∫

(0,1]

1

1 − (1 − t)x
dµ(t) ≤ ‖Hµ‖H∞→H∞ .

Also, if
∫

(0,1]
1
t

dµ(t) < +∞, then

|Hµ( f )(z)| ≤
∫

(0,1]

1

|1 − (1 − t)z| dµ(t)‖ f ‖H∞ ≤
∫

(0,1]

1

t
dµ(t)‖ f ‖H∞ .

Now, let p = 1 and Hµ be bounded on H1. Using Hardy’s inequality, we get

∫

(0,1]

(
1 + log

1

t

)
dµ(t) ≤ C

∫

(0,1]

1

1 − t
log

1

t
dµ(t)

= C

+∞∑

n=0

1

n + 1

∫

(0,1]

(1 − t)n dµ(t)

≤ C‖Hµ(1)‖H1 ≤ C‖Hµ‖H1→H1 .

Let 1 < p < +∞, assume that Hµ is bounded on H p and let H ′
µ : H p ′ → H p ′

be
the bounded adjoint of Hµ. We claim that for all f ∈ H p and all polynomials g,

∫ 2π

0

Hµ( f )(eiθ)g(eiθ)
dθ

2π
=

∫ 2π

0

f (eiθ)Aµ(g)(eiθ)
dθ

2π
.

This is trivial to prove when we replace eiθ by reiθ; we subsequently let r → 1−,
bearing in mind that both f and Hµ( f ) are in H p. This identity implies that H ′

µ(g) =

Aµ(g) for all polynomials g and, in view of the density of polynomials in H p ′
and of

Theorem 2.3, the proof will be complete, if we prove that
∫

(0,1]
t

1
p
−1 dµ(t) < +∞.

Let 0 < λ < 1
p ′ and consider the functions fλ(z) =

1
(1−z)λ

=
∑+∞

n=0

(
n+λ−1

n

)
zn.

For the partial sums sλ,N of the Taylor series of fλ we know that ‖sλ,N − fλ‖H p ′ → 0
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and, since H ′
µ is bounded, we find Aµ(sλ,N ) = H ′

µ(sλ,N ) → H ′
µ( fλ) in H p ′

. Thus, for
each z = x ∈ [0, 1) we get Aµ(sλ,N )(x) → H ′

µ( fλ)(x). Due to monotone convergence,

Aµ(sλ,N )(x) →
∫

(0,1]

+∞∑

n=0

(
n + λ− 1

n

)
(1 − t + tx)n dµ(t) =

∫

(0,1]

1

tλ
fλ(x) dµ(t).

Therefore,
∫

(0,1]
1
tλ

dµ(t) fλ(z) = H ′
µ( fλ)(z) for every z ∈ [0, 1). By analytic con-

tinuation, this extends to all z in the unit disc, implying
∫

(0,1]

1

tλ
dµ(t) ≤ ‖H ′

µ‖H p ′→H p ′ = ‖Hµ‖H p→H p

for all λ ∈ (0, 1
p ′ ) and, finally,

∫
(0,1]

t
1
p
−1 dµ(t) ≤ ‖Hµ‖H p→H p .

The last two results concern the behaviour of Hausdorff and quasi-Hausdorff ma-

trices on the disc algebra A0.

Proposition 2.5 Let µ be a finite positive Borel measure on (0, 1]. Then Tµ is bounded

on A0 and

‖Tµ‖A0→A0
= µ(0, 1].

Proof If f ∈ A0 and z1, z2 in D, using w = tz + 1 − t , we find easily

|Tµ( f )(z1) − Tµ( f )(z2)| ≤ µ(0, 1] max
|w1−w2|≤|z1−z2|

| f (w1) − f (w2)|.

Therefore, Tµ( f ) is in A0.
The inequality ‖Aµ‖A0→A0

≤ µ(0, 1] is obvious and we get the opposite inequality,
considering Tµ(1) = µ(0, 1].

Theorem 2.6 Let µ be a finite positive Borel measure on (0, 1]. Then Hµ ≡ Sµ is

bounded on A0 if and only if
∫

(0,1]
1
t

dµ(t) < +∞. Moreover,

‖Hµ‖A0→A0
=

∫

(0,1]

1

t
dµ(t).

Proof The necessity of the condition and the exact formula for the norm of the

operator are proved in the same way as the case p = +∞ of Theorem 2.4. Therefore,
it is enough to prove the sufficiency of the condition. Hence, let

∫
(0,1]

1
t

dµ(t) < +∞
and f ∈ A0 and for any ǫ > 0 find δ > 0 so that

∫
(0,δ)

1
t

dµ(t) < ǫ. Then

|Hµ( f )(z) − Hµ( f )(z0)| ≤ 2ǫ‖ f ‖A0

+

∫

[δ,1]

∣∣∣∣
1

1 − (1 − t)z
f
( tz

1 − (1 − t)z

)

− 1

1 − (1 − t)z0

f
( tz0

1 − (1 − t)z0

)∣∣∣∣ dµ(t).
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Due to uniform convergence, the last term tends to 0 when z → z0. Hence,
lim supz→z0

|Hµ( f )(z) − Hµ( f )(z0)| ≤ 2ǫ‖ f ‖A0
, implying that Hµ( f ) is continuous

at the arbitrary z0 ∈ D.

The behaviour of Aµ on the spaces A0 and H∞ remains open, and the last two results
of this section exactly describe this behaviour.

Theorem 2.7 Let µ be a finite positive Borel measure on (0, 1]. Then Aµ is bounded

on A0 if and only if supn log n
∫

(0,1]
(1 − t)n dµ(t) < +∞. In this case we have that

Aµ ≡ Tµ on A0 and, hence, ‖Aµ‖A0→A0
= µ(0, 1].

Proof (A) The maximum of tk(1 − t)n−k on (0, 1] is ( k
n

)k(1 − k
n

)n−k at t =
k
n

.
Therefore,

cn,k =

(
n

k

) ∫

(0, 1√
n

)

tk(1 − t)n−k dµ(t) +

(
n

k

) ∫

[ 1√
n
,1]

tk(1 − t)n−k dµ(t)

≤ C(k)
{
µ
(

0,
1√
n

)
+ nke

− n−k√
n µ(0, 1]

}
.

Hence, when n → +∞,

(2.4) cn,k → 0.

Our next aim is to prove that {cn,k} is almost-decreasing. The meaning of this is
expressed by (2.5) and (2.6) below. Clearly,

cn,k − cn+1,k ≥ −
(

n + 1

k

) ∫

(0, k
n+1

)

tk(1 − t)n−k
( k

n + 1
− t

)
dµ(t) = −rn,k.(2.5)

where

(2.6)

+∞∑

n=k

rn,k ≤ C(k)

+∞∑

n=k

nk−1

∫

(0, k
k+1

)

tkχ(0, k
n+1

)(t) dµ(t)

= C(k)

∫

(0, k
k+1

)

tk

+∞∑

n=k

nk−1χ[k, k
t
−1)(n) dµ(t)

≤ C(k)µ
(

0,
k

k + 1

)
< +∞.

The next result is that {cn,k} is almost-convex, as expressed by (2.7) and (2.8).

cn,k−2cn+1,k + cn+2,k =

(
n + 2

k

) ∫

(0,1]

tk(1 − t)n−k
{(

t − k

n + 2

) 2

− k(n + 2 − k)

(n + 1)(n + 2)2

}
dµ(t).
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We set t±n,k =
k

n+2
±

√
k(n+2−k)

(n+1)(n+2)2 and then 0 < t−n,k < t+
n,k ≤ min

(
2k

n+2
, 1

)
. For all

t ∈ (t−n,k, t
+
n,k) we have

∣∣∣
(

t − k

n + 2

) 2

− k(n + 2 − k)

(n + 1)(n + 2)2

∣∣∣ ≤ C
k(n + 2 − k)

n3
.

Hence,

cn,k−2cn+1,k + cn+2,k ≥ −C

(
n

k − 1

)
1

n

∫

(t−
n,k,t

+
n,k)

tk(1 − t)n−k dµ(t) = −Rn,k.(2.7)

where Rn,k = 0 when k = 0. This implies

(2.8)

+∞∑

n=k

nRn,k ≤ C(k)

+∞∑

n=k

nk−1

∫

(0,1]

tkχ(0,tn,k)(t) dµ(t)

≤ C(k)

∫

(0,1]

tk

[ 2k
t

]∑

n=k

nk−1 dµ(t) ≤ C(k)µ(0, 1] < +∞.

From (2.7),

(2.9) c[ m
2

],k − cm+1,k =

m∑

n=[ m
2

]

(cn,k − cn+1,k)

≥
m∑

n=[ m
2

]

(−Rn,k − · · · − Rm−1,k + cm,k − cm+1,k)

≥ −C

m∑

n=[ m
2

]

nRn,k + Cm(cm,k − cm+1,k).

From (2.8) and (2.9) we find lim supm→+∞ m(cm,k − cm+1,k) ≤ 0 and from (2.5),

m(cm,k − cm+1,k) ≥ −C(k)mk

∫

(0, k
m+1

)

tk dµ(t) ≥ −C(k)µ
(

0,
k

m + 1

)
,

implying lim infm→+∞ m(cm,k − cm+1,k) ≥ 0. Therefore

(2.10) n(cn,k − cn+1,k) → 0.

Applying summation by parts together with (2.4) and (2.10),

(2.11)

+∞∑

n=k

(n + 1)(cn,k − 2cn+1,k + cn+2,k) = (k + 1)ck,k − kck+1,k.
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which, together with (2.7) and (2.8), gives

(2.12)

+∞∑

n=k

(n + 1)|cn,k − 2cn+1,k + cn+2,k| ≤ (k + 1)ck,k − kck+1,k + 2

+∞∑

n=k

(n + 1)Rn,k

< +∞.

(B) Now let f (z) =
∑+∞

n=0 anzn ∈ A0 and consider sn = a0 + · · · + an and σn =
1

n+1
(s0 + · · · + sn). After the usual summation by parts, we get

(2.13)

N∑

n=k

cn,kan =

N−2∑

n=k

(cn,k − 2cn+1,k + cn+2,k)(n + 1)σn

+ N(cN−1,k − cN,k)σN−1 − k(ck,k − ck+1,k)σk−1 + cN,ksN − ck,ksk−1.

Since {σn} is bounded, from (2.10), (2.12) and (2.13) it is implied that the conver-
gence of

∑+∞
n=k cn,kan is equivalent to the existence of limn→+∞ cn,ksn in C.

Assume now that Aµ is bounded on A0. Then, for every f ∈ A0, the series∑+∞
n=0 cn,0an converges and, hence, the limit

lim
n→+∞

cn,0sn = lim
n→+∞

cn,0

∫ π

−π
Dn(θ) f (eiθ)

dθ

π

exists in C, where

Dn(θ) =
1

2
+

n∑

ν=1

cos νθ =
sin(n + 1

2
)θ

2 sin 1
2
θ

is the Dirichlet kernel. From the Uniform Boundedness Principle we get that
supn cn,0 log n < +∞. Because limn→+∞ cn,0sn = 0 for every polynomial f and be-

cause polynomials are dense in A0, we conclude that limn→+∞ cn,0sn = 0. for every
f ∈ A0.

Suppose that

(2.14) sup
n

cn,k log n < +∞
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is true for some k. We shall prove it for k + 1, implying that it is true for all k and
hence, that

(2.15) lim
n→+∞

cn,ksn = 0

is true for all k. Now, from (2.9),

cn,k+1 =
n

k + 1
(cn−1,k − cn,k) +

k

k + 1
cn,k

≤ C(k)

+∞∑

m=[n/2]

mRm,k + C(k)(c[n/2],k + cn,k)

and, performing more carefully the estimates that led to (2.8), we get

cn,k+1 ≤ C(k)

+∞∑

m=[n/2]

mk−1

∫

(0, 2k
[n/2]

)

tkχ(0, 2k
m

)(t) dµ(t) + C(k)(c[n/2],k + cn,k)

≤ C(k)

∫

(0, 8k
n

)

tk

[ 2k
t

]∑

m=[n/2]

mk−1 dµ(t) + C(k)(c[n/2],k + cn,k)

≤ C(k)µ
(

0,
8k

n

)
+ C(k)(c[n/2],k + cn,k) ≤ C(k)(c[n/2],k + cn,k).

From this and (2.14), we get supn log ncn,k+1 < +∞, and the proof of (2.14) and
(2.15) is complete for all k. Now, (2.13) implies

(2.16)

+∞∑

n=k

cn,kan =

+∞∑

n=k

(cn,k−2cn+1,k +cn+2,k)(n+1)σn−k(ck,k−ck+1,k)σk−1−ck,ksk−1

for every k.

From (2.7), we have that for every ρ ∈ [0, 1)

+∞∑

k=0

( +∞∑

n=k

nRn,k

)
ρk ≤ C

+∞∑

k=1

+∞∑

n=k

(
n

k − 1

) ∫

(0,1]

tk(1 − t)n−k dµ(t)ρk

= C

∫

(0,1]

ρ

(1 − ρ)(1 − tρ)
dµ(t) < +∞,
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and, from (2.12),

+∞∑

k=0

+∞∑

n=k

(n + 1)|cn,k − 2cn+1,k + cn+2,k|ρk

≤
+∞∑

k=0

(
(k + 1)ck,k − kck+1,k

)
ρk + 2

+∞∑

k=0

+∞∑

n=k

(n + 1)Rn,kρ
k

=

∫

(0,1]

1 − 3ρt + 2ρt2

(1 − ρt)3
dµ(t) + 2

+∞∑

k=0

+∞∑

n=k

(n + 1)Rn,kρ
k < +∞.

Therefore, from (2.16) and for any z ∈ D,

+∞∑

k=0

( +∞∑

n=k

cn,kan

)
zk

=

+∞∑

n=0

( n∑

k=0

(cn,k − 2cn+1,k + cn+2,k)zk
)

(n + 1)σn

−
+∞∑

k=1

k(ck,k − ck+1,k)σk−1zk −
+∞∑

k=1

ck,ksk−1zk

=

+∞∑

n=0

( n∑

k=0

cn,kzk − 2

n+1∑

k=0

cn+1,kzk +

n+2∑

k=0

cn+2,kzk
)

(n + 1)σn

=

∫

(0,1]

+∞∑

n=0

an(1 − t + tz)n dµ(t) = Tµ( f )(z).

Theorem 2.8 Let µ be a finite positive Borel measure on (0, 1]. Then Aµ is bounded

on H∞ if and only if limn→+∞ log n
∫

(0,1]
(1 − t)n dµ(t) = 0. In this case Aµ ≡ Tµ on

H∞ and ‖Aµ‖H∞→H∞ = µ(0, 1].

Proof All results in part (A) of the proof of Theorem 2.7 remain unchanged, since
the function space is not involved there. On the other hand, part (B) depends upon

the validity of (2.15) for all k.

If we assume limn→+∞ cn,0 log n = limn→+∞ log n
∫

(0,1]
(1 − t)n dµ(t) = 0, then

exactly as before, we can show by induction that limn→+∞ cn,k log n = 0 for all k.
Since |sn| ≤ C log n‖ f ‖H∞ for all f ∈ H∞, we immediately get (2.15), and the

sufficiency part of the theorem is proved.

Now, assume that Aµ is bounded on H∞. Then, exactly as before, we see that
limn→+∞ cn,0sn exists in C for all f ∈ H∞, and the Uniform Boundedness Principle
implies, as before, that supn cn,0 log n < +∞. But the polynomials are not dense in

H∞ and, hence, we cannot easily get

(2.17) lim
n→+∞

cn,0 log n = 0.
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Therefore, the rest of the proof consists in proving that if limn→+∞ cn,0sn exists in C

for all f ∈ H∞, then limn→+∞ cn,0 log n = 0.

Suppose that, on the contrary, there is a sequence {n j} so that

(2.18) cn j ,0 log n j → ρ 6= 0.

We say that φ is of type C if it is 2π-periodic, is in C∞(R \ 2πZ), is real and odd, is
decreasing in (0, π] and satisfies φ(0+) =

π
2

and φ(π) = 0. Then (see [15])

(i) φ̂(n) is imaginary, φ̂(−n) = −φ̂(n) for all n and hence, sNφ(0) = 0 for all N ,

(ii) |sNφ(θ)| ≤ C0 for some absolute C0, for all N and all θ,
(iii) sNφ(θ) → φ(θ) uniformly in δ ≤ |θ| ≤ π, for all δ, and

(iv) − s̃Nφ(0)
log N

=
2i

log N

∑N
n=1 φ̂(n) → 1.

We now construct a sequence of exponential polynomials {ψk} as follows.
We first consider a function φ1 of type C and a large enough N1 so that 2N1 is

in the sequence {n j} of (2.18) and so that
∣∣ 2i

log N1

∑N1

n=1 φ̂1(n) − 1
∣∣ < 1. From (ii),

|sN1
φ1(θ)| ≤ C0 for all θ.

Let ψ1 = sN1
φ1 and suppose that ψ1, . . . , ψk have been constructed so that

degψ j = N j , j = 1, . . . , k where 2N j are all from {n j} and,(2.19)

N j+1 ≥ 3N j , j = 1, . . . , k − 1(2.20)

ψ j(0) = 0, j = 1, . . . , k(2.21)

|ψ j(θ)| ≤ C0

2 j−1
,

π

2 j−1
≤ |θ| ≤ π, j = 1, . . . , k(2.22)

|ψ1(θ)| + · · · + |ψk(θ)| ≤ C0

(
1 +

1

2
+ · · · +

1

2k−1

)
for all θ and(2.23)

∣∣∣ 2i

log N j

N j∑

n=1

ψ̂ j(n) − 1
∣∣∣ < 1

j
, j = 1, . . . , k.(2.24)

From (2.21) we have that for some δk ∈ (0, π
2k ],

(2.25) |ψ1(θ)| + · · · + |ψk(θ)| ≤ C0

( 1

2
+ · · · +

1

2k

)
, |θ| ≤ δk.

We consider any φk+1 of type C and supported in [−δk, δk] and take large enough
Nk+1 so that 2Nk+1 is in {n j} and so that

Nk+1 > 3Nk,
∣∣∣ 2i

log Nk+1

Nk+1∑

n=1

φ̂k+1(n) − 1
∣∣∣ < 1

k + 1

and due to (iii),

(2.26) |sNk+1
φk+1(θ)| ≤ C0

2k
, δk ≤ |θ| ≤ π.
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Now, if we define ψk+1 = sNk+1
φk+1, then (2.19)–(2.22) and (2.24) are automat-

ically satisfied for j = k + 1. Combining (2.22) and (2.26) for δk ≤ |θ| ≤ π and

(ii) and (2.25) for |θ| ≤ δk, we get (2.23) for k + 1. Therefore, we have inductively
constructed {ψk} satisfying (2.19)–(2.24) with k = +∞.

Consider the series
+∞∑

k=1

ei2Nkθψk(θ).

By (2.23), the series defines a bounded 2π-periodic function f . Due to (2.19) and
(2.20), f ∈ H∞ and the frequency ranges of the summands do not overlap. From

(2.22), we have that the series converges uniformly in δ ≤ |θ| ≤ π for all δ, and from
(2.23), that its partial sums are uniformly bounded everywhere. Therefore, the series
is the Fourier series of f , and thus,

c3Nm,0s3Nm
f (0) = c3Nm,0

m∑

k=1

ψk(0) = 0,

while, from (2.18) and (2.24),

c2Nm,0s2Nm
f (0) = c2Nm,0

{ m∑

k=1

ψk(0) −
Nm∑

n=1

ψ̂k(n)
}

= −c2Nm,0

Nm∑

n=1

ψ̂k(n)

= −c2Nm,0 log 2Nm

∑Nm

n=1 ψ̂k(n)

log 2Nm
→ 1

2
iρ 6= 0.

This is a contradiction to the existence of limn→+∞ cn,0sn f (0) for all f ∈ H∞.

3 The Bergman Spaces Ap, 1 ≤ p ≤ +∞.

In this section we study Hausdorff matrices and quasi-Hausdorff matrices on Berg-
man spaces Ap, 1 ≤ p ≤ +∞. We find the necessary and sufficient conditions in
order for Hµ and Aµ to define bounded operators on these spaces.

Proposition 3.1 Let 1 ≤ p ≤ +∞ and µ be a finite positive Borel measure on (0, 1].

Then Tµ : Ap → Ap is a bounded operator if and only if

‖Tµ‖Ap→Ap =

∫

(0,1]

t−
2
p dµ(t) < +∞.

Proof Let 1 ≤ p ≤ +∞,
∫

(0,1]
t−

2
p dµ(t) < +∞ and f ∈ Ap. By Minkowski’s

inequality and the change of variable w = ψt (z) = tz + 1 − t ,

‖Tµ( f )‖Ap ≤
∫

(0,1]

t−
2
p dµ(t)‖ f ‖Ap .
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Now assume that Tµ is bounded and consider the functions fλ(z) =
1

(1−z)λ
, 0 < λ <

2
p

. Since fλ ∈ Ap and Tµ( fλ)(z) =
∫

(0,1]
1
tλ

dµ(t) fλ(z), it follows that
∫

(0,1]
1
tλ

dµ(t) ≤
‖Tµ‖Ap→Ap for all λ ∈ (0, 2

p
). Taking the limit as λ→ 2

p
−, we get the result we want.

Since A∞
= H∞, the case p = +∞ in the next theorem has been covered by Theo-

rem 2.8.

Theorem 3.2 Let 1 ≤ p < +∞ and µ be a finite positive Borel measure on (0, 1].

Then the operator Aµ : Ap → Ap is bounded if and only if

‖Aµ‖Ap→Ap =

∫

(0,1]

t−
2
p dµ(t) < +∞.

Proof The proof is the same as the proof of Theorem 2.3, using now (see [14]) that
if f (z) =

∑+∞
n=0 anzn ∈ Ap, then

∑N
n=0 anzn → f in Ap, if 1 < p < +∞, and∑N

n=0

(
1 − n

N+1

)
anzn → f in A1.

We continue towards finding sufficient conditions so that Sµ ≡ Hµ is bounded
on Ap. The next result is only a preliminary rough form of Theorem 3.6.

Proposition 3.3 Let 1 ≤ p ≤ +∞ and µ be a finite positive Borel measure on (0, 1]
under the further conditions

(i)
∑+∞

n=0
1

n+1
|
∫

(0,1]
(1 − t)n dµ(t)|2 < +∞, for p = 2,

(ii)
∫

(0,1]
t

2
p
−1 dµ(t) < +∞, for 2 < p ≤ +∞.

Then Hµ ≡ Sµ : Ap → Ap is bounded. Also,

(iii) ‖Hµ‖A2→A2 ≤ C
{∑+∞

n=0
1

n+1
|
∫

(0,1]
(1 − t)n dµ(t)|2

} 1
2 , for p = 2,

(iv) ‖Hµ‖Ap→Ap ≤ C max
(

1√
p−2

, 1
) ∫

(0,1]
t

2
p
−1 dµ(t), for 2 < p ≤ +∞,

(v) ‖Hµ‖Ap→Ap ≤ C√
2−p

µ(0, 1], for 1 ≤ p < 2.

Proof Let 1 ≤ p < +∞, p 6= 2 and f ∈ Ap. Then

‖Sµ( f )‖Ap ≤
∫

(0,1]

{∫∫

D

1

|1 − (1 − t)z|p

∣∣∣ f
( tz

1 − (1 − t)z

)∣∣∣
p

dm(z)
} 1

p

dµ(t)

=

∫

(0, 1
2

]

+

∫

( 1
2
,1]

= K1 + K2.

Using the change of variable w = φt (z) =
tz

1−(1−t)z
, we get

I(t) :=

∫∫

D

1

|1 − (1 − t)z|p

∣∣∣ f
( tz

1 − (1 − t)z

)∣∣∣
p

dm(z)

=
(1 − t)p−4

t p−2

∫∫

φt (D)

∣∣∣w +
t

1 − t

∣∣∣
p−4

| f (w)|p dm(w).

https://doi.org/10.4153/CJM-2006-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-023-5


Hausdorff and Quasi-Hausdorff Matrices 565

The image of the unit disc, φt (D) = {w ∈ D : |w − 1−t
2−t

| < 1
2−t

}, is an open disc

with the interval (− t
2−t

, 1) as diameter. We separate φt (D) into

A0 =

{
w ∈ φt (D) :

∣∣∣w +
t

1 − t

∣∣∣ ≤ t

1 − t

}

and

A j =

{
w ∈ φt (D) : 2 j−1 t

1 − t
≤

∣∣∣w +
t

1 − t

∣∣∣ ≤ 2 j t

1 − t

}
,

for 1 ≤ j ≤ N , where 2N−1 t
1−t

<
∣∣1 + t

1−t

∣∣ ≤ 2N t
1−t

and thus,

(3.1) 2N ≍ 1

t
.

If 1
2
< t < 1, then the disc φt (D) is covered by A0 ∪ A1. In this case, it is trivial to

see that t
1−t

≍
∣∣w + t

1−t

∣∣ in φt (D). Hence, I(t) ≤ C ‖ f ‖p
Ap . In case t = 1, obviously,

I(t) = ‖ f ‖p
Ap . Therefore,

K2 ≤ C‖ f ‖Ap .

Now let 0 < t ≤ 1
2
. Trying to estimate I(t), we get that if N ≥ 2, then the sets

A0,A1, . . . ,AN−2 are included in |z| ≤ 1
2
. Using that | f (w)| ≤ C‖ f ‖Ap , if |w| ≤ 1

2
,

we get
∫∫

A j
≤ C p(2 jt)p−2‖ f ‖p

Ap for j = 0, . . . ,N − 2. Also, for j = N − 1,N , we

get
∫∫

A j
≤ C(2 jt)p−4‖ f ‖p

Ap . Hence,

I(t) ≤ C p
{N−2∑

j=0

(2p−2) j
}
‖ f ‖p

Ap +
C

t2

{
(2p−4)N−1 + (2p−4)N

}
‖ f ‖p

Ap .

If 1 ≤ p < 2, from (3.1), I(t) ≤
{

C p

1−2p−2 + Ct2−p
}
‖ f ‖p

Ap ≤ C p

2−p
‖ f ‖p

Ap and

K1 ≤ C√
2 − p

µ(0, 1]‖ f ‖Ap .

If p > 2, from (3.1), I(t) ≤ C p

2p−2−1
1

t p−2 ‖ f ‖p
Ap , implying

K1 ≤ C max
( 1√

p − 2
, 1

) ∫

(0,1]

t
2
p
−1 dµ(t)‖ f ‖Ap .

Combining the estimates for K1 and K2, we conclude the case p ∈ [1, 2) ∪ (2,+∞).
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If p = 2, then

‖Sµ( f )‖A2

≤
{∫∫

D

∣∣∣
∫

(0,1]

1

1 − (1 − t)z
dµ(t)

∣∣∣
2

dm(z)
} 1

2 | f (0)|

+
{∫∫

D

∣∣∣
∫

(0,1]

1

1 − (1 − t)z

(
f
( tz

1 − (1 − t)z

)
− f (0)

)
dµ(t)

∣∣∣
2

dm(z)
} 1

2

≤
{ +∞∑

n=0

1

n + 1

∣∣∣
∫

(0,1]

(1 − t)n dµ(t)
∣∣∣

2} 1
2 ‖ f ‖A2

+

∫

(0,1]

{∫∫

D

1

|1 − (1 − t)z|2
∣∣∣ f

( tz

1 − (1 − t)z

)
− f (0)

∣∣∣
2

dm(z)
} 1

2

dµ(t).

Now, we set g(z) =
f (z)− f (0)

z
, which implies that ‖g‖A2 ≤ C‖ f ‖A2 . Therefore,

the second term is ≤
∫

(0,1]

{∫∫
φt (D)

|g(w)|2 dm(w)
} 1

2 dµ(t) ≤ Cµ(0, 1]‖ f ‖A2 , from
which we find

‖Sµ( f )‖A2 ≤ C
{ +∞∑

n=0

1

n + 1

∣∣∣
∫

(0,1]

(1 − t)n dµ(t)
∣∣∣

2} 1
2 ‖ f ‖A2 .

Finally, the case p = +∞ is obvious.

Now, we consider Sµ ≡ Hµ : Ap → Ap as a bounded operator and try to find the
necessary conditions on µ. To do this we formally define the operator

S∗µ( f )(z) =

∫

(0,1]

{ 1 − t

(tz + 1 − t)2

∫ tz+1−t

0

f (ζ)dζ +
tz

tz + 1 − t
f (tz + 1 − t)

}
dµ(t)

=

∫

(0,1]

d

dz

( z

tz + 1 − t

∫ tz+1−t

0

f (ζ)dζ
)

dµ(t).

Proposition 3.4 Let 1 ≤ p ≤ +∞ and µ be a finite positive Borel measure on (0, 1].

Then the operator S∗µ : Ap → Ap is bounded if and only if µ satisfies

‖S∗µ‖Ap→Ap ≍
{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) p ′

r dr
} 1

p ′

+

∫

(0,1]

t1− 2
p dµ(t) < +∞.

In particular, if 2 < p ≤ +∞, then S∗µ is bounded on Ap for all finite positive µ.

Proof If p = +∞, we see easily, by distinguishing the cases |tz + 1 − t| > 1
2

and

|tz + 1 − t| ≤ 1
2
, that the absolute value of the integrand in the formula for S∗µ( f )(z)

is less than C ‖ f ‖A∞ . Therefore, ‖S∗µ( f )‖A∞ ≤ Cµ(0, 1] ‖ f ‖A∞ and thus,

µ(0, 1] ≤ ‖S∗µ‖A∞→A∞ ≤ Cµ(0, 1],
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where the estimate from below we get from f = 1.
Let 1 ≤ p < +∞ and f ∈ Ap. Then

(3.2) ‖S∗µ( f )‖Ap ≤
{∫∫

D

∣∣∣
∫

(0, 1
4

]

∣∣∣
p

dm(z)
} 1

p

+
{∫∫

D

∣∣∣
∫

( 1
4
,1]

∣∣∣
p

dm(z)
} 1

p

= I1 + I2.

Now

I2 ≤
∫

( 1
4
,1]

{∫∫

D

∣∣ d

dz

( z

tz + 1 − t

∫ tz+1−t

0

f (ζ)dζ
) ∣∣ p

dm(z)
} 1

p

dµ(t),

and, denoting the inner integral by J(t) and with w = ψt (z) = tz + 1 − t , we get

J(t) = t p−2

∫∫

ψt (D)

∣∣∣ d

dw

( 1
t
w + 1 − 1

t

w

∫ w

0

f (ζ)dζ
)∣∣∣

p

dm(w).

Since 1
4
< t ≤ 1, the disc ψt (D) intersects the disc {|w| ≤ 1

2
} and we consider the

sets A0 =
{

w ∈ ψt (D) : |w| ≤ 1
2

}
and A1 = ψt (D) \ A0. Then

J(t) = t p−2

∫∫

A0

+ t p−2

∫∫

A1

= J0(t) + J1(t).

If |w| ≤ 3
4
, then | f (w)| ≤ C ‖ f ‖Ap and thus the integrand in J0(t) is ≤ C ‖ f ‖Ap ,

implying J0(t) ≤ C pt p−2‖ f ‖p
Ap . Also,

J1(t) ≤ C pt p−2

∫∫

A1

(∣∣∣
∫ w

0

f (ζ)dζ
∣∣∣ + | f (w)|

) p

dm(w)

≤ C pt p−2

∫∫

A1

|w|p
(∫ 1

0

| f (λw)|p dλ
)

dm(w) + C pt p−2‖ f ‖p
Ap

≤ C pt p−2

∫ 1

0

1

λ2

(∫∫

λA1

| f (w)|p dm(w)
)

dλ + C pt p−2‖ f ‖p
Ap ,

and, since
∫∫

λA1
| f (w)|pdm(w) ≤ C p ‖ f ‖p

Apπλ2, we find J1(t) ≤ C pt p−2‖ f ‖p
Ap . Thus,

J(t) ≤ C pt p−2‖ f ‖p
Ap , for 1

4
≤ t ≤ 1, and finally, I2 ≤ C µ( 1

4
, 1]‖ f ‖Ap .

Next, working with I1, we get

(3.3)

I1 ≤
{∫∫

D

∣∣∣
∫

(0, 1
4

]

∫ 1−t

0

f (ζ)dζ dµ(t)
∣∣∣

p

dm(z)
} 1

p

+
{∫∫

D

∣∣∣
∫

(0, 1
4

]

d

dz

(( z

tz + 1 − t
− z

) ∫ 1−t

0

f (ζ)dζ
)

dµ(t)
∣∣∣

p

dm(z)
} 1

p

+
{∫∫

D

∣∣∣
∫

(0, 1
4

]

d

dz

( z

tz + 1 − t

∫ tz+1−t

1−t

f (ζ)dζ
)

dµ(t)
∣∣∣

p

dm(z)
} 1

p

= I11 + I12 + I13.
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To estimate I13, after using Minkowski’s inequality we set

W (t) =

∫∫

D

∣∣∣ d

dz

( z

tz + 1 − t

∫ tz+1−t

1−t

f (ζ)dζ
)∣∣∣

p

dm(z)

= t p−2

∫∫

ψt (D)

∣∣∣ d

dw

( 1
t
w + 1 − 1

t

w

∫ w

1−t

f (ζ)dζ
)∣∣∣

p

dm(w)

≤ C pt p−2

∫∫

ψt (D)

∣∣∣ 1 − t

t w2

∫ w

1−t

f (ζ)dζ
∣∣∣

p

dm(w)

+ C pt p−2

∫∫

ψt (D)

∣∣∣ w − 1 + t

tw
f (w)

∣∣∣
p

dm(w)

≤ C pt p−2
{∫ 1

0

(∫∫

ψt (D)

| f (λw + (1 − λ)(1 − t))|p
dm(w)

) 1
p

dλ
} p

+ C pt p−2‖ f ‖p
Ap

= C pt p−2
{∫ 1

0

(∫∫

D(1−t ;λt)

| f (z))|p
dm(z)

) 1
p

λ−
2
p dλ

} p

+ C pt p−2‖ f ‖p
Ap

≤ C p t p−2

t2

{∫ 1
2

0

|D(1 − t ;λt)| 1
p λ−

2
p dλ

} p

‖ f ‖p
Ap

+ C pt p−2
{∫ 1

1
2

λ−
2
p dλ

} p

‖ f ‖p
Ap + C pt p−2‖ f ‖p

Ap

≤ C pt p−2‖ f ‖p
Ap .

Thus, I13 ≤ C
∫

(0,1]
t1− 2

p dµ(t)‖ f ‖Ap . To estimate I11 and I12 we use the well-

known f (ζ) =
∫∫

D

f (w)
(1−wζ)2 dm(w), which gives

(3.4)

∫ 1−t

0

f (ζ)dζ =

∫∫

D

f (w)
1 − t

1 − (1 − t)w
dm(w).

After trivial calculations, I12 ≤ Cµ(0, 1]‖ f ‖Ap .

If p ′
=

p
p−1

, then from (3.4) we also have

I11 ≤
{∫∫

D

∣∣∣
∫

(0, 1
4

]

1 − t

1 − (1 − t)w
dµ(t)

∣∣∣
p ′

dm(w)
} 1

p ′ ‖ f ‖Ap

≤ C
{∫∫

D

(∫

(0,1]

1

t + |1 − w| dµ(t)
) p ′

dm(w)
} 1

p ′ ‖ f ‖Ap

≤ C
{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) p ′

r dr
} 1

p ′ ‖ f ‖Ap .
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Combining all estimates we get

(3.5) ‖S∗µ‖Ap→Ap ≤ C

[{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) p ′

r dr
} 1

p ′

+

∫

(0,1]

t1− 2
p dµ(t)

]
.

Assume, conversely, that S∗µ : Ap → Ap is bounded and consider first p ≥ 2. We
change (3.2) to ‖S∗µ( f )‖Ap ≥ I1− I2 and (3.3) to I1 ≥ I11 − I12 − I13. Choosing f = 1,

we see that µ(0, 1] ≤ ‖S∗µ‖Ap→Ap . This, together with all other estimates, implies
I11 ≤ C‖S∗µ‖Ap→Ap‖ f ‖Ap . In view of (3.4) and duality, we now have

{∫∫

D

∣∣∣
∫

(0, 1
4

]

1 − t

1 − (1 − t)w
dµ(t)

∣∣∣
p ′

dm(w)
} 1

p ′ ≤ C‖S∗µ‖Ap→Ap .

Restricting D to a Stolz-angle of opening, say π
2

, with vertex at 1, we get

{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) p ′

r dr
} 1

p ′ ≤ C‖S∗µ‖Ap→Ap .

If 1 ≤ p < 2, consider the functions fλ(z) =
d
dz

z
(1−z)λ

, 0 < λ < 2
p
− 1, which

satisfy S∗µ( fλ) =
∫

(0,1]
t−λ dµ(t) fλ. This implies

∫
(0,1]

t1− 2
p dµ(t) ≤ ‖S∗µ‖Ap→Ap , and

now the inequality ‖S∗µ( f )‖Ap ≥ I11 − I12 − I13 − I2, through the same argument as

above gives

{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) p ′

r dr
} 1

p ′

+

∫

(0,1]

t1− 2
p dµ(t) ≤ C‖S∗µ‖Ap→Ap .

The last claim in the statement of the theorem is an immediate consequence of
Comment (ii), below.

Comment The quantities in Proposition 3.3 and the “duals” of the quantities in
Proposition 3.4 are, as expected, closely related.

(i) For p = 2, we have through
∥∥∫

(0,1]
1

1−(1−t)w
dµ(t)

∥∥
A2 that

(3.6)
{ +∞∑

n=0

1

n + 1

∣∣∣
∫

(0,1]

(1 − t)ndµ(t)
∣∣∣

2} 1
2 ≍

{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) 2

r dr
} 1

2

+ µ(0, 1].

(ii) For 1 ≤ p < 2,

(3.7) µ(0, 1] ≤ C

[{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) p

r dr
} 1

p

+

∫

(0,1]

t
1− 2

p ′ dµ(t)

]

≤ C max
( 1√

2 − p
, 1

)
µ(0, 1].
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(iii) Finally, for p > 2,

(3.8)

∫

(0,1]

t
2
p
−1 dµ(t) ≤

{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) p

r dr
} 1

p

+

∫

(0,1]

t
1− 2

p ′ dµ(t)

≤ C max
( 1√

p − 2
, 1

) ∫

(0,1]

t
2
p
−1 dµ(t).

Lemma 3.5 Let µ be a finite Borel measure on (0, 1]. If f , g are polynomials, then

∫∫

D

S∗µ( f )(z)g(z) dm(z) =

∫∫

D

f (z)Sµ(g)(z) dm(z).

Proof The proof is a matter of trivial calculations with f (z) = zk, g(z) = zl.

Now, we are in the position to state the following final form of Proposition 3.3.

Theorem 3.6 Let 1 ≤ p ≤ +∞ and µ be a finite positive Borel measure on (0, 1].

Then Hµ ≡ Sµ : Ap → Ap is bounded if and only if the following additional condition

is satisfied:

‖Hµ‖Ap→Ap ≍
{∫ 1

0

(∫

(0,1]

1

t + r
dµ(t)

) p

r dr
} 1

p

+

∫

(0,1]

t
1− 2

p ′ dµ(t) < +∞.

Moreover, if 1 ≤ p < +∞ and µ satisfies the above condition, then the adjoint of

Hµ ≡ Sµ : Ap → Ap is the operator S∗µ : Ap ′ → Ap ′
, p ′

=
p

p−1
.

Proof (i) Let p = +∞. Then, the condition becomes
∫

(0,1]
1
t
dµ(t) < +∞ and

Proposition 3.3 implies that Hµ is bounded on A∞.

Conversely, from Hµ(1)(z) =
∫

(0,1]
1

1−(1−t)z
dµ(t), we get

∫

(0,1]

1

t
dµ(t) = lim

x→1−

∫

(0,1]

1

1 − (1 − t)x
dµ(t) ≤ ‖Hµ‖A∞→A∞ .

Now let 1 ≤ p < +∞. Then the condition in the statement of the theorem

implies, through (3.6), (3.7), (3.8) and Proposition 3.3, that Hµ is bounded on Ap.
Therefore, it only remains to prove the necessity of the condition and that S∗µ is the
adjoint of Hµ. We assume that Hµ ≡ Sµ : Ap → Ap is bounded and we denote

S ′
µ : Ap ′ → Ap ′

its bounded adjoint. From Lemma 3.5, we have that S∗µ( f ) = S ′
µ( f )

for every polynomial f .

(ii) Let 1 ≤ p < 2. Lemma 3.5 implies that for each polynomial g(z),

∣∣∣
∫∫

D

S∗µ(1)(z)g(z) dm(z)
∣∣∣ ≤ ‖Sµ(g)‖Ap ≤ ‖Sµ‖Ap→Ap‖g‖Ap ,
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and, since the polynomials are dense in Ap, µ(0, 1] = ‖S∗µ(1)‖Ap ′ ≤ ‖Sµ‖Ap→Ap .

Hence, by (3.7) and Proposition 3.4, S∗µ : Ap ′ → Ap ′
is bounded.

In case 1 < p < 2 the polynomials are dense in Ap ′
. Therefore, S∗µ is the adjoint of

Hµ, implying that the two operators have the same norm and this subcase is complete,
due to Proposition 3.4.

Now let p = 1. To prove that S ′
µ = S∗µ, we consider the following subcases:

(α) Let δ ∈ (0, 1] and µ ≡ 0 in (0, δ). Then the measure µ satisfies the necessary

and the sufficient condition for S∗ to be bounded on A2. Consider an f ∈ A∞ ⊂ A2

and the (C, 1) means σN ( f ) of its Taylor series. Then σN ( f )
w∗

−→ f and therefore,
S ′
µ(σN ( f ))

w∗

−→S ′
µ( f ) in A∞. Also, σN ( f ) → f , implying S∗µ(σN ( f )) → S∗µ( f ) in A2.

But, from Lemma 3.5, we get S∗µ(σN ( f )) = S ′
µ(σN ( f )), and thus, S∗µ( f ) = S ′

µ( f ).

(β) For arbitrary δ ∈ (0, 1] define the measures µδ = µ[δ,1] and νδ = µ(0,δ). From
case (α) we get S ′

µδ
( f ) = S∗µδ ( f ) and then

‖S ′
µ( f ) − S ′

µδ
( f )‖A∞ = ‖Sνδ‖A1→A1‖ f ‖A∞ ≤ Cµ(0, δ] ‖ f ‖A∞

and
‖S∗µ( f ) − S∗µδ ( f )‖A∞ = ‖S∗νδ ( f )‖A∞ ≤ Cµ(0, δ]‖ f ‖A∞ .

Letting δ → 0, we find S∗µ f = S ′
µ f .

(iii) Let p = 2. Lemma 3.5 implies that for every polynomial f , ‖S∗µ( f )‖A2 ≤
‖Sµ‖A2→A2‖ f ‖A2 .Considering the polynomial fN (z) =

∑N
n=0

∫
(0, 1

4
]
(1−t)n+1 dµ(t)zn,

we get from the end of the proof of Proposition 3.4 that

{ N∑

n=0

1

n + 1

∣∣∣
∫

(0, 1
4

]

(1 − t)ndµ(t)
∣∣∣

2}

≤ C‖S∗µ( fN )‖A2→A2 ≤ C‖Sµ‖A2→A2‖ fN‖A2

= C‖Sµ‖A2→A2

{ N∑

n=0

1

n + 1

∣∣∣
∫

(0, 1
4

]

(1 − t)n dµ(t)
∣∣∣

2} 1
2

.

Therefore,
{∑N

n=0
1

n+1

∣∣∫
(0, 1

4
]
(1 − t)n dµ(t)

∣∣ 2} 1
2 ≤ C‖Sµ‖A2→A2 and, by Proposition

3.3, S∗µ is bounded on A2. From the density of polynomials in A2, we conclude that

S∗µ is the adjoint of Hµ.

(iv) Finally, let 2 < p < +∞. Let 0 < λ < 2
p ′ − 1 and

fλ(z) =
d

dz

z

(1 − z)λ
=

+∞∑

n=0

(n + 1)

(
n + λ− 1

n

)
zn ∈ Ap ′

.

We take the partial sums sλ,N of the Taylor series of fλ for which we know that ‖sλ,N −
fλ‖Ap ′ → 0. Since S ′

µ is bounded, we find S∗µ(sλ,N ) = S ′
µ(sλ,N ) → S ′

µ( fλ) in Ap ′
.

Hence, for each z = x ∈ [0, 1) we get S∗µ(sλ,N )(x) → S ′
µ( fλ)(x).
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Due to monotone convergence,

S∗µ(sλ,N )(x) →
∫

(0,1]

{ +∞∑

n=0

(
n + λ− 1

n

)(
(1 − t + tx)n + ntx(1 − t + tx)n−1

)}
dµ(t)

=

∫

(0,1]

1

tλ
fλ(x) dµ(t).

Therefore,
∫

(0,1]
1
tλ

dµ(t) fλ(x) = S ′
µ( fλ)(x) for all x ∈ [0, 1) and, by analytic

continuation,
∫

(0,1]
1
tλ

dµ(t) fλ = S ′
µ( fλ) . Hence,

∫
(0,1]

1
tλ

dµ(t) ≤ ‖S ′
µ‖Ap ′→Ap ′ for

0 < λ < 2
p ′ − 1, and thus,

∫
(0,1]

t
2
p
−1 dµ(t) ≤ ‖S ′

µ‖Ap→Ap .

Proposition 3.4 implies now that S∗µ is bounded on Ap ′
, and, through the density

of polynomials in Ap ′
, it is the adjoint of Hµ ≡ Sµ.

Comment One can easily find the exact value of the norm ‖Hµ‖Ap→Ap in the re-
stricted range 4 ≤ p < +∞, using Minkowski’s inequality:

‖Hµ( f )‖Ap ≤
∫

(0,1]

{∫∫

D

1

t p−2

∣∣∣ f
( tz

1 − (1 − t)z

)∣∣∣
p t2

|1 − (1 − t)z|4 dm(z)
} 1

p

dµ(t)

=

∫

(0,1]

{∫∫

φt (D)

| f (w)|pdm(w)
} 1

p

t
2
p
−1 dµ(t) ≤

∫

(0,1]

t
2
p
−1 dµ(t)‖ f ‖Ap .

In view of the last inequality in the proof of Theorem 3.6, we get

‖Hµ‖Ap→Ap =

∫

(0,1]

t
2
p
−1 dµ(t).

4 BMOA and VMOA

Theorem 4.1 Let µ be a finite positive Borel measure on (0, 1]. Then Tµ is bounded

on either BMOA or VMOA if and only if
∫

(0,1]
log 1

t
dµ(t) < +∞, and in both cases its

norm is ≍
∫

(0,1]
(1 + log 1

t
) dµ(t).

Proof Let
∫

(0,1]
log 1

t
dµ(t) < +∞ and f ∈ BMOA. By the growth estimate on f ,

∫

(0,1]

| f (1 − t + tz)| dµ(t) ≤ C

∫

(0,1]

log
1

1 − |1 − t + tz| dµ(t)‖ f ‖BMOA

≤ C

∫

(0,1]

log
1

t(1 − |z|) dµ(t)‖ f ‖BMOA < +∞

and hence, Tµ f (z) is well defined.
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There exist f1, f2 analytic in D with ℜ( f1),ℜ( f2) in L∞, f = f1 + i f2 + f (0),
f1(0) = f2(0) = 0 and ‖ f ‖BMOA ≍ ‖ℜ( f1)‖L∞ + ‖ℜ( f2)‖L∞ + | f (0)|. Obviously,

ℜ(Tµ f j) = Tµ(ℜ( f j)), whence,

‖Tµ f j‖BMOA ≤ C|Tµ f j(0)| + C‖Tµ(ℜ( f j ))‖L∞

≤ C

∫

(0,1]

| f j(1 − t)|dµ(t) + Cµ(0, 1]‖ℜ( f j)‖L∞

≤ C

∫

(0,1]

(
1 + log

1

t

)
dµ(t)‖ f ‖BMOA.

Thus, ‖Tµ f ‖BMOA ≤ C
∫

(0,1]

(
1 + log 1

t

)
dµ(t)‖ f ‖BMOA.

Now suppose that Tµ is bounded on BMOA and take f (z) = log 1
1−z

. Then

Tµ f (0) =
∫

(0,1]
log 1

t
dµ(t) is finite and

∫
(0,1]

log 1
t

dµ(t) ≤ C‖Tµ‖BMOA→BMOA. Sim-

ilarly, taking f (z) = 1, we find µ(0, 1] ≤ C‖Tµ‖BMOA→BMOA.

To deal with the case of VMOA, assume
∫

(0,1]
log 1

t
dµ(t) < +∞.

From Proposition 2.5, we know that Tµ maps A0 into A0 and, therefore, into

VMOA. Since Tµ is bounded on BMOA and A0 is dense in VMOA, we get that it
is bounded on VMOA with no larger norm.

For the opposite, we take fǫ(z) = log 1
1+ǫ−z

∈ VMOA, and then let ǫ→ 0.

Theorem 4.2 Let µ be a finite positive Borel measure on (0, 1]. Then Hµ ≡ Sµ is

bounded on either BMOA or VMOA if and only if
∫

(0,1]
dµ(t)

t
< +∞. Moreover in both

cases the norm of the operator is ≍
∫

(0,1]
dµ(t)

t
.

Proof Assume
∫

(0,1]
dµ(t)

t
< +∞ and take f ∈ BMOA. We define g(z) = z f (z) ∈

BMOA and use the decomposition g = g1 + ig2 with g j analytic in D, g j(0) = 0 and
‖g‖BMOA ≍ ‖ℜ(g1)‖L∞ + ‖ℜ(g2)‖L∞ .

Since | tz
1−(1−t)z

| ≤ |z|, we see that Hµ( f )(z) =
1
z

∫
(0,1]

g
(

tz
1−(1−t)z

)
dµ(t)

t
is well

defined for every z ∈ D and as in the proof of Theorem 4.1,

‖Hµ( f )‖BMOA ≤ C|Hµ( f )(0)| + C‖zHµ( f )‖BMOA

≤ Cµ(0, 1]| f (0)| + C

∫

(0,1]

dµ(t)

t
‖g‖BMOA ≤ C

∫

(0,1]

dµ(t)

t
‖ f ‖BMOA.

Assume Hµ is bounded on BMOA, take f (z) = log 1
1−z

and x ∈ [0, 1). Then,

∫

(0,1]

1

1 − (1 − t)x
log

1 − (1 − t)x

1 − x
dµ(t) = Hµ( f )(x)

≤ C log
1

1 − x
‖Hµ‖BMOA→BMOA.
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Restricting to (
√

1 − x, 1], we find
∫

(
√

1−x,1]
1
t

dµ(t) ≤ C‖Hµ‖BMOA→BMOA and it
only remains to let x → 1−.

If
∫

(0,1]
dµ(t)

t
< +∞, then from Theorem 2.6 Hµ maps A0 into itself. Since A0 is

dense in VMOA and Hµ is bounded on BMOA, we have that it is bounded on VMOA

with no increase in norm.

For the opposite, take fǫ(z) = log 1
1+ǫ−z

∈ VMOA and let ǫ→ 0+.

Theorem 4.3 Let µ be a finite positive Borel measure on (0, 1]. Then Aµ is bounded

on BMOA if and only if
∫

(0,1]
log 1

t
dµ(t) < +∞. In this case Aµ ≡ Tµ on BMOA.

Exactly the same are true for the space VMOA.

Proof We employ the notation in the proof of Theorem 2.7. We assume
∫

(0,1]
log 1

t

dµ(t) < +∞ and take f ∈ BMOA. It is easy to see that

(4.1) |sn| ≤ C‖ f ‖BMOA log n.

In fact, write f = f1 + i f2 + f (0) with f1, f2 analytic in D, ℜ( f1),ℜ( f2) ∈ L∞,
f1(0) = f2(0) = 0 and ‖ f ‖BMOA ≍ | f (0)| + ‖ℜ( f1)‖L∞ + ‖ℜ( f2)‖L∞ . Then,

|sn| ≤ | f (0)| +
∣∣∣

n∑

k=1

f̂1(k)
∣∣∣ +

∣∣∣
n∑

k=1

f̂2(k)
∣∣∣

= | f (0)| +
∣∣∣

n∑

k=1

∫ 2π

0

ℜ( f1)(θ)e−ikθ dθ

2π

∣∣∣ +
∣∣∣

n∑

k=1

∫ 2π

0

ℜ( f2)(θ)e−ikθ dθ

2π

∣∣∣

≤ | f (0)| + C(‖ℜ( f1)‖L∞ + ‖ℜ( f2)‖L∞) log n ≤ C‖ f ‖BMOA log n.

We get cn,k log n ≤ C(k)
{∫

(0, 1√
n

)
log 1

t
dµ(t) + log nnke

− n−k√
n µ(0, 1]

}
→ 0 from the

estimate that gave us (2.4), and this, together with (4.1), implies

(4.2) cn,ksn → 0.

From (2.5),

|cn,k − cn+1,k| ≤ cn,k − cn+1,k + 2C(k)nk−1

∫

(0, k
n+1

)

tk dµ(t)
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and, using (4.1),

N−1∑

n=k

|cn,k − cn+1,k||sn|

≤ C(k)‖ f ‖BMOA

{N−1∑

n=k

(cn,k − cn+1,k) log n +

N−1∑

n=k

nk−1 log n

∫

(0, k
n+1

)

tk dµ(t)
}

≤ C(k)‖ f ‖BMOA

{ +∞∑

n=k

log
n

n − 1
cn,k + ck,k log k

+

∫

(0,1]

tk

+∞∑

n=k

nk−1 log nχ(0, k
n+1

)(t) dµ(t)
}

≤ C(k)‖ f ‖BMOA

{ +∞∑

n=k

1

n

(
n

k

) ∫

(0,1]

tk(1 − t)n−k dµ(t) + ck,k log k

+

∫

(0,1]

tk

[ k
t

]∑

n=k

nk−1 log n dµ(t)
}

≤ C(k)‖ f ‖BMOA

{
µ(0, 1] + ck,k log k +

∫

(0,1]

log
1

t
dµ(t)

}
< +∞.

Therefore, the series
∑+∞

n=k(cn,k − cn+1,k)sn coverges and (4.2) together with summa-
tion by parts gives

(4.3)

+∞∑

n=k

cn,kan =

+∞∑

n=k

(cn,k − cn+1,k)sn − ck,ksk−1.

We shall need the estimates:
∑+∞

n=1 tn log n ≤ C
∑+∞

n=1 tn
∑n

k=1
1
k

=
C

1−t
log 1

1−t

and
∑+∞

n=1 ntn log n ≤ C
1−t

+ C
1−t

log 1
1−t

. Taking any ρ ∈ [0, 1), we have from (4.1)
and the first of these estimates,

(4.4)

+∞∑

n=0

n∑

k=0

(cn,k − cn+1,k)ρk|sn|

=

+∞∑

n=0

∫

(0,1]

{
t(1 − t + tρ)n(1 − ρ) + tn+1ρn+1

}
dµ(t)|sn|

≤ C‖ f ‖BMOA

∫

(0,1]

{
t(1 − ρ) + t(1 − ρ)

1

t(1 − ρ)
log

1

t(1 − ρ)

+ tρ + tρ
1

1 − tρ
log

1

1 − tρ

}
dµ(t) < +∞.
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From (2.5), (4.1) and the second of the estimates,

(4.5)

+∞∑

k=0

+∞∑

n=k

rn,k|sn|ρk ≤
+∞∑

k=1

+∞∑

n=k

(
n

k − 1

) ∫

(0,1]

tk(1 − t)n−k dµ(t)|sn|ρk

=

∫

(0,1]

tρ

1 − t

+∞∑

n=1

(
(1 − t + tρ)n − tnρn

)
|sn|dµ(t)

≤
∫

(0,1]

tρ

+∞∑

n=1

n(1 − t + tρ)n−1|sn| dµ(t)

≤ C‖ f ‖BMOA

∫

(0,1]

tρ
{ 1

t(1 − ρ)

+
1

t(1 − ρ)
log

1

t(1 − ρ)

}
dµ(t) < +∞.

Finally, from (4.4) and (4.5) we get

+∞∑

k=0

+∞∑

n=k

|cn,k − cn+1,k||sn|ρk ≤
+∞∑

n=0

n∑

k=0

(cn,k − cn+1,k)ρk|sn| + 2

+∞∑

k=0

+∞∑

n=k

rn,k|sn|ρk

< +∞.

Therefore, using (4.3) and a change of the order of summation,

+∞∑

k=0

( +∞∑

n=k

cn,kan

)
zk

=

∫

(0,1]

+∞∑

n=0

an(1 − t + tz)n dµ(t) = Tµ( f )(z).

To prove the necessity part of the theorem, consider f (z) = log 1
1−z

and observe

that the first coefficient of Aµ( f ) is
∑+∞

n=1
1
n

∫
(0,1]

(1 − t)ndµ(t) =
∫

(0,1]
log 1

t
dµ(t).

Since we have proved that the condition
∫

(0,1]
log 1

t
dµ(t) < +∞ implies Aµ ≡ Tµ

on BMOA, we can use Theorem 4.1 to prove that under the same condition Aµ is

bounded on VMOA.
The necessity is proved by considering f (z) = log 1

1+ǫ−z
and letting ǫ→ 0+.

5 The Bloch and Little–Bloch Spaces

The proofs of the next two theorems, although they are mildly involved, do not
present any new ideas and it seems better to omit them. They just use the standard
growth estimates of functions in the Bloch space B:

| f ′(z)|(1 − |z|) ≤ C‖ f ‖B, | f (z)| ≤ C
(

log
1

1 − |z| + 1
)
‖ f ‖B.
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Theorem 5.1 Let µ be a finite positive Borel measure on (0, 1]. Then Hµ ≡ Sµ is

bounded on B if and only if

‖Hµ‖B→B ≍
∫

(0,1]

1

t
dµ(t) < +∞.

The same condition is necessary and sufficient for Hµ to be bounded on B0.

Theorem 5.2 Let µ be a finite positive Borel measure on (0, 1]. Then Tµ is bounded

on both B and B0 if and only if
∫

(0,1]
log 1

t
dµ(t) < +∞. Moreover, in both cases, its

norm is equivalent to
∫

(0,1]

(
1 + log 1

t

)
dµ(t).

Theorem 5.3 Let µ be a finite positive Borel measure on (0, 1]. Then Aµ is bounded

on B if and only if
∫

(0,1]
log 1

t
dµ(t) < +∞. In this case: Aµ ≡ Tµ on B. Exactly the

same are true for the space B0.

Proof The proof is identical to the proof of the analogous result for the spaces
BMOA and VMOA, provided we prove that for every f (z) =

∑+∞
n=0 anzn ∈ B:

|sn| = |a0 + · · · + an| ≤ C‖ f ‖B log n.

It is true (see [2]) that for every g(z) =
∑+∞

n=0 bnzn analytic in D

∣∣∣ lim
r→1−

+∞∑

n=0

anbnrn
∣∣∣ ≤ 2‖ f ‖B‖g‖T,

where the last norm is defined by ‖g‖T = |g(0)| + 1
2π

∫ 1

0

∫ 2π

0

∣∣g ′(reiθ)
∣∣ dθdr.

Hence, it is enough to consider the function g(z) =
∑n

k=0 zk
=

1−zn+1

1−z
and prove

that ‖g‖T ≤ C log n. This is probably known, but since we have no reference for it,

we present a quick proof.

‖g‖T ≤ 1 +
1

π

∫ 1

0

∫ π

0

|1 − rneinθ|
|1 − reiθ|2 dθdr +

1

π

∫ 1

0

∫ π

0

n|rneinθ − rn+1ei(n+1)θ|
|1 − reiθ|2 dθdr

= 1 + A + B.

Now, B =
n
π

∫ 1

0
rn

∫ π

0
1

|1−reiθ| dθdr ≤ Cn
∫ 1

0
rn

(
1 + log 1

1−r

)
dr ≤ C log n. Also

A =
1

π

∫ 1

0

[ n
2

]−1∑

k=0

∫ (k+1) 2π
n

k 2π
n

|1 − rneinθ|
|1 − reiθ|2 dθdr +

1

π

∫ 1

0

∫ π

[ n
2

] 2π
n

|1 − rneinθ|
|1 − reiθ|2 dθdr

≤ Cn

∫ 1

0

∫ 2π
n

0

1

|1 − reiθ| dθdr + C

∫ 1

0

∫ 2π
n

0

[ n
2

]−1∑

k=1

1

|1 − rei(θ+k 2π
n

)|2
dθdr +

C

n

≤ C log n + C

∫ 1

0

∫ 2π
n

0

∫ π

2π
n

1

|1 − reit |2 dt dθdr

≤ C log n +
C

n

∫ 1

0

∫ π

2π
n

1

(1 − r)2 + t2
dtdr ≤ C log n,
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and the proof is finished.

6 The Dirichlet Space

Through the form 〈 f , g〉∗ =
∑+∞

n=0 anbn, defined for f (z) =
∑+∞

n=0 anzn ∈ D and
g(z) =

∑+∞
n=0 bnzn ∈ A2 a duality relation between the Dirichlet space D and the

Bergman space A2 is introduced. Clearly, |〈 f , g〉∗| ≤ ‖ f ‖D ‖g‖A2 .
If either Hµ is bounded on D or Aµ is bounded on A2, then

〈Hµ( f ), g〉∗ = 〈 f ,Aµ(g)〉∗,

where the necessary change in the order of summation is justified from

+∞∑

n=0

( n∑

k=0

cn,k|ak|
)
|bn| ≤ ‖Hµ

( +∞∑

n=0

|an|zn
)
‖D‖g‖A2 ≤ ‖Hµ‖D→D‖ f ‖D‖g‖A2

in the first case and from

+∞∑

k=0

( +∞∑

n=k

cn,k|bn|
)
|ak| ≤ ‖Aµ

( +∞∑

n=0

|bn|zn
)
‖A2‖ f ‖D ≤ ‖Aµ‖A2→A2‖g‖A2‖ f ‖D

in the second case. In the same manner we see that the same equality holds if ei-
ther Hµ is bounded on A2 or Aµ is bounded on D. From these dualities and from
Theorems 3.2 and 3.6 together with Comment (i) in Section 3, we get

Theorem 6.1 Let µ be a finite positive Borel measure on (0, 1]. Then,

(1) Hµ ≡ Sµ is bounded on D if and only if

‖Hµ‖D→D =

∫

(0,1]

1

t
dµ(t) < +∞.

(2) Aµ ≡ Tµ is bounded on D if and only if

‖Aµ‖D→D ≍
{ +∞∑

n=0

1

n + 1

∣∣∣
∫

(0,1]

(1 − t)n dµ(t)
∣∣∣

2} 1
2

< +∞.

7 Some Final Comments

It might be interesting to explore the action of Hausdorff and quasi-Hausdorff ma-
trices and their integral analogues on the spaces H p, when 0 < p < 1, and also their
boundedness as operators : H p → Hq, when p 6= q. Besides some conjectures, we
have no positive result in this direction.

For the Lipschitz spaces Λα, 0 < α < 1, we are able to prove that Hµ is bounded
on Λα if and only if

∫
(0,1]

1
tα+1 dµ(t) < +∞ and that Aµ is bounded on Λα for all µ.

The proofs of these results contain no new ideas or techniques and hence we omit
them.
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