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Philipp Gross

Abstract

We prove that on separated algebraic surfaces every coherent sheaf is a quotient of a
locally free sheaf. This class contains many schemes that are neither normal, reduced,
quasiprojective nor embeddable into toric varieties. Our methods extend to arbitrary
two-dimensional schemes that are proper over an excellent ring.

Introduction

A noetherian scheme (or complex analytic space, or, more generally, a locally ringed site) has the
resolution property or enough locally free sheaves if every coherent sheaf M admits a surjection
E �M by some coherent locally free sheaf E (also called a vector bundle). For an introduction
to this property and applications to K-theory we refer to the seminal paper of Totaro [Tot04].

The aim of this article is to prove the resolution property for all separated algebraic surfaces
(see Theorem 5.2 and Corollary 5.3). This generalizes a result of Schröer and Vezzosi who
verified the resolution property for normal separated algebraic surfaces [SV04, Theorem 2.1].
Our methods extend to all two-dimensional schemes that are proper over an excellent base ring,
throughout denoted by A.

Unless stated otherwise, all schemes are assumed to be noetherian. The word surface refers
to a two-dimensional separated A-scheme of finite type.

It is known that a scheme satisfies the resolution property if it has an ample line bundle,
or, more generally, if it has an ample family of line bundles; that is, a family of invertible
sheaves where the whole collection behaves like an ample line bundle (see [BGI71, Exposé II,
2.2] and [BS03]). This includes all schemes that are quasiprojective over a noetherian ring (hence
separated) and all Q-factorial schemes with affine diagonal [BS03]. The latter means that the
intersection of two affine open subsets is affine. The special case of regular, separated schemes is
also known as Kleiman’s theorem [Bor63, Theorem 4.2] (independently proven by Illusie [BGI71,
Corollaire II.2.2.7.1]).

Schröer and Vezzosi showed that the resolution property can fail for regular schemes that do
not have affine diagonal [SV04, 4.2]. Totaro observed that the latter is a necessary condition for
the resolution property to hold [Tot04, 1.3]. In particular, a Q-factorial scheme has the resolution
property if and only if it has affine diagonal.

Concerning the category of analytic spaces, the resolution property does not hold
automatically for regular and separated spaces. Schuster showed that every smooth, compact,
complex surface satisfies the resolution property [Sch82]. However, it fails for generic complex
tori of dimension greater than or equal to 3 (see [Voi02, A.5]).
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P. Gross

Starting in dimension two, it can happen that a scheme has no effective Cartier divisor or
even no non-trivial line bundle at all [Sch99]. Therefore, it is not possible to construct locally
free resolutions by invertible sheaves, in general. The lack of control for vector bundles of higher
rank makes it difficult to tackle the resolution property for singular and non-projective schemes.
To the authors knowledge, it is not known if there exists a proper algebraic scheme of dimension
greater than or equal to 3 which has an affine diagonal, but does not satisfy the resolution
property, or does not admit non-trivial vector bundles. Even the case of normal toric threefolds
is completely open [Pay09].

In our work we give a clarifying picture of the resolution property for separated schemes
of dimension less than 3. Our strategy is not a simple reduction to the normal case treated
by Schröer and Vezzosi, but we generalize their arguments by using pinching techniques and
constructing families of vector bundles that satisfy a partial cohomologically vanishing condition.
We do not have a direct application in mind, but our result underlines the fact that separated
surfaces have many non-trivial vector bundles.

The paper is organized as follows. In the first section we shall investigate quasiprojectivity of
large open subsets. Given a separated A-scheme of finite type, we prove that every point has a
quasiprojective neighborhood whose complement has codimension greater than 1 (Theorem 1.5).
This fact is well known if X is normal [Jel05]. Indeed, since X admits only trivial finite birational
covers in that case, this is a consequence of Chow’s lemma and Zariski’s main theorem. We will
deduce the general case by using Ferrand’s pinching techniques [Fer03] and deformation theory
of vector bundles [Ill05, 5.A]. Consequently, every coherent sheaf is a quotient of a coherent
sheaf which is locally free outside a closed subset of codimension greater than 1. Restricting
ourselves to surfaces, we generalize the gluing methods of Schuster, Schröer and Vezzosi in § 2
to construct locally free resolutions of coherent sheaves that are already locally free outside
finitely many points of codimension two. The cohomological obstructions appearing here lie in
second cohomology groups of coherent sheaves. In order to control these, we study in § 3 a
partial cohomological vanishing condition for families of coherent sheaves (En)n∈N on a proper
scheme X of any dimension. Given an integer 16 d < dim(X), we call (En) cohomologically
d-ample if for every coherent sheaf M the groups Hi(X,M⊗En) vanish for all i > d. Here our
main result states that (dim(X)− 1)-ampleness is preserved and reflected under pullback by
alterations. This is used in § 4 to construct a 1-ample family of vector bundles of rank two on
an arbitrary proper surface. In the last section we collect the preceding results to prove the
resolution property for a large class of two-dimensional separated schemes.

1. Thick quasiprojective open subsets

The aim of this section is to provide an existence result of thick quasiprojective open subschemes
of a scheme X that is separated and of finite type over A (see Theorem 1.5). Here, we call a
subset V ⊂X thick if it is open in X and codim(X − V, X)> 2. Clearly, a finite intersection of
thick subsets is thick. If W ⊂ V , V ⊂X are thick then W is thick in X.

We will frequently use birational auxiliary schemes Y that are quasiprojective over A and
are endowed with a birational map Y →X. Let us call a morphism of schemes f : Y →X
(U -admissible) birational if there exists a dense open subscheme U ⊂X such that f−1(U)⊂ Y
is dense and the restriction fU is an isomorphism.

We start with a sequence of preparatory lemmas.
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The resolution property of algebraic surfaces

Lemma 1.1. Let f : Y →X be a birational morphism of finite type of locally noetherian schemes.
Then f is quasifinite over all points of codimension less than 2.

Proof. Let x ∈X be a point of codimension one. By applying the base change with SpecOX,x→
X, we may assume that X is local of Krull dimension one with closed point x. Moreover,
we may assume that X and Y are irreducible by a second base change. Let y ∈ f−1(x) be
a maximal point. Then dimOY,y > 1 because y cannot be a generic point of Y , whereas 06
dimOY,y + deg. trk(x) k(y)6 dimOX,x = 1 by [Gro65, 5.6.5.1]. Consequently, deg. trk(x) k(y) = 0,
which shows that f−1(x) is finite and discrete. 2

Lemma 1.2. Let f : Y →X be a proper birational morphism of locally noetherian schemes which
is U -admissible for a dense open subset U ⊂X. Then f is finite over a thick subset V ⊂X
containing U .

Proof. Let V ⊂X be the locus over which f has discrete fibers. Then V is open and the restriction
f−1(V )→ V is finite [Gro61b, 4.4.11]. Lemma 1.1 implies that V is thick. 2

Lemma 1.3. Let f : Y →X be a proper birational morphism of locally noetherian schemes which
is U -admissible for a dense open subset U ⊂X. Suppose that OX,x is normal (equivalently
regular) for all x ∈X − U with dimOX,x = 1. Then f is V -admissible for a thick subset V ⊂X
containing U .

Proof. Using Lemma 1.2, we may assume that f is finite by replacing X with a suitable thick
subset. Then for all x ∈X with dimOX,x 6 1 the mapOX,x→ (f∗OY )x is an isomorphism. This is
obvious if x ∈ U , but if x ∈X − U , then OX,x is normal by assumption and the assertion follows
from [Gro61b, 4.4.9]. Thus, OX → f∗OY is an isomorphism outside a closed subset Z ⊂X of
codimension greater than 1 and it follows that f is an isomorphism over X − Z. 2

Recall that a scheme is called an AF-scheme if every finite set of points is contained in an
affine open neighborhood. This is also known as the Kleiman–Chevalley condition [Kle66] and
beyond that related to embeddings into toric varieties [W lo93] and étale cohomology [Art71, § 4].
It is always satisfied if there exists an ample line bundle [Gro61a, 4.5.4]; for example, if X is
quasiprojective over a noetherian ring. The converse holds for proper, smooth algebraic schemes
(see [Kle66] and its generalization by Wlodarczyk [W lo99]), but not for non-normal schemes.

Remark 1.4. Suppose we have a finite, birational map with schematically dense image of
noetherian schemes f :X ′→X. The latter means OX → f∗OX′ is injective, which is automatic
if X is reduced. Let Y ⊂X be the conductor subscheme, defined by the conductor ideal
Ann coker(OX → f∗OX′)⊂OX and define g := fY : f−1(Y )→ Y . Then X is isomorphic to the
pinching Y

∐
g X

′ of Y with X ′ along g by Ferrand [Fer03, 4.3]. By Ferrand’s theorem [Fer03,
5.4], it follows that X is an AF-scheme if and only if X ′ and Y are AF-schemes. The latter is
satisfied if X ′ and Y are quasiprojective over a noetherian ring but then it does not follow that
X is quasiprojective (see Example 1.7 below).

Theorem 1.5. Let X be a separated scheme of finite type over A. Then every point x ∈X has
a thick neighborhood x ∈ V ⊂X which is quasiprojective over A.

Proof. First, assume that X is reduced. Let x ∈ U ⊂X be an affine open set. By enlarging U
with disjoint affine open sets, we may assume that U is dense. Then by Nagata there exists a
U -admissible blow up f :X ′→X with center contained in X − U such that X ′ is quasiprojective
over A (see [Con07, 2.6]).
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By Lemma 1.2, we may assume that f is finite by replacing X with a thick subset contain-
ing U . Moreover, f is birational and has schematically dense image. Let Y ⊂X be the conductor
subscheme of f . Choose a closed subset Z ⊂ Y such that Y − Z ⊂ Y is a dense, affine and
hence quasiprojective open subscheme. Then codim(Z, X)> codim(Z, Y ) + codim(Y, X)> 2.
So, by replacing X with X − Z, we may assume that Y and X ′ are quasiprojective over A.

In light of Remark 1.4, we may therefore assume that X is an AF-scheme. Using the fact
that A is excellent, the dense subset of all regular points of X is open. In particular, the set of
non-regular points z ∈X of codimension one is finite and thus contained in a dense affine open
neighborhood U1 ⊂X of x. So, by repeating the previous arguments with U replaced by U1, we
may assume that for all z ∈X − U with dimOX,z = 1 the stalk OX,z is regular. However, f is
then an isomorphism over a thick subset by Lemma 1.3.

Let X now be arbitrary. Replacing X with a thick neighborhood of x, we may assume
that Xred is quasiprojective over A by the special case. By removing closed subsets Z ⊂X − U
with codim(Z, X − U)> 1, we may assume that X − U is affine so that X = U ∪ (X − U) has
cohomological dimension less than 2 (see [RV04, 2.8]). Therefore, every invertible OXred

-module
lifts to an invertible OX -module because the obstructions lie in second cohomology groups of
coherent sheaves [Ill05, Theorem 5.3]. So, by choosing an ample line bundle on Xred, we find an
invertible OX -module L whose restriction L|Xred

is ample. Then L is ample by [Gro61a, 4.5.13]
and we conclude that X is quasiprojective over A. 2

We derive an existence result for affine open neighborhoods, generalizing a result of
Raynaud [Ray70, VIII 1].

Corollary 1.6. Let X be a separated scheme of finite type over A. Then every point x0 ∈X
and every finite set of points x1, . . . , xn ∈X of codimension less than 2 are contained in a
common dense affine open subset.

Proof. By Theorem 1.5, there is a thick quasiprojective neighborhood x0 ∈ V ⊂X. Then
x1, . . . , xn ∈ V . Using that V is an AF-scheme, we can find an affine open neighborhood U ⊂ V
which contains x0, . . . , xn and all generic points of X. 2

The bound on the codimension in Theorem 1.5 and Corollary 1.6 is sharp because there exist
normal separated algebraic surfaces having two closed points which do not admit a common
affine open neighborhood [Sch99].

In the proof of Theorem 1.5 we removed closed subsets from a scheme X, from outside the
locus over which a birational quasiprojective modification f : Y →X is an isomorphism, in order
to obtain a quasiprojective thick subset. In general, it does not suffice to remove subsets from
outside the locus where f is finite, i.e. where X is the pinching of Y . The following example
illustrates that pinching may destroy many Cartier divisors, so that the thick subset is a priori
not even divisorial ; that is, the complements of effective Cartier divisors define a base for the
Zariski topology ([BGI71, Exposé II, 2.2], [Bor63]).

Example 1.7 (A non-divisorial proper algebraic surface whose normalization is projective). We
work over an algebraically closed field k, say k := C for simplicity. Let E be an elliptic curve and
consider the surface X := E × P1 with projections p :X → E and q :X → P1. Choose distinct
fibers E0 and E∞ over P1. Let tx : E→ E be the translation with respect to a rational point
x ∈ E of infinite order. Define the map g : E0

∐
E∞→ E as the identity on E0 and as tx on E∞.
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By Ferrand [Fer03, 5.4], the pushout S of the closed immersion i : E0
∐
E∞ ↪→X along the

finite map g exists in the category of schemes and fits in the cartesian and cocartesian square.

E0
∐
E∞

i //

g

��

X

f

��
E

j // S

Here j is a closed immersion and f is finite with schematically dense image. It follows that S is
an integral, proper surface with normalization f and having E as a singularity of codimension
one.

Let us show that S is not divisorial by contradiction. Assume that for a given point y ∈ E ⊂ S
there exists an effective Cartier divisor C ⊂ S with y /∈ C and S − C affine. Then C ∩ E is non-
empty and zero-dimensional. It follows that the line bundle L :=OS(C)|E has positive degree
and hence is ample. Now, the natural isomorphism g∗L ' i∗f∗OS(C) induces the isomorphisms
L ' g∗L|E0 ' f∗OS(C)|E0 and tx

∗L ' g∗L|E∞ ' f∗OS(C)|E∞ .
Since X is a ruled surface, we can write f∗OS(C)' p∗M⊗ q∗OP1(n) for some M∈ Pic(E)

and n ∈ N. Thus, f∗OS(C)|E∞ 'M' f∗OS(C)|E0 and consequently L ' tx∗L. However, x
must then have finite order by the theory of abelian varieties [Mum70, p. 60, Application 1],
contradicting the choice of x.

As a consequence of Theorem 1.5 we obtain, in the following proposition, resolutions by
coherent sheaves that are invertible outside a closed subset of codimension greater than 1, by
extending a sufficiently anti-ample invertible sheaf beyond a thick quasiprojective subset.

Proposition 1.8. Let X be a separated scheme that is of finite type over A. Then for every
x ∈X there exists a thick quasiprojective neighborhood x ∈ V ⊂X and a coherent sheaf F with
the following properties.

(i) Every coherent sheaf M admits for every m� 0 a map

(F⊗m)⊕n→M,

which is surjective over V and n ∈ N.

(ii) The restriction F|V is invertible and F|∨V is an ample OV -module.

(iii) There exists a V -admissible blow-up f :X ′→X such that fV
∗F|∨V extends to an ample

OX′-module.

Proof. By Theorem 1.5, there exists a thick neighborhood x ∈ V ⊂X which is quasiprojective
over A. Let f :X ′→X be a V -admissible blow-up such that X ′ is quasiprojective over A. Choose
an ample OV -module L such that fV ∗L extends to an ample OX′-module. We shall construct
F as a certain coherent extension of L−m for m� 0, independently from M. Then (ii) and (iii)
hold immediately.

Using the fact that L is ample, there exist si ∈ Γ(V, Ln), 16 i6 p, for some n ∈ N, such
that the non-vanishing sets Vi := Vsi ⊂ V define an affine open covering of V . We shall extend
the isomorphisms s∨i |Vi : L−n|Vi

'−−→OVi simultaneously to X. Denote by Ii ⊂OX the coherent
ideal defining on X − Vi some closed subscheme structure. Then each (s⊗ki )∨|Vi extends to a map
ϕi : L−nk→Ii|V for k� 0 (see [GD71, 6.8.1]). We take one k that works for all i and put m= kn.
Now choose an arbitrary extension F0 of L−m and let J ⊂OX be the coherent ideal defining
on X − V some closed subscheme structure. Then the sum

⊕
i ϕi : F⊕p0 |V →

⊕
i Ii|V extends to
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a morphism of OX -modules ψ : J ` · F⊕p0 = (J ` · F0)⊕p→
⊕

i Ii for `� 0 (see [GD71, I.6.9.17]).
Define F := J `F0 and ψi := πi ◦ ψ ◦ ιi, where ιi : F →F⊕p denotes the canonical inclusion and
πi :

⊕
j Ij →Ii the projection. Then F satisfies F|V ' L−m and each ϕi extends to a map

ψi : F → Ii.
In order to prove (i), let M be an arbitrary coherent sheaf on X. It suffices to find for

each t ∈ Γ(Vi,M), 16 i6 p, and every m� 0 a map F⊗m→M whose image contains t over
Vi. Then t :OVi →M|Vi extends for sufficiently large m to a map Imi · OX →M (see [GD71,
I.6.9.17]). Using the fact that ψi : F → Ii is an isomorphism over Vi, it follows that the induced
map F⊗m→I⊗mi � Imi is surjective over Vi. Thus, the composition F⊗m→Imi →M satisfies
the desired properties. 2

Definition 1.9. A coherent sheaf F on a scheme X is called almost anti-ample (with respect
to V ) if it satisfies properties 1.8(i)–(iii).

2. Gluing resolutions

In this section we formulate conditions that are sufficient for the existence of locally free
resolutions of coherent sheaves which are locally free away from finitely many closed points
of codimension two.

We pursue the strategy of constructing surjections ϕ : E �M with predefined kernel S, the
first syzygy of ϕ, generalizing the methods of Schröer and Vezzosi [SV04]. Such a map ϕ is
determined by an extension class γ ∈ Ext1(M, S) up to isomorphism of E over M. Instead of
gluing morphisms one glues extension classes. This is controlled by the exact sequence

Ext1(M, S) `−−→H0(X, Ext1(M, S))−→H2(X,Hom(M, S))

which can be read off the local to global spectral sequence for Ext. Here, the function ` maps
a class [e], represented by an extension e : 0→S → E →M→ 0, to a global section `(e) whose
stalk `(e)x at x ∈X is given by the class of the localized sequence [ex] ∈ Ext1

OX,x
(Mx, Sx)'

Ext1OX
(M, S)x.

If M is locally free outside finitely many closed points Z ⊂X, the local extensions of M by
S appear in a simple form. In fact, there is a canonical isomorphism

⊕
z∈Z Ext1

OX,z
(Mz, Sz)'

H0(X, Ext1OX
(M, S)). Therefore, an arbitrary stalk of extension classes near Z extends to a

global section.
We will use a more convenient formulation of the obstruction space for gluing local resolutions

ofM by S. For that, observe that the canonical mapM∨ ⊗ S →Hom(M, S) is an isomorphism
over the open subset whereM is locally free. In general, this is not an isomorphism everywhere
because the tensor product may have torsion sections. Nevertheless, if M is locally free up to
finitely many closed points, we deduce from the succeeding Lemma 2.1 an isomorphism between
the top cohomology groups

H2(X,M∨ ⊗ S) '−−→H2(X,Hom(M, S)).

Analogously, the obstruction space does not change up to isomorphism if S is modified over
finitely many closed points.

Lemma 2.1. Let X be a noetherian scheme and F , F ′ be coherent sheaves that are isomorphic
outside a closed subscheme Z ⊂X. Then for all i ∈ N with i> dim(Z) we have Hi+2(X, F)'
Hi+2(X, F ′).
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Proof. If there exists a map u : F →F ′ which is an isomorphism on X − Z, then the support of
ker u and coker u has dimension less than or equal to dim(Z). Hence, the assertion follows by
taking cohomology of the two exact sequences

0→ ker u→F → im u→ 0 and 0→ im u→F ′→ coker u→ 0.

In general, there exists just an isomorphism F|X−Z
'−−→F ′|X−Z . However, this extends to a

morphism ϕ : IF →F ′ for some coherent ideal I ⊂ OX that defines a closed subscheme structure
on Z (see [GD71, I.6.9.17]). Then ϕ as well as the inclusion IF ↪→F are isomorphisms over
X − Z. So, the assertion follows by the previous case. 2

Let us begin with gluing local resolutions of coherent sheaves which are almost locally free
in the following sense.

Definition 2.2. We say that a coherent sheafN on a scheme X has property Fk if the condition
pd(Nx)6max{0, dimOX,x − k} holds. Then N is free in codimension less than or equal to k
and has everywhere locally bounded projective dimension.

Remark 2.3. IfX is a Cohen–Macaulay scheme, then the Auslander–Buchsbaum formula implies
that a coherent sheaf of positive rank satisfies Fk if and only if it has locally finite projective
dimension and property Sk is fulfilled.

Proposition 2.4. Let X be a d-dimensional scheme and let M be a coherent sheaf satisfying
Fd−1. Then for every vector bundle S and every integer m� 0, there exists an obstruction
o ∈H2(X,M∨ ⊗ S⊕m) whose vanishing is sufficient for the existence of a locally free resolution

0→S⊕m→E →M→ 0.

Proof. Since M satisfies Fd−1, there exists a finite subset of closed points Z ⊂X such that
M|X−Z is locally free and pd(Mz) = 1 for each z ∈ Z. Using the fact that S is locally free, we
can choose for every m� 0 and every z ∈ Z a locally free resolution

γz : 0→S⊕mz →Fz→Mz→ 0

for some finite free OX,z-module Fz. Then the extension classes [γz] glue to the desired extension
if the obstruction o ∈H2(X,M∨ ⊗ S⊕m)'H2(X,Hom(M, S⊕m)) vanishes. 2

Next, we focus on two-dimensional schemes. In light of Proposition 2.4, it suffices to resolve
coherent sheaves by coherent sheaves satisfying F1. For that, we construct local resolutions first,
and then apply the gluing procedure to get a global resolution.

As a preparation, we provide a generalization of the Bourbaki Lemma to non-normal rings
([Bou65, p. 76], see [BV75] for torsion-free modules). It says that for a normal noetherian ring,
every torsion-free module of rank r has a free submodule of rank r − 1 such that its quotient is
isomorphic to an ideal, hence has rank one.

Lemma 2.5 (Modified Bourbaki lemma). Let R be a noetherian ring and k > 0. Then the
following properties are equivalent.

(i) The ring R has no associated prime of height greater than k.

(ii) For every finitely generated R-module M , which is free of rank r > k at all primes of
height less than or equal to k, there is a free submodule F of M of rank r − k such that M/F
is free of rank k at all primes of height less than or equal to k.
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Proof. (ii) ⇒ (i). Suppose that there is an associated prime ideal q = Ann(x)⊂R, x ∈R, with
ht(q) = k + 1> 0. Then the R-module M := q⊕k+1 is free of rank k + 1 at all primes of height
less than or equal to k. However, every R-linear map R→M sends x to zero, so M cannot have
a free submodule of rank one.

(i) ⇒ (ii). The case r = k is trivial, so let us assume r > k + 1. We will apply basic element
theory (cf. [EG85]). Denote by µ( · ) the minimal number of generators of a module. A submodule
N ⊂M is called w-fold basic at a prime ideal p⊂R if µ((M/N)p)6 µ(Mp)− w. A set of
generators x1, . . . , xs of N is called basic up to height k if N is min(s, k − ht p + 1)-fold basic in
M at each prime ideal p⊂R with ht p6 k.

Given a set x1, . . . , xs of generators for M and a prime ideal p⊂R with ht p6 k the number
w := min(s, k − ht p + 1)6 k + 1 satisfies µ(Mp)− w > r − (k + 1)> 0. This shows that M itself
is basic up to height k. Then, by [EG85, Theorem 2.3], there is an element y ∈M such that the
spanned submodule Ry ⊂M is basic up to height k. Consider, the induced short exact sequence

0→Ry→M →M/Ry→ 0. (2.5.1)

Then for every prime ideal p⊂R the exact sequence

(Ry)p ⊗R k(p)→Mp ⊗R k(p)→ (M/Ry)p ⊗R k(p)→ 0

gives µ((M/Ry)p)> µ(Mp)− µ((Ry)p)> r − 1. Let us now suppose that ht p6 k. Then from the
choice of y it follows that µ(M/Ry)p 6 µ(M)p −min{1, k − ht p + 1}= r − 1, and we conclude
that µ(M/Ry)p = r − 1 and µ((Ry)p) = 1. Consequently, (M/Ry)p is free of rank r − 1 and Ry
is free of rank one, using the fact that R has no associated prime of height greater than k.

By induction, there is a free submodule F ′ ⊂M/Ry of rank (r − 1)− k such that (M/Ry)/F ′

is free of rank k at all primes of height less than or equal to k. Pulling back the short exact
sequence (2.5.1) along the inclusion F ′ ↪→M/Ry gives a submodule F ⊂M that is an extension
of F ′ by Ry, thus free of rank r − k, and that satisfies M/F ' (M/Ry)/F ′. 2

Using the modified Bourbaki lemma, we obtain the following decomposition result for finitely
generated modules over two-dimensional rings.

Lemma 2.6. Let (R,m) be a noetherian local ring of dimension two whose closed point is not
associated. Then for every finitely generated R-module M that is locally free of rank r > 1 on
U := SpecR− {m}, there exists a short exact sequence of finitely generated R-modules

0→ L→N →M → 0, (2.6.1)

satisfying the following properties.

(i) The restriction L|U is invertible and L|U ' detM∨|U .

(ii) The module N has property F1.

Proof. Every choice of a generating set for M gives rise to a short exact sequence

0→ S→R⊕n→M → 0. (2.6.2)

Then S|U is locally free of rank n− r. So, by applying Lemma 2.5 with k = 1, there
exists a free submodule F ⊂ S of rank n− r − 1 such that L := S/F is invertible in
codimension less than 2. It follows that L|U = det L|U ⊗ det F |U ' det S|U ' detM∨|U . Then
the pushout of (2.6.2) along the quotient map S� L gives the desired sequence (2.6.1). For
the module N , N 'R⊕n/F holds, showing that pdN 6 1. As (2.6.1) is locally split over U , we
infer that N |U is locally free. It follows that N satisfies F1. 2
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Proposition 2.7. Let X be a two-dimensional scheme, and let M be a coherent sheaf which
is locally free of constant rank outside a finite subset Z ⊂X of non-associated closed points of
codimension two. Denote by F a coherent extension of detM∨|X−Z .

Then there exists an obstruction o ∈H2(X,M∨ ⊗F), whose vanishing is sufficient for the
existence of a short exact sequence of coherent OX -modules

0→L→N →M→ 0, (2.7.1)

satisfying the following properties.

(i) The OX -module L is a coherent extension of detM∨|X−Z , possibly different from F .

(ii) The OX -module N satisfies F1.

Proof. Denote the rank of M by r. By Lemma 2.6, there exists for each z ∈ Z an extension

γz : 0→ Lz→Nz→Mz→ 0,

such that Lz|SpecOX,z−{z} ' detM∨|SpecOX,z−{z} and Nz satisfies F1. Then the family Lz, z ∈ Z,
and detM∨|X−Z glue to a coherent OX -module L, i.e. Lz ' Lz and L|X−Z ' detM∨|X−Z , and
the extension classes glue to a global section γ of Ext1(M, L).

Since M∨ ⊗F|X−Z 'Hom(M, L)|X−Z , we deduce, by Lemma 2.1, that H2(X,M∨ ⊗F)'
H2(X,Hom(M, L)). Thus, we can identify the obstruction o(γ) ∈H2(X,Hom(M, L)) for gluing
the extension classes [γz] with an element o ∈H2(X,M∨ ⊗F). If the obstruction vanishes, we
can choose an extension (2.7) whose localization is isomorphic to γz for each z ∈ Z. It follows
that N satisfies F1. 2

So, up to cohomological obstructions, Propositions 2.4, 2.7 and 1.8 enable us to construct
locally free resolutions of coherent sheaves on surfaces.

3. Cohomologically ample families of coherent sheaves

In this section we shall investigate families of coherent sheaves with a partial cohomological
vanishing condition. This enables us to control the cohomological constructions for gluing
resolutions later on in the case of surfaces.

Definition 3.1. Let X be a scheme which is proper over A and let d > 0 be an integer with
d6 dim(X)− 1. A family of coherent sheaves (En) = (En)n∈N is called (cohomologically) d-ample
if for every coherent sheaf M there exists an n0 ∈ N such that for all n> n0 and i> d+ 1 it is
true that Hi(X, En ⊗M) = 0.

A coherent sheaf E is called (cohomologically) d-ample if (E⊗n) is a cohomologically d-ample
family.

For the case where E is a vector bundle, this cohomological vanishing condition was studied
in [Som78, Ste98]. For a recent treatment of line bundles we refer to [Tot10].

We intend to show that the dual of an almost anti-ample sheaf is (dim(X)− 1)-ample
(Corollary 3.5) and that (dim(X)− 1)-ampleness is preserved and reflected by alterations
(Proposition 3.7). Recall that an alteration is a morphism of schemes f : Y →X which is proper
and finite over a dense open subset U ⊂X such that f−1(U)⊂ Y is dense.

Example 3.2. An invertible sheaf on X is ample if and only if it is 0-ample.
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We will frequently exploit the fact that d-ampleness does not change if the sheaves of the
family in question or if the scheme itself is modified at closed subsets of dimension less than or
equal to d− 1. The following is a direct consequence of Lemma 2.1.

Lemma 3.3. Let X be a scheme that is proper over A and let (En), (E ′n) be families of coherent
sheaves such that for every n ∈ N, En and E ′n are isomorphic outside a closed subscheme Z ⊂X
with dim(Z)6 d− 1. Then (En) is d-ample if and only if (E ′n) is d-ample.

Serre’s vanishing theorem on projective birational models provides plenty of d-ample coherent
sheaves.

Proposition 3.4. Let f : Y →X be a morphism of proper A-schemes such that Y has an
ample line bundle L. Suppose that f is an isomorphism away from a closed subset Z ⊂X with
dim(Z)< d. Then f∗L is d-ample.

Proof. Let M be a coherent sheaf on X and i> d+ 1. Then by Lemma 2.1, Hi(X, (f∗L)⊗n ⊗
M)'Hi(X, f∗(L⊗n ⊗ f∗M)) holds, because dim(Z)6 d− 16 i− 2. The latter group vanishes
for n� 0 using Grothendieck’s spectral sequence and Serre’s Vanishing theorem, because L is
ample, a fortiori, f -ample. 2

It follows that almost anti-ample coherent sheaves (cf. Proposition 1.8) satisfy a cohomological
vanishing condition for the top cohomology.

Corollary 3.5. Let X be a scheme of dimension d> 1 that is proper over A. Then for every
almost anti-ample coherent sheaf F the dual F∨ is (d− 1)-ample.

Proof. By definition, there exists a proper morphism f :X ′→X, which is an isomorphism
over a thick open subset V ⊂X and whose domain carries an ample line bundle L′ such
that F∨|V ' f∗L′|V . Since dim(X − V )6 d− 2, the assertion follows from Proposition 3.4 and
Lemma 3.3. 2

Concerning pullbacks along finite maps, we will see next that d-ampleness behaves as usual
ampleness.

Proposition 3.6. Let f : Y →X be a finite map of schemes that are proper over A, let (En)
be a family of coherent OX -modules and d an integer with 06 d6 dim(Y )− 1.

(i) If (En) is d-ample, then (f∗En) is d-ample.

(ii) Conversely, suppose that f is a surjective nilimmersion. Assume that each En is locally
free, or that d= dim(Y )− 1. If (f∗En) is d-ample, then (En) is d-ample.

Proof. Let us prove (i) first. Given a coherent OY -module N the projection formula f∗N ⊗ En =
f∗(N ⊗ f∗En) holds by exactness of f∗. Therefore, it induces for all i, n> 0, an isomorphism of
abelian groups Hi(Y,N ⊗ f∗En)'Hi(X, f∗N ⊗ En) which proves the assertion.

So let us prove (ii) next. The closed immersion f : Y ↪→X is given by a nilpotent coherent
ideal I ⊂ OX since X is noetherian. We may assume that I2 = 0 by factoring f . Let M be
a given coherent OX -module. Then by applying · ⊗OX

M⊗OX
En to the short exact sequence

0→I →OX →OY → 0, we obtain an exact sequence

IM⊗OX
En

ϕ−−→M⊗OX
En→OY ⊗OX

M⊗OX
En→ 0.
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Taking cohomology gives, for each i> d+ 1, the exact sequences

Hi(X, im ϕ)→Hi(X,M⊗OX
En)→Hi(Y,M|Y ⊗OY

En|Y ),

Hi(X, ker ϕ)−→Hi(X, IM⊗OX
En)

ϕ∗−−−→Hi(X, im ϕ).

If i= dim(X), then ϕ∗ is surjective. If En is locally free, then ϕ∗ is an isomorphism because
ker ϕ= 0.

Since I2 = 0, the OX -module IM carries the structure of an OY -module so that we may
identify the middle group with Hi(Y, IM⊗OY

En|Y ). Hence, if (En|Y ) is d-ample, then (En) is
d-ample, too. 2

Finally, we show that (dim(X)− 1)-ampleness is preserved and reflected by pullback along
alterations.

Proposition 3.7. Let f : Y →X be an alteration of schemes of dimension d> 1 that are proper
over A. Then a family of coherent OX -modules (En) is (d− 1)-ample if and only if (f∗En) is a
(d− 1)-ample family.

Proof. First, assume that (En) is (d− 1)-ample. If f is finite, the assertion follows from
Proposition 3.6(i). So, by applying Stein factorization to f , we may assume that f is Stein. Using
the fact that f is proper and birational, we infer from Lemma 3.9 below that Hd(Y,N ⊗ f∗En)'
Hd(X, f∗(N ⊗ f∗En)) as abelian groups for every coherent OY -module N . The latter group is
isomorphic to Hd(X, f∗N ⊗ En) by Lemma 2.1 because f is an isomorphism over all points of
codimension less than 2. Thus, (f∗En) is (d− 1)-ample.

Conversely, assume that (f∗En) is (d− 1)-ample. By replacing f with its base change along the
reduction Xred→X, we may assume that X is reduced, using Proposition 3.6(ii). In particular,
f has schematically dense image. Denote by M a given coherent OX -module.

First, suppose that f is finite. Let ϕ :OX ↪→ f∗OY be the natural map and put C := coker ϕ.
Since f is generically flat and finitely presented, C is generically locally free. Hence, ϕ is
generically split injective. Using the identification Hom(f∗OY ,M) = f∗f

!M, we conclude that
the transpose ϕt : f∗f !M→M is generically split surjective. It follows that ϕt ⊗ 1 : f∗f !M⊗
En→M⊗ En is generically surjective so that dim(coker(ϕt ⊗ 1))6 d− 1. Therefore, taking
cohomology gives a surjection Hd(X, f∗f !M⊗En)�Hd(X,M⊗En). The left-hand side is
isomorphic to Hd(X, f∗(f !M⊗ f∗En))'Hd(Y, f !M⊗ f∗En) using the projection formula which
holds since f∗ is exact. This proves the case where f is finite.

Let us now turn to the general case. By invoking the finite case, we may replace X with
its integral components, and hence assume that X is integral. Then Γ(X,OX) is an integral
domain and the structure map p :X → Spec Γ(X,OX) =: S is proper. We have to show that
the abelian group Hd(X,M⊗En) = H0(S, Rdp∗(M⊗En)) vanishes for n� 0. The coherent
sheaf Rdp∗(M⊗En) is zero if its stalks at all closed points vanishes. So we may assume
that dim p−1(s)> d for some closed point s ∈ S by the theorem on formal functions. Then,
however, dim p−1(s) = d, and since X is irreducible it follows that for the generic point η ∈X
we have p(η) = s. Using the fact that s is closed, we infer p(X) = {s}, so that S consists of a
single point. Consequently, S is the spectrum of a field.

Thus, X and Y are algebraic schemes. By the finite case, we may replace X as well as Y by
the normalization. Then the assertion follows from the succeeding Lemma 3.8. 2
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Lemma 3.8. Let f : Y →X be a birational map of d-dimensional, normal schemes that are
proper over a field k. Then for every coherent OX -module F there exists a natural surjection of
k-vector spaces

Hd(Y,Hom(f∗ωX , ωY )⊗ f∗F)�Hd(X, F).

Proof. Since X and Y are proper over a field, they admit dualizing sheaves ωX and ωY . Consider
the OX -linear map, which is natural in F :

σ :HomOX
(F , ωX)−→ f∗HomOY

(HomOY
(f∗ωX , ωY )⊗ f∗F , ωY ), σ(ϕ) : λ⊗ s 7→ λ(f∗(ϕ)[s]).

Now, σ is generically bijective because f is birational and ωX , ωY are generically invertible.
However, Hom(F , ωX) is torsion-free, since ωX is by normality of X, and we conclude that σ is
injective everywhere. By taking global sections, this gives an injective k-linear map:

Γ(σ) : HomOX
(F , ωX) ↪→HomOY

(HomOY
(f∗ωX , ωY )⊗ f∗F , ωY ).

Finally, we obtain the desired surjection by applying Serre duality. 2

Lemma 3.9. Let f : Y →X be a proper and birational Stein morphism of d-dimensional
schemes. Then for every coherent OY -module F

Hd(Y, F)'Hd(X, f∗F).

Proof. Let x ∈X with dimOx > 1. Then dim f−1(x)6 dimOx − 1 since f is birational and of
finite type. Hence, (Rqf∗F)x = 0 for all q > dimOx by the theorem on formal functions. It follows
that codim(SuppRqf∗F , X)> q + 1, hence dim SuppRqf∗F < d− q, so that Hp(X, Rqf∗F) = 0
for all p> 1, q > 0 with p+ q > d. Applying the Grothendieck spectral sequence settles the
result. 2

4. Existence of positive vector bundles on non-projective surfaces

In this section we construct a 1-ample family of vector bundles (En)n∈N of rank two on an
arbitrary surface X that is proper over a A (see Theorem 4.5). The idea is to work on a projective
surface Y which admits a birational map Y →X.

Let us first discuss descent conditions of vector bundles for a proper birational map of surfaces.
For that, we have to introduce some terminology. Let f : Y →X be a proper birational morphism.
The closed subscheme B ⊂X, given by the conductor ideal AnnOX

coker(OX → f∗OY ), is called
the branching subscheme. The union of all integral one-dimensional closed subschemes contracted
by f is called the exceptional curve E ⊂ Y .

Lemma 4.1. Let f : Y →X be a proper birational morphism of two-dimensional schemes which
satisfies the following conditions.

(i) The branching subscheme B ⊂X is empty or zero-dimesional.

(ii) There exists an effective Cartier divisor D ⊂ Y that contains the exceptional curve E ⊂ Y
and OE(−D) is ample.

Then for every r ∈ N there is an m ∈ N such that for every vector bundle F on Y of rank r whose
restriction F|mD is trivial, there exists a vector bundle E on X of rank r with f∗E ' F .

Proof. Let Y
f0−−→X0

ι
↪→X be the factorization of f over its schematic image. Then every

vector bundle on X0 lifts to a vector bundle on X. To see this, we may assume that the
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nilimmersion ι is given by a coherent ideal I ⊂ OX with I2 = 0, so that I carries the structure
of an OX0-module. Then the obstruction of lifting a locally free OX0-module E0 is an element of
H2(X0, I ⊗OX0

End(E0)) (see [Ill05, Theorem 5.3]). However, this group vanishes as the support
of I has dimension less than or equal to 1. The branching subscheme B0 ⊂X0 of f0 equals ι−1(B)
and the f - and f0-exceptional curve coincides, so the conditions (i), (ii) on f carry over to f0.
So, we may assume that f has schematically dense image. Then the same proof as for [SV04,
Proposition 1.2] applies. 2

We begin with the preparations for the proof of Theorem 4.5.

Lemma 4.2. Let L be an ample line bundle on a one-dimensional scheme X and let P ⊂X be
a set of finitely many points. Then there exists a short exact sequence

0→O⊕2
X → (Ln)⊕2→OD→ 0

for some effective Cartier divisor D ⊂X with OX(D)' L2n, n > 0, and D ∩ P = ∅.

Proof. Let s ∈H0(X, Lm), m� 0, be a global section that is non-zero over Ass(X) ∪ P
(see [Gro61a, 4.5.4]). Then s :OX →Lm is injective and coker s'OV (s) where we consider
V (s)⊂X as a Cartier divisor that satisfies OX(V (s))' Lm. Let t ∈H0(X, Ln), n=mk, k� 0,
be a second global section that is nonzero over V (s) ∪Ass(X) ∪ P . Then t :OX →Ln is injective
too, and V (t)⊂X is a Cartier divisor which is disjoint from V (s), and satisfies OX(V (t))' Ln
and coker t'OV (t). It follows that t⊕ s⊗k :O⊕2

X → (Ln)⊕2 is also injective and its cokernel is
isomorphic to OV (t)+kV (s). Then D := V (t) + kV (s) is the desired Cartier divisor. 2

Lemma 4.3. Let X be a one-dimensional scheme that is proper over A and has an ample line
bundle L. Then for every discrete closed subscheme Z ⊂X and ai ∈H0(Z,OZ), i= 1, 2, there
exist ti ∈H0(X, Ln), n > 0, and a regular section t′ ∈H0(Z, Ln|Z) such that:

(i) ti|Z = ait
′ for i= 1, 2; and

(ii) Xt1 ∪Xt2 ⊇X − Z.

Proof. By enlarging Z and extending each ai by 1, we may assume that every one-dimensional
irreducible component of X meets Z in a point where each ai = 1.

Choose f ∈H0(X, Lp), p > 0, such that Xf ⊂X is a dense affine open neighborhood of Z
(see [Gro61a, 4.5.4]). Then V (f) is discrete since dim(X)6 1. Next, pick g ∈H0(X, Lq), q > 0,
such that Xg ⊂X is a dense affine open neighborhood of Z ∪ V (f). By replacing f with f q and g
with gp, we found f, g ∈H0(X, Lpq) satisfying X =Xf ∪Xg and Z ⊆Xf ∩Xg. We may assume
that p= q = 1 by replacing L with Lpq.

For every reduced closed subscheme P ⊂X with dim(P )6 0 and P ∩ Z = ∅ the restriction
map H0(X, Ln)→H0(Z, Ln|Z)⊕

⊕
x∈P H0({x}, Ln ⊗ k(x)) is surjective for n� 0 because

its cokernel is contained in H1(X, IZ∪P ⊗ Ln), which is eventually zero. Thus, every s0 ∈
H0(Z, Ln|Z) lifts to global section s ∈H0(X, Ln) with s(x) 6= 0 for all x ∈ P . Applying this to
P = V (f) gives s1 ∈H0(X, Ln1), n1� 0, such that s1|Z = a1f

n1 |Z and V (s1) ∩ V (f) = ∅. Then
V (s1) is discrete by the initial assumption on Z. By a second application with P = V (g) ∪
(V (s1)− Z), we obtain s2 ∈H0(X, Ln2), n2� 0, such that s2|Z = a2g

n2 |Z , V (s2) ∩ V (g) = ∅ and
V (s2) ∩ V (s1)⊂ Z.

Define t′ := fn1gn2 |Z and n := n1n2. Then t′ is a regular section of Ln|Z because Z ⊆Xf ∩Xg.
For the restriction of t1 := s1g

n2 and t2 := s2f
n1 to Z it is true that t1 = a1f

n1gn2 = a1t
′
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and t2 = a2g
n2fn1 = a2t

′, proving (i). Also, (ii) follows because the subset V (s1g
n2) ∩ V (s2f

n1)
is equal to

(V (s1) ∩ V (s2)) ∪ (V (s1) ∩ V (f)) ∪ (V (s2) ∩ V (g)) ∪ (V (f) ∩ V (g))

and this is a subset of Z by choice of s1, s2. 2

Proposition 4.4. Let X be a surface that is proper over A and has an ample line bundle
L. Then for every one-dimensional closed subscheme Y ⊂X, and N � 0, there exists a vector
bundle E on X whose restriction E|Y is trivial and that fits in a short exact sequence

0→E → (La)⊕2→Lb|C → 0, (4.4.1)

for some effective Cartier divisor C ⊂X with OX(C)' L2a, and a>N , b> 3a.

Proof. By enlarging Y , we may assume that every component of X contains a component of Y
and that every embedded point of X lies on Y . Let IY ⊂OX be the coherent ideal defining Y ⊂X
and suppose that H1(X, IY ⊗ Lk) = 0 for all k > 1 by replacing L with a suitable multiple. By
replacing L with LN , we may assume that N = 1.

By Lemma 4.2, there exists an n ∈ N and a short exact sequence

0→O⊕2
Y →L

n|⊕2
Y →OZ → 0

for some Cartier divisor Z ⊂ Y satisfying OY (Z)' L2n|Y and Z ∩Ass(X) = ∅. Then applying
the functor · ⊗ L−n|Y induces a short exact sequence

0→ (L−n)|⊕2
Y −→O

⊕2
Y

ϕ−−→OZ → 0. (4.4.2)

Claim. There exists an effective Cartier divisor C ⊂X with C ∩ Y = Z and OX(C) = L2n.

By assumption on L, the right-hand side of the exact sequence

H0(X, L2n)→H0(Y, L2n|Y )→H1(X, IY ⊗ L2n)

vanishes, so that the regular section z′ ∈H0(Y, L2n|Y ) defining Z ⊂ Y lifts to a global section
z ∈H0(X, L2n). Then Xz ∩ Y = Yz′ = Y − Z meets every irreducible component of X and
contains all embedded points of X by assumption on Y and Z. Thus, z is a regular section,
so that C = V (z) is a Cartier divisor satisfying the asserted properties.

Claim. There exists a surjection Φ :O⊕2
X � Lm|C extending ϕ, for some m> 2n.

The map ϕ is given as (y1, y2) 7→ y1|Za1 + y2|Za2 with ai ∈H0(Z,OZ). Using Lemma 4.3
for the ample sheaf L2n, we can choose a trivialization σ :OZ

∼−−→Lm|Z , 1 7→ t′, and
ti ∈H0(C, Lm|C), i= 1, 2, with the properties ti|Z = ait

′ and Ct1 ∪ Ct2 ⊇ C − Z, where 2n|m.
Define the map Φ :O⊕2

X →Lm|C by (b1, b2) 7→ b1|Ct1 + b2|Ct2. Then Φ|Y = σ ◦ ϕ and the cokernel
satisfies Supp coker Φ⊆ C − (Ct1 ∪ Ct2)⊆ Z. Using the fact that ϕ is surjective, we conclude that
Φ is surjective and extends ϕ up to isomorphism of the codomain, as claimed.

Consider now the induced short exact sequence of coherent OX -modules

0→F ψ−−→O⊕2
X

Φ−−→Lm|C → 0. (4.4.3)

Then F is a locally free of rank two since pd Lm|C 6 1.

Claim. For the restriction, F|Y ' L−n|⊕2
Y .
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Using the fact that F|Y has no section supported on Z, the restriction of (4.4.3) to Y gives
an exact sequence

0→F|Y
ψ|Y−−−→O⊕2

Y

σ◦ϕ−−−→Lm|Z → 0.

Then the claim is a consequence of (4.4.2).
Finally, by applying · ⊗ Ln to (4.4.3), we obtain (4.4.1), where a := n, b :=m+ n, and

E := F ⊗ Ln. 2

Theorem 4.5. Let X be a surface that is proper over A. Then there exists a cohomologically
1-ample family of vector bundles of rank two.

Proof. By Theorem 1.5, there exists an open subset V ⊂X which is quasiprojective over A,
and X − V consists of finitely many points of codimension two. Then by Nagata there exists a
V -admissible blow up f : Y →X with center Z supported on X − V such that Y is projective
over A (see [Con07, 2.6]).

Let us verify for f the descent conditions of Lemma 4.1. Clearly, the branching subscheme
of f has dimension less than or equal to 0 since V is thick. Also, the inverse image D := f−1(Z)
contains the f -exceptional curve E ⊂ Y . By construction of the blow-up, the closed subscheme
D ⊂ Y is an effective Cartier divisor given by the f -ample invertible inverse image ideal
IZ · OY =OY (−D). Thus, OE(−D) is ample. Then by Lemma 4.1 there exists an m ∈ N such
that every vector bundle F of rank two on Y descends to a vector bundle E on X if each F|mD
is trivial.

Choose an ample OY -module L. By applying Proposition 4.4 to the closed subscheme
mD ⊂ Y , there exists for every n ∈ N a vector bundle Fn on Y whose restriction Fn|mD is
trivial, and that fits in a short exact sequence

0→Fn→ (Lan)⊕2→Lbn |Cn → 0

for some Cartier divisor Cn ⊂ Y with OY (Cn)' L2an and an > n, bn > 3an.
We claim that (Fn) is cohomologically 1-ample. For that, let N be a given coherent

OY -module. Then applying · ⊗ N results in an exact sequence

0→Tn→Fn ⊗N
ϕn−−−→ (Lan)⊕2 ⊗N →Lbn |Cn ⊗N → 0

for some coherent OY -module Tn supported on Cn. Taking the associated long exact cohomology
sequence gives two exact sequences:

H2(Y, Tn)−→H2(Y, Fn ⊗N )−→H2(Y, im ϕn),

H1(Y, Lbn |Cn ⊗N ) ∂−−→H2(Y, im ϕn)−→H2(Y, (Lan)⊕2 ⊗N ).

Note that H2(Y, Tn) = 0 as dim Supp Tn 6 1. Moreover, H2(Y, (Lan)⊕2 ⊗N ) vanishes for n� 0
using the fact that L is ample and an→∞. Therefore it suffices to show that H1(Y, Lbn |Cn ⊗N )
is eventually zero.

By construction of Cn, there is a short exact sequence

0→L−2an →OY →OCn → 0,

and applying · ⊗ Lbn ⊗N gives the exact sequence

0→ ker ϕn→L−2an+bn ⊗N ϕn−−−→Lbn ⊗N →OCn ⊗ Lbn ⊗N → 0.
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Taking cohomology and using dim Supp ker ϕn 6 1 leads to an exact sequence:

H1(Y, Lbn ⊗N )→H1(Y, Lbn |Cn ⊗N )→H2(Y, Lbn−2an ⊗N ).

Using the fact that bn > 3an and an→∞ it follows that H1(Y, Lbn |Cn ⊗N ) vanishes for
sufficiently large n. This shows that (Fn) is a 1-ample family of vector bundles of rank two.

Finally, by Lemma 4.1 there exists a family of vector bundles (En) of rank two on X such
that f∗En 'Fn for each n ∈ N, and Proposition 3.7 implies that (En) is 1-ample. 2

5. Proof of the resolution property for surfaces

Let us finally collect the preceding results to prove the resolution property for proper surfaces.

Lemma 5.1. Let Y ↪→X be a surjective nilimmersion of noetherian schemes given by a coherent
ideal I. Suppose that dim Supp I = 0. If the resolution property holds for Y , then it also holds
for X.

Proof. Let M be a given coherent OX -module. By assumption on Y , there exists a vector
bundle EY on Y and a surjection EY �M|Y . Then EY extends to a vector bundle E on X
because dim Supp I < 2. The pullback of the exact sequence 0→IM→M→M|Y → 0 along
E �M|Y gives a short exact sequence 0→IM→N →E → 0 for some coherent OX -module N
that surjects on M. This sequence is split, because Ext1(E , IM) = H1(X, E∨ ⊗ IM) = 0, using
the fact that dim Supp I < 1. Since IM is globally generated it follows that N ' IM⊕ E is a
quotient of OnX ⊕ E for some n. This gives a surjection O⊕nX ⊕ E �N �M. 2

Theorem 5.2. Every surface, which is proper over A, has the resolution property.

Proof. In light of Lemma 5.1, we may assume that X has no associated point of codimension
two, by replacing X with the closed subscheme whose ideal is generated by all local sections with
zero-dimensional support.

LetM be a coherent sheaf and x ∈X be an arbitrary point. By Proposition 1.8, there exists a
coherent sheaf F which is almost anti-ample near x. In particular, for every m� 0 there exists
a map (F⊗m)⊕n→M, for some n ∈ N, which is surjective near x. Therefore, it suffices to find a
locally free resolution for every F⊗m and every m� 0 using the fact that X is quasicompact.

By definition, F is invertible outside finitely many points of codimension two. So, by
Proposition 2.7, for every m� 0 there exists a surjection G →F⊗m for some coherent sheaf G
satisfying F1 because H2(X, (F⊗m)∨ ⊗ (F⊗m)∨)'H2(X, (F∨)⊗2m) (Lemma 2.1) vanishes using
the fact that F∨ is 1-ample by Corollary 3.5.

By Theorem 4.5, there exists a 1-ample family En, n ∈ N, of vector bundles of rank two. So, for
all n� 0 and all m> 0, it is true that H2(X, G∨ ⊗ E⊕mn )'H2(X, G∨ ⊗ En)⊕m = 0. Consequently,
G admits a surjection H� G by a vector bundle H, as a result of Proposition 2.4. 2

As the resolution property descends along immersions, it holds for all two-dimensional
schemes X which are embeddable into two-dimensional schemes that are proper over a noetherian
base ring.

Corollary 5.3. Suppose that A is an excellent Jacobson ring such that each irreducible comp-
onent of SpecA is equicodimensional (for example, if A= Z, or if A is a field). Then every two-
dimensional scheme, which is separated and of finite type over A, satisfies the resolution property.

Proof. Since X is separated and of finite type over a noetherian ring, there exists a proper
A-scheme X together with an open immersion X ↪→X, which identifies X as a dense open
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subscheme of X, by Nagata’s embedding theorem [Con07, 4.1]. The assumptions on A guarantee
that dim(X) = dim(X) = 2 since X is of finite type over A (see [Gro66, 10.6.2]). Thus,
Theorem 5.2 implies that X, and hence X has the resolution property. 2

Remark 5.4. In the first section we extended the resolution property from a dense affine open
neighborhood U0 ⊂X of a given point x ∈X to a thick open quasiprojective subset U0 ⊂ U1 ⊂X,
i.e. we added all points of codimension one. The results of § 2 can be adapted to formulate
conditions for extending the resolution property to an open subset U1 ⊂ U2 ⊂X which contains
all points of codimension two. The cohomological obstructions lie then in second cohomology
groups of coherent OU2-modules. By shrinking U2, one can arrange that U2 has cohomological
dimension less than or equal to 2 and we believe that U2 will satisfy the resolution property. For
technical reasons we assumed here that X is two-dimensional and proper over a noetherian ring,
so that U2 =X is proper, allowing us to control the cohomological obstructions.

Even the case when the cohomological dimension, the affine covering number or the affine
stratification number of X is equal to one seems to be difficult with our approach, because
removing closed subschemes may increase such an invariant.

Finally, our methods rely on the fact that the resolution property holds Zariski locally. We
do not know how to extend the techniques to algebraic spaces (or algebraic stacks).
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