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1. Introduction

The concept of critical group was introduced by D. C. Cross (as reported
by G. Higman in [5]): a finite group is called critical if it is not contained in
the variety generated by its proper factors. (The factors of a group G are
the groups HjK where K < H gj G, and H]K is a proper factor of G unless
H = G and K = 1 ) . Some investigations concerning finite groups and varie-
ties depend on the investigator's ability to decide whether a given group is
critical or not. (For instance, one of the crucial points in the important
paper [9] of Sheila Oates and M. B. Powell is a necessary condition of cri-
ticality: their Lemma 2.4.2.) An obvious necessary condition is that the
group should have only one minimal normal subgroup: the group is then
called monolithic, and the minimal normal subgroup its monolith. This is,
however, far from being a sufficient condition, and it is the purpose of the
present paper to give some sufficient conditions for the criticality of
monolithic groups. (We consider the trivial group neither monolithic
nor critical.) The basis of our results is an analysis of the following
situation.

(1.1) Let 2) be a finite set of finite groups which is factor-closed in the
sense that every factor of every group in 25 is isomorphic to some group in 2),
and let G be a finite monolithic group in the variety var 2) generated by 2).
Let © be the set of those finite sequences Dx , • • • , Dn of non-trivial elements
of 2) for which the direct product J J (Dt : 1 ;S i jg n) has a factor isomor-
phic to G. By Lemma 4.3 of Higman [4], © is not empty. Associate with each
sequence in @ the sequence of the orders of its terms rearranged if necessary
so that these numbers occur in non-increasing order. This defines a map
from © to the lexicographically well-ordered set of all finite non-increasing
sequences of positive integers. Let Dlt • • •, Dn be a counterimage of the
first element of the image of ©. Then

(1.11) each Df is critical:

if, say, Dn were not critical, by the lemma of Higman quoted above Dn

would be isomorphic to a factor of the direct product of some finite sequence
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Dnl, • • •, Dn1c of elements of $) isomorphic to proper non-trivial factors of
Dn, and then Dlt - • ',Dn_lt Dnl, • • •, Dnk would be an element of <3 whose
image preceded that of Du • • •, Dn.

Our purpose is now to derive connections between G and the critical
groups Dlt • • -, Dn.

Some terminology is required for stating these. For any finite group X,
let aX denote the socle (that is, the product of the minimal normal subgroups)
of X (thus aX = 1 if and only if -X" = 1), and let a*X be the centralizer of
aX in X. By an abstract subgroup function we shall mean a function //
defined on the class of all finite groups and such that fiX is a subgroup of
X and (fiX)x = ii{Xa.) for every finite group X and every isomorphism
a : X >—* Xx. (Examples: a, a*). If Y is a normal subgroup of a finite group
X, then fi(X+Y) is the subgroup of X defined by p(X+Y)IY = n{XIY).
A subdirect function is an abstract subgroup function fi with the property
that ft(X-i-Y n Z) =/u(X+ Y) n fi{X-=rZ) whenever Y, Z are normal
subgroups of a finite group X.

First, we shall prove that in the above set-up

(1.12) each aDi is similar to oG

in the sense of [6]: that is, there exist isomorphisms 04 : oG >—* oDf and
ip(: Gja*G>-* DJo*Di such that (xv)d{ = (#0,)* whenever x e oG, y e G,
and z e (ya*G)y)f.

Next, two comparatively simple observations:

(1.13) G/oG e var{Z>,./a£>, : 1 ^ i ^ «},

and

(1.14) a*G e Vdir{a*Di : 1 ^ i ^ «}.

Finally,

(1.15) if JX is a subdirect function and <r*Df ^ /iDf for i = 1, • • • , n,
then also a*G jg [iG.

We give three direct applications of these results. First, we give new
proofs of Theorems 1 and 2 of [6]:

(1.2) If a finite monolithic group is not critical, then it is contained in
the variety generated by its proper subgroups.

(1.3) A finite group is contained in the variety generated by its proper
factor groups if and only if it is not monolithic.

The third result confirms a conjecture of Sheila Oates:

(1.4) THEOREM. / / G is a finite monolithic group and G is not critical,
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then GjaG is contained in the variety generated by the proper subgroups of
GloG.

We are grateful to Dr Oates for telling us of this conjecture and of the
steps she had taken towards confirming it.

Note that 1.2 and 1.4 can be thought of as sufficient conditions for the
criticality of monolithic groups. The main results of the paper are expressed
in the next two theorems. The first is a general one and is an immediate con-
sequence of the discussion so far; the second is more specific, and is derived
from the first without further reference to the above analysis. (The reader
will note that in proving the second the full power of the first is never used.)

(1.5) THEOREM. Let G be a finite monolithic group, ® the set of all
factor groups of proper subgroups of G, and 2)* the subset of those critical groups
in 5) whose monoliths are similar to the monolith oG of G. If G is not critical,
then

(1.51) GevarS)*,

(1.52) GjaG e vai{DjoD : D e $>*},

(1.53) a*G e var{a*D : D e $•} , and

(1.54) a*G ̂  fiG whenever [i is a subdirect function such that a*D ^ fiD
for every D in 2)*.

The first of these statements follows from 1.2, 1.11, 1.12, and the rest
from 1.13, 1.14, 1.15.

(1.6) THEOREM. Let G be a finite monolithic group. If G satisfies any
one of the following conditions, then G is critical:

(1.61) a*G S oG;

(1.62) the Frattini subgroup 0{G) of G is trivial;

(1.63) 0{G) = a*G;

(1.64) a*G is nilpolent and has only one maximal G-normal subgroup;

(1.65) a*G is abelian and has no elements of prime order outside oG;

(1.66) G has abelian Sylow p-subgroups for some prime p which divides
the order of aG.

The first three parts will be proved from 1.51. (The special case a*G = 1
of 1.61 seems to be the content of Theorem 1 of P. M. Weichsel [11].) In
proving 1.64, we shall use also 1.54, the relevant subdirect function being
an iterate an of a (defined inductively by ax = a, a^X) — a{X-:

rai^X)
if i > 1). The fact that a and its iterates are subdirect will be proved in
Section 2, along with some other information on subdirect functions intended
to facilitate possible further applications of 1.54. It will be shown that 1.65
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follows from 1.64. We are indebted to Mr P. J. Cossey for pointing out that
1.66 follows easily from 1.65 if the solubility of G is also assumed, and to
Dr Z. Janko for a suggestion which enabled us to eliminate from the argu-
ment the assumption of solubility.

Originally we proved 1.65 by a different method; as this gives further
insight, we briefly indicate how the old proof ran. It was based on the use
of the laws un = 1 where

u3 = and

These laws have, in the meanwhile, proved very useful in obtaining a sim-
plified proof of the main result of Oates and Powell [9]; in particular, we
gave in [7] the following lemmas (n 5j 3 being assumed throughout) :

(1.71) (4.3 of [7]) / / H is any group of order less than n, then «„ = 1
is a law in H.

(1.72) (4.4 of [7]) / / the centralizer of a chief factor of H is of index
at least n in H, then un= I is not a law in H.

We had one more:

(1.73) / / H has an abelian normal subgroup of index less than n—\,
then un = I is a law in H.

It was easy to prove from these lemmas that,

(1.74) under the assumptions of 1.65, *'/ n is the order of Gja*G and e
is the exponent of o*G\aG, then («„)' — I is a law in every proper factor of
G but not in G itself,

so that G is critical. (For the trivial cases of 1.74, ux = x, u% = [x, y].)
It is interesting to note that, when a*G is abelian, 1.64 is often a neces-

sary as well as a sufficient condition of criticality:

(1.8) THEOREM. Let G be a critical groupywith a*G abelian and oG a
p-group. Unless a*G is precisely the largest p-soluble normal subgroup of G
and a*G < G, it follows that a*G has only one maximal G-normal subgroup.

This will be proved by first showing (with the help of a result from
Higman [3]) that a*G is complemented in G, and then applying a necessary
condition of criticality (Theorem 9 in Higman [5]). We expect that the
qualifications cannot be omitted from this theorem; that is, the conclusion
will fail to hold in some groups where o*G is the largest ^-soluble normal
subgroup of G and a*G < G. It is easy to see that the theorem fails, even for
soluble G, if a*G is only assumed nilpotent of class 2. Indeed, it is likely that
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a necessary and sufficient condition for the criticality of monolithic groups
G with abelian or nilpotent a*G would have to be sought in an entirely dif-
ferent setting.

Finally, we remark that critical ^-groups have been studied by Weichsel
in [12].

2. Subdirect functions

Recall from the introduction that, in this paper, an abstract subgroup
function is a function y, defined on the class of all finite groups and such
that [iX 5S X and (t(Xx) = (fiX)x for every finite group X and every iso-
morphism a : X >—* Xx. (In particular, fiX is always a characteristic sub-
group of X). Also, if Y <3 X, then the (normal) subgroup ^(X-^Y) of X
is defined by fi(X+Y)/Y = p(XfY). (Note that Y ^/i(X+Y).) We shall
need the following technical remark:

(2.1) / / U,V<X, U^V, then p{X+V)IU = fi(XIU~V/U).

XIU X
PROOF. If a : >—* — is the natural isomorphism, then

+V)lU
XX~ =

V/U VjU

For two abstract subgroup functions n, v and a finite group X, define
jx'X = v(X-^-/iX). It is easy to check that ft" (in the terminology of R. Baer
[1], the "extension" of n by v) is an abstract subgroup function: if
a : X >—» Xa. is an isomorphism and /?: Xj/xX •>—» Xa.jfi.Xx is the isomorphism
induced by a, then

Xx X v(X+/tX) a

(iX fiXfiXx fiXx fiXx (iX fiX

We shall need a further technical remark:

(2.2) t?{X+Y) = v(X

PROOF. Apply 2.1 with v in place of JX and U = Y, V

= f(X+Y)/Y.
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It follows now that

(2.3) the operation of extension is associative.

PROOF. Apply 2.2 with Y = XX:

This has also been proved by Baer [1] (Lemma 1.8): this section so
far has much in common with his paper. We need one further term used
by Baer: if /i is an abstract subgroup function, its *-th iterate fi{ is defined
(for each non-negative integer i) inductively by //0 = o (the trivial subgroup
function, oX = 1 for every finite group X) and /ii+1 = (fii)

1'. Note that

A*I = J"-
Recall from the introduction that an abstract subgroup function /i is

called a subdirect function if [i(X-±- Y n Z) = fi(X-±-Y) n p(X^-Z)
whenever Y, Z <X and X is a finite group. A routine induction shows that

(2.4) if n is a subdirect function and Ylt • • •, Yn <3 X, then

liiX-rY, n • • • n Yn) = p{X+Yx) n---n M(X+Yn).

(2.5) / / fi is a subdirect function and Y < X, then pX ^ fi(X-^-Y).

This follows from the definition of subdirect function if one puts Z = 1.

(2.6) / / [i, v are subdirect functions, so is /J,".

PROOF. Let Y,Z <X. Then, from 2.2,

/I'(X-T-Y nZ) = v(X^fi(X~Y n Z))

= v(X+/l(X+Y)) n v(X-r/»(X-r

Consequently, as o is obviously subdirect,

(2.7) */ n is a subdirect function, so are all its iterates.

(2.8) The socle function a is subdirect.

PROOF. Suppose that X and its normal subgroups Y, Z provide a
counterexample:

o{X~Y nZ) # a{X-i-Y) n o(X+Z).

Using 2.1, this inequality can be re-written as

a{XjY nZ) # a(XJY n Z^rY\Y n Z) n a(X/Y n Z-fZ/Y n Z).
Hence there is a counterexample (namely X/Y n Z, Y/Y n Z, Z/Y n Z)
in which the two normal subgroups are disjoint. With a shift of notation if
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necessary take X, Y, Z to be a counterexample of this kind; that is, assume
that Y n Z = 1 and aX =£ o(X+Y) n o(X+Z). Call this intersection D.

Since the natural homomorphism X —» X/Y maps minimal normal
subgroups of X onto trivial or minimal normal subgroups of XjY, YaXjY
^ a{XJY), so that oX ^ CT(ZH-Y). The same holds for Z in place of Y;
therefore we must have aX < D. Let JV be minimal among the normal sub-

' groups of X which are contained in D but not in aX, and let M be a minimal
1 normal subgroup of X in JV. As 7 n Z = 1, M $ Y n Z : say, M %Y.

Then M r\Y = 1, and MYjY is a minimal normal subgroup of XjY. The
intersection of the maximal X/Y-normal subgroups of a(X/Y) is trivial;
hence for one of them, say, for KfY, MY/Y n K\Y = 1 and {MY\Y){K\Y)
= a{XjY). This, with M n Y = 1, implies that M n X = l and MX =
<r(X-f-Y). Since M <N ^D ^ o{X+Y) = MK, JV = Jkf (JV n X) and, of
course, M n (N nK) = 1. In particular, N nK <N; as JV was chosen
minimal, N nK ^ aX; on the other hand, M ^ <rX, so JV = Af (JV n iC)
^ <rX. This contradicts the assumption JV jg aX made when JV was chosen,
and the proof is complete.

In view of 2.7, we now have the particular result needed in the sequel:

(2.9) The iterates at of the socle function a are subdirect functions.

3. Proofs of 1.12—1.15

Recall the relevant part of the set-up of 1.1: We have a finite monolithic
group G and a direct product P of a suitably chosen finite sequence
Dx, • • •, Dn of non-trivial finite groups such that some factor, say SjT, of
P is isomorphic to G. To exclude a trivial case, assume that n > 1. For sim-
plicity of expression, identify G with SIT. The choice of P implies that if
any term of the sequence Dlt • • •, Dn is omitted or replaced by a proper
factor of itself, the direct product of the resulting sequence no longer has
a factor isomorphic to G. We shall refer to this by saying that P is minimal.
Let K{ be the kernel of the canonical projection of P onto Do that is,
Ki = Yl (Pi '• 1 = / Ŝ w» 7 ̂  *')• Throughout this section, statements invol-
ving * are to be taken as made for all values of i between 1 and n (inclusive).

The analysis of this situation begins with some obvious steps.

(3.1) SK( = P.
(3.2) A subgroup of D( is normal {in D{) if and only if it is normalized

by S.
(3.3) / / 1 < H < Do then H n S > 1.
(3.4) TnDt=l.

li (3.5) / / JV is a minimal nozmal subgroup of Dit then TN = o(S+T).
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Of these, 3.2 is an immediate consequence of 3.1, while 3.1, 3.3, 3.4
follow from the minimality of P, with 3.2 giving T n Dt < Z), for the proof of
3.4. As for the proof of 3.5, note that iV is a minimal normal subgroup of S
(in view of 3.2 and 3.3) and T n N = 1 (because of 3.4); also, that o(S/T)
is the only minimal normal subgroup of S/T, being the monolith of G. The
next step is an immediate consequence of 3.5:

(3.6) a(S~-T) n D( = oDt with aDi minimal normal in Do so that
Df is monolithic; also a(S-r-T) = TaDt.

At this stage, 1.13 can already be derived. Namely, we have that
G\aG = S/a(S~T) = SITaDt = SfY[{TaDi : 1 ̂  * ̂  n), so that GjoG is
isomorphic to a factor group of 5/JJ(cfZ)t : 1 ̂  i rg n), and the latter can
naturally be considered a subgroup of ^{D^aDf : 1 :£ i ^ n).

On the basis of 3.1 — 3.6, 2.1 and 2.2 of [6] could be invoked to prove
1.12; we prefer to make the present argument self-contained. For the proof
of 1.12, define the required mappings 8U \pt as follows. If sTea(S/T) —
oG, 3.6 and 3.4 enable us to write s = tt4t with uniquely determined d{ from
aDt and ti from T; let 6t : sT -> dt. It is obvious that 6t is an isomorphism of
oG onto oD{. If {s*T)a*(SIT) e (SIT)/a* (S/T) = G/a*G, take s* = k,d*
with df e Do kt e K(, according to the direct decomposition Kt X Dt of P,
and put xpt : (s*T)a*(S/T) ~> dfa*Dt. Using 3.6 and 3.7 below, it is straight-
forward to check that the y>( are isomorphisms of G/a*G onto the ZJJ/CT*/)^

and that they fit together with the dt in the manner required for 1.12.
The next step will have 1.14 as a trivial corollary.

(3.7) o*(S+T) = S n H(°*Di : 1 ̂  * ̂  ») = S n Kp*Dt.

PROOF. Observe that

+T)] = [oDt,o*(S^T)], for even [Do Kt] = I;
<; [ToDu <T*(S-4-r)] n oDt, for orD,. < P;
= [o(S^rT), a*(S^T)] n ffD,., by 3.6;
<:T noDt, by the definition of a*(S^-T);
= 1, by 3.4.

Thus JK>*(S-^r) n Dt ^ CT*I>,-. If s = TJ (̂ < : x ^ ^ » ) , ̂ e A , accord-
ing to the direct decomposition JK-D, : 1 ^ i ^ ») of P and s e a*(S-i-T),
it follows that diea*Di; in other words, we have proved that a*(S-^-T)
g; I J (<r*Di :l^i^n).For obvious reasons, JJ ia*Di '•1 ^ ^ n) ^K^Df.
Finally, 3.6 and [oD(, K^D^ = 1 imply that (a{S-i-T), S n iCf<r*Dt]
= [TaDo S n i^.a*!),] ^ [T, S] ^ T, so that S n iiC4ff*JD4 ^ o*(S+T).

It remains to prove 1.15. Let / i b e a subdirect function such that cr*Z),-
^ //Z>,- (for every value of i), and put S r\Ki = L{. Since the restriction to
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S of the canonical projection P —* D{ is an epimorphism 5 —» Dt

(cf. 3.1) with kernel Lit we have that ^(S-^-Z,,) is the full counterimage
of /iDi in S under this projection: that is, //(S-f-L,) = S n X^O,-. In
view of 3.7 and a*D,- ^ fiDit it follows that o*(S+T) ^ (S-hZ.*) . As
H (Lt: 1 ^ * ^ n) = 1, 2.4 gives that <r*(S^-J) ^ f) (^(5^-Z.,) : 1 ^ * ̂  n)
= fiS, and then 2.5 ensures that O*(S-TT) ?^ft(S-±-T). Thus we have that
a*G 5g //G, as required.

4. Proofs of 1.2—1.4

PROOF OF 1.2: reductio ad absurdum. Suppose that there exists a finite
monolithic group G which is not critical and is not contained in the variety
generated by proper subgroups. Let 2>x be the set of proper factors of G, so
that $ ! = {HjK :K<±H ^ G, HjK ^ G/l}, and let 2)2 be the set of factor
groups of proper subgroups of G, that is, 2)2 = {H/K :K <H < G}. By
our assumptions, G e var 2>x but G $ var 2)2. Obviously, 2)2 C ®x. Let ®
be a subset of 2^ which is minimal (in the inclusion-order of subsets) with
respect to the following conditons:

(4.1) 2) is factor-closed,

(4.2) G e var $ ,

(4.3) s>2g$.

(The set of those subsets of 2)x which satisfy these conditions contains ®x

and so is not empty). Then the difference set ®—®2 is not empty (for
G e var ®—var ©2); let D be a group of maximal order in 3)—®2, and put
2)0 = 2)—{£>}. Note that every proper factor of every group in 2) is isomor-
phic to some group in 2)0; also, that JD0 satisfies (4.1) and (4.3), and so must
fail (4.2): G $ var 2)0. It follows from 1.13 that GjaG e var %. Hence every
proper factor group of G, that is, every group in S^—2)2, lies in var 2)0 :
thus 2)2 C ®0 Q £>! implies that var ©0 == var 2^. We conclude that G £ var 2^,
contrary to one of the initial assumptions. This completes the proof.

PROOF OF 1.3. The non-trivial part of the statement is that if G is a finite
monolithic group then G is not contained in the variety generated by its
proper factor groups. If G is critical, there is nothing to prove; thus we assume
that G e var 2)x where 2)x = {HjK :K<H ^G, H/K # G/l}. Let 2) be
a subset of 2)x which is minimal with respect to 4.1 and 4.2, let D be a group
of maximal order in 2), and put 2)0 = 2)—{D}. Then every proper factor of
every group in 2) is isomorphic to some group in 25O; also, 2)0 is factor-closed
and so we must have G £ var 2>0- Now 1.13 gives that G/oG e var 2)0; we
conclude that the variety generated by the proper factor groups of G is con-
tained in var 2)0 and hence cannot contain G.
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PROOF OF 1.4. Let G be a finite, monolithic, non-critical group. By 1.2,
G e v a r ® with $ = {# /# : K < H < G}. Apply 1.1 to this $ and G:
by 1.12, there exist monolithic groups Dlt • • •, Dn in ® such that

(4.4) \aD,\ = • • • = |aZ>J = \oG\.

As 1.13 also holds, 1.4 will be proved if we show that each DJaDf is isomor-
phic to some factor of some proper subgroup of GjaG. Let Dt = HJKi with
K{ < H{ < G. First we show that H^GfaG < GjoG, and then that £>t/a£>,-
is isomorphic to a factor of H&GjaG. For the first step, suppose that
HtaG = G. Then MoG = G for any maximal subgroup M of G which con-
tains #<; thus aG fg Af, and so oG ̂ &(G) : as aG is contained in every non-
trivial normal subgroup of G, this implies that <P(G) = 1. But 1.62 asserts
that in this case G is critical: a contradiction. [Naturally, this application of
1.62 will only be justified after we have proved 1.62 without using 1.4.]
Hence indeed we must have H^G/cG < GjaG. For the second step, note that
as (Ht n ffG)K,./K,. < HJKt and, by 4.4, \(Ht n aG)KJKt\ ^ \oG\ = \a(HtIKt)l
the fact that offlJKf) is contained in every non-trivial normal subgroup of
HJKi implies that {Ht n oGjKJKi^oiHJKt). Thus (HtIKt)la(HtIKt) is
isomorphic to a factor of Hil{Ht n aG) and, of course, HfKHi n aG)
S HtoGjoG. This completes the proof.

5. The proof of 1.6

Throughout this section, G is a finite monolithic group and ®, 2)* are
defined as in 1.5.

PROOF OF 1.61. Suppose that a*G ^ aG. If a*G = 1 and De%*. then
\D\ ^ \Dja*D\ = \G/a*G\ = \G\. If a*G = <rG and D e 3)*, then aG, and
hence also <rZ), is abelian; so a*D ^ aD, \D\ ^ |ff£>||D/a*D| = \aG\\Gja*G\
= |G|. In either case, we have a contradiction, for D is a proper factor of G:
thus 2)* must be empty and so G $ var 2)*. Now 1.51 shows that G is critical.

PROOF OF 1.62. Let <P(G) = 1; then aG%M for some maximal subgroup
M of G. If aG is non-abelian, then <x*G = 1 and so 1.61 gives that G is critical.
If aG is abelian, then M n aG is centralized by aG and, of course, normalized
by M: hence M n aG is normalized by MaG. But AftrG = G, so Af n crG < G,
Af n aG < aG: it follows that MnaG=l. Note that a*G = aG(M n a*G);
Af n a*G is also centralized by aG and normalized by Af, so that M n a*G < G,
and (Af n a*G) n aG ^ Af n aG = 1: thus Af n a*G = 1, a*G = aG. Now
1.61 gives that G is critical.

In preparation for the proof of 1.63 we need a lemma:

(5.1) Let X be a finite group, Z a nil-potent normal subgroup of X, and i
a non-negative integer. Then [ai+1X, Z] 5S o(X; in particular, Z 5S a*X.
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PROOF. Let Y/a.-X be a minimal normal subgroup of X[otX. Then
either Y/cr,-.X n ZatX\aiX = 1 or, as ZoiXjOiX is nilpotent, 1 <
YjOiX n ^(ZOiXjOiX) < X\atX and so YlatX ^ Ci(ZatXlatX). In
either case, Y/CT.X centralizes ZoiXjOiX. As this holds for every
choice of Y/OfX, it follows that a{XlatX) centralizes ZffiX/ot,.X'; that is,

> Z] ^ aiX a s required.

PROOF OF 1.63. Let 0{G) = a*G and suppose that G is not critical.
By 1.51, G e var ©*; let HfK e $*, K<H < G, and let M be a maximal
subgroup of G containing H. Since 0{G) is nilpotent, 5.1 implies that
(H n0(G))KjK ^a*{HjK) and so H n &{G) ^ o*(H+K). Since
HI(Hn0(G)) s <P(G)HI<P(G) and &{G)H ^M, it follows that

n ( ) ) |
= |G/a*G|,

' so that oD is not similar to aG, contrary to the definition of 2>*.
i For the proof of 1.64, we need one more lemma:

i (5.2) Let X be a finite group, Y a subgroup and Z a nilpotent normal
subgroup of X such that X = YZ. Then, for every non-negative integer i,
atX nY nZ ^ otY.

I PROOF: by induction on i. The initial step is obvious. Define Wf = atX
nY n Z for every non-negative integer /, and suppose that Wt 5S a(Y.

j Consider a{XjaiX) as a group with X as group of operators acting on it,
I each element x of X operating as the automorphism of a(XjatX) induced

by the inner automorphism of X associated with x. Then a(XlatX) is the
i product of its minimal .X'-admissible normal subgroups, and consequently
| (cf. § 61 of Kurosh [8]) every .X'-admissible normal subgroup of a(XjaiX)

is a product of minimal .X'-admissible normal subgroups of a{XlaiX).
Since X induces every inner automorphism of a(XjaiX), this means that if

j A is an .X'-admissible subgroup of a(XjaiX), then A is the product of the
| minimal ^-admissible subgroups of A. Now Wi+1atX g; ai+1X, so by 5.1

(5.3) [Wi+1a{X, Z) ^ a{X,

and thus Wi+1a(X is normalized by Z; as Wi+1 < Y and a{X < X, it fol-
! lows that Wi+1a(X ^YZ = X. Put A = W^OtXIOfX: then A is an .X'-

admissible subgroup of a{XjaiX), so that this A is the product of its minimal
I .X'-admissible subgroups. But (5.3) shows that Z acts trivially on A, so
i that the .X'-admissible subgroups of A are precisely the Y-admissible ones:
j A is the product of its minimal Y-admissible subgroups. The isomorphism
[ theorem gives that A is Y-isomorphic to Wi+1l(Wi+1 n atX), that is, to
\ Wi+ilwt'- thus Wi+1jWi is the product of its minimal Y-admissible sub-
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groups. In other words, Wi+1IWf is a product of minimal normal subgroups
of YIWO so that Wi+1IWt ^ o(Y/W<). Applying 2.5 and W{ ^ otY, and
then using 2.1, we get now that

Wt+JWt ^ o(YIWt) £ oOr/Wt+OtY/Wt) = o(Y+otY)IWt = oi+1YIWt

whence Wi+1 ^ oi+1Y. This completes the inductive step.

PROOF OF 1.64. Suppose that a*G is nilpotent and has only one maximal
G-normal subgroup L. In view of 1.61, we assume that a*G > aG. Then
there exists a positive integer n such that a*G :g anG but a*G ^ on+1G.
Note that in this case anG n a*G = L. We shall show that, for every D
in 2)*, a*D ^ crnZ>; by 2.9, orn is a subdirect function, and so this will prove
that G is critical: otherwise we would have a contradiction to 1.54. Let D be
an arbitrary element of $*, D = HjK, K<H<G. As (H n a*G)KjK is a
nilpotent normal subgroup of #/K, 5.1 guarantees that H n a*G rgi <r* (H-^-K).
Thus |G/CT*G| = \Dla*D\ = |#/cx* (tf H-K) | ^ | # / ( # n CT*G)| and so |Ho*G| =
\HI(H na*G)\\a*G\^\G\: it follows that Ha*G = G and H n o*G =
a* (H-i-K). Let M be a maximal subgroup of G containing#. Then Ma*G = G,
so CT*G :g M, M n a*G < a*G. Since cr*G is nilpotent, the normalizer N
of M n a*G in a*G is larger than M n CT*G. AS M normalizes M n <r*G, it
normalizes N: so MAT is a subgroup; but N ^ M, so MiV = G. Thus
M n a*G < G, and therefore we must have M n a*G ^ L. By what has been
proved so far, o*(H+K) = H na*G <M n a*G ̂ L ^ onG, so o*{H+K)
= onG nH n a*G: here 5.2 can be applied to get that a*(H-^-K) 5S onH, and
from this 2.5 yields o*(H+K) ^on(H-±K). This is the same as o*D^onD,
and so the proof is complete.

PROOF OF 1.65. In view of 1.61, assume that a*G > aG. Since G is mono-
lithic and a*G is abelian, a*G must be a />-group for some prime p] as a*G
has no element of order p outside aG, it follows that a(a*G) = aG. Let pk+1

denote the exponent of a*G; we have that k > 0. The set {g** : g e a*G)
is a non-trivial characteristic subgroup of a*G contained in a{a*)G:
hence aG = a(a*G) = {g"* : g e a*G}. Thus every element of a(a*G) is a
pkth power in a*G, and so a*G must be a direct product of cyclic groups
of order pk+1. Hence g0(a*G) -> gp* is a G-isomorphism of a*Gj0(a*G)
onto CTG, and consequently &{a*G) is a maximal G-normal subgroup of
a*G. On the other hand, if M is any maximal G-normal subgroup of a*G,
then a*GjM is elementary abelian and therefore M S: 0(a*G). This proves
that 0(a*G) is the only maximal G-normal subgroup of a*G: now 1.64 gives
that G is critical.

PROOF OF 1.66. In view of 1.61, assume a*G > aG: then aG is contained
in the Fitting subgroup F of G and, as G is monolithic, F is a p-group for
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some prime p. By the assumption of 1.66, F is abelian. Now oF is an ele-
mentary abelian normal subgroup of G (contained in and therefore) central-
ized by every (abelian) Sylow ̂ -subgroup of G: as G is monolithic, Maschke's
Theorem implies that oF = aG. In view of 1.65, it suffices to prove that
F = a*G. For a proof by contradiction, suppose that F < a*G: then a*G is
not a p-gvovqp. Let H be minimal among those normal subgroups of G which
are contained in a*G and are not ^-groups. If g is any non-trivial element of
oG, then g is of order p and is in the centre of H: since the Sylow ^-subgroups
of H are abelian, it follows that the image of g under the transfer of H into
any Sylow ^-subgroup of H is non-trivial (cf. Lemma 14.4.1 in M. Hall [2]).
Consequently, H has proper normal subgroups of ^>-power index; the in-
tersection K of all these is normal in G and still has />-power index in H: thus
K is not a ^-group, contrary to the minimal choice of H. This completes the
proof.

6. The proof of 1.8

Let G be a critical group, a*G abelian, aG a />-group, and suppose that
G/a*G has a ^-soluble minimal normal subgroup Mja*G. Since G is mono-
lithic, a*G is a ^-group. On account of 5.1, M cannot be a />-group: hence
Mja*G is a ^'-group. Thus, by the Schur-Zassenhaus Theorem (see e.g.
M. Hall [2], p. 224) a*G must have a complement X in M. Let N be minimal
among those normal subgroups of G which are contained in a*G and for
which NX is normal in G. By Theorem 1 of Higman [3], N has a complement
L in G. Now L n a*G is normalized by L and centralized by N (as N is
abelian): so I n a*G < LN = G. On the other hand, (L n a*G) n aG 5S
LnN =1, for oG ^N would imply JV = 1, 1 < X < G, X n <rG ^
J£ n CT*G = 1 a contradiction. Thus L n <x*G is a normal subgroup of G which
avoids the socle of G: we must have L n a*G = 1. Obviously, G = LN ^
La*G. Now if i^1( 2V2 were two distinct maximal G-normal subgroups of
ff*G, we would have that LN^ = G (SLSN1N2 = a*G), LNX < G, LN2 < G,
and [ATj, JV2] = 1, and so by Theorem 9 in Higman [5] (cf. also Theorem 4
of Powell [10]) G could not be critical.
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