
6

Bosonization

In one space dimension there are obviously no rotations and hence no angular
momentum. This raises the possibility of equivalence relations between scalar
fields and fields of higher tensorial structure like spinors, vectors etc. However,
spinors and scalars seem to be distinct even in two dimensions due to their
different statistics. An equivalence between these two types of fields should
therefore incorporate the identification of operators, made out of scalars, that
are anti-commuting and vice versa. It is well known that a bilinear of fermi fields
is a commuting field, but it is less obvious how to construct a field that obeys
the Fermi–Dirac statistics from scalars. This is precisely what the bosonization
procedure does.

Coleman [63] and Mandelstam [159] introduced the concept of bosonization.
Their construction is now referred to as the “abelian bosonization”. An anti-
commuting Fermi field, constructed from the exponential of a boson, was given
explicitly by Mandelstam [159].

The fact that the theories of a free massless scalar and a free Dirac fermion are
equivalent can be proven by showing that they fall into the same representation
of the affine current algebra and the Virasoto algebra. The bosonic–fermionic
duality can also be further elevated to the free massive theories and also to
interacting ones.

It turns out that the original abelian bosonization is not convenient to accom-
modate color (or flavor) degrees of freedom and hence is inconvenient to address
systems like QCD2 . A breakthrough in that direction was achieved by Witten,
in his non-abelian bosonization [224].1

The equivalence enables one to use, as convenient, either the fermionization
of scalar fields or the bosonization of fermions. The latter is useful in several
cases. For instance in the case of duality between the Thirring model [205] and
the sine-Gordon model,2 which will be discussed in Section 6.2, the bosonization
takes the form of a strong–weak duality. For strong fermionic interactions one
finds a weak bosonic coupling. In applications to gauge theories (Section 9) it will
be shown that the one loop anomaly behavior is encoded in classical bosonized
theory. In QCD2 , as will be discussed in Section 9.3.2, the bosonic version of

1 This paper discusses Majorana fermions. The construction for Dirac fermions was done in [7].
2 This was proved by Coleman [63].
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132 Bosonization

the theory admits a separation between the color and flavor degrees of freedom,
which is very useful in describing the low energy color singlet states.

We start this chapter by introducing the set of rules that span abelian
bosonization, including the rules for mass terms and the equivalence of the inter-
acting Thirring model and the sine-Gordon model. We then describe Witten’s
non-abelian bosonization of Majorana fermions. This is further generalized to the
case of massless Dirac fermions. We discuss the subtleties of the massive case and
present two methods of handling the non-abelian bosonization of massive Dirac
fields.3 We then discuss in detail the action formulation of the chiral bosonization
both abelian and non-abelian. We then depart from the applications that will be
found to be relevant to QCD2 and present topics in bosonization which are more
relevant to conformal field and string theories like the bosonization of ghost fields
and the Wakimoto bosonization [213]. We do not discuss bosonization on higher
Riemann surfaces. The interested reader can consult for instance [211] and [84].

The topic of bosonization in two-dimensional field theories has been reviewed
in several papers and books, like that of Stone [202]. Here we mainly follow the
review of Frishman and Sonnenschein [101] for the basic ingredients, and update
it to include more recent topics.

6.1 Abelian bosonization

6.1.1 Bosonization of a free massless Dirac fermion

Both the theory of a free massless real scalar field and the theory of a free massless
Dirac field are conformal field theories invariant under affine Lie algebra. Recall
from Chapter 2 that the former theory is defined by the action,

S =
∫

d2xL =
1
8π

∫
d2x∂ν φ̂∂̄ν φ̂

=
1
4π

∫
d2ξ∂ξ φ̂∂ξ̄ φ̂ =

1
4π

∫
d2z∂φ̂∂̄φ̂. (6.1)

The solution of the equation of motion takes the form,

φ̂(z, z̄) = φ(z) + φ̄(z̄). (6.2)

The theory has holomorphically (and anti-holomorphically) conserved currents,

J(z) = i∂φ(z) J̄(z) = −i∂̄φ̄(z̄), (6.3)

and similarly holomorphic (and anti-holomorphic) energy-momentum tensors,

T (z) = −1
2

: ∂φ∂φ := −1
2

: J(z)J(z) :

T̄ (z̄) = −1
2

: ∂̄φ̄∂̄φ̄ := −1
2

: J̄(z̄)J̄(z̄) :, (6.4)

3 A bosonization prescription for the mass term in the flavored case was suggested in [75] and
[99].
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6.1 Abelian bosonization 133

which admit a Virasoro algebra with c = 1 and affine Lie algebra with level
k = 1.

Recall also that the theory of a free massless Dirac field with the action,

S =
1
4π

∫
d2z(ψ†∂̄ψ + ψ̃†∂ψ̃) (6.5)

admits conserved currents,

J(z) = ψ†ψ J̄(z̄) = ψ̃†ψ̃, (6.6)

and its energy-momentum tensor can be expressed as a bilinear of the currents
using the Sugawara construction,

T (z) = −1
2
[ψ†∂ψ − ∂ψ†ψ] = −1

2
: ψ†ψψ†ψ := −1

2
: J(z)J(z) : . (6.7)

The correponding level of the affine algebra and of the Virasoro anomaly are
again k = 1, and c = 1, respectively.

Due to the uniqueness of the irreducible unitary k = 1 representation of the
affine Lie algebras, and the fact that the infinite-dimensional algebraic structure
fully determines the theories, we conclude that in two space-time dimensions the
theories of massless free scalar field and Dirac field are equivalent.

The equivalence implies that every operator of one theory should have a part-
ner in the other theory, in such a way that the OPEs of these dual operators
should be identical. We have just realized such correspondence for the currents
and energy-momentum tensor, namely,

Jb(z) = ∂φ(z) ↔ Jf (z) =: ψ†ψ(z) : ,

Tb(z) = −1
2

: ∂φ∂φ : ↔ Tf (z) = −1
2
[ψ†∂ψ − ∂ψ†ψ], (6.8)

and similarly for the anti-holomorphic counterparts.
For completeness we now redescribe the currents using the “old” terminology

of vector and axial currents. The vector current reads,

Jμ
V =: ψ̄γμψ := − 1√

π
εμν ∂ν φ. (6.9)

This identification of Jμ leads automatically to a conserved current,

∂μJμ
V = 0, (6.10)

independent of the equations for φ. This is a “topological” conservation, con-
nected with choosing the “vector conservation” scheme. In the applications to
follow, we will demand more freedom in the scheme choice of interacting theories,
in particular the possibility to have a vector current anomaly. The bosonization
procedure will therefore be somewhat modified. The modification will correspond
to a change of regularization scheme.

The overall coefficient of the current is such that the fermion number charge,

Q =

∞∫
−∞

dxj0(x) = 1, (6.11)
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134 Bosonization

for the ψ-field. In addition to the “topologically” conserved vector current, the
bosonic theory has an axial current, which is equivalent to the fermionic axial
current,

Jμ
A =: ψ̄γμγ5ψ :=

1√
π

∂μφ. (6.12)

The bosonic current is the Neother current associated with the invariance of
the bosonic action under the global shift δφ = ε. The holomorphic and anti-
holomorphic conserved currents discussed above are (in real coordinates) nothing
but the left and right chiral currents Jμ

± = Jμ
v ± Jμ

A , which correspond to shifts
with ε(x+) and ε(x−). Using the commutation relation (8.4) the ALA reads,[

J±(x±), J±(x′
±)
]

=
2i

π
δ′(x± − x′

±). (6.13)

This is the same algebra as that of the fermionic chiral currents. The Sugawara
construction in this terminology reads,

T±± = π : J±J± : . (6.14)

These obey the Virasoro algebra,[
T±(x±), T±(x′

±)
]

= 2i
(
T±(x±) + T±(x′

±)
)
δ′(x± − x′

±)− i

6π
δ′′′(x± − x′

±),

(6.15)
which is identical to that of the fermionic energy-momentum tensor.

The equivalence of the bosons and the fermion bilinears is not only mathe-
matical. The fermion Fock-space contains those bosons as physical states. The
reason for this is that in one space dimension a massless field can move either to
the left or to the right. A Dirac fermion and its anti-particle having together zero
fermionic charge and moving in the same direction will never separate. They are
therefore indistinguishable from a free massless boson. This picture changes when
masses are introduced, and the above relations will be approached at momenta
high compared to the mass scale (including high off-mass shell).

A natural question to ask is which operator of the bosonic picture corre-
sponds to the basic Dirac ferion? Since the latter is in fact a combination of
a left chiral spinor and a right one, we would like to determine the “bosonized”
Weyl fermion ψ(z). It is a holomorphic function of conformal dimension 1/2,
that transforms under the affine Lie transformation with a unit charge, namely,
ψ(z)→ eiε(z )ψ(z). Due to the fact that under the same transformation the scalar
field transforms as φ(z)→ φ(z) + e(z) we are led to look for a candidate which
is an exponential in the scalar field eiαφ(z ) . We now use T (z) given in (6.4) to
compute the confomal dimension of : eiαφ(z ) : as follows,

T (z) : eiαφ(w ) :=
α2

2 : eiαφ(w ) :
(z − w)2 + . . . , (6.16)
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6.1 Abelian bosonization 135

where . . . stands for non-singular terms, Hence the conformal dimension is α2

2 .
Thus we conclude that the following equivalence should hold,

ψ(z)↔ eiφ(z ) , ψ†(z)↔ e−iφ(z ) . (6.17)

To confirm this bosonization rule we compute the OPEs in both descriptions and
verify that they are indeed identical,

ψ(z)ψ†(−z) =
1
2z

+ :ψ(0)ψ†(0): +2z : [ψ(0)∂ψ†(0): −∂ψ(0)ψ†(0))]+O(z2)

ψ(z)ψ†(−z) =
1
2z

+ J(0) + 2zT (0) +O(z2)

: eiφ(z ) :: e−iφ(−z ) : =
1
2z

+ J(0) + 2zT (0) +O(z2)

: eiφ(z ) :: e−iφ(−z ) : =
1
2z

+ i∂φ(0) + 2z(∂φ∂φ(0)) +O(z2). (6.18)

The bosonic version of the fermion ψ was originally proposed by Mandelstam.
His formulation was done in terms of real coordinates and cannonical quanti-
zation. For completeness we now also present the “old” construction and proof
of equivalence. The bosonized chiral fermion in the latter formulation takes the
form,4

ψL =
√

cμ

2π
: exp

(
− i
√

π

(∫ x

−∞
dξ[π(ξ) + φ(x)]

))
:

ψR =
√

cμ

2π
: exp

(
− i
√

π

(∫ x

−∞
dξ[π(ξ)− φ(x)]

))
:, (6.19)

where π(x) = φ̇(x) is the conjugate momentum of φ(x), c is a constant. A compu-
tation yields c = 1

2 eγ ∼ 0.891, where γ is the Euler constant. The normal ordering
denoted by : : is performed with respect to the scale μ.

The equal time commutation relations of the φ-field,

[φ(x, t),π(y, t)] = iδ(x− y),

imply, upon using the formula eAeB = e[A,B ]eB eA (for [A,B] a c-number) the
canonical anti-commutation relations for the ψ field,{

ψ†
L,R(x, t), ψL,R(y, t)

}
= δ(x− y). (6.20)

The fermion field ψ is therefore, an inherently non-local functional of the scalar
field. However fermion bilinears, such as the currents discussed above or the mass
terms that will be described in the next section, are local functions.

So far we have addressed the map for massless theories. Let us now discuss the
bosonization of a fermion mass bilinear operator. The mass term which mixes

4 A generalization of this bosonization to a set of N fermions was done by Halpern [121].
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136 Bosonization

the left and right chiral componenets of the Dirac fermion takes the following
well-knows form,

mf [ψ̃†(z̄)ψ(z) + ψ†(z)ψ̃(z̄)] = mf (ψ†
LψR + ψ†

RψL). (6.21)

Again for completeness we write down the expression both in the complex coor-
dinates as well as in real coordinates.

Using the bosonization rules for chiral fermions (6.17) (to be justified below),
we deduce the map of the fermion bilinear to the equivalent bosonic operator,

mf [: eiφ̄(z̄ ) :: eiφ(z ) : + : e−iφ(z ) :: e−iφ̄(z̄ ) :] = mf μ : cos(φ̂(z, z̄) :, (6.22)

where we have made use of φ̂(z, z̄) = φ(z) + φ̄(z̄) and of the fact that there is no
non-trivial OPE between φ(z) and φ̄(z̄). Note that we write down the bosonic
equivalent of the mass term operator in the context of the massless theory and
hence the factorization to holomorphic and anti-holomorphic parts of the scalar
field holds. Once we identify this operation relation we will then use it to add a
fermion mass term to the bosonized action. The additional parameter which has
a dimension of mass μ is the normal ordering scale.

The derivation of the bosonized mass term in the “old language” is somewhat
more involved. We will return to this after we address the bosonization duality
between the fermionic Thirring model and the bosonic sine-Gordon model.

We now summarize the equivalence relations between the bosonic and
fermionic operators of the free theories, in both the “modern” complex coor-
dinate formulation, as well as the “old” formulation in terms of real coordinates:

Operator Fermionic Bosonic

J(z) : ψ†ψ(z) : i∂φ(z)

J̄(z̄) : ψ̃†ψ̃(z̄) : −i∂̄φ(z̄)

T (z) − 1
2 : [ψ†∂ψ − ∂ψ†ψ] : − 1

2 : ∂φ∂φ(z) :

T̄ (z̄) − 1
2 : [ψ̃†∂ψ̃ − ∂ψ̃†ψ̃]: − 1

2 : ∂̄φ∂̄φ(z̄) :

fermionL ψ(z) : eiφ (z ) :

fermionR ψ̃(z̄) : eiφ ( z̄ ) :

mass term ψ̃†(z̄)ψ(z) + ψ†(z)ψ̃(z̄) μ : cos φ̂(z, z̄) :

Bosonization in “modern” complex formulation.

6.2 Duality between the Thirring model and the
sine-Gordon model

The Thirring model is a fermionic theory with a current–current interaction,
given by the Lagrangian density,

L = iψ̄ 	∂ψ − 1
2
gJμJμ ,
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Operator Fermionic Bosonic

J+ (x+ ) : ψ†
L ψL : ∂+ φ

J−(x−) : ψ†
R ψR : ∂−φ

T++ (x+ ) − 1
2 : [ψ†

L ∂ψL − ∂ψ†
L ψL ] : − 1

2 : ∂+ φ∂+ φ(x+ ) :

T−−(x−) − 1
2 : [ψ†

R ∂ψR − ∂ψ†
R ψR ] : − 1

2 : ∂−φ∂−φ(x+ ) :

fermionL ψL (x+ )
√

cμ
2π

: exp

(
−i

√
π

(
x∫

−∞
dξπ(ξ) + φ(x)

))
:

fermionR ψR (x−)
√

cμ
2π

: exp

(
−i

√
π

(
x∫

−∞
dξπ(ξ) − φ(x)

))
:

mass term ψ†
L (x+ )ψR (x−) μ : cos φ̂(x+ , x−) :

+ ψ†
R (x+ )ψL (x−)

Bosonization in “old” formulation.

where Jμ = : ψ̄γμψ : . The model is exactly solvable and meaningful for g > −π.
The corresponding equation of motion reads,

i 	∂ψ(x) = gγμJμ(x)ψ(x). (6.23)

The theory is invariant under vector and axial U(1) global transformations.
The corresponding conserved currents are,

JV
μ = Jμ = : ψ̄γμψ : JA

μ = εμν JV ν
. (6.24)

The model can be studied by means of the operator product expansion on the
light-cone [76]. The fermionic bilinears of the model are expressed as a function
of the current, and the expressions obtained turn out to be very natural in the
light of the bosonization procedure, which we now describe.

We start with the following generalization of the bosonization formula (6.19):

ψL =
√

cμ

2π
: exp

⎛⎝−i
√

π

⎛⎝2
√

π

β

x∫
−∞

dξπ(ξ) +
β

2
√

π
φ(x)

⎞⎠⎞⎠ :

ψR =
√

cμ

2π
: exp

⎛⎝−i
√

π

⎛⎝2
√

π

β

x∫
−∞

dξπ(ξ)− β

2
√

π
φ(x)

⎞⎠⎞⎠ :. (6.25)

The meaning of the new parameter β will be clarified shortly. In a similar man-
ner to the derivation of (6.20) we can verify that the equal-time anti-commutation
relations are still obeyed. Furthermore one can show that the Dirac operator
built from (6.25) obeys the equation of motion (6.23) provided that the bosonic
field φ(x) obeys the equation of motion of the sine-Gordon model discussed in
Section 5.3, namely,

∂μ∂μφ(x) +
μ2

β
: sin(βφ(x)) := 0, (6.26)
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and that the parameter β is related to the coupling constant g in the following
way,

β2

4π
=

1
1 + g

π

. (6.27)

From this last relation it follows that the special value β2 = 4π corresponds to
g = 0 and hence a free Dirac fermion. Indeed as we shall see below for that value
of β the sine-Gordon potential translates into the bosonized mass term. It is
interesting to note a remarkable property of (6.27) which relates the coupling
constants of the Thirring model and its bosonic equivalent, the sine-Gordon
model. The weak coupling of one theory is the strong coupling of the other.
This property often occurs in bosonized theories and hints at the usefulness
of the method in dealing with theories for strong coupling, where perturbative
methods fail.

The bosonization dictionary of the vector fermion number current is the fol-
lowing,

JV
μ = : ψ̄γμψ :↔ Jμ = − β

2π
εμν ∂ν φ. (6.28)

This expression differs from the bosonized current of the free Dirac theory (6.9)
in its normalization factor. We immediately realize that for the special value
β2 = 4π we precisely reproduce (6.9). The normalization factor can be deter-
mined from the assignment of the fermion number charge of a soliton that should
be equal to the charge of the field ψ. Recall from Section 5.3 that the classical
sine-Gordon model admits a finite energy soliton solution. It is time-independent
and interpolates between adjacent wells of the scalar potential. In quantum the-
ory this classical solution becomes a particle. The static soliton solution is given
by (5.26),

φ =
4
β

tan−1 [expμ(x− x0)],

where x0 is the “center” of the soliton. Substituting this into the integral of the
current we find the fermion number of this solution to be,

Q =
β

2π
[φ(∞)− φ(−∞)] = 1. (6.29)

Thus we see that indeed the normalization factor in the vector current (6.28) is
the right one.

The relation (6.28) implies that the level in the affine Lie algebra will be β 2

4π ,
as compared to 1 for the free case.

Let us address again the issue of the bosonization of the fermion mass bilinear
(6.22). The definition of the mass term in the “old formulation”, as that of the
current, requires some care due to the appearance of the products of operators
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at the same point. In fact when x approaches y one gets the following OPEs,

ψ†
R(x)ψL(y) =

cμ

2π
|cμ(x− y)|δ : e−iβφ :

ψ†
L(x)ψR(y) =

cμ

2π
|cμ(x− y)|δ : eiβφ : (6.30)

with δ = − g
2π (1 + β 2

4π ). The proper fermion mass term will therefore be defined
by,

limy→x

∞∫
−∞

dx |cμ(x− y)|−δmψ̄(x)ψ(y) =
cμ

π
m

∞∫
−∞

dx : cosβφ(x) : .

With μ chosen such that m = μπ
cβ 2 , the mass term transforms in the bosonic

language to,

ΔL =
μ2

β2 : cosβφ : .

The normal ordering is with respect to μ.5

6.3 Witten’s non-abelian bosonization

The non-abelian bosonization introduced by Witten is a set of rules assigning
bosonic operators to fermionic ones, in a theory of free fermions invariant under a
global non-abelian symmetry.6 Originally the fermions considered were Majorana
fermions and the corresponding global symmetry was O(N). The bosonic opera-
tors are not expressed in terms of free bosonic fields as in abelian bosonization,
but rather in terms of interacting group elements. In particular, bosonic expres-
sions can be written for the energy-momentum tensor, various chiral currents,
the mass term and the complete action.

The generalization to the case of Nf Dirac fermions was introduced in [112]
and [7].

6.3.1 Bosonization of Majorana fermions

Let us start with N free Majorana fermions governed by the action,

Sψ =
i

2

∫
d2x

N∑
k=1

(ψLk∂+ψLk + ψRk∂−ψRk )

where ψL , ψR are left and right Weyl–Majorana spinor fields, ∂± = 1√
2
(∂0 ± ∂1)

and k = 1, . . . , N . The corresponding bosonic action is the Wess–Zumino–Witten

5 The flavored Thirring model was studied in [73].
6 A related approach is presented in [179].
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(WZW) action discussed in Chapter 4:

Sb [u] =
1

16π

∫
d2xTr(∂μu∂μu−1)

+
1

24π

∫
B

d3yεijkT r(u−1∂iu)(u−1∂ju)(u−1∂ku), (6.31)

where u is a matrix in O(N) whose elements are bosonic fields. The second
term, the Wess–Zumino (WZ) term, is defined on the ball B whose boundary Σ is
taken to be the Euclidean two-dimensional space-time. Now, since π2 [O(N)] = 0,
a mapping u from a two-dimensional sphere S into the O(N) manifold can be
extended to a mapping of the solid ball B into O(N). The WZ term however is
well defined only modulo a constant. It was normalized so that if u is a matrix
in the vector representation of O(N) the WZW term is well defined modulo
WZ →WZ + 2π. The source of the ambiguity is that π3 [O(N)] � Z, namely
there are topologically inequivalent ways to extend u into a mapping from B
into O(N).

Note that O(2) is an exception, as π3 [O(2)] = 0.
Note that the equivalence is between a fermionic theory expressed in terms

of an N -dimensional fermion in the vector representation of O(N) and a group
element which is an N ×N matrix. Nevertheless, as will be shown below the two
theories are fully equivalent.

Both the theory of N free Majorana fermions and the WZW model of (15.2)
are invariant under ALA transformations of OL(N)×OR(N). The latter take
the following forms for the bosonic and fermionic theories:

u → g(z)u ψi → [g(z)]ji ψ(z)j

u → uh(z̄) ψ̃i → [h(z̄)]ji ψ̃(z̄)j , (6.32)

where g(z) ∈ OL (N) and h(z̄) ∈ OR (N). The corresponding currents in both
pictures satisfy the ALA at level k = 1.

The two theories are also invariant under the conformal transformations,

z → f(z) z̄ → f̄(z̄). (6.33)

The associated Virasoro central charges of the two descriptions are identical,
as follows,

cf = N × 1
2

cb =
k[dim O(N)]
k + N − 2

=
1/2N(N − 1)

1 + N − 2
=

N

2
. (6.34)

For the fermions it is just N times the central charge of a single Majorana
fermion, whereas for the bosonized version we make use of the fact that the dual
Coexter number of O(N) is N − 2. The conformal invariance of the action (15.2)
can be also shown by realizing that the corresponding β function vanishes. If one
generalizes (15.2) by taking a coupling 1

4λ2 as a coefficient of the first term and
k

24π of the WZ term (k integer), the β function associated with λ is given at the
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one loop level (in the sense of expanding around u = 1), by,

β ≡ dλ2

dlnΛ
= − (N − 2)λ2

4π

[
1−
(

λ2k

4π

)2
]

,

namely (15.2) is at a fixed point for λ2 = 4π
k and hence exhibits conformal invari-

ance there. By showing that the energy-momentum tensor obeys the Virasoro
algebra, one can show that this property is in fact exact.

To summarize, the dictionary that translates the ALA currents and the energy
momentum tensor of the fermionic theory, into the bosonic one and vice versa,
is given by,

Operator Fermionic Bosonic

Jij (z) : ψiψj (z) : iN
4π

[u−1∂u]ij (z)

J̄ij (z̄) : ψ̃i ψ̃j (z̄) : iN
4π

[u∂̄u−1 ]ij (z̄)

T (z) − 1
2

∑N
i=1 [ψi∂ψi − ∂ψiψi ]: − 1

2(N −1) : Ja Ja (z) :

T̄ (z̄) − 1
2

∑N
i=1 : [ψ̃∂ψ̃i − ∂ψ̃i ψ̃i ]: − 1

2(N −1) : J̄ a J̄ a : (z̄)

6.3.2 Bosonization of Dirac fermions

The bosonic picture for the theory of N free massless Dirac fermions is built
from a boson matrix g ∈ SU(N) and a real boson φ. The bosonized action now
has the form,

S[g, φ] =
1
8π

∫
d2xTr(∂μg∂μg−1)

+
1

12π

∫
B

d3yεijkT r(g−1∂ig)(g−1∂j g)(g−1∂kg)

+
1
2

∫
d2x∂μφ∂μφ. (6.35)

Note the difference of factor two between the WZW action associated with the
SU(N) and the O(N).

Here again both theories are conformal invariant with an identical Virasoro
central charge,

cf = N × 1 cb =
k dimSU(N)

k + N
+ 1 =

N 2 − 1
1 + N

+ 1 = N. (6.36)

ALA transformation with respect to global SUL(N)× SUR(N)× U(1),

g → h(z)u, φ→ φ + a(z); ψi → [g(z)]ji ψ(z)j

g → uh̄(z̄), φ→ φ + ā(z̄); ψ̃i → [h(z̄)]ji ψ(z̄)j , (6.37)

leave the actions of both pictures invariant.
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One way to prove the equivalence of the fermionic and bosonic theories now,
for N free massless Dirac fermions and the k = 1 WZW theory on U(N) group
manifold, is by showing that the generating functionals of the current Green
functions of the two theories are the same. For the fermions we have,

e−iWψ (Aμ ) =
∫

(dψ+dψ−dψ̄+dψ̄−)ei
∫

d2 xψ̄ i �D ψ , (6.38)

where Dμ = ∂μ + iAμ , Aμ = AA
μ ( 1

2 TA ) + A
(1)
μ × 1 and (1

2 TA ) generators of
SU(N). The term Wψ (Aμ) was calculated by Polyakov and Wiegmann in a
regularization scheme which preserves the global chiral SU(NL)× SU(NR) sym-
metry and the local U(1) diagonal symmetry, leading to,

Wψ (Aμ) = S[Ã] + S[B̃] +
1

4πN

∫
d2xA(1)

μ Aμ(1) , (6.39)

where Ã, B̃ ⊂ SU(N) are related to the gauge fields AA
μ by

iAA
+ = (Ã−1∂+ Ã)A , iAA

− = (B̃−1∂−B̃)A .
In the bosonic theory one calculates,

e−iWB (AA
μ ) =

∫
[du]eiS [u ]+i

∫
d2 x(J B

−AB
+ +J B

+ AB
−)

e−iWB (A ( 1 )
μ ) =

∫
[dφ]e

i
2

∫
d2 x[(∂φ)2 +(J−A

( 1 )
+ +J+ A

( 1 )
− )] (6.40)

where JB
+ AB

− and J+A
(1)
− are the appropriate parts of i

4πTr[(g−1∂+g)A−], and
similarly for the (− +) case and with A

(1)
± = Tr(A±). These functional integrals

can be performed exactly, leading to,

WB (AA
μ ) = S[Ã] + S[B̃] WB (A(1)) =

1
4πN

∫
d2xA(1)

μ Aμ(1) .

Thus the bosonic current Green functions are identical to those of the fermionic
theory, the latter regulated in the way mentioned above.

6.3.3 The bosonization of a mass bilinear of Dirac fermions

A further bosonization rule has to be invoked for the mass bilinear. For a theory
with a U(N) symmetry group the rule is,

ψ†l
+ ψ−j = c̃μNμgl

j e
−i
√

4 π
N φ , (6.41)

where Nμ denotes normal ordering at mass scale μ. The fermion mass term
mqψ̄

iψi is therefore,

m
′2Nμ

∫
d2xTr(g + g†),

where m
′2 = mq c̃μ, mq is the quark mass, and c is the same constant as in

(6.19). It is straightforward to show that the above bosonic operator transforms

https://doi.org/10.1017/9781009401654.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.007


6.3 Witten’s non-abelian bosonization 143

correctly under the U(N)L × U(N)R chiral transformations. On top of that it
has the correct total dimension,

Δ = Δg + Δφ =
(

N − 1
N

+
1
N

)
= 1, (6.42)

where Δg = N −1
N and Δφ = 1

N are the dimensions associated with the SU(N)
and U(1) group factors, respectively. Moreover in Section 4.4 it was explicitly
shown that the four-point function,

G(zi, z̄i) =<g(z1 , z̄1)g−1(z2 , z̄2)g−1(z3 , z̄3)g(z4 , z̄4)>, (6.43)

is given by,

G(zi, z̄i) = [(z1 − z4)(z2 − z3)(z̄1 − z̄4)(z̄2 − z̄3)]−Δ g G(x, x̄), (6.44)

where G(x, x̄) is a function of the harmonic quotients,

x = (z1 −z2 )(z3 −z4 )
(z1 −z4 )(z3 −z2 ) and x̄ = (z̄1 −z̄2 )(z̄3 −z̄4 )

(z̄1 −z̄4 )(z̄3 −z̄2 ) only, and in the free case is,

G(x, x̄) = [xx̄(1− x)(1− x̄)]
1
N ×

[
I1

1
x

+ I2
1

1− x

] [
Ī1

1
x̄

+ Ī2
1

1− x̄

]
, (6.45)

where I1 , I2 , Ī1 , Ī2 are group invariant factors. This result for the correlation
function, combined with the U(1) part gives an expression identical to that for
the fermionic bilinears. Moreover the result can be generalized to an n-point
function.

6.3.4 Bosonization of Dirac fermions with color and flavor

In his pioneering work on non-abelian bosonization Witten also proposed a pre-
scription for bosonizing Majorana fermions which carry both NF “flavors” as
well as NC “colors”, namely transform under the group [O(NF)×O(NC)]L ×
[O(NF)×O(NC)]R . The action for free fermions is

Sψ =
i

2

∫
d2x(ψ−ai∂+ψ−ai + ψ+ai∂−ψ+ai),

where now a = 1, . . . , NC and i = 1, . . . , NF are the color and flavor indices,
respectively. The equivalent bosonic action is,

S̃[g, h] =
1
2
NCS[g] +

1
2
NFS[h]. (6.46)

The bosonic fields g and h take their values in O(NF) and O(NC), respectively
and S[u] is the WZW action given in (15.2).
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The bosonization dictionary for the currents was shown to be,

J+ij =: ψ+aiψ+aj :=
iNC

2π
(g−1∂+g)ij J−ij =: ψ−aiψ−aj :=

iNC

2π
(g∂−g−1)ij

(6.47)

J+ab =: ψ+aiψ+bi :=
iNF

2π
(h−1∂+h)ab J−ab =: ψ−aiψ−bi :=

iNF

2π
(h∂−h−1)ab ,

(6.48)

where : : stands for normal ordering with respect to fermion creation and anni-
hilation operators. As for the bosonic expressions for the currents, regularization
is obtained by subtracting the appropriate singular parts.

In terms of the complex coordinates z = ξ1 + iξ2 , z̄ = ξ1 − iξ2 (where ξ1

and ξ2 are complex coordinates spanning C2 , and the Euclidian plane (ξ1 → x,

ξ2 → −t) and Minkowski space-time (ξ1 → x, ξ2 → −it) can be obtained as
appropriate real sections), one can express the currents as

J(z)ij ≡ πJ−ij =
iNC

2
(g∂z g

−1)ij J̄(z̄)ij ≡ πJ+ij =
iNC

2
(g−1∂z̄ g)ij ,

and similarly for the flavored currents.
In a complete analogy the theory of NF ×NC Dirac fermions can be expressed

in terms of the bosonic fields g, h, e−i
√

4 π
N F N C

φ now in SU(NF), SU(NC) and
U(1) group manifolds respectively. The corresponding action is now,

S[g, h, φ] = NCS[g] + NFS[h] +
1
2

∫
d2x∂μφ∂μφ. (6.49)

This action is derived simply by substituting ghe−i
√

4 π
N C N F

φ instead of u in (6.31).
As for the equivalence between the bosonic and fermionic theories, we note

that in both theories the commutators of the various currents have the same
current algebra, and the energy-momentum tensor is the same when expressed in
terms of the currents. But the situation changes when mass terms are introduced
(see next section). The bosonization rules for the color and flavor currents are
obtained from (6.47) and (6.48) by replacing the Weyl–Majorana spinors with
Weyl ones, and in addition we have the U(1) current,

J (1)(z) ≡
√

πJ
(1)
− = : ψ†

−aiψ−ai :=

√
NFNC

π
∂−φ

J̄ (1)(z̄) ≡
√

πJ
(1)
+ = : ψ†

+aiψ+ai :=

√
NFNC

π
∂+φ . (6.50)

The affine Lie algebras are given by,[
JA

n , JB
m

]
= ifABC JC

n+m +
i

2
knδAB δn+m,0 ,

where JA = Tr(TAJ), TA the matrices of SU(NC), k = NF for the colored cur-
rents and J(z) is expanded in a Laurent series as J(z) =

∑
z−n−1Jn . A similar
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expression will apply for the flavor currents with T I the matrices of SU(NF),
and the central charge k = NC instead of NF. The commutation relation for J̄(z̄)
will have the same form.

Generalizing the case of SU(N)× U(1) to our case, the Sugawara form for the
energy-momentum tensor of the WZW action is given by,

T (z) =
1

2κC

∑
A

: JA (z)JA (z) : +
1

2κF

∑
I

: JI (z)JI (z) :

+
1
2κ

: J (1)(z)J (1)(z) :, (6.51)

where the dots denote normal ordering with respect to n (n > 0 meaning anni-
hilation). The κs are constants yet to be determined. In terms of the affine Lie
generators this can be written as,

Ln =
1

2κC

∞∑
m=−∞

: JA
m JA

n−m : +
1

2κF

∞∑
m=−∞

: JI
m JI

n−m :

+
1
2κ

∞∑
m=−∞

: J (1)
m J

(1)
n−m : (6.52)

Now, by applying the last expression on any primary field φl we can get a set of
infinitely many “null vectors” of the form,

χn
l =

[
Ln −

1
2κC

0∑
m=n

: JA
m JA

n−m :

− 1
2κF

0∑
m=n

: JI
m JI

n−m : − 1
2κ

0∑
m=n

: J (1)
m J

(1)
n−m :

]
φl,

for any n ≤ 0 (for n > 0 holds immediately). Since each of these vectors must
certainly be a primary field, Lm χn = JA

m χn = JI
m χn = Jm χn = O, which holds

trivially for m > 0. When checking for m ≤ 0, it leads to expressions for the vari-
ous κ, for the central charge c of the Virasoro Algebra, and for the dimensions of
the primary fields Δl = Δl+ + Δl−, in terms of NC , NF and the group properties
of the primary fields,

κC = κF =
1
2
(NC + NF), κ = NFNC

c =
NC(N 2

F − 1)
(NC + NF)

+
NF(N 2

C − 1)
(NC + NF)

+ 1 = NFNC

Δl± =
(c2

l±)F

(NF + NC)
+

(c2
l±)C

(NF + NC)
+

(c2
l±)(1)

NCNF
(6.53)

where (c2
l±)C is the eigenvalue of the SUR ,L(NC) second Casimir operator in

the representation of the primary field φl , namely ( 1
2 TA )( 1

2 TA ) = (c2
l )

CI, and
similarly for the flavor group. In the cases of SU(NC) and SU(NF) the discussion
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applies to Δl+ or Δl− separately, with C2
l+ and C2

l−, respectively. Note that the
expressions for κF and κC of equation (6.53) are an immediate generalization
of the case of the group SU(N) with the central term equal to one. There the
factor was N + 1, the N being the second Casimir of the adjoint representation,
and the 1 being the central term.

The equivalence of the bosonic and fermionic Hilbert spaces was demonstrated
by showing that the two theories have the same current algebra (affine Lie alge-
bra), and that the energy-momentum tensor can be constructed from the cur-
rents in a Sugawara form. Goddard et al. [110] showed that a necessary and
sufficient condition for such a construction of the fermionic T (z), in a theory
with a symmetry group G, is the existence of a larger group G ⊂ G′ such that
G′/G is a symmetric space with the fermions transforming under G just as the
tangent space to G′/G does. Based on this theorem they found all the fermionic
theories for which an equivalent WZW bosonic action can be constructed. The
cases stated above fit in this category. Note in passing that this does not hold for
cases where the symmetry group includes more non-abelian group factors, like
for example SU(NA)× SU(NF)× SU(NC)× U(1).

The prescription equation (6.49) described above , for the bosonic action that is
equivalent to that of colored and flavored Dirac fermions, is by no means unique.
In fact it will be shown that this prescription will turn out to be inconvenient
once mass terms are introduced. Another scheme, based on the WZW theory of
U(NFNC) will be recommended.

6.3.5 Bosonization of mass bilinears in the product scheme

A natural question here is how to generalize the rule (6.41) to Majorana fermions
with action (6.46), and its analog for the case of SU(NF)× SU(NC)× U(1) given
in (6.49). We call the latter the product scheme. The bosonization rule for the
latter case is,

ψ†ai
+ ψ−bj = c̃μNμgi

jh
a
b e−i

√
4 π

N F N C
φ
. (6.54)

Consequently, the bosonic form of the fermion mass term mqψ̄
iaψia is,

m
′2Nμ

∫
d2x(TrgTrh + Trh†Trg†)e−i

√
4 π

N F N C
φ
, (6.55)

with m
′2 = mq c̃μ. Once again the bosonic operator (6.54) has the correct chiral

transformations and the proper dimension,

Δ = Δg + Δh + Δφ =
N 2

F − 1
NF(NF + NC)

+
N 2

C − 1
NC(NC + NF)

+
1

NCNF
= 1.

Unfortunately, the explicit calculation of the four-point function reveals a dis-
crepancy between the fermionic and bosonic terms in (6.54). This can actually
be understood directly. Since g and h are fields defined on entirely independent
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group manifolds, then (ignoring for a moment the U(1) factor) the four-point
function of the mass term can be written as,

<g(z1 , z̄1)g−1(z2 , z̄2)g−1(z3 , z̄3)g(z4 , z̄4)>

<h(z1 , z̄1)h−1(z2 , z̄2)h−1(z3 , z̄3)h(z4 , z̄4)> .

This expression differs from the corresponding fermionic Green’s function, as
it includes independent “contractions” for the g and h factors, whereas in
the fermionic correlation function the flavor and color contractions are corre-
lated. Moreover, the expressions for the bosonic Green’s function involve hyper-
geometric functions, and do not resemble the case of free fermions, which is a
product of poles.

6.3.6 Bosonization of the U(NF ×NC) WZW action

It is clear from the previous discussion that the bosonization prescription for
our case needs alteration. A priori there can be two ways out, either modifying
the rule for the bosonization of the mass bilinear or using a different bosonic
scheme altogether. As for the first approach, (6.54) preserves the proper chiral
transformation laws under the product group SU(NF)× SU(NC)× U(1) as well
as the correct dimension, and therefore the number of possible modifications
is very limited. For example, one might think of multiplying the expression in
(6.54) by an operator which is a chiral singlet under the above group, with zero
dimension. We do not know of such a modification. Therefore we are going to try
a different bosonic theory than (6.49). The symmetry of the free fermionic theory
can actually be taken as UL (NF ×NC)× UR (NF ×NC) rather than [SU(NF)×
SU(NC)× U(1)]L × [SU(NF)× SU(NC)× U(1)]R . The natural bosonic action
is hence a WZW theory of u ⊂ U(NFNC) and with k = 1. The currents are now,

J(z)αβ =
i

2
(u∂zu

−1)αβ J̄(z̄)αβ =
i

2
(u−1∂z̄u)αβ ,

with α, β running from 1 to NF ×NC. The expressions for the flavor and color
currents can be obtained by appropriate traces, over color for the flavor currents
and over flavor for the color currents.

The mass bilinear is now,

ψ†
+αψ−β = c̃μNμuαβ ,

where now the U(1) term is absorbed into u.
Clearly the requirement for Sugawara construction of T, for proper chiral

transformations of all the operators and for a correct dimension for the mass
bilinear are fulfilled. Since now the flavor and color degrees of freedom are
attached to the same bosonic field, the previous “contraction problem” in the n
point functions is automatically resolved. Moreover as stated above the four-point
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function and in fact any Green’s function will now reproduce the results of the
fermionic calculation.

The currents constructed from u obey the Affine Lie algebra with k = 1.
The color currents, for instance, are JA = Tr(TAJ), where TA are expressed as
(NCNF)× (NCNF) matrices defined by λA ⊗ 1, with λA the Gell–Mann matri-
ces in color space and 1 stands for a unit NF ×NF matrix. The central charge
is k = NF. The same arguments will apply for the flavor currents, now with
k = NC. The central charge for the U(1) current is NCNF.

To see the difference between the present theory and the previous one let us
express u in terms of (NFNC)× (NFNC) matrices g̃, h̃ and l̃ in SU(NF), SU(NC)
and the coset-space,

SU(NF ×NC)/{SU(NF)× SU(NC)× U(1)}

respectively, through,

u = g̃h̃l̃e−i
√

4 π
N C N F

φ
.

Using the formula for expressing an action of the form S[AgB−1 ] we get

S[u] = S[g̃h̃l̃] +
1
2

∫
d2x∂μφ∂μφ

S[g̃h̃l̃] = S[g̃] + S[l̃] + S[h̃] +
1
2π

∫
d2xTr(g̃†∂+ g̃l̃∂− l̃† + h̃†∂+ h̃l̃∂− l̃†).

We can now choose l̃ = l so that l∂−l† will be spanned by the generators that
are only in SU(NF ×NC)/{SU(NF)× SU(NC)× U(1)}. This can be achieved
by taking ũ = g̃h̃l̃, which is u but without the U(1) part, and then taking for
h̃ = h⊗ 1 a solution of the equation ∂−hh† = 1

NF
TrF[(∂−ũ)ũ†], and similarly for

g with 1
NC

TrC. These are also the conditions that the flavor currents should be
expressed in terms of g̃ and the color currents in terms of h̃. For this choice, the
mixed term in the above action, the term involving products of l̃s with g̃s or h̃s,
is zero, and so the new action is,

S[u] = NCS[g] + NFS[h] +
1
2

∫
d2x(∂μφ∂μφ + S[l]).

Note that l is still an SU(NCNF) matrix, while g and h are expressed as SU(NF)
and SU(NC) matrices respectively, but the matrix l involves only products of
color and flavor matrices (not any of them separately).

6.4 Chiral bosons

So far we have discussed the bosonization of a Dirac fermion via abelian bosoniza-
tion, and N Dirac fermions using the U(N) WZW model, or N Majorana
fermions with an SO(N) WZW model. What about the bosonization of chi-
ral left or right Weyl fermions? In the fermionic language it is trivial to write an
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action of a fermion with one given chirality. It is also easy to factorize a scalar
field into its left φL(x−)(φ(z)) and right moving φR(x+)(φ̄(z̄)) parts since the
solution of equation of motion of a scalar field in real and complex coordinates
takes the form

φ(x+ , x−) = φL(x−) + φR(x+) or φ(z, z̄) = φ(z) + φ̄(z̄). (6.56)

However, as will be discussed shortly it turns out that it is quite subtle to write
down an action of a chiral boson which is equivalent to that of a left or a right
chiral fermion. Once we establish an action for a chiral boson, the question is
how can one couple it to abelian and non-abelian gauge fields?

In this section we will construct two seemingly independent constructions of
the action of a chiral boson. In fact, it will turn out that one formulation is a
special case of the other. We start with Siegel’s formulation which is based on
the coupling of a scalar field to fictitious gravity in a light-cone gauge [194] and
then we describe a manifestly non-Lorentz invariant action [92] which is a special
case of the former.7 In [36], [199], and in [100] the two formulations were related
and further generalizations were discussed. We follow the latter paper here.

Chiral bosons play an important role in string theories and in particular chiral
bosons on Riemann surfaces of any genus. Here we will not enter into discussions
on these constructions and describe chiral bosons only on a two-dimensional flat
Minkowsky space-time.

6.4.1 Chiral boson via coupling to fictitious “light-cone gravity”

A scalar field in two space-time dimensions couples to two-dimensional gravity
via the following well-known action,

L =
1
2
√

ggαβ ∂αφ∂β φ, (6.57)

where gαβ is the two-dimensional metric. In the “ light-cone gravitational gauge”
the metric has the form,

g++ = 0 g+− = 1 g−− = 2λ. (6.58)

In this gauge the action (6.57) reads,

L = ∂+φ∂−φ + λ(∂−φ)2 . (6.59)

Since we have fixed only part of the local symmetries of (6.57) it is straightfor-
ward to realize that the last action is still invariant under the following local
transformation

δφ = ε−∂−φ δλ = −∂+ε− + ε−∂−λ− ∂−(ε−λ) (6.60)

7 The anomalies of the system were analyzed in [129].
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which is the transformation of the scalar field under a combination of x− coor-
dinate transformation and a Weyl rescaling,

δx− = ε−(x) δgαβ = −gαβ ∂−ε−. (6.61)

It is important to emphasize that we are in fact considering a flat two-dimensional
Minkowski space-time and 2λ is the −− component of a fictitious metric. The
action (6.59) is further invariant under the global shift symmetry φ→ φ + a. We
denote the corresponding current as the axial current defined in (6.12) which
takes the following form,

J+
(ax) = ∂−φ J−

(ax) = ∂+φ + 2λ∂−φ. (6.62)

One can also define J−(ax) = J+
(ax) and J+ (ax) = J−

(ax) − 2λJ−(ax) , namely using
the fictitious metric to raise and lower indices. In addition we have the topological
vector conserved current J(v )μ

= εμν ∂ν φ. The vector and axial currents defined
here are those defined in (6.9), times a factor of −

√
π. Following from these

two currents we can obviously also define the left and right conserved currents
Jl/r = 1

2 (J(v ) ± J(ax)).
The equations of motion derived by variations with respect to λ and to φ are,

δλ : (∂−φ)2 = 0 δφ : ∂+∂−φ + ∂−(λ∂−φ) = 0. (6.63)

These equations imply classically the chiral nature of the boson, namely a left
moving boson φ(x+) and the conservation of the axial current. Note that unlike
an ordinary scalar field the chiral scalar action (6.59), admits only the “holomor-
phic” conservation of the left current but not the “anti-holomorphic” conserva-
tion of the right one namely,

∂−J(l)
− = 0 ∂+J(r)

− = −∂−J(r)
− 	= 0, (6.64)

which implies that there is only left affine symmetry but not a right one.
So far we have discussed the classical system. Quantum mechanically it turns

out that the symmetry (6.60) is anomalous. There are several ways to verify this
anomaly. Probably the easiest way is to realize the resemblance of the action
(6.57) to that of the bosonic string. It is well known that the latter is consistent
only in 26 dimensions and not, as our case seems to be, in one dimension. Tech-
nically this follows from the fact that the ghost system associated with the fixing
of the fictitious diffeomorphism and Weyl invariance have a Virasoro anomaly
(see Section 6.5.1) equal to −26. In fact following the discussion in Section 6.5.1
we know that there is another way to cancel this anomaly and that is to add to
the action a background charge term of the following form,

L = Lcl + qR(2)φ = Lcl + q∂2
−λφ = Lcl − qλ∂2

−φ, (6.65)

where q is the background charge and R(2) is the fictitious scalar curvature.
This modification of the action yields a modified energy-momentum tensor as
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will be discussed in Section 6.5.1, of the form,

Tφ
−− = −1

2
(∂−φ)2 − q∂2

−φ. (6.66)

To fix the gauge associated with the symmetry (6.60) one introduces a (b, c) ghost
system (see Section 6.5) that contributes c = −26 to the Virasoro anomaly. The
modified energy-momentum tensor (6.66) contributes c = 1 + 6πq2 so that to

cancel the anomaly one has to take the background charge q =
√

25
6π and hence

the quantum mechanical action of the chiral boson is (6.65) with the value of q

just quoted.
There are several possible methods to quantize this action. One approach is to

follow the BRST quantization of the bosonic string. In this procedure one uses
the Nielpotent operator associated with the Noether charge that corresponds to
the BRST symmetry

QBRST =
∫

dxc

(
Tφ
−− +

1
2
T ghost
−−

)
, (6.67)

to construct the space of physical states. The latter furnish the cohomology of
QBRST , namely,

QBRST |phys>= 0 |phys> 	= QBRST |state> . (6.68)

For the vanishing ghost sector this implies that,

Tφ
−−

(+)
|phys>= 0 → a(k)|phys> = 0 for k > 0, (6.69)

where Tφ
−−

(+)
is the positive frequency part of Tφ

−− and a(k) is the annihilation
operator of momentum k. Thus the space of physical states is made of only
left-moving (k > 0) states.

Once the local symmetry (6.60) has been made non-anomalous, one can safely
choose any gauge fixing. In particular we can take λ = 0 while keeping the con-
struction of the physical states discussed above, or fixing λ = −1. As will be seen
in the following section this gauge will turn out to be convenient and rather than
addressing the issues of coupling to abelian and non-abelian gauge fields of the
action (6.59) we will do it instead with the gauge fixed action.

Another approach of quantizing the system is based on the implementation of
Dirac brackets. Starting from (6.59) and its corresponding Hamiltonian density,

H =
1
2

[
(π + λφ′)2

1 + λ
+ (1− λ)(φ′)2

]
, (6.70)

we realize that the conjugate momentum of λ, πλ vanishes. This is a primary con-
straint χ1 = πλ = 0. Requiring that this constraint is preserved in time, namely,
χ̇1 = {πλ(x),H} = 0 we find a secondary constraint χ̃2 = (π−φ′)2

1+λ = 0. The Pois-
son bracket of χ1 and χ̃2 vanish and hence they are a first-class constraint. How-
ever, if we replace χ̃2 with its classical equivalent constraint χ2 = π − φ′ then
the latter is a second-class constraint. If we add the additional constraint in the
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form of gauge fixing χ3 = λ(x)− λ0(x) with λ0(x) a given function, than all the
constraints are second order with the constraint algebra,

cij (x, y) = {χi(x), χj (y)} c22 = −2δ′(x− y) c13 = −δ(x− y). (6.71)

The next step is to define the Dirac bracket,

{F (x), G(y)}D = {F (x), G(y)} −
∫

dzdw{F (x), χi(z)}c−1
ij (z, w){χj (w), G(y)},

(6.72)
where cij (x, z)c−1

jk (z, y) = δik (x− y). The Dirac bracket rather than the Poisson
bracket is then elevated to the commutator in the quantum theory [ ] = i{ }.
Using this prescription one finds the desired result,

[φ(x), φ(y)] =
1
4i

ε(x− y). (6.73)

Implementing the constraint quantization in the path integral formulation, one
has,

Z(J) =
∫

[dφ][dπ][dλ][dπλ ]δ(χ1)δ(χ2)δ(χ3)

×
√

Det[Cij (x, y)]ei
∫

d2 x(πφ̇+πλ λ̇−H−J φ) . (6.74)

Using the δ functions and since Det[C] is field independent we find,

Z[J ] =
∫

[dφ]ei
∫

d2 xL̃−J φ L̃ = φ̇φ′ − (φ′)2 . (6.75)

Thus we see that this procedure yields the action (6.59) in the gauge λ = −1
which will be the topic of the following section.

6.4.2 Non manifestly Lorentz invariant classical action

Let us start with the following non-local action,

L =
∫

dzdyρ(z)ε(z − y)ρ̇(y)−
∫

dxρ2(x), (6.76)

where ρ(x) is a local bosonic field. The system can also be described in terms of
the non-local bosonic field,

φ(x) =
1
2

∫
dyε(x− y)ρ(y), φ′(x) = ρ(x), (6.77)

with a local Lagrangian density,

L = φ′φ̇− φ′2 = ∂−φ(∂+φ− ∂−φ). (6.78)

As we said the Lagrangian density is in fact (6.59) in the gauge 2λ = −1. The
classical equation of motion which corresponds to (6.76) is,

∂−φ′ = 0. (6.79)
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This equation has a general solution ∂−φ = g(t), however by requiring ∂−φ = 0
at the spatial boundaries, we set g(t) = 0 and get the chiral solution ∂−φ = 0.

Even though the action (6.76) is not manifestly Lorentz invariant, it is easy to
see that it is invariant under time translation δφ = εφ̇, space translation δφ = εφ′,
and the unconventional Lorentz transformation δφ = (t + x)φ′. For the above
invariance transformations to exist we assume vanishing surface terms. The asso-
ciated Noether charges are H =

∫
φ′2 , P = −H and M =

∫
dx[(x + t)(φ′)2 ]. The

system is, in fact, invariant under yet another unusual Lorentz transformation,
δ(∂−φ) = x+∂+(∂−φ)− x−∂−(∂−φ)− ∂φ .

In addition, equation (6.76) is invariant under the global axial transformation
φ→ φ + α. The associated current jμ

(ax) and the vector current which as was
discussed in Section 6.1 is “topologically conserved” are given by

j(ax)+ = ∂+φ− 2∂−φ j(ax)− = ∂−φ

j(v )+ = ∂+φ j(v )− = −∂−φ. (6.80)

As usual from the vector and the axial currents we can write down the left
and right currents J(lr) = 1

2 [j(v ) ± j(ax) ], respectively. They have the following
expressions,

J(l)− = 0, J(l)+ = φ; J(r)− = −∂−φ, J(r)+ = ∂−φ. (6.81)

Note however that only the left current is holomorphically conserved namely
∂−J(l)+ = 0, while the right current is not antiholomorphically conserved. This
property is related to the invariance of the Lagrangian under δφ = α(x+) and
not under δφ = α(x−). As will be explained below only the left U(1) affine Lie
algebra current exists in the quantum theory. Similarly, the Lagrangian (6.76) is
invariant under the conformal transformations δφ = ε(x+)φ′ and δφ = ε(t)∂−φ.
The associated Sugawara type Noether currents are,

T(l)++ = (φ′)2 = J(l)
2
+ ∂−T(l)++ = 0

T(r)11 = (∂−φ)2 = J(r)
2
1 ∂1T(r)++ = 0. (6.82)

Quantization of the model

By treating the system as a constrained system, we now invoke its canonical
and path-integral quantization. We repeat here the Dirac bracket procedure dis-
cussed above. The constraint χ = π− φ′ = 0, is a second-class constraint since
{χ(x), χ(y)} = −2δ(x− y). The Hamiltonian density of the system takes the fol-
lowing formH = Hc + v(φ,π)χ , whereHc = φ′2 = π2 = πφ′. Using this form for
H it is easy to verify that the condition χ̇ = {χ,H} = 0, does not lead to further
constraints but fixes v(φ,π). The passage to the quantum theory is performed
by passing from the Dirac brackets rather than the usual Poisson bracket to
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the commutator via,

−i[F (x), G(y)] = {F (x), G(y)} −
∫

dξ1dξ2{F (x), G(ξ1)}

×
[
− 1

4
ε(ξ1 − ξ2){F (ξ2), G(y)}. (6.83)

Following this definition, the operator algebra for π and φ takes the form,

[φ(x), φ(y)] =
1
4i

ε(x− y),

[π(x), φ(y)] =
1
2i

δ(x− y),

[π(x), π(y)] =
1
2i

δ(x− y). (6.84)

One also finds that, for an arbitrary operator F (φ,π), [χ(x), F (y)] = 0 so that
the constraint π(x)− φ′(x) = 0, is now realized at the operator level. For example
the Hamiltonian density can now be expressed in the three forms ofHc mentioned
above. The system is solved by Fourier transforming,

φ(x) =
∫ 0

−∞

dk

2
√

πk
[ake−ikx + a†

keikx ]

π(x) = φ′(x), (6.85)

with the usual algebra,

[a(k), a†(k′)] = δ(k − k′). (6.86)

Note that only k ≤ 0 appears in the decomposition of φ(x), which expresses the
chiral nature of the field. The single-particle Hilbert space is then a continuum
of states with energy E = |k|, k ≤ 0. Hence the Hamiltonian formalism has cor-
rectly implemented the chirality constraint ∂−φ = 0. Furthermore, this property
can also be deduced from the Hamiltonian equation of motion φ̇ = i[H,φ] = φ′.
Note that to get the chiral solution ∂−φ = 0 as a solution of the equation of
the motion, we had to assume chiral boundary conditions. Here it looks at first
that the chirality property was derived with no assumptions, but in passing
from (6.83) to (6.84 we assumed that (π− φ′)(x =∞) = −(π− φ′)(x = −∞),
so together with choosing zero surface terms we in fact assumed chiral boundary
conditions.

For the path integral quantization of the system we use the method developed
for Hamiltonian systems with constraints. The generating functional is given by,

Z[J ] =
∫

dφdπδ(χ)e
∫

d2 x(πφ̇−Hc −J φ)

=
∫

dφe
∫

d2 x(L−J φ) , (6.87)
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where a normalization by Z[O]−1 is implied. The Lagrangian density that
emerges in (6.87) is clearly in the original form of equation (6.78). The func-
tional integral (6.87) is not specified completely until we include ∂−φ = 0 on the
boundary; thus we are in the same situation as in the canonical quantization.

Using the commutation relations (6.84), it is straightforward to verify that the
Noether charges H,P,M , respectively generate the transformations δT φ, δS φ

and δM φ given above. It can easily be shown that they satisfy the Poincare
algebra,

[H,P ] = 0 [M,H] = iP [M,P ] = iH. (6.88)

Abelian bosonization of a chiral fermion

Recall (Section 3.8) that the action of one left-handed complex chiral fermion,

Sf+ =
∫

d2xψ†∂−ψ, (6.89)

is classically invariant under both an affine chiral transformation δψ = iε(x+)ψ
and the conformal transformation δψ = iε+(x+)∂+ψ. The associated Noether
currents were shown to have the following quantum form,

J+ =: ψ†ψ T++ = i : ψ†∂+ψ := π : J+J+ :, (6.90)

obey the left U(1) affine Lie and Virasoro algebras, respectively with the well-
known central charges k = 1 and c = 1.

It is now straightforward to realize that the J(l) = φ′ and T(l) = (φ′)2 have the
same k = 1 and c = 1 central charges. Using the operator algebra we can now
evaluate the commutators of the chiral current and of the energy-momentum
tensor. The results are as follows

[J(l)(x), J(l)(y)] = [φ′(x), φ′(y)] =
i

2
δ′(x− y),

[T(l)(x), T(l)(y)] = [: (φ′(x))2 , (φ′(y))2 ] = i(T(l)(x) + T(l)(y))δ′(x− y)

− i

24π
δ′′′(x− y). (6.91)

From the general discussion in Sections 2.4 and 3.3 it follows now that these
commutation relations correspond to central charges of c = k = 1. Hence our
bosonic theory furnishes the same irreducible representation of the affine Lie
and Virasoro algebras as one free left-handed chiral fermion. Since for k = 1
the affine Lie algebra has a unique irreducible unitary representation the two
theories on flat two-dimensional space-time are therefore equivalent. Below it
will be shown that the anomalies of the bosonized theory in coupling to gauge
and gravitational background are the same as for the fermionic theory.
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Combining left and right chiral bosons

The canonical quantization procedure of the last section can be repeated for
a right chiral boson. Let us rename the operators for the ∂−φ = 0 case as
φL and πL and call the corresponding operators for the ∂+φ = 0 case as ψR

and πR. The Lagrangian density for the right moving field has the form LR =
∂+φ(∂+φ− ∂−φ) Then the combined Lagrangian,

L = LL + LR (6.92)

and the corresponding Hamiltonian density,

H = (πL)2 + (πR)2 (6.93)

describe a single free massless scalar defined by,

φ = φL + φR π = πL + πR (6.94)

with a Hamiltonian density,

H =
1
2
π2 +

1
2
φ′2 . (6.95)

Using the commutation relations of the chiral bosons (6.84) we find as expected
that,

[φ(x), φ(y)] = [π(x), π(y)] = 0 [φ(x), π(y)] = iδ(x− y). (6.96)

Unsurprisingly the Noether charges associated with the space-time translation
and Lorentz transformation, H = HR + HL , P = PR + PL and M = ML + MR

obey the usual Poincare algebra. The (lr) U(1) affine Lie algebra currents of
the combined system are given by the left current of the left system and the
right current of the right system, respectively. The central charges are k = 1 for
the algebras in both sectors. Similarly, because of the Sugawara construction,
T++ = T++ L and T−− = T−−R with c = 1 for the left and the right Virasoro
algebras.

Partition function

We would now like to compare the one loop partition function of a chiral fermion
and that of our chiral boson. We therefore pass to a two-dimensional space-time
domain with 1 ≥ x ≥ 0. The mode expansion for φ previously given by equation
(6.85) now takes the form,

φ(x, t) = φ0 + p(x + t) +
∑
n>0

1√
2n

[
a†

ne2πinx+
+ ane−2πinx+]

. (6.97)

The one loop partition function which corresponds to this mode expansion is

Z(τ) = Tr[e−τ2 H +iτ1 P ] = Tr[q
H
π ] (6.98)
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where q = eiτ π and we use the fact that H = −P . Let us first calculate the
contribution to the trace of the oscillation modes,

Tr[q
H
π ] = Tr[q(

∑
n na†

n an − 1
1 2 ) ] =

∏
n=1

q−
1

1 2 [1− q2n ]−1 = η−1(τ), (6.99)

where the factor − 1
12 is the output of the normal ordering and η is the Dedekin

η function (see eqn. (2.48)). The Hamiltonian of the zero modes is H = 1
4π p2 .

If we now take the bosonic momenta to lie on a shifted lattice such that the
eigenvalues of p are 2π(m + α) and introduce the twist operator g = eiβp , we
get the zero mode partition function to be equal to the Riemann theta function
Θ[(αβ)](τ |0) and so that altogether the full partition function is given by,

Z(τ) =
Θ[(αβ)](τ |0)

η(τ)
. (6.100)

This corresponds to the partition function of a Weyl fermion with the boundary
conditions ψ(x + 1, t) = −e2πiαψ(x, t);ψ(x + Reτ, t + Imτ) = −e−2πiβ ψ(x, t).

6.4.3 Coupling to abelian gauge fields

There are several ways to couple an abelian gauge field to a chiral boson corre-
sponding to the various regularization schemes in the fermionic theory. We start
by analyzing the bosonization in the vector conserving regularization scheme.
The vector current is coupled to an abelian gauge field via,

L(V ) = L0 + (J(V )−A+ + J(V )+A−), (6.101)

where L0 is the uncoupled Lagrangian density and V stands for the vector con-
serving scheme. The vector current is still obviously conserved, but the divergence
of the axial current,

∂−J(ax)+ + ∂+J(ax)− = ∂−A+ − ∂+A− = εμν Fμν , (6.102)

is now equal to the anomaly deduced in the fermionic theory from the one loop
diagram.

Next we discuss the bosonization in the left-right scheme. For that purpose a
term bilinear in the gauge fields has to be added to the J(l)+A(l)− term. The
Lagrangian then takes the form:

L(LR) = L0 + J(l)+A(l)− +
√

2
4

A(l)−A(l)1 , (6.103)

where (LR) indicates the left-right scheme. The divergence of the left current
which is derived from ∂L( L , R )

∂A±
now has the form,

∂−(J(l)
−)(L,R) + ∂+(J(l)

+)(L,R) =
1
4
(∂−A+ − ∂+A−) =

1
4
εμν Fμν . (6.104)
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The Lagrangian (6.103) is therefore really the bosonized fermionic action regu-
larized in the left-right scheme. Obviously, a similar prescription for the (V) and
(LR) schemes can be applied to the right chiral boson. It is straightforward to
show that the vector as well as the left-right actions are invariant under “curved
space-time” Lorentz transformations as discussed above.

6.4.4 Chiral WZW and coupling to non-abelian gauge fields

The non-abelian bosonization of N Majorana or N Dirac fermions using WZW
theories of SO(N) and U(N), respectively was described in Section 6.3. For the
non-abelian bosonization of left chiral fermions we propose to generalize
the action (6.78) into an action that describes a map to the group manifold
of the form,

S+[u] =
√

2
4π

∫
d2xTr(∂−u∂1u

−1) + SW Z . (6.105)

In a similar manner to the abelian case this is a WZW action coupled to fictitious
chiral gravity in the gauge h++ = −1. In fact we can consider a generalization
of this action to the so-called k-level chiral WZW namely S+k [U ] = kS+[u]. The
equation of motion that follows from the variation of (6.105) with respect to the
variation of u can be expressed as,

∂−(u−1∂1u) = 0 or ∂1(u∂−u−1) = 0, (6.106)

where each form can be obtained from the other.
The global, chiral transformations u→ Au and u→ uB−1 where A,B ∈ G

leave the action (6.105) invariant. However, out of the invariance under the two
affine Lie algebra transformation of the original WZW action u→ uB−1(x+)
and u→ A(x−)u, only the first survives. As for the abelian case the invariance
under the second transformation is lost. The Noether currents associated with
the left-right transformations of (6.105) are,

J(l)− = 0 J(�)+ =
i
√

2k

2π
u−1∂1u

J(r)− =
ik

2π
u∂−u−1 J(r)+ = − ik

2π
u∂−u−1 . (6.107)

The conservation of the left and right currents follow here simply from the equa-
tions of motion. However, unlike the ordinary WZW action only the left current
is holomorphically conserved a ∂−J(l) = 0; whereas ∂+J(r) 	= 0. Obviously this
is a manifestation of the invariance of the action only under the left affine Lie
algebra transformation δu = −iuε(x+), discussed above. The left current trans-
forms as follows δJ(l) = [iε(x+), J(l) ] +

√
2k

2π ε, leading to the O(N)(U(N)) affine
Lie algebra with central charge equal to k.
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The action S+k [u] is invariant under the left affine transformation δu = ε(x+)u.
The corresponding energy momentum tensor has again a Sugawara form and
Virasoro central charge which are,

T(l) =
2π

(c2 + k)

∑
a

: Ja
(l)J

a
(l) : c =

kdimG

c2 + k
, (6.108)

where as usual J(l) = Ja
(l)T

a and Ta are hermitian matrices representing the alge-
bra of the group, C2 is the second Casimir operator in the adjoint representation
and dimG, is the dimension of the group.

The coupling of non-abelian gauge fields to a chiral WZW action, is a straight-
forward generalization of the coupling of the abelian gauge fields. Again there are
several ways to couple gauge fields corresponding to the various regularization
schemes in the fermionic theory. The bosonized action (for k = 1) related to the
vector conserving regularization scheme is given by,

SV [u,A−, A+] = S+[u] +
∫

d2xTr[J−
(v )A− + J+

(v )A+]

−
√

2
2π

∫
d2xTr[u−1A1uA− −A−A1 ], (6.109)

where J(v ) and J(ax) are constructed from the left and right currents of (6.107)
in the usual way. Using the equation of motion one finds the conservation of the
vector current and the anomalous divergence of the axial current,

Dμ(Jμ
(v ))V = 0 Dμ(Jμ

(ax))V =
1
π

εμν Fμν (6.110)

The coupling of a left non-abelian gauge field that corresponds to the fermionic
description in the left-right regularization scheme is given by,

S(LR)[u,A−, A1 ] = S+[u] +
√

2
2π

∫
d2xTr[(u−1∂1u +

1
2π

A1)A−]. (6.111)

The associated current divergence is,

Dμ(Jμ
(l))LR = D−J−

l (LR) + D+J+
− l(LR) =

1
π

εμν Fμν . (6.112)

This expression for the anomalous divergence of the left current is identical
to the result of the loop calculation in the fermionic version regularized in the
left-right scheme.

6.5 Bosonization of systems of operators of
high conformal dimension

Can bosonization, the equivalence map between systems of dimension half
fermions and dimension zero bosons, be extended also to systems made out
of higher-dimensional operators? In particular can one map theories of odd and
even fields of higher-dimensional operators to theories built from dimension zero
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scalar fields. In this section it will be shown that indeed such a map exists for
two families of theories, one with anti-commuting fields and the other with com-
muting ones with arbitrary integer and half-integer dimensions.

The bosonization of the b, c and β, γ systems was introduced in [94]

6.5.1 The bosonization of the “b,c” free CFT

We first briefly describe the system. Consider a system built from a pair of
anti-commuting fields b and c which is described by the action,

Sb,c =
1
2π

∫
d2zb∂̄c. (6.113)

It is easy to see that this action is invariant under conformal transformation
z → a−1z b→ aλb and c→ a1−λc, namely the b and c fields have conformal
dimensions,8

hb = λ hc = (1− λ). (6.114)

The classical equations of motion,

∂̄b(z, z̄) = 0 ∂̄c(z, z̄) = 0, (6.115)

imply that both fields are holomorphic, namely b(z), c(z). Similar to the deriva-
tion of the operator equations of motion using the path integral (1.55) for the
scalar field we find for the (b, c) system that,

∂̄b(z)c(0) = 2πδ2(z, z̄). (6.116)

This is compatible with the OPE,

b(z)c(w) =: b(z)c(w) : +
1

z − w
c(z)b(w) =: c(z)b(w) : +

1
z − w

. (6.117)

The OPEs b(z)b(w) and c(z)c(w) do not have singular parts when w it brought
to z. To compute the energy-momentum tensor we use the Noether procedure.
We vary the b and c fields as follows,

δb = ε̄∂b + λ(∂ε̄)b,

δc = ε̄∂c + (1− λ)(∂ε̄)b. (6.118)

For holomorphic ε̄(z) this is a symmetry transformation. Taking now ε̄(z, z̄) we
read the energy-momentum tensor from the variation of the action as follows,

δSb,c = − 1
2π

∫
d2z∂̄ε̄T =

1
2π

∫
d2 ∂̄ε̄[(∂b)c− λ∂(bc)]. (6.119)

8 We denote by λ the dimension of b as is common in the literature. Obviously it has nothing
to do with λ used in the previous section on chiral bosons.
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Thus the energy-momentum tensor is,

T = (∂b)c− λ∂(bc). (6.120)

It is straightforward to verify that the OPE of T with b and with c indeed yields
the variation (6.118). From the OPE T (z)T (w) we read the Virasoro anomaly
associated with the (b, c) system,

c = −3(2λ− 1)2 + 1. (6.121)

The action (6.113) is also invariant under the fermion number transformation,

b→ eiα(z )b c→ e−iα(z )c. (6.122)

Using again the Noether procedure we find that the corresponding conserved
fermion number current is,

j =: bc : ∂̄j = 0. (6.123)

From the basic OPE of b(z) and c(w) one finds that the OPE of the energy-
momentum tensor and the fermion number current reads,

T (z)j(w) =
1− 2λ

(z − w)3 +
j(w)

(z − w)2 +
∂j(w)

(z − w)
. (6.124)

The (b(z), c(z)) conformal field theory is fully holomorphic. Needless to say
that one can similarly write down an anti-holomorphic system b̄(z̄), c̄(z̄). In fact
in Section 2.12 we have already discussed a special case of the b, c family. For
λ = 1

2 we get the Weyl spinor ψ of dimension 1
2 such that the Virasoro anomaly of

the system is c = 1. Another “famous” case is that of the b and c ghosts associated
with the covariant fixing of two-dimensional diffeomorphism. In this case λ = 2
the dimensions of b and c are 2 and −1, respectively and the corresponding
Virasoro anomaly is −26.

Now we raise again the question, can one describe the b, c system in terms of
a scalar CFT? Since the ψ,ψ† is a special case of the b, c system and since we
have already developed the bosonization rules for Dirac and Weyl spinors (see
Section 6.1.1) we start with a similar ansatz for the bosonic version of b and c,
namely,

b(z)↔: eiφ(z ) : c(z)↔: e−iφ(z ) :, (6.125)

Comparing (6.18) and (6.117) it is evident that indeed this map reproduces the
algebra of the (b, c) system. It is also easy to realize that the fermion number
current has the following bosonic equivalent,

: b(z)c(z) :↔ i∂φ(z). (6.126)

What is left to determine is whether the energy-momentum tensors of the two
theories and correspondingly the dimensions of the fields match. Obviously the
free scalar action (6.1) which is the bosonic dual of the action of the Dirac
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operator cannot describe the (b, c) systems which are a family of CFTs. We
also need to identify a family characterized by the parameter λ of scalar field
theories. A simple way to achieve this is to realize that the energy-momentum
of the general (b, c) system can be written in terms of the spin 1/2 fermion as
follows,

T b,c = Tψ −
(

λ− 1
2

)
∂(bc). (6.127)

Thus following (6.126) the scalar energy momentum has to have the form,

Tφ
λ = Tφ −

(
λ− 1

2

)
∂2φ. (6.128)

This is the energy-momentum of a scalar field with a background charge, or the
linear dilaton theory with q = −i(λ− 1

2 ). The central charge of these theories
was shown to be,

cφ = 1 + 12q2 = 1− 3(2λ− 1)2 = cb,c . (6.129)

Moreover using the fact that the dimension of an operator : eikφ(z ) : was shown
to be k 2

2 + ikq it is easy to check that,

hei φ = λ = hb he−i φ = 1− λ = hc, (6.130)

which verifies that the operators mapped by the bosonization indeed have the
same conformal dimensions.

The anti-commutative nature of the b, c system is obeyed also by their bosonic
duals, just as for the case of spin 1/2 fields, namely,

: eiφ(z ) :: eiφ(w ) := e−[φ(z ),φ(w )] : eiφ(w ) :: eiφ(z ) := − : eiφ(w ) :: eiφ(z ) :, (6.131)

at equal times, namely |z| = |w| since for that case [φ(z), φ(w)] = ±iπ.

6.5.2 The bosonization of the β, γ system

The b, c system is built from anti-commuting fields which as we have just seen are
describable in terms of a scalar field. In a complete analogy one would suspect
that a similar bosonization also holds for a system built from commuting fields
with the same structure of action. As we shall see shortly this is indeed the case.
The so-called β, γ system defined by the action (6.132),

Sβ,γ =
1
2π

∫
d2zβ∂̄γ. (6.132)

The fact that now the building blocks are commuting introduces of course a sign
change with respect to the b, c system when one interchanges the fields, namely,

β(z)γ(w) = − 1
z − w

γ(z)β(w) =
1

z − w
. (6.133)
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The energy-momentum tensor is the same as (6.120) when replacing b and c

with β and γ, respectively. For the Virasoro anomaly one has just to reverse
the sign of that of the b, c system. A distinguished member of this family of
conformal field theories is the case of λ = 3/2 which describes the ghost system
associated with the gauge fixing of the superdiffeomorphism. In this case the
c = 11. As is well known this combined with c = −26 requires a contribution to
the Virasoro anomaly of 15 of the non-ghost fields which requires ten dimensions
for superstring theories.

The bosonization of this commuting system is slightly more involved than that
of the b, c system. It turns out that now one has to invoke two scalar fields φ and
χ with the OPEs,

φ(z)φ(w) = −ln(z − w) + . . . χ(z)χ(w) = ln(z − w) + . . . , (6.134)

where . . . stands for non-singular terms. The corresponding scalar theories have a
background charge of (λ′ − 1/2) for φ and i/2 for χ so that the energy-momentum
tensor of the full bosonic reads,

Tφ,χ = −1
2
∂φ∂φ +

1
2
∂χ∂χ +

1
2
(1− 2λ′)∂2φ +

1
2
∂2χ, (6.135)

which yields the desired Virasoro anomaly c = 1 + 3(2λ′ − 1)2 = −cb,c . The
bosonic operators that correspond to β and γ are,

β(z)↔ e−φ+χ∂χ γ ↔ eφ−χ , (6.136)

which have the conformal dimensions hβ = λ′ and hγ = 1− λ′.

6.5.3 The Wakimoto bosonization

One application of the β, γ system enables us to transform the WZW model
into a theory expressed in terms of free fields. Consider a combined system that
includes a (λ′ = 1, 0) β, γ system and an additional scalar field with a background
charge − i√

2(k+2)
. This system is described by the following Lagrangian,

LWak = β∂̄γ + β̄∂γ̄ + ∂ϕ∂̄ϕ. (6.137)

Alternatively, as was discussed in Section 6.4 one can add to this Lagrangian
density also a term of the form − i√

2(k+2)
R2φ. The corresponding energy-

momentum tensor T (z) is given by,

T (z) = −β∂γ − 1
2
∂ϕ∂ϕ− i√

2(k + 2)
∂2ϕ, (6.138)

and the non-trivial OPEs of these field are given by,

γ(z)β(w) =
1

z − w
+ O(z − w) ϕ(z)ϕ(w) = −ln(z − w) + O(z − w). (6.139)
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We define now the following holomorphic currents in terms of the β, γ and ϕ

fields:

J+ = β(z),

J0 = i
√

2(k + 2)∂ϕ(z) + 2 : γβ(z) :,

J− = −i
√

2(k + 2) : ∂ϕγ : (z)− k∂ϕ(z)− : βγγ : (z). (6.140)

Using the OPEs it is straightforward to determine the OPEs of the currents,

J+(z)J−(w) =
k

(z − w)2 +
J0(z)

(z − w)
,

J0(z)J+(w) =
2J+

(z − w)
,

J0(z)J0(w) =
2k

(z − w)2 ,

J0(z)J+(w) =
−2J−

(z − w)
, (6.141)

which are the OPEs of the SU(2) affine current algebra, with level k. Furthermore
the Sugawara energy-momentum tensor,

T (z) =
1

2(k + 2)

[
1
2
J0J0 + J+J− + J−J+

]
, (6.142)

is identical to the energy-momentum tensor given in (6.138), and the associated
Virasoro anomaly is,

c = 2 + 1− 24
(

1
4(k + 2)

)
=

3k

k + 2
. (6.143)

Since β has dimension one and γ dimension zero, their mode expansion takes
the form,

β =
∑

n

βnz−n−1 , γ =
∑

n

γnz−n . (6.144)

Substituting this into the expressions of the currents one finds,

J+
n = βn ,

J0
n = i

√
2(k + 2)nϕn + 2

∑
m

: βm γm−n :,

J−
n = −i

√
2(k + 2)

∑
m

: nϕm γn−m : −knϕn −
∑
lm

: βlγm γn−m−l : .

(6.145)
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