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Abstract. The orbital period is one of the most accessible observables of a cataclysmic variable.
It has been a concern for many years that the orbital period distribution of the known systems
does not match that predicted by evolutionary theory. The sample of objects discovered by the
Sloan Digital Sky Survey has changed this: it shows the long-expected predominance of short-
period objects termed the ‘period spike’. The minimum period remains in conflict with theory,
suggesting that the angular momentum loss mechanisms are stronger than predicted.
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1. The period spike: unveiled
The evolution of all binary systems containing a compact object is driven by the

loss of angular momentum from the orbit. Unfortunately, two of the most important
mechanisms, common envelope evolution and magnetic braking, are poorly understood.
A major advance in our understanding of binary evolution requires the characterisation
of a large and homogeneously selected sample of close binaries, such as the population
of cataclysmic variables (CVs) spectroscopically discovered by the SDSS (Szkody et al.,
2002, and later papers). We are therefore undertaking a project to measure the orbital
periods of all SDSS CVs. Of the 291 known systems, 153 now have reliable orbital period
measurements and 46 have approximate measurements (Gänsicke et al., 2009; Dillon
et al., 2008; Southworth et al., 2006, 2007ab, 2008ab, 2009, 2010ab). Fig. 1 compares the
orbital period distributions of SDSS and non-SDSS CVs.

CVs evolve towards shorter orbital periods, reach a minimum value, and then bounce
back to longer periods due to structural changes in the low-mass secondary star. A long-
standing prediction of CV evolution theory is an accumulation of systems at a minimum
period somewhere between 60 and 70 min (Rappaport, Joss & Webbink 1982) where
the evolutionary timescale becomes long and the period derivative passes through zero.
Unfortunately, the observed population has persistently shown both a longer minimum
period of around 80 min and no significant increase in the number of CVs at this period.
The population of SDSS CVs, however, shows for the first time a significant excess of
objects at a minimum period interval of 80–86 min (Gänsicke et al., 2009). This period
spike is composed primarily of CVs which are faint and therefore have been missed by
previous surveys. The position of the spike remains at a longer period than predicted,
implying that the angular momentum loss is faster than expected.

On recent observing runs with the ESO New Technology Telescope, we have discovered
eclipses in four faint CVs within our project. SDSS J075653.11+085831.8 shows 2 mag
deep eclipses on a period of 197 min. The system SDSS J093537.46+161950.8 has 1 mag
deep eclipses on a period of 92 min, SDSS J105754.25+275947.5 has short and deep
eclipses and an orbital period of 90 min, and SDSS J143209.78+191403.5 shows 1.5 mag
deep eclipses spaced by 169 min (paper in preparation). Eclipsing CVs are hugely valuable
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Figure 1. The orbital period distribution of SDSS CVs (black histogram) compared to that of
the known non-SDSS CVs (white histogram) as catalogued by Ritter & Kolb (2003).

because they are the only examples whose physical properties can be measured to high
precision (e.g. Littlefair et al., 2006, 2008; Southworth & Copperwheat 2011). Follow-up
observations of these objects are planned.
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