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THE INVARIANTS OP PROJECTIVE LINEAR GROUP ACTIONS

HUAH CHU, MING-CHANG KANG AND ENG-TJIOE TAN

Let F, be the field with q elements and let G = PGLn(Fq) or PSLn(Fq) act on
Fq(*i, • -..iBn-i), the rational function field of n— 1 variables. Then Fq(xi,... ,sen_i)
is purely transcendental over Fq . In fact, a set of n — 1 generators of Fq(xi,..., asn_i)°
over Fq is exhibited. The case n = 2 is treated by direct computation.

1. INTRODUCTION

Let Fq be the finite field with q elements, .Fq[xj,... , xn] the polynomial ring
in n variables over Fq, on which the n-dimensional general linear group GLn(Fq)
over Fq acts naturally. In 1911, L.E. Dickson showed that the ring of invariants
Fq[xi,.. .,xn] \ q) is again a polynomial ring on n generators (Dickson's invari-
ants) [1, pp.80-84; 3, pp.422-424].

As pointed out by Wilkerson [3, p.428], a crucial step in computing polynomial
invariants in characteristic p is to make a good guess for a set of generators for the
invariants. The ring of invariants F,[zi , . . . ,xn]

 Ln\Fi) of the special linear group was
computed by this strategy.

It seems not to have been noticed that the projective linear groups PGLn(Fq),
PSLn(Fq) should also be amenable to this strategy. For a field K containing Fq con-
sider the following action of PGLn(Fq) on the rational function field K{x\,...,xn_i)
in n—1 variables. For each a G PGLn(Fq), choose apreimage (aij)1<i <n in GLn(Fq)
and define, for 1 < i ^ n — 1,

• • • + On.n-lZn-l + Onn

Since PSLn(Fq) is a subgroup of PGLn(Fq), we consider the same action for

PSLn(Fq) on tf(xi,...,xn_,).
In this note we confirm—as expected—the rationality of K(x\,..., a;n_i) , G =

PGLn{Fq) or PSLn{Fq) and compute explicitly the n—1 generators for their invariants
(Theorem); in both cases the computation is reduced to a problem of finding a basis of
a free-abelian group of rank n — 1 in a free-abelian group of rank n (Lemma 2). This
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r e d u c t i o n p r o c e s s is b a s e d o n t h e c ruc i a l o b s e r v a t i o n t h a t K(xi,...,a;n_i) n^ 9' is

the set of all degree zero elements of K(y^,... ,yn) "*• q>, where yi — Xiyn , 1 ^ t <
n — 1 (Lemma 1); the latter is completely known by Dickson's Theorem.

In Section 4 we try our hand (in the spirit of good guessing) at providing a "tour
de force" process to compute a generator for Fq(x) 2^ q>, using a different method.
This process seems not to be straightforward, so we feel that it deserves to be mentioned
in the literature.

2. THE MAIN RESULTS

Let K be a field containing Fq. We can embed K(xi,...,xn^i) in a field

K(yi,..., yn) in n variables over K by defining X{ = — for 1 ̂  i < n — 1. In fact, if
Vn

we define t he degree of / • g ~1 by deg (/•^~1) = d e g / — deg g, where / , g are homo-
geneous polynomials in the polynomial ring K[yi,y2,... ,yn), then K(x\,... ,xn_i) is
just the set of degree zero elements in K(yi,... ,yn).

If we define the actions of GLn(Fq) and SLn(Fq) on K[yi,... ,yn] by

• yi ~ + ai2y2 +••• + ainyn, 1 <J i £ n,

where cr = («ij)j<j,<n is in GLn(Fq) or SLn(Fq), then the action of PGLn(Fq)
or PSLn(Fq) on K(x1,...,xn^i) is the induced action of GLn(Fq) or SLn(Fq) on

To formulate our main theorem we recall the definition of Dickson's invariants.
j j

Let AniTl be the (n + l ) x n matrix whose (i, j)-th entry is j / ' , for 1 ̂  i•£ n + 1
and 1 < j £ n:

3/i

yl

•yf

2/2 •

y\ •

yf •

• • J / n - l

• • 2 / n - l

• • 2 / n - l

3/n

Vl

yf-

Now let Ln be the determinant of the matrix obtained from An,n by deleting the
(n + l)-th row. For 1 ̂  i ^ n — 1, let Qn<i be the product of X"1 and the determinant
of the matrix obtained from An)n by deleting the (i + l)-th row. Namely,

Ln = det

i/2

yl
Vn

yq
n
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Qn,i = det

yn

Vi Vi

y\ y2

:~J, fori <;; < n -

L y f yJ - . y q :
The following theorem of Dickson asserts that the rings of invariants of K[j/i,..., yn

under GLn(Fq) or SLn(Fq) action are still polynomial rings.

DICKSON'S THEOREM. [1, pp.80-84; 3, pp.422-424]

(ii) K[y1,y2,...,yn]
SLn(F")=K[Ln,QnA,Qn,2,...,Qntn_1}.

We now dehomogenise the Ln and Qn,i 's with respect to yn to yield

Ln = det

x2
^1

Lx?

= det

• - n - l

•£ i

I"!

lJ

; - i

uf xf ... i«_, 1
Our main result is the following:

THEOREM.

(i) K{x1,x2,...,xn-1)
PGLn(F") = K(uuu2,...,un^) where

an — 1

(ii) Let d = g.c.d.(n, g - 1) = g.c.d^g"-1 + l, qn - q) .
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Choose any integers a and 0 such that

Then

where

»"-« g"~1+gn~2+.-+t+l

In botA cases the invariant subfields are again purely transcendental over K.

3. THE PROOF OF THE THEOREM

As already mentioned in Section 2, K(xi,... ,Kn_i) is the set of all degree
zero elements in K(y\,... ,yn). So the compatibility of the PGLn(Fq)-action on
K(xi,.. .,a;n_i) with the G£n(Fg)-action on K(yi,... ,yn) implies that

K(x\,. . . ,£„_!) n^ *' is just the set of all degree zero elements of

K(yi,..., ynf
Ln(Fq); the latter is K(Ll~\ Qn,i, Qn,2,- •., Qn,n-i) by Dickson's The-

orem.
PC1 T ( V \

Each element in K(xi,..., a;n_i) "̂  q' is of the form / • g , where / and g
are both linear combinations over K of monomials

1 1o(qn - 1) + 7i(?" -<?) + . . . + 7»-i («n - 9""1) = ™, 7i S N U {0}.

Note that deg £« - 1 = 9
n - 1, deg <?„,; = qn - q{, for 1 < i ^ n - 1.

Choose a fixed n-tuple (ao ,a i , . . . ,an_i) with a* ^ 0 and J^ a;(gn — 9*)
0g«<n-l

= m. Then any monomial which may appear in / or g is of the form (L^"1)"0 °

(<?„,!H+/Jl •••(<?n,n-irn-1+/ '"-1 with E A ( 9 n - 9 ' ) = 0 . Note that /?4 can be
0<ign-l

negative.
In / / ^ , divide both the denominator and the numerator by (L*~1)a°(Qnii)

c*1

• • • (Qn,n-i)an~l to get the new denominator and numerator, which are K-linear com-
binations of monomials of the form

r(<?.,ir-.(<?B,»..r-i
I

Thus we have proved the following:
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LEMMA 1.

(i) K(xi,... ,xn_i) "^ *' is geaerated over K by monomials of the form

(*)•

(ii) K(xi,..., zn_i) "̂  *' is generated over K by monomials of the form

The proof of (ii) is similar to that of (i).

Due to Lemma 1 the proof of our theorem is reduced to finding a certain n — 1

basis in the free abelian group Zn (written additively) of rank n with free basis

{ L^1, in the PG£2-case
r • ,k D c r ' e> = <?".•' l ^ i ^ n - 1 .

Ln, in the PSL2-case
So let h1,h2:Z

n-*Z be denned by:

= qn ~ 1,

9 - 1
and

Our task is now to compute:

and

n- l n - l

Kernel (fej) = {^/?je<| ^]/3»(9n - 9*) = 0},
t=0 t=0

Kernel (h2) = {^ 7 i e i | 7 o «^i + ^ 7 i ( o " - ,') = 0}.
t=0 9 i=lt=0

LEMMA 2.

(i) Kernel (/ii) is a free abelian group of rank n — 1 with basis

9-1

and

e i " ~ i eo
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(ii) Kernel {hi) is a free abelian group of rank n — 1 with basis

qn -q g"-1 + qn~2 + ... + q + 1
:—e0

and

where d, a, and (3 are defined in Theorem (ii).

PROOF: First we have Image (hj) = g. c. d{hj(ei)\i = 0, . . . , n — 1}Z . Hence

Image (/ii) = (q - 1)1

and
Image (h2) = dZ,

where

= g. c. d{n, 9 - 1} = g. c. d {^~Fp ?" - 9}-

Note that /ii(eo — ej) = 9 — 1 and h2(oteo + /3ei) = d. Thus we have

Zn = Kernel (fti)©Z(eo-e1)

and
Z" = Kernel (h2) © Z(ae0 +^ei) ,

where a , 0 € Z are chosen such a( I + /3(q" — q) = d.
\ q-1 )

(i) Note that
qn — 1 qn — q

(e e) = e (eo
— 1 q q

- ( e 0 - ej) = e2 - ( e 0
- 1 q-1

qn - q*
So a set of n generators {ei — :~(eo — ei)|0 ^ * ^ n — 1} of

Kernel (/ii) yields the n - 1 basis in (i).
(ii) In this case Kernel{h2) has a set of n generators consisting of

n-l+ gn-2+ + < ? + 1

eo ; \oce0 + pe\)

a
and

nn — n'

) (i £ ; <; n - 1 ) .
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However, note that

n-2+

9n-q <?""* + <Zn~2 + • • • + q +
e

and

qn-

qn-q q"-1 + q

{ae0 +
n-2

with a and /? being relatively prime. It follows that the above two elements generate
the cyclic subgroup whose generator is

qn - q

and one gets the n — 1 basis in (ii). This completes the proof of Lemma 2. |

Finally, define U\, u^,..., un_j and V\, V2, •. •, vn_i as in the Theorem.
It is easy to see that any monomial of the form (-*•) and (**) of Lemma 1 can

be written as a monomial in •u1,ti2,... ,Mn_i and vlti>2,..., vn_i respectively. Hence
Lemma 1 and Lemma 2 complete the proof of our Theorem. |

4. THE CASE n = 2

The case n = 2 can be computed directly without referring to Dickson's invariants.
Note that PSLn(Fq) - PGLn(Fq) if q is even. The proofs, which we will sketch briefly
for K = Fq and the PSL2 case, are tedious and computational. They involve some
mod p combinatorial identities that seem not to be straightforward. We feel that the
computation is worth recording in the literature.

Our direct computation leads us to the following generators for the invariant fields.

(i) F,

(1) h = (*« - x ) - ( ' 2

(ii) If q is odd, F , ( z ) P S L 2 ( F ' ) = Fq{t,), where

(2) t2 = {x" -
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An alternative form for the formulae (1) and (2) is:

and

(2') h=

By an easy calculation our generators (1) and (2) are, as expected, the correct ones

•uj = <! -|-1 and Vi = (—]

We might remark that a special case of the above results appears as an exercise in
the first edition of Jacobson [2, Exercise 6, p.236].

In the rest of this section we indicate the steps by which we arrived at the correct
generators tj and t2 •

Step 1. By analysis of the group action we obtain generators i\ and t2 :

(i) Fq(x)PGL2(Fq) = Fq (h) , where

66F,

(ii) If q is odd, Fq(xfSl2(F^ = Fq(t2) , where

(x + b

PROOF: First note that

PGL2(Fq) = ( S H M + C , I H -^— + c | a e Fq\{0} & b,c <E Fq)
X + O

PSL2(Fq) ={x~a2x + c,x~ -=JL- + c | a £ Fq\{0} k b,c € Fq).

y —1

I t is easily seen t h a t w = (xq — z)*~ is invariant under H — (x \—> a2x +

c | a e Fq\{0},c € Fq) and the orbit of w under (x i-f - - ^ | b £ Fq) is
q 2 —1 q — 1

{tu,u;(« + 6) 2 |6 G F,} . Moreover, V (x + b) 2 is invariant under jSf. Hence
66F,
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is invariant under PSL2(Fq). Evaluating the degree [Fq(x): Fq(i2)} = ^-z =

\PSL2{Fq)\ yields the assertion. |

Step 2. Evaluation of the sum in the curly brackets on the right-hand-side yields:

q-3

If q is odd,

PROOF: Set sn = ^ (x 4- b)n. We evaluate the formula using the generating
66F,

function of sn

Si -\- s2T -f- 53T + • • • + 3n+iTn + • • •,

which has the following final forni

- { + 2(Tq -T) + j(Tq -T)2 + ...

1

(x« - x)"-1

We omit the explicit calculation and just note that we use the following identity:

]\{T -(x +b)} = (T -x)' -(T -x) =T" -T -{x* -x)

, - 3

Comparing the coefficients of T ^ yields the desired formula.

Step 3. From Step 1 and Step 2 we have

x 2 '

Let k = *^- — j and w = (xq — x)9"1. The term in the curly brackets is

/ *2 1 \
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We claim that the following holds, for each 0 < k ^ *^-:

(P) ( -1 )* I ~~2 fc(9 - 1) j = j ~Y~ ) (mod p), (where q is a power of p)

so that

= <2

as was to be proved. (The computation for <i is analogous).

PROOF: TO prove (P) we need the following mod p combinatorial identity:

If a = ao + aiq + ... + arq
r and

wi th 0 ^ <Zj, hi ^ q — 1 then

(a\ _ / a o \ (ai\ (ar\

\b/ \b0 J \bi J \br J

Here we adopt the following conventions: (i) I I = 0 if c < d; (ii) I 1 = 1 for any

nonnegat ive integer c .

Now for 0 ^ k ^ —-— we have

« ? 2 - 3

hence

By direct check we have 1 2 1 = 1 2 1 (mod p) . This completes the
V k ) \ k )

proof of (P) and hence of Step 3. |
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