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ABSTRACT. This paper considers the possible commercial viability of applying the moving particle semi-
implicit (MPS) method to avalanches. The MPS method is a powerful tool for reproducing the flow
phenomenon with large-scale surface deformation. In order to apply this method to snow avalanches,
we modified the original model to introduce constitutive equations of Bingham fluid, dilatant fluid and
the erosion–deposition process. The modified model was applied to some cases and evaluated through
comparison with experimental results and observed data.

INTRODUCTION
Avalanche defence structures can minimize damage from
snow avalanches or even prevent avalanche release.
Although model experiments on various defence structures
have been conducted previously (Tai and others, 1999), how
to estimate the effectiveness of such structures has yet to be
established. At present, the design of avalanche defence
structures is mainly based on empirical laws. However, from
the perspective of both safety and economics, a stronger and
more rational physical basis is desirable. In addition, direct
observations and measurements of avalanches are relatively
scarce (e.g. Gauer and others, 2007; Sovilla and others,
2008), and a reliable numerical model that can be used for
full-scale avalanche analysis is required.

There are several available models that can predict the
velocity and run-out distance of avalanches (for a short
review see Oda and others, 2011). However, these tools use
depth-averaged approaches that do not allow the vertical
velocity and pressure distribution to be calculated.

In this paper, we present a new approach that considers a
snow avalanche as non-Newtonian fluid and also includes
erosion and deposition processes. With this model, a fully
three-dimensional simulation, which also reproduces the
avalanche surface movement, becomes possible.

MPS METHOD
The moving particle semi-implicit (MPS) method was first
proposed by Koshizuka (1996) and does not yet seem to be
widely known. Here we briefly explain the basics of the MPS
method.

As the name suggests, the MPS method is a compu-
tational technique that uses a particle (Lagrangian) approach
with a semi-implicit algorithm. However, it does not perform
calculations on every distinct particle of a particle body.
Instead, the differential equations describing the behavior of
a continuous body are discretized using the model of
interacting fictitious particles.

In this study, the continuity equation

D�

Dt
¼ 0 ð1Þ

and the momentum conservation equation

Du
Dt

¼ � 1
�
rp þ �r2uþ g ð2Þ

for incompressible fluid are the base equations for avalanche
simulations, where � is the density of particles, u is velocity,
p is pressure, � is the kinematic viscosity coefficient and g is
the acceleration due to gravity. The velocity term is not
included in Eqn (1) because of the formal property of the
Lagrangian approach.

The model of interaction between particles is based on
the weight function

wðrÞ ¼
re
r
� 1 r � re
0 r > re

(
ð3Þ

According to this weight function, particles interact if the
distance r between them is less than the re parameter. At
farther distances the interaction is assumed to be zero. At
nearly zero distances the weight function approaches
infinity, preventing particles from being too close to each
other.

To express gradient and Laplacian operators of some
physical parameter � of a particle k through the weight
function, the following equations were derived:

r�k ¼ d
n0

X
i 6¼k

�i � �k

jri � rk j2
ri � rkð Þw jri � rkð Þ

" #
ð4Þ

r�k ¼ 2d
�n0

X
i 6¼k

�
�i � �kð Þw jri � rkð Þ� ð5Þ

Here r is the position vector of a particle, d is the dimension
(usually 3) and n0 is the initial number density that can be
known from the initial particle distribution. The value of the
normalizing coefficient � can be found by

� ¼
P

i 6¼k w jri � rk jð Þ jri � rk j2
h i
P

i 6¼k w jri � rk jð Þ½ � ð6Þ

The number density can also be expressed through the
weight function:

nk ¼
X
i 6¼k

w ri � rkj jð Þ½ � ð7Þ
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It should be noted that although each particle is treated
locally, the same calculation is applied to all particles
covering the whole area. Such local interactions are
considered to be sufficient to recover the global equations
(1) and (2).

To solve the momentum-conservation and continuity
equations numerically, we use the so-called semi-
implicit algorithm, where the pressure gradient term is
implicit (m+1 index) but the viscosity and gravity terms are
explicit (m index).

D�

Dt

� �mþ1

¼ 0 ð8Þ

Du
Dt

¼ � 1
�
rp

� �mþ1

þ �r2u
� �m þ g½ �m ð9Þ

The calculation algorithm consists of two main stages:
explicit and implicit. The details of each stage are described
below.

Suppose that position vector rm, velocity um and pressure
pm of a particle for time-step m are known. The corres-
ponding values for the next time-step, m+1, are subjects to
be found. In the first step, find the temporary values of
position and velocity of the particle using only the explicit
terms of Eqn (9),

u� ¼ um þ �r2um þ g
� �

�t ð10Þ

r� ¼ rm þ u��t ð11Þ
where the viscosity Laplacian term can be calculated by
Eqn (5).

From these temporary values we obtain a new number
density, n�, that differs from the initial value n0. The point
of the next stage is to find correction values of the velocity
u0 and the number density n0 using the still unused implicit
term (pressure gradient) in Eqn (9) and the difference
between the temporary and the initial values of the

number density.

n0 ¼ nmþ1 ¼ n� þ n0 ð12Þ

umþ1 ¼ u� þ u0 ð13Þ

rmþ1 ¼ r� þ u0�t ð14Þ
The velocity correction term arises from the pressure
gradient.

u0 ¼ ��t
�

rpmþ1 ð15Þ

Next we use the following mass conservation law to exclude
the difference in the density value:

D�

Dt
¼ �0r u ¼ 0 ð16Þ

Because density is proportional to the number of particles in
the MPS method, � can be replaced by n, and after
discretizing we obtain

n0

n0�t
þr u0 ¼ 0 ð17Þ

Note that the correction values n0 and u0 are used here
instead of n and u. Combining this equation with Eqn (15)
we obtain the following discrete Poisson equation:

r2pmþ1 ¼ � �0
�t2

n� � n0

n0 ð18Þ
Applying Eqn (5) we obtain a system of linear equations from
which the pressure pk+1 can be found for each particle.

Finally we should mention how free surface and wall
conditions are set in the MPS method. Because there are no
particles outside the avalanche body, the free surface can be
determined by a decreased value of the number density
(Fig. 1).

n�
i < �n0 ð19Þ

where � can be 0.95 or 0.97 according to Koshizuka and
others (1996).

By contrast, the wall is considered as two types of particle
layers with fixed coordinates. The outer layer consists of
particles that are both unmovable and non-calculable, while
the particles of the inner layer are subjected to pressure
calculation (Fig. 2). Because the influence radius may
overlap several rows of particles, the layer of particles
should be thick enough, i.e. consist of several rows of
particles, otherwise it may mistakenly be considered as free
surface. Sometimes the wall particles should be placed
closer to each other to prevent particle leakage through the
wall (Fig. 3).

BINGHAM AND DILATANT FLUID MODEL
The Bingham fluid model describes materials that behave as
a rigid body at low stresses but flow as a viscous fluid at high

Fig. 1. Particles that can be determined as free surface. re is the
influence radius.

Fig. 2. Wall particles layout.
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stress. The relation between shear stress � and shear rate _� is

� ¼ 	 _� þ �0 ð20Þ

Here �0 is the critical value of the stress, below which there
is no shear, and 	 is the dynamic viscosity. A biviscous
Bingham model was first adopted to describe avalanches by
Dent and Lang (1983).

We propose that the system behaves as a Bingham fluid
only when the shear rates are lower than some limit value
_�0, which was determined empirically. At shear rates higher
than _�0 it switches to dilatant fluid behavior that describes
fluids with increasing viscosity.

� ¼ k _�2, _� > _�0 ð21Þ

The dependence of shear stress on shear rate for the
combined Bingham–dilatant fluid model is shown in
Figure 4.

After rewriting Eqns (20) and (21) in terms of the dynamic
viscosity 	, we obtain the following final constitutive
equation that was used in the simulations.

	0 ¼ 	 þ �0
j _�j 1� e�m _�

� �
_� � _�0

	0 ¼ k _� _� > _�0:

8><
>: ð22Þ

where 	0 is the Newton fluid equivalent of the dynamic
viscosity and m is the stress growth coefficient. The last term
of the first equation is introduced to approximate the
Bingham fluid behavior at very low (near-zero) shear rates.

A similar rheology was also proposed in the Herschel–
Bulkley model (Kern and others, 2004) which is appropriate
at low shear rates and based on a two-dimensional depth-
average approach. However, we chose the constitutive
behavior (Eqn (22)) because it fits the experimental data on
snow creep presented by Nishimura (1990).

EROSION AND DEPOSITION
To reproduce avalanche measurement data, we need to take
into account processes of catching-up and deposition of
snow particles. Unlike some relatively complicated erosion
mechanisms (Gauer and Issler, 2004), we proposed a highly
simplified approach in this study. The particle pressure p is
considered as an external force influencing other particles
that may erode the surface depending on the pressure value.

p > �0 : erosion

p � �0, v <0:5m s�1 : deposition:

(
ð23Þ

To exclude the influence of the low-speed particles, the
velocity parameter was also taken into consideration.

Because in the MPS method the gravitational term is
explicitly calculated, fluid cannot stop completely. There-
fore we need to introduce a new unmovable type of snow
particle that can replace the moving particles under specific
conditions. Together with the particle types described
earlier, four types are defined:

moving particles,

inner-wall particles (with pressure calculation),

dummy-wall particles (no pressure calculation),

erodible particles.

Under the conditions (Eqn (23)) favoring erosion, erodible
particles are replaced by moving particles, while under the
conditions favoring deposition, moving particles turn into
erodible particles (Fig. 5). The erodible particles, which
deposit on the inner-wall particles, are treated the same way
as the inner-wall particles except for the case of replacing.

OBSERVATIONS AND NUMERICAL SIMULATIONS
In winter 2009/10, several relatively large wet snow
avalanches were observed near Niigata, Japan. Pictures of

Fig. 3. Layout preventing particle leakage through the wall.

Fig. 4. The constitutive law for combined Bingham–dilatant fluid
model. Fig. 5. Illustration of erosion and deposition model behavior.
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some of them were taken with web cameras that allowed the
avalanche dynamics to be gripped and the observations to
be compared with numerical calculations. Two cases are
studied in the following. The first case represents an
avalanche in steady state after fall (Fig. 6). The second
avalanche was observed for 20 s while falling and was
photographed with a 1 s interval (Fig. 7).

The initial set-up for both numerical simulations is
represented by a computational grid that replicates the
avalanche slope geometries (Fig. 8). The calculation
parameters are

snow density = 320 kgm–3

adhesive force = 100Pa

inner friction angle = 248

plastic viscosity = 0.01 Pa s

maximum time-step = 0.01 s

mean particle spacing = 0.5m

erodible layer thickness = 0.25m.

The inner friction angle is used here to determine the critical
stress value for Bingham fluid.

Let us consider the case 1 avalanche first. To verify the
effect of the current study approach, two models were used
for numerical calculations. The first is the Bingham-only
model and the second is the combined Bingham–dilatant
fluid model with erosion–deposition processes included.
Comparing both results of numerical simulations with the
visual state of the avalanche spot (Fig. 9), one can see that
the improved model reproduced the final state much better,
while the Bingham-only approach resulted in overwidening
of the avalanche area.

Another advantage of the improved model is the ability to
support particle deposition, and as a consequencemore strict
prediction of the avalanche propagation distance. As can be
seen from the propagation-distance vs time graph (Fig. 10),
the Bingham-onlymodel does not support particle deposition
and the particle movement will continue infinitely.

Fig. 6. Case 1 avalanche slope.

Fig. 7. Case 2 avalanche slope.

Fig. 8. The computational grid for case 1 (left) and case 2 (right).
Darker areas indicate the initial positions and sizes of the avalanche
sources.

Fig. 9. The case 1 model set-up and computation results. (a) Visual
state of the avalanche spot. (b) Bingham-only model. (c) Bingham–
dilatant combined model.

Fig. 10. Avalanche propagation distance vs time for the Bingham-
only and the improved model.
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In case 2, we could compare the numerical simulation
results with the observations through all stages of the
avalanche propagation, because a series of photographs
were taken during falling (Kamiishi and others, 2010). The
most representative parameters – falling speed and path –
were in good agreement with what can be judged from the
photographs (Fig. 11).

ARTIFICIAL AVALANCHE EXPERIMENTS
The chances of observing a falling avalanche in nature are
extremely low. Together with safety problems, this is why
observation data on natural avalanches are relatively scarce.
There are only a few places where natural avalanches are
observed regularly, such as the international avalanche
release test sites at Ryggfonn, Norway (Gauer and others,
2007), and Vallée de la Sionne, Switzerland (Sovilla and
others, 2008). Researchers have also conducted numerous
avalanche fall experiments with beads or foamed polystyrene
instead of snow (e.g. Hutter and others, 1995). Although such
experiments can reproduce the dynamics of moving snow
masses, they usually fail to reproduce erosion or deposition
processes which are especially significant near obstacles.

In this study, we prepared a wooden artificial slope 5.4m
long (Fig. 12a) and conducted several avalanche experi-
ments with natural snow. Obstacles of various kinds can be
installed at the bottom of the slope (Fig. 12b).

The set-up parameters for numerical calculations are

snow density = 200 kgm–3

adhesive force = 0 Pa

inner friction angle = 248

plastic viscosity = 0.012 Pa s

maximum time-step = 0.01 s

mean particle spacing = 0.01m.

Fig. 11. Results of numerical simulation (right) compared with the
observations (left) for the case 2 avalanche.

Fig. 12. Wooden slope for avalanche experiments: (a) photo,
(b) draft with sizes.
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Fig. 13. Avalanche falling compared with the numerical calculations.
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The following four types of avalanche experiment were
conducted:

Slope-only without obstacles.

Stake row with 0.02m spacing.

Stake row with 0.04m spacing.

Notched board.

All stages of the experiments (start, falling, deposition) were
thoroughly recorded with a camera and compared with the
results of numerical simulations. For better reliability, every
experiment was conducted twice.

Analyzing the falling stage (Fig. 13), which is common for
all types of experiments, we noticed a small discrepancy in
the shape and falling velocity of the avalanche at the very

beginning of the experiments (1 s). This can be explained by
the fact that the snow block fallen from the container cannot
be described as powder material initially, so the dynamics at
the time of collision with the slope differs from the
calculated behavior. The model limitations (e.g. ambiguity
of the processes near the walls, or errors in measurements of
the snow property in the experiments) may cause the
discrepancy, though.

However, after 2 s of the experiment the avalanche state
became very close to that of numerical results, including the
shape of the deposition cone in the lower part of the slope
(Fig. 14).

When a row of narrowly spaced (0.02m) stakes is
installed at the bottom of the slope, some snow is expected
to be deposited above the stakes as has been successfully
confirmed by both experiments and numerical calculations

Fig. 14. The case of a slope without obstacles: (a) avalanche deposition in the simulation and the experiment; (b) avalanche propagation
graph; (c) forms of the avalanche body after 1, 2, 3 and 4 s of falling.
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(Fig. 15). However, the MPS method results in graduate
snow flowing through the gaps between the stakes until
there is almost no snow on the obstacle. This problem still
remains and is due to be studied in the future. We believe
that including a change in snow property in the model may
resolve the problem.

In the case of a wider gap (0.04m) between the stakes,
both experiment and calculations gave the same result:
almost no snow remains on the obstacle (Fig. 16).

In the case of the notched board obstacle (Fig. 17), we
encountered a problem similar to that in the experiment
with spaced stakes (Fig. 15) when the snow deposited on the
obstacle gradually flows down (although quite slowly) from
the edges. Therefore, an experimenter has to decide each
time when to stop the calculation process.

CONCLUSIONS
The combined Bingham–dilatant fluid model with included
erosion and deposition processes helped to resolve a
number of tasks that could not be numerically resolved
before. When this model was implemented, the reproduc-
tion of avalanches involving snow on slopes, avalanche
stabilizing, shear strain dynamics and other processes
became possible.

Despite some model limitations (e.g. ambiguity of the
processes near the walls, and some randomness during the
avalanche experiments), good reproducibility and agreement
between field observations, results of several avalanche
experiments and the numerical simulations were confirmed,
proving that the MPS method is widely applicable for a

Fig. 15. The case of a slope with 0.02m spaced stakes: (a) avalanche deposition in the simulation and the experiment; (b) avalanche
propagation graph; (c) forms of the avalanche body after 1, 2, 3 and 4 s of falling.
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variety of conditions. However, we believe that the snow
property changing in time should be included in the MPS
method to reproduce some specific cases (e.g. snow
collisions) that will make this method even more reliable.
Also, as a future prospect of the MPS method, more
simulations and comparisons with avalanche data should
be done to verify the model approach more definitely and to
improve the model where discrepancies are observed.
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