ON WARD’S PERRON-STIELTJES INTEGRAL
RALPH HENSTOCK

Introduction. In the paper (5), Ward defines an integral of Perron type
of a finite function f with respect to another finite function g, where g need
not be of bounded variation. There arise two problems, (a) and (b) below,
that have not been dealt with in (5).

If f = j at a countable number of points everywhere dense in (a, ), where
J and j are both integrable with respect to g, then f — j can be nonzero on a
large set of points of (a, b). For example, if g is continuous and of bounded
variation the countable number of points can be neglected in the integration
and we can have f # j everywhere else. But g is more rigidly fixed when we
know its values on an everywhere dense set, if the integral exists. For example,
if g is of bounded variation, and so continuous except at an at most countable
set of points, we can only vary the values of g at a countable set of points.
More generally, we have problem

(a) If f us integrable with respect to g, and with respect to h, over the closed
interval [a, b], where g = h at points everywhere dense in [a, b], what are the
properties of the difference g — h and the set of points where the difference is not
zero?

This question is partially answered by Theorems 1 and 2, and we obtain
the following result.

Let E. be the closure of the set of # for which
() 2 = k()] > a<u<b

Then f must be VBG and continuous on! E,, and mf(E,) = 0.

However, if f is integrable with respect to g in [a, b], and if g — & satisfies
(1) and is 0 at an everywhere dense set of points in [a, b], it does not follow
that f is integrable with respect to % in [a, b]. For example, take g = 0 and
suppose that each set E. contains only a finite number of points and so has
no limit-points. Then every function f is trivially VBG and continuous on

E. = E., and f(¥.) contains only a finite number of points. But if the set of
points where & ## 0 does not satisfy Theorem 3 (9), (10), (11), with j replaced
by &, it follows by Theorem 3 that there is a finite function f for which the
Perron-Stieltjes integral of f with respect to & over [a, b] does not exist. See
the example of Theorem 5 (38) in §4.

There is another question of integrability, namely,

(b) What are the properties of g in order that all bounded Baire® functions [
are integrable with respect to g in [a, b]?

Received October 6, 1955. _
1].e., when we use only the points of Ee.

2A Baire (Borel-measurable) function is any function that can be obtained from continuous
functions by using repeated limits.
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Question (b) is partially answered in (2), Theorem 2, and we give the
complete answer in Theorem 3 of the present paper.

1. Notation. We suppose that all functions considered are defined and
finite in @ < u < b, this interval being denoted by [a, b]. The existence of an
integral or limit is taken to mean its existence as a finite number. If the
limits exist,

fu=) = Im f@), flu+)= Im f).

v, a<r<u<d 5%, a<u<o<d

Integral signs preceded by (LS), (PS), denote respectively the ILebesgue-
Stieltjes and Perron-Stieltjes integrals, and we put

Pl w) = PG givw) = (PS) [ 1) dgta),

f(E) = {f(u):u € E} where E is a set contained in [a, b]. A point v in [a, b]
is a point of infinite variation on [a, b] of the function f if, for each open interval
(¢, n) containing », the function f is not of bounded variation on

(& 2] M [a, b].

It follows that the set W of points of infinite variation on [a, b] of f is closed.
For if v is not in W there is an open interval (¢, #) containing v, such that f
is of bounded variation on

[& 2] M [a, b],

and then (¢, n) is contained in CWW.

The symbols E’, E, CE, mE denote respectively the derived set, the closure,
the complement, and the measure of a set E in [a, b]. The interior of E is the
largest open set contained in E.

2. The examination of question (a)

TureoreM 1. If P(f, g;a,b) and P(f, h;a,b) exist, and if g = h at points
everywhere dense in [a, b], then for all v, win a < v < w < b,

P(f,g;‘l),'bU) = P(f,h;ﬂ,W) + [f(g - h)]l;’~

Proof. Itisenough toassume that 2z = 0, so thatg = 0 at points everywhere
dense in [@, b]. Let M, and M, be a major and a minor function, in Ward’s
sense, of f with respect to g in [a, b] and take u in [a, b]. Then there is a
81(u) > 0 depending on u, My, Ms, such that

2) (M) > f(w)gls > M), 0<¢t—u<bi(n),
(3) [Mi]E < f(w)[g)i < [M:)E, 0>¢—u> — 5(u).

As in (2), §2, the proof of Theorem 1, we can prove that in each [v, ] there is
a finite number of points
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v=a = < a<...<o=uU=wao 1< g (p=2,...,n—1),
such that

glog) =0(p=1,...,n— 1), a — ap1 < 61(up) p=1,...,n).
Thus (2), (3) are satisfied with u = u,, £ = a,, and « = u,, £ = «,., re-

spectively, and we obtain

Z j‘[l]ll ]v > Z-:l []l[‘.’]]) = []Wg ify

where {M], stands for

M(oy) — M(ap_n).
Thus as P (v, w) exists, the Theorem must be true for 1 = 0, and so generally.

TuroreMm 2. [f, for all uina < u < b,
4) P(f, g a,u) = [fgli,
then (5) f is VBG and continuous on E., and (6) mf(E) = 0, where E. is the
set of u for which
lgw) > ¢, a<u<hb e>0.

COROLLARY. If (4) is true, and if E. contains an interval (&, n] for some
e > 0, then [ is constant in [£, ).

From Theorem 2 Corollary we can easily prove Theorem 1 of (2).

To prove Theorem 2 let ¢ < u < v < b and let M3, M, be arbitrary major
and minor functions of f with respect to g in Ward's sense, and write
x1 = M; — M. Then x; is monotone increasing. Now, for fixed # and for
sufficiently small and positive v — u, both functions

f@)(gle P(u,v)

lie between
(M), (M5,
so that
|P(u,v) — f(u)lgla] < [xalu
Substituting in the value of P(u, v) from (4) we obtain
lg@)[flal < Dl
Hence there is a d»(#) > 0 such that if
u € E/,v € E, 0<v—u<3du),

we have .

() Wl < €'l
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Similarly for v < u. If
w € B, 0<w—u<d(u),
then there is a v satisfying
v EE, 0<v—u<idu),
and arbitrarily near to w, so that by (7),
Tl < 1%l + (072 < Dali + € haltl,

(8) 1] < hali® < hale,
lm sup [[fTe] < ¢ '[xla, lvlmf(w) = f(w),

as x1(b) — xi(a) is arbitrarilyv small.
Similar results hold for

w<uu€E wcE,w—u,

so that f is continuous when we only use the points of the derived set of E..
As the other points of E, are isolated, f is continuous on E..

To show that fis VBG on E. we use the method of the first part of the proof
of (5, p. 592, Lemma 6) and we employ only points of E. The relevant
inequality is the first one in (8).

To prove (6) we first add 8(# — a) to x:(#) if necessary, to ensure that
x1 is strictly increasing. The constant § > 0 can be arbitrarily small. Then as
in (5, p. 581, Lemma 3) we prove from the first inequality of (8), and the
similar inequality when w < u, that

m*f(Eo) < 26 [xall,

where m* denotes outer measure. The factor 2 occurs because of the w4 in
(8). As the right-hand side is arbitrarily small we obtain (6).

To prove the Corollary we note that by (5), f is continuous on [£, 3]. Thus
if f([£, n]) contains two distinct points it contains the whole interval between
the points. This is impossible by (6).

3. The integrability of Perron-Stieltjes integrals. In this section we
prove two theorems, completely answering question (b). We begin with a
lemma needed in the proof of the converse of Theorem 3.

LEMMA. Let F be a sequence {I,} of open intervals, and let H, be the set of
points of |a, b] lying in at most p intervals of F. Then all the intervals I, covering
the points of H, can be put into at most 3p sets of non-overlapping intervals.

We can define a sequence {§,} of points of H, such that their closure contains
II,. Each interval I, covering a point of H, will then also cover at least one
£,, and conversely. Thus we need only consider the intervals covering the £,.
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We put the gth interval of the sequence {I,} that covers £, into the set .S,.
Then 1 < ¢ < p, as & lies in H, Suppose that the intervals I, covering
£1, ..., &1 have been arranged into sets S,(1 < ¢ < 3p) of non-overlapping
intervals, and let £, lie between &, and ¢, for s < r, ¢t < r, with no £,(¢ <)
between £, and £, Then there are at most p intervals I, covering &,, and at
most p intervals [, covering &,, so that at least p of the sets Sy, ..., S, say
Ty, ..., T, will be free from intervals I, that cover ¢, or £, and so will contain
no interval lying in (&, £,). The intervals I, covering ¢, that have not already
been put into sets S,, cannot cover £ nor £, and so must lie between ¢, and
£,. We can therefore put these intervals into some or all of the sets T, . . ., T,.

Similarly if

& <miné, or £ > max £,
a<r g<r

in which case one of &, &, is missing. Hence the result is true for &, ..., £,
It is true for & and hence true in general.

THEOREM 3. If, for a given function j, for all bounded Baire functions f
defined 1n |a, b], and for all u in la, b, the integral P(f, j; a, u) exists equal to

[/,

then the set of points u m a < u < b, where j(u) = 0, can be divided into two
sequences {u,} and {d,}, with the properties

0) > litw)| < =

(10) surrounding each d, there is an open interval I(d,) = (d,, d,) contained in
(a,b) such that each point of [a, b] can lie in an at most finite number of the I(d,);

’

(11) there is a monotone increasing bounded function x such that
X(Czn,+)_ X(dn) > '](dn)iy X(dﬂ) - X(du‘) > ’](dn)|

Conversely, if j satisfies (9), (10), (11), and if f is bounded in [a,b], then
P(f,7;a, u) exists and is equal to

[f71a,
for all winma < u < b.

To begin the proof of the first part of Theorem 3 we replace g by j in
Theorem 2, obtaining from (5) that f is continuous on K., where E, is the set
in which [j| > €. But, for each « in [a, b], the set of bounded Baire functions
f includes the function equal to 0 in [, %), equal to 1 at «, and equal to 2 in
(u, b]. Hence each point of E. must be isolated, and E, is finite. This is true
for each € > 0. Hence taking ¢! = 1,2, ..., we obtain

(12) j # 0 only at a countable set of points {w,},
(13) j(w,) > 0asn— w.
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Also, as E; is finite,
(14) 7 is bounded.

We now wish to find a strictly increasing function x and a function § > 0’
defined for all # in a < # < b, such that for u —§ <w <u <v <u-+34,
a<w<ov<b,

(15) > ),
(16) [xli > [j(w)].

There is in Ward’s sense a major function P(f, j; a, u) + x2(u) of f with
respect to j in [a, b], where x» is monotone increasing and bounded in [a, b],
with x2(e) = 0. Thus, if we substitute in the value of P(f,j;a, ), we find
that for ¢ < # < b and for some §; = §;(u) > 0, using Ward’s definition of a
major function,

amn [xele > F@)[fT5 (u<v<u+obya<o<d),
(18) [xelio > 7 (@) [f1Y (u>w>u—2o; a<w<b).
We now take f = — sgn j, where sgn a = |a|/a(a # 0), sgn 0 = 0. Then

if x3, 84 are the corresponding xs, 83, and if the » of (17) does not lie in {w,},
so that j(u) = 0, f(u) = 0, we obtain, for u < v < u + 84, a < v < b,

(19) [xs)e > 17 ().

Similarly let xu, 85 be the corresponding x., 6; when for f we take sgn 7,
and let the u of (18) lie outside the sequence {w,} so that j(u) = 0, f(u#) = 0.
Then
(20) [Xalw > [F(w)], u>w>u—208,a<w<bh

By (13), j(w,=&) = 0. Thus if we put

xs(u) = E 2™ (u Q{wn}) = Xb(wll_) + 27 (w=w,p=12...)

wn<u

we obtain
xs(wp+) — xs(w,) = 277> 0 = l](wp+)ly
xs(wp) — xs(w,—) = 277> 0 = 'j(wﬂ—)'r

and there is a number 8, = §(w,) such that x;(u) satisfies (15) and (16) at
u = w,, with x replaced by x; and é by §,.

Using (19), (20) also, we see that to obtain (15), (16) foralluinae < u < b
and a strictly increasing function x, we need only take

x(u) = xs(u) + xa(u) + xs(u) + u — a.
We now define the points d, in (a, b) as those for which

(21) 7)) > x(dut) = x(da), 1j(d)] > x(da) — x(du—).
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The other points {u,} of |w,] then give

3 )] < 3 {xGt) — x(tn—)] < [x]) < ®,

n=1 n=1
so that (9) is satisfied.
If w<d, <u+ 6(u) for some u,d,, we have (15) with v = d,. Let d,
be the upper bound of all u < d, satisfying (15) for fixed v = d,. If there is
no such u, put d, = a. Then

(22) X(dn> - X((_iu_) > '](dn)I,
while if 4, > u > d,, we have
(23) X<d/1) - X(u> < ‘7(({:/)'

By (14), 7 is bounded, so that we can take a convenient finite value for
x(a—) to fit the cases when d, = a. From (21), (22), d, < d,.
Similarly we can define d, > d, such that

(24) X(d'n_’_) - X(d71> > '](dn>ly
while if d, < u < d,, we have
(25) X(u) - X(dn) < |](dn)l

Results (22), (24) prove (11). We now suppose that (10) is false, so that
a point # of [a, b] lies in an infinity of the open intervals

I(d,) = (du, d,) S (a,b).
Obviously # # a, u # b. Also by (23), (25), (13),
X(Czn—) - X(dn"}_) < 2|j(d71)] — ()

as # — o, Hence as x is strictly increasing, d, — # and d, — u, for the sub-
sequence of »n for which d, < u < d,. Hence the corresponding subsequence
of {d,} also tends to u, so that for certain v — u,

Ix(@) — x(w)] < i@

This result contradicts (15) or (16). Hence (10) is true, and the first part of
Theorem 3 has been proved.
We now prove the converse. Let the discontinuities of x in [a, o] occur at
the points v,(n = 1, 2, ...). Then we have
o

> ix@+) = x@w=)} < [x])f < =,

n=1

so that, given ¢ > 0, there is an integer n, such that

(26) > ixt) = x@m-)} <e

Then there is an integer n, such that, for n > n,, d, is not one of the points
v,,(q = 1,...,’”() — 1)
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We now let F in the Lemma be the family of intervals 7(d,), and we take p
so large that '
(27) mx{lae, b] — II,} < e
This is possible since by (10),

[a, 8] = U I,
>0

By the Lemma there are 3p sets S, of non-overlapping intervals /(d,) that
together cover H, — H,. There is an integer ¢t > n;, and depending on e,
such that for each ¢ in 1 < ¢ < 3p,

(28) Yix(d+) — xd—)} < €/(3p),

where the sum is taken over those intervals of S, with n > ¢, as the sum for
n > 0 is not greater than x(b) — x(a). The integer ¢ can also be chosen, by
(9), so that

(29) > )] < e

n>t

Let S be the set formed from those intervals of the §, with » > ¢ and
1 < ¢ < 3p. Then
Ha,0) — H,} U S

1s a union of intervals. For if u lies in [a, b] — I{, let J be the intersection of
the first (p + 1) intervals I(d,) covering u. Then J is open and contains u,
and

JC la, b] — H,.

We add an at most countable number of points, if necessary, to obtain from
e, b] — H,} \US a union U of open non-abutting intervals, and we put

(B0) xs(w) =XatxB+) — x(a—)} + e(u —a)/(b — @) + X2 2[j ()],

where Y, denotes the summation over the intervals (o, 8) of UM (a, u),
changing B8+ to B if 8 = u; and Y. denotes the summation over all n > ¢
such that u, < u, adding |j(u,)| if p >t and u = u,. Then xs is strictly
increasing, and from (26), (27), (28), (29),

@31) [xsla < 6.

Now, by definition, the points of H, are not covered by any interval I(d,).
If n > tand if I(d,) covers a point of H, — H,, then I(d,) will lie in one of the
S, and so in S, and so in U. It follows that x(d,) — x(d,—) will occur in
Siforu =4d, Ilf n>tandif I(d,) does not cover a point of H, — H,, then
I(d,) will lie entirely within [a, b] — H,, and so in U, and again, x(d,) — x(d,—)
will occur in 3¢ for # = d,. Thus by (30),

(32) xe(dn) — x6(dn—) > x(dn) — x(dn—) > [i(dn)| (n > 1).
Similarly for the result with d,+, so that xs satisfies (11) for all # > 1.
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Now each point u of [a, b] lies in an at most finite number of the I(d,), say
I(&), ..., (%), where &, . .., £ depend on u. Let the sequence |7,} include
all points of the sequences {u,}, {d,}, {d.}, {d,}, and let u be outside {7,].
We take 8¢ = 66(u) > 0 so that (u — 8, u + 8¢) does not include

Uty ooy Uy dyy ooy dyy &1y
Then by (32), for u < d, < min(b, u + &¢),
xs(dn) — xs(u) > x(dn) — x(da—) > [i(da)],

since d, > u. If u, lies in u < u, < min(b, u + &) then n > ¢, and by (30),

xo(un) — xo(w) > [j(u,)l.
If v is neither in {u,} nor in {d,} then for u < v < min(b, u 4 de),

xs() — xs(w) > 0 = [j(0)].
Hence, il « is outside {7,},
(33) xs(v) — xs(u) > [j ()], u < v < min(b, u + 8).

Similarly for all v in 4 > v > max(a, u — §5). To deal with the case when
u = 7, for some 7, we put

xr(u) = xs(u) + 2<3 27" (e ¢ tmal),
x:(m,) = x1(np—) + €277 (p=1,2...).

As in the part of the proof that follows (20), we obtain a strictly increasing
function x7 satisfying (33) for all u, and, for suitable §; > 0, for

u < v < min(b, u+ 87),
and similarly for v < u. By (31),
(34) [x:]a < Te.

Now suppose that |f| < 4. We put
Ms(u) = [fj + 2dx7la.
Then from (33),
(M) — f(u)[jl = [[1d (@) + 24 [xa]
> [flj(@) + 24[j@)] > 0(u < v <min(b, u + d7)).

The inequalities are reversed when u > v > max(a, # ~ 87), so that M is a
major function, in Ward’s sense, for f with respect to j in [, b]. Similarly

Ms(u) = [fj — 24 x7Ja

is a minor function, and by (34),

]l[5(b> - Mﬁ(b) = L'—l[xﬂg < 28 4.
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By choice of ¢ > 0 this can be made arbitrarily small. Hence there exists

P(f,5ia,u) = [fila

proving the converse in Theorem 3.

THEOREM 4. If, for a given function g, and for all bounded Baire functions
fin [a, b], the integral P(f, g;a, b) exists, then

(35) glu—) exists in a < u < b, glut) exists in a < u < b, and both are of
bounded variation in those ranges; and the function j satisfies Theorem 3(9),
(10), (11), where
(36) j(a) = ga) — gla+), j(b) = g(b) — g(b—),

Jj) = glu) — 3{g(ut) + glwu—) (a2 <u <Db).
Conversely, if g satisfies (35), and if the j defined by (36) satisfies Theorem

3(9), (10), (11), and if f is a bounded Baire function in |a, b}, then P(f, g; a, b)
exists and is equal to

[26) = 80-)1SO) + lgat) = 8@} f@) + T J@)lglut) = glu=)]
+(LS) ;f(u) dg.(u),

where

g0) = gv—=) = 2 {g(ut) = gu=)}(@ <v <b) g(0) = glat).
a<u<v
The result (35) is proved in (2), Theorem 2, using only the hypotheses of
the present Theorem 4. From (35) we see that g — j is of bounded variation
in [a, b], so that P(f, ¢ — j;a,bd) exists. By hypothesis P(f, g;a, b) exists.
Hence so does P(f, j; a, b). Also, from (35),

It

lim glw—) = gu—), lim g(w+)

wW-suU— wosu—

so that from (36), j(u—) = 0. Similarly j(u+) = 0. If E. is the set in
a < u < bwherej > e>0,and if E. has a limit-point £, then

glu—),

lim sup j(w) > e
w-§

This contradicts j(¢—) = 0 = j(¢+), so that E. has no limit-points and so
must contain only a finite number of points. Thus takinge = n='(z = 1,2,...),
the set where 7 > 0 is at most countable. Similarly the set where j < 0 is at
most countable. Hence by Theorem 1,

P(f,j;a,u) = [fila
so that the first part of Theorem 3 completes the first part of Theorem 4.
To prove the converse in Theorem 4 we need only use the converse in

Theorem 3 and the fact that ¢ — j is of bounded variation in [a, b], and
(4, pp. 208-209, Theorem 8.1)).
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4. The points of infinite variation of ;. We now suppose that
(37) Ju—) =0 (e <u<b), jlut) = 0(a <u <b).

L.et 7'; be the union of the interiors of all closed intervals J contained in
la, b], such that P(f,j;J) exists for all bounded Baire functions f, adding
one or both of a,b to T, according as one or both of [a,a + €], [b — ¢, b]
are intervals J for some ¢ > 0. Also put 7" = CT1 M [a, b]. Let W be the set
of points of infinite variation of j.

THEOREM 5. If J is a closed interval, there is a function j satisfying (37),
such that

(38) J=W,J=T.

If Q is a closed nowhere dense set, there is a function j satisfying (37), such
that
(39) T'=W=2¢Q,

and there is another function j satisfying (37), such that
(40) T'=¢, W=0,
where ¢ is the empty sel.

We begin by supposing that

(41) the set of points {v,} in [a, b] can be put into one-one correspondence with
the points (2 + 1)277 (0<q¢ <277, p=1,2,...), the order of the points being
preserved.

Then we define j(z,) = p~' when v, corresponds to (2¢ + 1)277, and j(u) = 0
when u is outside {v,}. Such a j satisfies (37), as only a finite number of j(v,)
are greater than any given positive e. If a x exists satisfying Theorem 3(10),
(11), we can suppose that

(42) (xle = B, [xli>v—u,
for all ¢ < u < v < b. Then the set of intervals I(d,) for which
X(dn+) - X(dn_) > 2/p

must be such that any non-overlapping and non-abutting subset has at most
1pB members. Hence any non-overlapping subset has at most pB members.
The points of {v,} that are not in {d,} are points {u,} satisfying Theorem
3(9). 1t follows that for some integer r, there is a point dy; in {d,} with

x(do+) — x(dn—) > 2/r

such that /(d,;) contains at least two different points £, £, of {v,} corresponding
to points (2¢ + 1)27" with the given ». Hence

Ql = I(dOI) M {vn} M (Ely f'.’)
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is not empty, as there are points of {»,} between each two points of |v,} by
(41). Since &, £ lie at a positive distance from the ends of I(dy:), and since

(]n - dn < X(dn-i_) - X(dn_) —0

as n — =, by (42), (10), and the bounded variation of x, there is an %, such
that if n > ny and d, € Q, then

I(d,) C I(dw).
We can now repeat the construction, defining dos, dys, - . - , and
I(dp) 2 1) 2...21dw) 2. ...

As {dy,} is a subsequence of {d,} we have do, — ds, — 0 as n — o, and hence
for a point u in (a, b), I(do¢,) — u. This u lies in an infinity of the intervals
I(d,), contrary to (10). Hence in this case there is no x satisfying Theorem
3(10), (11), so that for some bounded Baire function f, P(f,7j;a, b) cannot
exist.

A similar result is true for each interval J containing points of {v,} in its
interior, by (41). Hence
(43) T 2 {u},

since by (41) each point of {7,}’ is the limit-point of a sequence of intervals
of T
To prove (38) let J be the interval [, 8]. Then the points

7, =a+ (8 — a)(2¢ + 1)277 0<<gL25p=1,2,..)

will satisfy (41), and by (43),
vt =J=1T.

To prove (39) we take the points v, to be the centres of the intervals 1,
complementary to Q in [a, b]. That {v,} so defined satisfies (41), can be shown
by (3, p. 57, Proposition 20). Then by (43),

Tr= {vn}/ = 0,
and (39) is proved.

To prove (40) let d,, be the centre of the nth interval J, = (a,, 8,) comple-
mentary to Q in [a, b]. Next, let ds,, and ds,» be the centres of (a,, d1,) and
(d1ny Br), respectively, calling these two points the poinis of the second stage.
We continue this process of continued bisection to the stage »n2. If d,,, is a
point of the pth stage in J, put j(d,,,) = #2272, with (dyn, dp,) as the
(p — 1)th stage interval with centre d,,,. If this is done for 1 < p < n?
(n =1,2,...) with 7 = 0 elsewhere, and if

X(Jﬁﬂq) - X(dpnq) =p 2277
we have

X(Bn) - X(an) = n“'z/z,
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and the construction of a strictly increasing x satis{ying the required condi-
tions is possible. Each point of [a, 8] lies in an at most finite number of the
I(dyn,), as it lies in at most %2 in the interval J,. Finally, over all the points
Bpng 0 Ty,

Z'j(‘hma)‘ = 3.

Thus T is empty and W = Q, proving (40).

THEOREM 6. Let j satisfy (37), with T, W as defined just before T heorem 5.
Then:
(44) T is perfect;
45) WO T,
(46) The interior of W is contained in 1T,
(47) If Q C R are two perfect sets in [a, b] with the same interior, there is a j
such that T = Q, W = R;
(48) In order that T should be empty, it is necessary but not sufficient that the
set of points {d,} of Theorem 3 should be scattered.?

CoRrOLLARY 1. If W is at most countable then T is empty and P(f,j;a,b)
exists.

COROLLARY 2. No structural property of W can be both necessary and sufficient
Jor T to be empty.

By construction, T is closed. Thus to prove (44) we have only to show that
T has no isolated points. Suppose on the contrary that v is an isolated point of
T. Then there are points «, 8, such that o« < v < 8, with [a,v) and (v, B8]
in T;. Putting

v, =v— (v — a)/(n + 1),
we sec that
1)n = P(f,], Uny vn-H)

exists for each #n and each bounded Baire function f. By hypothesis j = 0
except at an at most countable set of points, so that by Theorem 1,

Py = f(on1) j(@us1) — f(2a) 7(wa).
Hence for each ¢ > 0 there is an increasing function xs such that
file + xs(u), [file — xs(u)
are a major and a minor function, respectively, in o« < # < v, in Ward’s

sense, with
X8 (Wng1) — xs(n) < €27, xs(u) — xs(a) < 2e

If weset xs(v) — xs(—) = ¢ then as f is bounded, say by 4, and j(v—) = 0,
we have

[xslu > € > 24[j(u)| > [f1:j ()

3 Zerstreute” (F. Hausdorff), ‘‘separierte’” (G. Cantor), *‘clairsemé” (A. Denjoy).
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forv — 83 < # < v and some 83 > 0. Hence

[+ xsk > f(@) [k, and [fila + xs(u)

is a major function in [e, v]. Similarly

(fila — xs(u)
is a minor function in [e, v], and

[xsle < 3e.

Thus P(a,v) exists. Similarly P(v, 8) exists, so that by (5, pp. 585_586),
property I, P(e, B) exists, and v does not lie in T, contrary to hypothesis.

If j is of bounded variation in the closed interval J then P(f,j;J) exists.
Hence (45) is true. Further, if W contains an interval [, 5] let J be a sub-
interval. If P(f, j; J) exists for each bounded Baire function f, then by Theorem
1, and then Theorem 3(10), the set of points {d,} in J has the Denjoy property
(see, e.g., (1), chap. III, p. 140). Hence it is scattered, and so is nowhere
dense in J. It follows that W must be nowhere dense in J, as the points {u,}
of Theorem 3 add nothing to W. This contradicts the fact that J is contained
in W, so that [, 5] is contained in T, and T contains the interior of W, proving
(46).

To prove (47) we first take the closure J, of the nth interval of the interior
of Q, and construct a function j, satisfying (37), (38) with J = J,. Then we
construct a function j, satisfying (37), (39), with the Q there replaced by the
present Q less its interior. Finally we construct a function j_, satisfving
(37), (40), with the Q there replaced by the closure of R — Q. Then

satisfies the conditions of (47).

For (48), if T is empty then by Theorems 1 and 3(10), the set of points
{d,} in [a, b] has the Denjoy property, and so is scattered. But for the function
satisfying (37), (39), the set of points {d,} in [a, b] is also scattered, so that
(48) follows.

Corollary 1 follows from (44), (45), and Corollary 2 from (47).
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