# ON WARD'S PERRON-STIELTJES INTEGRAL 

RALPH HENSTOCK

Introduction. In the paper (5), Ward defines an integral of Perron type of a finite function $f$ with respect to another finite function $g$, where $g$ need not be of bounded variation. There arise two problems, (a) and (b) below, that have not been dealt with in (5).

If $f=j$ at a countable number of points everywhere dense in $(a, b)$, where $f$ and $j$ are both integrable with respect to $g$, then $f-j$ can be nonzero on a large set of points of $(a, b)$. For example, if $g$ is continuous and of bounded variation the countable number of points can be neglected in the integration and we can have $f \neq j$ everywhere else. But $g$ is more rigidly fixed when we know its values on an everywhere dense set, if the integral exists. For example, if $g$ is of bounded variation, and so continuous except at an at most countable set of points, we can only vary the values of $g$ at a countable set of points. More generally, we have problem
(a) If $f$ is integrable with respect to $g$, and with respect to $h$, over the closed interval $[a, b]$, where $g=h$ at points everywhere dense in $[a, b]$, what are the properties of the difference $g-h$ and the set of points where the difference is not zero?

This question is partially answered by Theorems 1 and 2 , and we obtain the following result.

Let $\bar{E}_{\epsilon}$ be the closure of the set of $u$ for which

$$
\begin{equation*}
|g(u)-h(u)| \geqslant \epsilon, \quad a \leqslant u \leqslant b \tag{1}
\end{equation*}
$$

Then $f$ must be $V B G$ and continuous on ${ }^{1} \bar{E}_{\epsilon}$, and $m f\left(\bar{E}_{\epsilon}\right)=0$.
However, if $f$ is integrable with respect to $g$ in $[a, b]$, and if $g-h$ satisfies (1) and is 0 at an everywhere dense set of points in $[a, b]$, it does not follow that $f$ is integrable with respect to $h$ in $[a, b]$. For example, take $g=0$ and suppose that each set $E_{\epsilon}$ contains only a finite number of points and so has no limit-points. Then every function $f$ is trivially $V B G$ and continuous on $\bar{E}_{\epsilon}=E_{\epsilon}$, and $f\left(\bar{E}_{\epsilon}\right)$ contains only a finite number of points. But if the set of points where $h \neq 0$ does not satisfy Theorem 3 (9), (10), (11), with $j$ replaced by $h$, it follows by Theorem 3 that there is a finite function $f$ for which the Perron-Stieltjes integral of $f$ with respect to $h$ over $[a, b]$ does not exist. See the example of Theorem 5 (38) in §4.

There is another question of integrability, namely,
(b) What are the properties of $g$ in order that all bounded Baire ${ }^{2}$ functions $f$ are integrable with respect to $g$ in $[a, b]$ ?

[^0]Question (b) is partially answered in (2), Theorem 2, and we give the complete answer in Theorem 3 of the present paper.

1. Notation. We suppose that all functions considered are defined and finite in $a \leqslant u \leqslant b$, this interval being denoted by $[a, b]$. The existence of an integral or limit is taken to mean its existence as a finite number. If the limits exist,

$$
f(u-)=\lim _{v \rightarrow u, a \leqslant v<u \leqslant b} f(v), \quad f(u+)=\lim _{v \rightarrow u, a \leqslant u<v \leqslant b} f(v) .
$$

Integral signs preceded by $(L S),(P S)$, denote respectively the LebesgueStieltjes and Perron-Stieltjes integrals, and we put

$$
P(v, w) \equiv P(f, g ; v, w) \equiv(P S) \int_{v}^{w} f(u) d g(u)
$$

$f(E) \equiv\{f(u): u \in E\}$ where $E$ is a set contained in $[a, b]$. A point $v$ in $[a, b]$ is a point of infinite variation on $[a, b]$ of the function $f$ if, for each open interval $(\xi, \eta)$ containing $v$, the function $f$ is not of bounded variation on

$$
[\xi, \eta] \cap[a, b] .
$$

It follows that the set $W$ of points of infinite variation on $[a, b]$ of $f$ is closed. For if $v$ is not in $W$ there is an open interval $(\xi, \eta)$ containing $v$, such that $f$ is of bounded variation on

$$
[\xi, \eta] \cap[a, b]
$$

and then $(\xi, \eta)$ is contained in $C W$.
The symbols $E^{\prime}, \bar{E}, C E, m E$ denote respectively the derived set, the closure, the complement, and the measure of a set $E$ in $[a, b]$. The interior of $E$ is the largest open set contained in $E$.

## 2. The examination of question (a)

Theorem 1. If $P(f, g ; a, b)$ and $P(f, h ; a, b)$ exist, and if $g=h$ at points everywhere dense in $[a, b]$, then for all $v, w$ in $a \leqslant v<w \leqslant b$,

$$
P(f, g ; v, w)=P(f, h ; v, w)+[f(g-h)]_{v}^{w} .
$$

Proof. It is enough to assume that $h \equiv 0$, so that $g=0$ at points everywhere dense in $[a, b]$. Let $M_{1}$ and $M_{2}$ be a major and a minor function, in Ward's sense, of $f$ with respect to $g$ in $[a, b]$ and take $u$ in $[a, b]$. Then there is a $\delta_{1}(u)>0$ depending on $u, M_{1}, M_{2}$, such that

$$
\begin{array}{lr}
{\left[M_{1}\right]_{u}^{\xi} \geqslant f(u)[g]_{u}^{\xi} \geqslant\left[M_{2}\right]_{u}^{\xi},} & 0 \leqslant \xi-u \leqslant \delta_{1}(u) \\
{\left[M_{1}\right]_{u}^{\xi} \leqslant f(u)[g]_{u}^{\xi} \leqslant\left[M_{2}\right]_{u}^{\xi},} & 0 \geqslant \xi-u \geqslant-\delta_{1}(u) .
\end{array}
$$

As in (2), §2, the proof of Theorem 1, we can prove that in each $[v, w]$ there is a finite number of points
$v=\alpha_{0}=u_{1}<\alpha_{1}<\ldots<\alpha_{n}=u_{n}=w, \alpha_{p-1} \leqslant u_{p} \leqslant \alpha_{p} \quad(p=2, \ldots, n-1)$,
such that

$$
g\left(\alpha_{p}\right)=0(p=1, \ldots, n-1), \quad \alpha_{p}-\alpha_{p-1}<\delta_{1}\left(u_{p}\right) \quad(p=1, \ldots, n)
$$

Thus (2), (3) are satisfied with $u=u_{p}, \xi=\alpha_{p}$, and $u=u_{p}, \xi=\alpha_{p-1}$, respectively, and we obtain

$$
\left[M_{1}\right]_{v}^{w}=\sum_{p=1}^{n}\left[M_{1}\right]_{p} \geqslant[f g]_{v}^{w} \geqslant \sum_{p=1}^{n}\left[M_{2}\right]_{p}=\left[M_{2}\right]_{v}^{w}
$$

where $[M]_{p}$ stands for

$$
M\left(\alpha_{p}\right)-M\left(\alpha_{p-1}\right) .
$$

Thus as $P(v, w)$ exists, the Theorem must be true for $h \equiv 0$, and so generally.
Theorem 2. If, for all $u$ in $a \leqslant u \leqslant b$,

$$
\begin{equation*}
P(f, g ; a, u)=[f g]_{a}^{u}, \tag{4}
\end{equation*}
$$

then (5) $f$ is VBG and continuous on $\bar{E}_{\epsilon}$, and (6) $m f\left(\bar{E}_{\epsilon}\right)=0$, where $E_{\epsilon}$ is the set of $u$ for which

$$
|g(u)| \geqslant \epsilon, \quad a \leqslant u \leqslant b, \epsilon>0 .
$$

Corollary. If (4) is true, and if $\bar{E}_{\epsilon}$ contains an interval $[\xi, \eta]$ for some $\epsilon>0$, then $f$ is constant in $[\xi, \eta]$.

From Theorem 2 Corollary we can easily prove Theorem 1 of (2).
To prove Theorem 2 let $a \leqslant u<v \leqslant b$ and let $M_{3}, M_{4}$ be arbitrary major and minor functions of $f$ with respect to $g$ in Ward's sense, and write $\chi_{1} \equiv M_{3}-M_{4}$. Then $\chi_{1}$ is monotone increasing. Now, for fixed $u$ and for sufficiently small and positive $v-u$, both functions

$$
f(u)[g]_{u}^{v}, P(u, v)
$$

lie between

$$
\left[M_{3}\right]_{u}^{v},\left[M_{4}\right]_{u}^{v}
$$

so that

$$
\left|P(u, v)-f(u)[g]_{u}^{v}\right| \leqslant\left[\chi_{1}\right]_{u}^{v} .
$$

Substituting in the value of $P(u, v)$ from (4) we obtain

$$
\left|g(v)[f]_{u}^{v}\right| \leqslant\left[\chi_{1}\right]_{u}^{v} .
$$

Hence there is a $\delta_{2}(u)>0$ such that if

$$
u \in E_{\epsilon}^{\prime}, v \in E_{\epsilon}, 0<v-u<\delta_{2}(u)
$$

we have

$$
\begin{equation*}
\left.\left|[f]_{u}^{v}\right| \leqslant \epsilon^{-1} \mid \chi_{1}\right]_{u}^{v} \tag{7}
\end{equation*}
$$

Similarly for $v<u$. If

$$
w \in \bar{E}_{\epsilon}, \quad 0<w-u<\delta_{2}(u)
$$

then there is a $v$ satisfying

$$
v \in E_{\epsilon}, \quad 0<v-u<\delta_{2}(u),
$$

and arbitrarily near to $w$, so that by (7),

$$
\begin{align*}
& \left|[f]_{u}^{w}\right| \leqslant\left|[f]_{u}^{v}\right|+\left|[f]_{v}^{w}\right| \leqslant \epsilon^{-1}\left[\chi_{1}\right]_{u}^{v}+\epsilon^{-1}\left|\left[\chi_{1}\right]_{v}^{w}\right|, \\
& \left|[f]_{u}^{w}\right| \leqslant \epsilon^{-1}\left[\chi_{1}\right]_{u}^{w+} \leqslant \epsilon^{-1}\left[\chi_{1}\right]_{a}^{b},  \tag{8}\\
& \limsup _{w \rightarrow u}\left|[f]_{u}^{w}\right| \leqslant \epsilon^{-1}\left[\chi_{1}\right]_{a}^{b}, \lim _{w \rightarrow u} f(w)=f(u),
\end{align*}
$$

as $\chi_{1}(b)-\chi_{1}(a)$ is arbitrarily small.
Similar results hold for

$$
w<u, u \in E_{\epsilon}^{\prime}, w \in \bar{E}_{\epsilon}, w \rightarrow u
$$

so that $f$ is continuous when we only use the points of the derived set of $E_{\epsilon}$. As the other points of $\bar{E}_{\epsilon}$ are isolated, $f$ is continuous on $\bar{E}_{\epsilon}$.

To show that $f$ is $V B G$ on $\bar{E}_{\epsilon}$ we use the method of the first part of the proof of ( 5, p. 592 , Lemma 6 ) and we employ only points of $\bar{E}_{\epsilon}$. The relevant inequality is the first one in (8).

To prove (6) we first add $\theta(u-a)$ to $\chi_{1}(u)$ if necessary, to ensure that $\chi_{1}$ is strictly increasing. The constant $\theta>0$ can be arbitrarily small. Then as in (5, p. 581, Lemma 3) we prove from the first inequality of (8), and the similar inequality when $w<u$, that

$$
m^{*} f\left(\bar{E}_{\epsilon}\right) \leqslant 2 \epsilon^{-1}\left[\chi_{1}\right]_{a}^{b},
$$

where $m^{*}$ denotes outer measure. The factor 2 occurs because of the $w+$ in (8). As the right-hand side is arbitrarily small we obtain (6).

To prove the Corollary we note that by (5), $f$ is continuous on $[\xi, \eta]$. Thus if $f([\xi, \eta])$ contains two distinct points it contains the whole interval between the points. This is impossible by (6).
3. The integrability of Perron-Stieltjes integrals. In this section we prove two theorems, completely answering question (b). We begin with a lemma needed in the proof of the converse of Theorem 3.

Lemma. Let $F$ be a sequence $\left\{I_{n}\right\}$ of open intervals, and let $H_{p}$ be the set of points of $[a, b]$ lying in at most $p$ intervals of $F$. Then all the intervals $I_{n}$ covering the points of $H_{p}$ can be put into at most $3 p$ sets of non-overlapping intervals.

We can define a sequence $\left\{\xi_{q}\right\}$ of points of $H_{p}$ such that their closure contains $H_{p}$. Each interval $I_{n}$ covering a point of $H_{p}$ will then also cover at least one $\xi_{q}$, and conversely. Thus we need only consider the intervals covering the $\xi_{q}$.

We put the $q$ th interval of the sequence $\left\{I_{n}\right\}$ that covers $\xi_{1}$ in to the set $S_{q}$. Then $1 \leqslant q \leqslant p$, as $\xi_{1}$ lies in $H_{p}$. Suppose that the intervals $I_{n}$ covering $\xi_{1}, \ldots, \xi_{r-1}$ have been arranged into sets $S_{q}(1 \leqslant q \leqslant 3 p)$ of non-overlapping intervals, and let $\xi_{r}$ lie between $\xi_{s}$ and $\xi_{t}$ for $s<r, t<r$, with no $\xi_{q}(q<r)$ between $\xi_{s}$ and $\xi_{t}$. Then there are at most $p$ intervals $I_{n}$ covering $\xi_{s}$, and at most $p$ intervals $I_{n}$ covering $\xi_{t}$, so that at least $p$ of the sets $S_{1}, \ldots, S_{3 p}$, say $T_{1}, \ldots, T_{p}$, will be free from intervals $I_{n}$ that cover $\xi_{s}$ or $\xi_{t}$, and so will contain no interval lying in $\left(\xi_{s}, \xi_{t}\right)$. The intervals $I_{n}$ covering $\xi_{r}$ that have not already been put into sets $S_{q}$, cannot cover $\xi_{s}$ nor $\xi_{t}$, and so must lie between $\xi_{s}$ and $\xi_{t}$. We can therefore put these intervals into some or all of the sets $T_{1}, \ldots, T_{p}$.

Similarly if

$$
\xi_{r}<\min _{q<r} \xi_{q} \text { or } \xi_{r}>\max _{q<r} \xi_{q},
$$

in which case one of $\xi_{s}, \xi_{t}$ is missing. Hence the result is true for $\xi_{1}, \ldots, \xi_{r}$. It is true for $\xi_{1}$ and hence true in general.

Theorem 3. If, for a given function $j$, for all bounded Baire functions $f$ defined in $[a, b]$, and for all $u$ in $[a, b]$, the integral $P(f, j ; a, u)$ exists equal to

$$
[f j]_{a}^{u}
$$

then the set of points $u$ in $a<u<b$, where $j(u) \neq 0$, can be divided into two sequences $\left\{u_{n}\right\}$ and $\left\{d_{n}\right\}$, with the properties

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|j\left(u_{n}\right)\right|<\infty ; \tag{9}
\end{equation*}
$$

(10) surrounding each $d_{n}$ there is an open interval $I\left(d_{n}\right) \equiv\left(\underline{d}_{n}, \bar{d}_{n}\right)$ contained in $(a, b)$ such that each point of $[a, b]$ can lie in an at most finite number of the $I\left(d_{n}\right)$;
(11) there is a monotone increasing bounded function $\chi$ such that

$$
\chi\left(\bar{d}_{n}+\right)-\chi\left(d_{n}\right) \geqslant\left|j\left(d_{n}\right)\right|, \chi\left(d_{n}\right)-\chi\left(\underline{d}_{n}-\right) \geqslant\left|j\left(d_{n}\right)\right| .
$$

Conversely, if $j$ satisfies (9), (10), (11), and if $f$ is bounded in $[a, b]$, then $P(f, j ; a, u)$ exists and is equal to

## $[f j]_{a}^{u}$,

for all $u$ in $a \leqslant u \leqslant b$.
To begin the proof of the first part of Theorem 3 we replace $g$ by $j$ in Theorem 2, obtaining from (5) that $f$ is continuous on $\bar{E}_{\epsilon}$, where $E_{\epsilon}$ is the set in which $|j| \geqslant \epsilon$. But, for each $u$ in $[a, b]$, the set of bounded Baire functions $f$ includes the function equal to 0 in $[a, u)$, equal to 1 at $u$, and equal to 2 in ( $u, b]$. Hence each point of $\bar{E}_{\epsilon}$ must be isolated, and $E_{\epsilon}$ is finite. This is true for each $\epsilon>0$. Hence taking $\epsilon^{-1}=1,2, \ldots$, we obtain
(12) $j \neq 0$ only at a countable set of points $\left\{w_{n}\right\}$,
(13) $j\left(w_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Also, as $E_{1}$ is finite,
(14) $j$ is bounded.

We now wish to find a strictly increasing function $\chi$ and a function $\delta>0$, defined for all $u$ in $a \leqslant u \leqslant b$, such that for $u-\delta<w<u<v<u+\delta$, $a \leqslant w<v \leqslant b$,

$$
\begin{align*}
& {[\chi]_{u}^{v} \geqslant|j(v)|,}  \tag{15}\\
& {[\chi]_{w}^{u} \geqslant|j(w)| .} \tag{16}
\end{align*}
$$

There is in Ward's sense a major function $P(f, j ; a, u)+\chi_{2}(u)$ of $f$ with respect to $j$ in $[a, b]$, where $\chi_{2}$ is monotone increasing and bounded in $[a, b]$, with $\chi_{2}(a)=0$. Thus, if we substitute in the value of $P(f, j ; a, u)$, we find that for $a \leqslant u \leqslant b$ and for some $\delta_{3}=\delta_{3}(u)>0$, using Ward's definition of a major function,

$$
\begin{array}{lr}
{\left[\chi_{2}\right]_{u}^{v} \geqslant j(v)[f]_{v}^{u}} & \left(u<v<u+\delta_{3}, a<v \leqslant b\right), \\
{\left[\chi_{2}\right]_{w}^{u} \geqslant j(w)[f]_{u}^{w}} & \left(u>w>u-\delta_{3}, a \leqslant w<b\right) .
\end{array}
$$

We now take $f=-\operatorname{sgn} j$, where $\operatorname{sgn} a \equiv|a| / a(a \neq 0)$, sgn $0=0$. Then if $\chi_{3}, \delta_{4}$ are the corresponding $\chi_{2}, \delta_{3}$, and if the $u$ of (17) does not lie in $\left\{w_{n}\right\}$, so that $j(u)=0, f(u)=0$, we obtain, for $u<v<u+\delta_{4}, a<v \leqslant b$,

$$
\begin{equation*}
\left[\chi_{3}\right]_{u}^{v} \geqslant|j(v)| \tag{19}
\end{equation*}
$$

Similarly let $\chi_{4}, \delta_{5}$ be the corresponding $\chi_{2}, \delta_{3}$ when for $f$ we take sgn $j$, and let the $u$ of (18) lie outside the sequence $\left\{w_{n}\right\}$ so that $j(u)=0, f(u)=0$. Then

$$
\begin{equation*}
\left[\chi_{4}\right]_{w}^{u} \geqslant|j(w)|, \quad u>w>u-\delta_{5}, a \leqslant w<b . \tag{20}
\end{equation*}
$$

By (13), $j\left(w_{n} \pm\right)=0$. Thus if we put
$\chi_{5}(u)=\sum_{w_{n}<u} 2^{-n}\left(u \notin\left\{w_{n}\right\}\right)=\chi_{5}\left(w_{p}-\right)+2^{-2 p} \quad\left(u=w_{p}, p=1,2, \ldots\right)$
we obtain

$$
\begin{aligned}
& \chi_{5}\left(w_{p}+\right)-\chi_{5}\left(w_{p}\right)=2^{-2 p}>0=\left|j\left(w_{p}+\right)\right|, \\
& \chi_{5}\left(w_{p}\right)-\chi_{5}\left(w_{p}-\right)=2^{-2 p}>0=\left|j\left(w_{p}-\right)\right|,
\end{aligned}
$$

and there is a number $\delta_{p}=\delta\left(w_{p}\right)$ such that $\chi_{5}(u)$ satisfies (15) and (16) at $u=w_{p}$, with $\chi$ replaced by $\chi_{5}$ and $\delta$ by $\delta_{p}$.

Using (19), (20) also, we see that to obtain (15), (16) for all $u$ in $a \leqslant u \leqslant b$ and a strictly increasing function $\chi$, we need only take

$$
\chi(u) \equiv \chi_{3}(u)+\chi_{4}(u)+\chi_{5}(u)+u-a .
$$

We now define the points $d_{n}$ in $(a, b)$ as those for which

$$
\begin{equation*}
\left|j\left(d_{n}\right)\right|>\chi\left(d_{n}+\right)-\chi\left(d_{n}\right), \quad\left|j\left(d_{n}\right)\right|>\chi\left(d_{n}\right)-\chi\left(d_{n}-\right) \tag{21}
\end{equation*}
$$

The other points $\left\{u_{n}\right\}$ of $\left\{w_{n}\right\}$ then give

$$
\sum_{n=1}^{\infty}\left|j\left(u_{n}\right)\right| \leqslant \sum_{n=1}^{\infty}\left\{\chi\left(u_{n}+\right)-\chi\left(u_{n}-\right)\right\} \leqslant[\chi]_{a}^{\prime \prime}<\infty,
$$

so that (9) is satisfied.
If $u<d_{n}<u+\delta(u)$ for some $u, d_{n}$, we have (15) with $v=d_{n}$. Let $\underline{d}_{n}$ be the upper bound of all $u<d_{n}$ satisfying (15) for fixed $v=d_{n}$. If there is no such $u$, put $\underline{d}_{n}=a$. Then

$$
\begin{equation*}
\chi\left(d_{n}\right)-\chi\left(\underline{d}_{n}-\right) \geqslant\left|j\left(d_{n}\right)\right|, \tag{22}
\end{equation*}
$$

while if $d_{n}>u>\underline{d}_{n}$, we have

$$
\begin{equation*}
\chi\left(d_{n}\right)-\chi(u)<\left|j\left(d_{n}\right)\right| . \tag{23}
\end{equation*}
$$

By (14), $j$ is bounded, so that we can take a convenient finite value for $\chi(a-)$ to fit the cases when $\underline{d}_{n}=a$. From (21), (22), $\underline{d}_{n}<d_{n}$.
Similarly we can define $\bar{d}_{n}>\underline{d}_{n}$ such that

$$
\begin{equation*}
\chi\left(\bar{d}_{n}+\right)-\chi\left(d_{n}\right) \geqslant\left|j\left(d_{n}\right)\right| \tag{24}
\end{equation*}
$$

while if $d_{n}<u<\bar{d}_{n}$, we have

$$
\begin{equation*}
\chi(u)-\chi\left(d_{n}\right)<\left|j\left(d_{n}\right)\right| . \tag{25}
\end{equation*}
$$

Results (22), (24) prove (11). We now suppose that (10) is false, so that a point $u$ of $[a, b]$ lies in an infinity of the open intervals

$$
I\left(d_{n}\right) \equiv\left(\underline{d}_{n}, \bar{d}_{n}\right) \subseteq(a, b) .
$$

Obviously $u \neq a, u \neq b$. Also by (23), (25), (13),

$$
\chi\left(\bar{d}_{n}-\right)-\chi\left(\underline{d}_{n}+\right) \leqslant 2\left|j\left(d_{n}\right)\right| \rightarrow 0
$$

as $n \rightarrow \infty$. Hence as $\chi$ is strictly increasing, $\underline{d}_{n} \rightarrow u$ and $\bar{d}_{n} \rightarrow u$, for the sub)sequence of $n$ for which $\underline{d}_{n}<u<\bar{d}_{n}$. Hence the corresponding subsequence of $\left\{d_{n}\right\}$ also tends to $u$, so that for certain $v \rightarrow u$,

$$
|\chi(v)-\chi(u)|<|j(v)| .
$$

This result contradicts (15) or (16). Hence (10) is true, and the first part of Theorem 3 has been proved.

We now prove the converse. Let the discontinuities of $\chi$ in $[a, b]$ occur at the points $v_{n}(n=1,2, \ldots)$. Then we have

$$
\sum_{n=1}^{\infty}\left\{\chi\left(v_{n}+\right)-\chi\left(v_{n}-\right)\right\} \leqslant[\chi]_{a-}^{b+}<\infty,
$$

so that, given $\epsilon>0$, there is an integer $n_{0}$ such that

$$
\begin{equation*}
\sum_{n=\eta_{0}}^{\infty}\left\{\chi\left(v_{n}+\right)-\chi\left(v_{n}-\right)\right\}<\epsilon . \tag{26}
\end{equation*}
$$

Then there is an integer $n_{1}$ such that, for $n>n_{1}, d_{n}$ is not one of the points $v_{q}\left(q=1, \ldots, n_{0}-1\right)$.

We now let $F$ in the Lemma be the family of intervals $I\left(d_{n}\right)$, and we take $p$ so large that

$$
\begin{equation*}
m \chi\left\{[a, b]-I I_{p}\right\}<\epsilon . \tag{27}
\end{equation*}
$$

This is possible since by (10),

$$
[a, b]=\bigcup_{p \geqslant 0} H_{p} .
$$

By the Lemma there are $3 p$ sets $S_{q}$ of non-overlapping intervals $I\left(d_{n}\right)$ that together cover $H_{p}-H_{0}$. There is an integer $t>n_{1}$, and depending on $\epsilon$, such that for each $q$ in $1 \leqslant q \leqslant 3 p$,

$$
\begin{equation*}
\sum\left\{\chi\left(\bar{d}_{n}+\right)-\chi\left(\underline{d}_{n}-\right)\right\}<\epsilon /(3 p), \tag{28}
\end{equation*}
$$

where the sum is taken over those intervals of $S_{q}$ with $n>t$, as the sum for $n>0$ is not greater than $\chi(b)-\chi(a)$. The integer $t$ can also be chosen, by (9), so that

$$
\begin{equation*}
\sum_{n>t}\left|j\left(u_{n}\right)\right|<\epsilon . \tag{29}
\end{equation*}
$$

Let $S$ be the set formed from those intervals of the $S_{q}$ with $n>t$ and $1 \leqslant q \leqslant 3 p$. Then

$$
\left\{[a, b]-H_{p}\right\} \cup S
$$

is a union of intervals. For if $u$ lies in $[a, b]-H_{p}$ let $J$ be the intersection of the first $(p+1)$ intervals $I\left(d_{n}\right)$ covering $u$. Then $J$ is open and contains $u$, and

$$
J \subseteq[a, b]-H_{p} .
$$

We add an at most countable number of points, if necessary, to obtain from $\left\{[a, b]-H_{p}\right\} \cup S$ a union $U$ of open non-abutting intervals, and we put

$$
\begin{equation*}
\chi_{6}(u) \equiv \sum_{1}\{\chi(\beta+)-\chi(\alpha-)\}+\epsilon(u-a) /(b-a)+\sum_{2} 2\left|j\left(u_{n}\right)\right|, \tag{30}
\end{equation*}
$$

where $\sum_{1}$ denotes the summation over the intervals $(\alpha, \beta)$ of $U \cap(a, u)$, changing $\beta+$ to $\beta$ if $\beta=u$; and $\sum_{2}$ denotes the summation over all $n>t$ such that $u_{n}<u$, adding $\left|j\left(u_{p}\right)\right|$ if $p>t$ and $u=u_{p}$. Then $\chi_{6}$ is strictly increasing, and from (26), (27), (28), (29),

$$
\begin{equation*}
\left[\chi_{6}\right]_{a}^{b}<6 \epsilon \tag{31}
\end{equation*}
$$

Now, by definition, the points of $H_{0}$ are not covered by any interval $I\left(d_{n}\right)$. If $n>t$ and if $I\left(d_{n}\right)$ covers a point of $H_{p}-H_{0}$, then $I\left(d_{n}\right)$ will lie in one of the $S_{q}$, and so in $S$, and so in $U$. It follows that $\chi\left(d_{n}\right)-\chi\left(\underline{d}_{n}-\right)$ will occur in $\sum_{1}$ for $u=d_{n}$. If $n>t$ and if $I\left(d_{n}\right)$ does not cover a point of $H_{p}-H_{0}$, then $I\left(d_{n}\right)$ will lie entirely within $[a, b]-H_{p}$, and so in $U$, and again, $\chi\left(d_{n}\right)-\chi\left(d_{n}-\right)$ will occur in $\sum_{1}$ for $u=d_{n}$. Thus by (30),

$$
\begin{equation*}
\chi_{6}\left(d_{n}\right)-\chi_{6}\left(\underline{d}_{n}-\right) \geqslant \chi\left(d_{n}\right)-\chi\left(\underline{d}_{n}-\right) \geqslant\left|j\left(d_{n}\right)\right| \quad(n>t) . \tag{32}
\end{equation*}
$$

Similarly for the result with $\bar{d}_{n}+$, so that $\chi_{6}$ satisfies (11) for all $n>t$.

Now each point $u$ of $[a, b]$ lies in an at most finite number of the $I\left(d_{n}\right)$, say $I\left(\xi_{1}\right), \ldots, I\left(\xi_{r}\right)$, where $\xi_{1}, \ldots, \xi_{r}$ depend on $u$. Let the sequence $\left\{\eta_{n}\right\}$ include all points of the sequences $\left\{u_{n}\right\},\left\{d_{n}\right\},\left\{\underline{d}_{n}\right\},\left\{\bar{d}_{n}\right\}$, and let $u$ be outside $\left\{\eta_{n}\right\}$. We take $\delta_{6}=\delta_{6}(u)>0$ so that ( $u-\delta_{6}, u+\delta_{6}$ ) does not include

$$
u_{1}, \ldots, u_{t}, d_{1}, \ldots, d_{t}, \xi_{1}, \ldots, \xi_{r} .
$$

Then by (32), for $u<d_{n}<\min \left(b, u+\delta_{6}\right)$,

$$
\chi_{6}\left(d_{n}\right)-\chi_{6}(u) \geqslant \chi\left(d_{n}\right)-\chi\left(\underline{d}_{n}-\right) \geqslant\left|j\left(d_{n}\right)\right|,
$$

since $\underline{d}_{n}>u$. If $u_{n}$ lies in $u<u_{n}<\min \left(b, u+\delta_{6}\right)$ then $n>t$, and by (30),

$$
\chi_{6}\left(u_{n}\right)-\chi_{6}(u) \geqslant\left|j\left(u_{n}\right)\right| .
$$

If $v$ is neither in $\left\{u_{n}\right\}$ nor in $\left\{d_{n}\right\}$ then for $u<v<\min \left(b, u+\delta_{6}\right)$,

$$
\chi_{6}(v)-\chi_{6}(u)>0=|j(v)| .
$$

Hence, if $u$ is outside $\left\{\eta_{n}\right\}$,

$$
\begin{equation*}
\chi_{6}(v)-\chi_{6}(u) \geqslant|j(v)|, \quad u<v<\min \left(b, u+\delta_{6}\right) . \tag{33}
\end{equation*}
$$

Similarly for all $v$ in $u>v>\max \left(a, u-\delta_{6}\right)$. To deal with the case when $u=\eta_{n}$ for some $n$, we put

$$
\begin{array}{lr}
\chi_{7}(u)=\chi_{6}(u)+\sum_{\eta_{n}<u} \epsilon 2^{-n} & \left(u \notin\left\{\eta_{n}\right\}\right), \\
\chi_{7}\left(\eta_{p}\right)=\chi_{7}\left(\eta_{p}-\right)+\epsilon \cdot 2^{-2 p} & (p=1,2, \ldots) .
\end{array}
$$

As in the part of the proof that follows (20), we obtain a strictly increasing function $\chi_{7}$ satisfying (33) for all $u$, and, for suitable $\delta_{7}>0$, for

$$
u<v<\min \left(b, u+\delta_{7}\right),
$$

and similarly for $v<u$. By (31),

$$
\begin{equation*}
\left[\chi_{7}\right]_{a}^{b}<7 \epsilon . \tag{34}
\end{equation*}
$$

Now suppose that $|f| \leqslant A$. We put

$$
M_{5}(u) \equiv\left[f j+2 A \chi_{7}\right]_{a}^{u} .
$$

Then from (33),

$$
\begin{aligned}
{\left[M_{5}\right]_{u}^{v}-f(u)[j]_{u}^{v} } & =[f]_{u}^{v} j(v)+2 A\left[\chi_{7}\right]_{u}^{v} \\
& \geqslant[f]_{u j}^{v j} j(v)+2 A|j(v)| \geqslant 0\left(u<v<\min \left(b, u+\delta_{7}\right)\right) .
\end{aligned}
$$

The inequalities are reversed when $u>v>\max \left(a, u-\delta_{7}\right)$, so that $M_{5}$ is a major function, in Ward's sense, for $f$ with respect to $j$ in $[a, b]$. Similarly

$$
M_{6}(u) \equiv\left[f j-2 A \chi_{7}\right]_{a}^{u}
$$

is a minor function, and by (34),

$$
M_{5}(b)-M_{6}(b)=4 A\left[\chi_{7}\right]_{a}^{b}<28 A \epsilon
$$

By choice of $\epsilon>0$ this can be made arbitrarily small. Hence there exists

$$
P(f, j ; a, u)=[f j]_{a}^{u}
$$

proving the converse in Theorem 3.
Theorem 4. If, for a given function g, and for all bounded Baire functions $f$ in $[a, b]$, the integral $P(f, g ; a, b)$ exists, then
(35) $g(u-)$ exists in $a<u \leqslant b, g(u+)$ exists in $a \leqslant u<b$, and both are of bounded variation in those ranges; and the function $j$ satisfies Theorem 3(9), (10), (11), where

$$
\begin{align*}
& j(a)=g(a)-g(a+), j(b)=g(b)-g(b-),  \tag{36}\\
& j(u)=g(u)-\frac{1}{2}\{g(u+)+g(u-)\} \quad(a<u<b) .
\end{align*}
$$

Conversely, if $g$ satisfies (35), and if the $j$ defined by (36) satisfies Theorem $3(9),(10)$, (11), and if $f$ is a bounded Baire function in $[a, b]$, then $P(f, g ; a, b)$ exists and is equal to

$$
\begin{aligned}
& \{g(b)-g(b-)\} f(b)+\{g(a+)-g(a)\} f(a)+\sum_{a<u<b} f(u)\{g(u+)-g(u-)\} \\
& +(L S) \int_{a}^{b} f(u) d g_{c}(u),
\end{aligned}
$$

where

$$
g_{c}(v)=g(v-)-\sum_{a<u<v}\{g(u+)-g(u-)\}(a<v \leqslant b), g_{c}(a)=g(a+) .
$$

The result (35) is proved in (2), Theorem 2, using only the hypotheses of the present Theorem 4. From (35) we see that $g-j$ is of bounded variation in $[a, b]$, so that $P(f, g-j ; a, b)$ exists. By hypothesis $P(f, g ; a, b)$ exists. Hence so does $P(f, j ; a, b)$. Also, from (35),

$$
\lim _{w \rightarrow u-} g(w-)=g(u-), \lim _{w \rightarrow u-} g(w+)=g(u-),
$$

so that from (36), $j(u-)=0$. Similarly $j(u+)=0$. If $E_{\epsilon}$ is the set in $a \leqslant u \leqslant b$ where $j \geqslant \epsilon>0$, and if $E_{\epsilon}$ has a limit-point $\xi$, then

$$
\lim _{w \rightarrow \xi} \sup j(w) \geqslant \epsilon .
$$

This contradicts $j(\xi-)=0=j(\xi+)$, so that $E_{\epsilon}$ has no limit-points and so must contain only a finite number of points. Thus taking $\epsilon=n^{-1}(n=1,2, \ldots)$, the set where $j>0$ is at most countable. Similarly the set where $j<0$ is at most countable. Hence by Theorem 1,

$$
P(f, j ; a, u)=[f j]_{a}^{u}
$$

so that the first part of Theorem 3 completes the first part of Theorem 4.
To prove the converse in Theorem 4 we need only use the converse in Theorem 3 and the fact that $g-j$ is of bounded variation in $[a, b]$, and (4, pp. 208-209, Theorem 8.1)).
4. The points of infinite variation of $j$. We now suppose that

$$
\begin{equation*}
j(u-)=0(a<u \leqslant b), j(u+)=0(a \leqslant u<b) . \tag{37}
\end{equation*}
$$

Let $T_{1}$ be the union of the interiors of all closed intervals $J$ contained in [a,b], such that $P(f, j ; J)$ exists for all bounded Baire functions $f$, adding one or both of $a, b$ to $T_{1}$ according as one or both of $[a, a+\epsilon],[b-\epsilon, b]$ are intervals $J$ for some $\epsilon>0$. Also put $T=C T_{1} \cap[a, b]$. Let $W$ be the set of points of infinite variation of $j$.

Theorem 5. If $J$ is a closed interval, there is a function $j$ satisfying (37), such that

$$
\begin{equation*}
J=W, J=T . \tag{38}
\end{equation*}
$$

If $Q$ is a closed nowhere dense set, there is a function $j$ satisfying (37), such that

$$
\begin{equation*}
T=W=Q, \tag{39}
\end{equation*}
$$

and there is another function $j$ satisfying (37), such that

$$
\begin{equation*}
T=\phi, W=Q \tag{40}
\end{equation*}
$$

where $\phi$ is the empty set.
We begin by supposing that
(41) the set of points $\left\{v_{n}\right\}$ in $[a, b]$ can be put into one-one correspondence with the points $(2 q+1) 2^{-p}\left(0 \leqslant q<2^{p-1} ; p=1,2, \ldots\right)$, the order of the points being preserved.

Then we define $j\left(v_{n}\right)=p^{-1}$ when $v_{n}$ corresponds to $(2 q+1) 2^{-p}$, and $j(u)=0$ when $u$ is outside $\left\{v_{n}\right\}$. Such a $j$ satisfies (37), as only a finite number of $j\left(v_{n}\right)$ are greater than any given positive $\epsilon$. If a $\chi$ exists satisfying Theorem $3(10)$, (11), we can suppose that

$$
\begin{equation*}
[\chi]_{a}^{b}=B,[\chi]_{u}^{v} \geqslant v-u, \tag{42}
\end{equation*}
$$

for all $a \leqslant u<v \leqslant b$. Then the set of intervals $I\left(d_{n}\right)$ for which

$$
\chi\left(\bar{d}_{n}+\right)-\chi\left(\underline{d}_{n}-\right) \geqslant 2 / p
$$

must be such that any non-overlapping and non-abutting subset has at most $\frac{1}{2} p B$ members. Hence any non-overlapping subset has at most $p B$ members. The points of $\left\{v_{n}\right\}$ that are not in $\left\{d_{n}\right\}$ are points $\left\{u_{n}\right\}$ satisfying Theorem $3(9)$. It follows that for some integer $r$, there is a point $d_{01}$ in $\left\{d_{n}\right\}$ with

$$
\chi\left(\bar{d}_{01}+\right)-\chi\left(\underline{d}_{01}-\right) \geqslant 2 / r
$$

such that $I\left(d_{01}\right)$ contains at least two different points $\xi_{1}, \xi_{2}$ of $\left\{v_{n}\right\}$ corresponding to points $(2 q+1) 2^{-r}$ with the given $r$. Hence

$$
Q_{1} \equiv I\left(d_{01}\right) \cap\left\{v_{n}\right\} \cap\left(\xi_{1}, \xi_{2}\right)
$$

is not empty, as there are points of $\left\{v_{n}\right\}$ between each two points of $\left\{v_{n}\right\}$ by (41). Since $\xi_{1}, \xi_{2}$ lie at a positive distance from the ends of $I\left(d_{01}\right)$, and since

$$
\bar{d}_{n}-\underline{d}_{n} \leqslant \chi\left(\bar{d}_{n}+\right)-\chi\left(\underline{d}_{n}-\right) \rightarrow 0
$$

as $n \rightarrow \infty$, by (42), (10), and the bounded variation of $\chi$, there is an $n_{2}$ such that if $n>n_{2}$ and $d_{n} \in Q_{1}$ then

$$
I\left(d_{n}\right)^{\prime} \subseteq I\left(d_{01}\right)
$$

We can now repeat the construction, defining $d_{02}, d_{03}, \ldots$, and

$$
I\left(d_{01}\right) \supseteq I\left(d_{02}\right) \supseteq \ldots \supseteq I\left(d_{0 n}\right) \supseteq \ldots
$$

As $\left\{d_{0 n}\right\}$ is a subsequence of $\left\{d_{n}\right\}$ we have $\bar{d}_{0 n}-\underline{d}_{0 n} \rightarrow 0$ as $n \rightarrow \infty$, and hence for a point $u$ in $(a, b), I\left(d_{0 n}\right) \rightarrow u$. This $u$ lies in an infinity of the intervals $I\left(d_{n}\right)$, contrary to (10). Hence in this case there is no $\chi$ satisfying Theorem $3(10)$, (11), so that for some bounded Baire function $f, P(f, j ; a, b)$ cannot exist.

A similar result is true for each interval $J$ containing points of $\left\{v_{n}\right\}$ in its interior, by (41). Hence

$$
\begin{equation*}
T \supseteq\left\{v_{n}\right\}^{\prime} \tag{43}
\end{equation*}
$$

since by (t1) each point of $\left\{v_{n}\right\}^{\prime}$ is the limit-point of a sequence of intervals of $T$.

To prove (38) let $J$ be the interval $[\alpha, \beta]$. Then the points

$$
v_{n}=\alpha+(\beta-\alpha)(2 q+1) 2^{-p} \quad\left(0 \leqslant q \leqslant 2^{p-1} ; p=1,2, \ldots\right)
$$

will satisfy (41), and by (43),

$$
\left\{v_{n}\right\}^{\prime}=J=T .
$$

To prove (39) we take the points $v_{n}$ to be the centres of the intervals $I_{n}$ complementary to $Q$ in $[a, b]$. That $\left\{v_{n}\right\}$ so defined satisfies (41), can be shown by (3, p. 57, Proposition 20). Then by (43),

$$
T=\left\{v_{n}\right\}^{\prime}=Q
$$

and (39) is proved.
To prove (40) let $d_{1 n}$ be the centre of the $n$th interval $J_{n} \equiv\left(\alpha_{n}, \beta_{n}\right)$ complementary to $Q$ in $[a, b]$. Next, let $d_{2 n 1}$ and $d_{2 n 2}$ be the centres of $\left(\alpha_{n}, d_{1 n}\right)$ and $\left(d_{1 n}, \beta_{n}\right)$, respectively, calling these two points the points of the second stage. We continue this process of continued bisection to the stage $n^{2}$. If $d_{p n q}$ is a point of the $p$ th stage in $J_{n}$ put $j\left(d_{p n q}\right)=n^{-2} 2^{-p}$, with $\left(\underline{d}_{p n q}, \bar{d}_{p n q}\right)$ as the $(p-1)$ th stage interval with centre $d_{p n y}$. If this is done for $1 \leqslant p \leqslant n^{2}$ ( $n=1,2, \ldots$ ) with $j=0$ elsewhere, and if

$$
\chi\left(\bar{d}_{p n q}\right)-\chi\left(\underline{d}_{p n q}\right) \equiv n^{-2} 2^{-p}
$$

we have

$$
\chi\left(\beta_{n}\right)-\chi\left(\alpha_{n}\right)=n^{-2} / 2
$$

and the construction of a strictly increasing $\chi$ satisfying the required conditions is possible. Each point of $[a, b]$ lies in an at most finite number of the $I\left(d_{p n q}\right)$, as it lies in at most $n^{2}$ in the interval $J_{n}$. Finally, over all the points $d_{p n q}$ in $J_{n}$,

$$
\sum\left|j\left(d_{p n q}\right)\right|=\frac{1}{2} .
$$

Thus $T$ is empty and $W=Q$, proving (40).
Theorem 6. Let $j$ satisfy (37), with $T, W$ as defined just before Theorem 5. Then:
(44) $T$ is perfect;
(45) $W \supseteq T$;
(46) The interior of $W$ is contained in $T$;
(47) If $Q \subseteq R$ are two perfect sets in $[a, b]$ with the same interior, there is a $j$ such that $T=Q, W=R$;
(48) In order that $T$ should be empty, it is necessary but not sufficient that the set of points $\left\{d_{n}\right\}$ of Theorem 3 should be scattered. ${ }^{3}$

Corollary 1. If $W$ is at most countable then $T$ is empty and $P(f, j ; a, b)$ exists.

Corollary 2. No structural property of $W$ can be both necessary and sufficient for $T$ to be empty.

By construction, $T$ is closed. Thus to prove (44) we have only to show that $T$ has no isolated points. Suppose on the contrary that $v$ is an isolated point of $T$. Then there are points $\alpha, \beta$, such that $\alpha<v<\beta$, with $[\alpha, v)$ and $(v, \beta]$ in $T_{1}$. Putting

$$
v_{n}=v-(v-\alpha) /(n+1),
$$

we see that

$$
P_{n}=P\left(f, j ; v_{n}, v_{n+1}\right)
$$

exists for each $n$ and each bounded Baire function $f$. By hypothesis $j=0$ except at an at most countable set of points, so that by Theorem 1,

$$
P_{n}=f\left(v_{n+1}\right) j\left(v_{n+1}\right)-f\left(v_{n}\right) j\left(v_{n}\right) .
$$

Hence for each $\epsilon>0$ there is an increasing function $\chi_{8}$ such that

$$
[f j]_{\alpha}^{u}+\chi_{8}(u),[f j]_{\alpha}^{u}-\chi_{8}(u)
$$

are a major and a minor function, respectively, in $\alpha \leqslant u<v$, in Ward's sense, with

$$
\chi_{8}\left(v_{n+1}\right)-\chi_{8}\left(v_{n}\right) \leqslant \epsilon 2^{-n}, \quad \chi_{8}(u)-\chi_{8}(\alpha) \leqslant 2 \epsilon .
$$

If we set $\chi_{8}(v)-\chi_{8}(v-)=\epsilon$, then as $f$ is bounded, say by $A$, and $j(v-)=0$, we have

$$
\left[\chi_{8}\right]_{u}^{v} \geqslant \epsilon \geqslant 2 A|j(u)| \geqslant[f]_{v}^{u} j(u)
$$

[^1]for $v-\delta_{8}<u<v$ and some $\delta_{8}>0$. Hence
$$
\left[f j+\chi_{8}\right]_{u}^{v} \geqslant f(v)[j]_{u}^{v}, \text { and }[f j]_{\alpha}^{u}+\chi_{8}(u)
$$
is a major function in $[\alpha, v]$. Similarly
$$
[f j]_{\alpha}^{u}-\chi_{8}(u)
$$
is a minor function in $[\alpha, v]$, and
$$
\left[\chi_{8}\right]_{\alpha}^{0} \leqslant 3 \epsilon .
$$

Thus $P(\alpha, v)$ exists. Similarly $P(v, \beta)$ exists, so that by (5, pp. 585_586), property $I, P(\alpha, \beta)$ exists, and $v$ does not lie in $T$, contrary to hypothesis.

If $j$ is of bounded variation in the closed interval $J$ then $P(f, j ; J)$ exists. Hence (45) is true. Further, if $W$ contains an interval $[\xi, \eta]$ let $J$ be a subinterval. If $P(f, j ; J)$ exists for each bounded Baire function $f$, then by Theorem 1 , and then Theorem $3(10)$, the set of points $\left\{d_{n}\right\}$ in $J$ has the Denjoy property (see, e.g., (1), chap. III, p. 140). Hence it is scattered, and so is nowhere dense in $J$. It follows that $W$ must be nowhere dense in $J$, as the points $\left\{u_{n}\right\}$ of Theorem 3 add nothing to $W$. This contradicts the fact that $J$ is contained in $W$, so that $[\xi, \eta]$ is contained in $T$, and $T$ contains the interior of $W$, proving (46).

To prove (47) we first take the closure $J_{n}$ of the $n$th interval of the interior of $Q$, and construct a function $j_{n}$ satisfying (37), (38) with $J=J_{n}$. Then we construct a function $j_{0}$ satisfying (37), (39), with the $Q$ there replaced by the present $Q$ less its interior. Finally we construct a function $j_{-1}$ satisfying (37), (40), with the $Q$ there replaced by the closure of $R-Q$. Then

$$
\sum_{n=-1}^{\infty} j_{n}
$$

satisfies the conditions of (47).
For (48), if $T$ is empty then by Theorems 1 and $3(10)$, the set of points $\left\{d_{n}\right\}$ in $[a, b]$ has the Denjoy property, and so is scattered. But for the function satisfying (37), (39), the set of points $\left\{d_{n}\right\}$ in $[a, b]$ is also scattered, so that (48) follows.

Corollary 1 follows from (44), (45), and Corollary 2 from (47).

## References

1. A. Denjoy, Leģons sur le calcul des coefficients d'une série trigonométrique (Paris, 1941, 1949).
2. R. Henstock, The efficiency of convergence factors for functions of a continuous real variable, J. London Math. Soc., 30 (1955), 273-286.
3. J. E. Littlewood, The Elements of the Theory of Real Functions (Cambridge, 1926).
4. S. Saks, Theory of the Integral (Warsaw, 1937).
5. A. J. Ward, The Perron-Stieltjes integral, Math. Z., 41 (1936), 578-604.

Queen's University,
Belfast


[^0]:    Received October 6, 1955.
    ${ }^{1}$.e., when we use only the points of $\bar{E}_{\epsilon}$.
    ${ }^{2}$ A Baire (Borel-measurable) function is any function that can be obtained from continuous functions by using repeated limits.

[^1]:    3"Zerstreute" (F. Hausdorff), "separierte" (G. Cantor), "clairsemé" (A. Denjoy).

