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Generic Partial Two-Point Sets Are Extendable
Jan J. Dijkstra

Abstract. It is shown that under ZFC almost all planar compacta that meet every line in at most two points
are subsets of sets that meet every line in exactly two points. This result was previously obtained by the author
jointly with K. Kunen and J. van Mill under the assumption that Martin’s Axiom is valid.

A planar set is called a two-point set if every line intersects the set in exactly two points
and a partial two-point set if every line intersects the set in at most two points. We call a
partial two-point set extendable if it is a subset of some two-point set. The existence of two-
point sets is due to Mazurkiewicz [3]. His proof shows that every partial two-point set with
cardinality less than c is extendable. A circle is the standard example of a nonextendable
partial two-point set. We are interested in the extendibility of compact partial two-point
sets. The papers [1] and [2] give a number of results (both negative and positive) concern-
ing this problem.

We denote the space of nonempty compacta in a metric space X equipped with the
usual Hausdorff metric by K(X). F(X) denotes the dense subspace of K(X) consisting of
the finite sets. Let X be a subset of the plane. The subset of K(X) consisting of partial two-
point sets is denoted by T(X) and the subspace of T(X) consisting of extendable elements
is denoted by E(X). If X is a partial two-point set then L(X) denotes the union of all lines
in the plane that intersect X in two points.

We say that generic elements of a space Y have a certain property P if there exists a
dense Gδ-subset G of Y such that every element of G has the property P. For instance,
the statement ‘generic compact partial two-point sets are extendable’ means that E(R2)
contains a dense Gδ-subset of T(R2).

Theorem 3.3 in [1] states that Martin’s Axiom implies that every σ-compact partial two-
point set A such that the Hausdorff 1-measure of A×A vanishes is extendable. The follow-
ing result is an immediate corollary of that theorem (cf. [1, Corollary 3.5]).

Theorem 1 (MA) If X is a subset of the plane then generic compact partial two-point subsets
of X are extendable.

It is also shown in [1, Proposition 3.7] that under ZFC generic subcompacta of a circle
in the plane are extendable. The obvious question is whether Martin’s Axiom is necessary
in general. Expanding on an idea from [1] we prove:

Theorem 2 Theorem 1 is valid in ZFC.

Of particular interest is the case that X is a compact partial two-point set. The theorem
then reads: generic subcompacta of X are extendable or, equivalently, the nonextendable
elements of K(X) form a category I set.
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We introduce some terminology that will be useful in the proof. Let π1 and π2 be the
projections of R2 onto the first respectively second coordinate. If Y is a subset of the plane
then π(Y ) stands for the set π1(Y )∪π2(Y ) ⊂ R. If Y is a subset of R then Q(Y ) denotes the
subfield of R that is generated by Y and A(Y ) stands for the subfield of R consisting of all
points that are algebraic in Q(Y ). Q(∅) stands for Q and A(∅) is the set of algebraic real
numbers. Let Y and Z be subsets of the real line. We say that Y is free rel Z if every point
u in Y is not an element of A

(
(Y \ {u}) ∪ Z

)
. Y is called free if Y is free rel ∅. A subset

Z of Y is called a basis for Y if Z is free and Y ⊂ A(Z). Note that every free subset can be
extended to a basis and that Y is free rel Z if and only if Y is free rel every element of F(Z).

The following notations will be used in the proofs of some technical lemmas. Let n
be a fixed natural number. We let pn1, pn2, . . . enumerate all nonzero polynomials in n
variables with integer coefficients. Let the polynomial qnm(x1, . . . , xn−1) be the leading
coefficient of pnm(x, x1, . . . , xn−1) if we regard pnm as a polynomial in the first variable x.
Let {Pni : i ∈ N} be the set of closures of the elements of some countable basis for the
topology of Rn−1. If n = 1 then R0 (in general Y 0) and every P1i is the singleton {ε} where
ε is the 0-tuple or empty string. Finally, let (M1,N1), (M2,N2), . . . be a sequence of pairs
of disjoint closed subsets of R such that for each x ∈ R and neighbourhood U of x there is
a k ∈ N with x ∈ Mk ⊂ R \ Nk ⊂ U .

Lemma 3 If A is a countable subset of R then G = {D ∈ K(R) : D is free rel A} is a dense
Gδ-subset of K(R).

Proof First we show that G is dense in K(R). Let F = {x1, . . . , xn} be a finite set in R
and let ε > 0. We define by induction sets C0, . . . ,Cn with |Ci | = i. Put C0 = ∅ and let
0 ≤ i < n. Since A ∪ Ci is countable so is A(A ∪ Ci). So we have no problem finding a
point yi+1 in (xi+1, xi+1 + ε) \A(A∪Ci). Put Ci+1 = Ci ∪ {yi+1}. Note that Cn is ε-close to
F in the Hausdorff metric and that Cn ∈ G. So the closure of G contains all finite sets and
hence it is K(R).

Let A1,A2, . . . enumerate the finite subsets of A. Given natural numbers n, m, k, i, and
j we put Onmki j = K(R) if 0 ∈ qnm(Pni) and if 0 /∈ qnm(Pni) we define

Onmki j =

{
D ∈ K(R) : 0 /∈ pnm

(
(D ∩Mk)×

((
(D ∩ Nk) ∪ A j

)n−1
∩ Pni

))}
.

We verify that Onmki j is open in K(R). If Onmki j 6= K(R) then we have

Onmki j =

{
D ∈ K(R) : pnm

((
D×
(
(D ∩ Nk) ∪ A j

)n−1
)
∩ (Mk × Pni)

)
⊂ R \ {0}

}
.

Defining the open subset U = p−1
nm (R \ {0}) ∪

(
Rn \ (Mk × Pni)

)
of Rn we find

Onmki j = {D ∈ K(R) : D×
(
(D ∩ Nk) ∪ A j

)n−1
⊂ U}.

Let {U β0 ×· · ·×U βn−1 : β ∈ B} be the collection of all open subsets of U that have the form

V0 × · · · ×Vn−1. Since D ×
(
(D ∩ Nk) ∪ A j

)n−1
is a product of compacta it is a subset of
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U if and only if it is a subset of some U β0 × · · · ×U βn−1. So we have

Onmki j =
⋃
β∈B

(
K(U β0 ) ∩

n−1⋂
l=1

{D ∈ K(R) : (D ∩ Nk) ∪ A j ⊂ U βl }
)
.

The set K(U β0 ) is obviously open in K(R). Since for 1 ≤ l < n,

{D ∈ K(R) : (D ∩ Nk) ∪ A j ⊂ U βl } =

{
K
(
U βl ∪ (R \ Nk)

)
, if A j ⊂ U βl

∅, if A j 6⊂ U βl

it is also an open subset of K(R). We may conclude that Onmki j is open.
It is left to show that

G ′ =
∞⋂

n=1

∞⋂
m=1

∞⋂
k=1

∞⋂
i=1

∞⋂
j=1

Onmki j

equals G. Let D ∈ K(R) \ G ′. Then there exist natural numbers n, m, k, i, and j such that
D /∈ Onmki j . So we have 0 /∈ qnm(Pni) and

0 ∈ pnm

(
(D ∩Mk)×

((
(D ∩ Nk) ∪ A j

)n−1
∩ Pni

))

which means that there exists an a ∈ D∩Mk and points a1, . . . , an−1 in (D∩Nk)∪A j such
that pnm(a, a1, . . . , an−1) = 0 and qnm(a1, . . . , an−1) 6= 0. So pnm(x, a1, . . . , an−1) is not
the zero function and we may conclude that a ∈ A

(
(D ∩ Nk) ∪ A j

)
⊂ A
(
(D \ {a}) ∪ A

)
and hence D is not free rel A.

Let D ∈ K(R) \ G. Then D is not free rel A and we can find an a ∈ D ∩
A
(
(D\{a})∪A

)
. So there exists a polynomial p(x, x1, . . . , xn−1) and points a1, . . . , an−1 in

(D\{a})∪A such that p(x, a1, . . . , an−1) is not identically zero but p(a, a1, . . . , an−1) = 0.
Without loss of generality we may assume that the coefficient of the highest power of x in
p(x, x1, . . . , xn−1) is nonzero when we substitute ai for xi , 1 ≤ i ≤ n − 1. Consequently,
we can find a natural number m such that p = pnm and qnm(a1, . . . , an−1) 6= 0. Select a
j ∈ N such that A j = A ∩ {a1, . . . , an−1}. We can also find a k ∈ N such that a ∈ Mk and
{a1, . . . , an−1} \ A j ⊂ Nk. Finally, since qnm(a1, . . . , an−1) 6= 0 we can find a neighbour-
hood Pni of (a1, . . . , an−1) in Rn−1 with the property 0 /∈ qnm(Pni). Observe that

a ∈ D ∩Mk and (a1, . . . , an−1) ∈
(
(D ∩ Nk) ∪ A j

)n−1
∩ Pni

and hence

0 = pnm(a, a1, . . . , an−1) ∈ pnm

(
(D ∩Mk)×

((
(D ∩ Nk) ∪ A j

)n−1
∩ Pni

))
.

So D is not in Onmki j and we may conclude that D /∈ G′.
We need another technical lemma:

Lemma 4 If D is a compact subset of R then

GD = {K ∈ K(R2) : D is free rel π(K)}

is a Gδ-subset of K(R2).
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Proof The proof is very similar to the proof of Lemma 3. Given natural numbers n, m, k,
and i we define the following open subset of K(R2): if 0 ∈ qnm(Pni) then Onmki = K(R2)
and if 0 /∈ qnm(Pni) then

Onmki =

{
K ∈ K(R2) : 0 /∈ pnm

(
(D ∩Mk)×

((
(D ∩ Nk) ∪ π(K)

)n−1
∩ Pni

))}
.

The proof that GD is the intersection of all the Onmki ’s is virtually identical to the argument
in the preceding lemma.

Proof of Theorem 2 Let X be a subset of the plane. Select a countable dense subset {Ci :
i ∈ N} of T(X) and find for every i ∈ N a countable dense subset Ai of Ci . Consider the
countable set A =

⋃∞
i=1 Ai . Note that F(A) ∩ T(X) is dense in T(X). Since every dense Gδ

in K(R) contains Cantor sets Lemma 3 allows us to select a Cantor set D ⊂ R that is free
rel π(A). With Lemma 4 we define the following Gδ-subset of T(X):

O = GD ∩ T(X).

Since D is free rel π(A) we have that F(A) ∩ T(X) ⊂ O so O is a dense Gδ in T(X).

We now show that every element of O is extendable. Let K ∈ O. Then K is a compact
partial two-point set such that D is free rel π(K). Select a basis Z for π(K). Since D is
free rel π(K) the sets Z and D are disjoint with a union that is free. Extend Z ∪ D to a
basis B for R. Let {`α : α < c} enumerate the lines in the plane. We shall construct by
transfinite induction a nondecreasing sequence (Eα)α≤c of subsets of R2 \K with induction
hypotheses:

(1)|Eα| ≤ |α| + ω,
(2)K ∪ Eα is a partial two-point set.

Put E0 = ∅ and if λ ≤ c is a limit ordinal then Eλ =
⋃
α<λ Eα. Let α be a fixed ordinal< c

and consider Eα and `α. Let nα ≤ 2 be the number of points in (K ∪ Eα) ∩ `α. If nα = 2
then we put Eα+1 = Eα. Assume that nα ≤ 1 and that `α is the graph of ax + by = c. Since
|Eα| ≤ |α|+ω we can find a B ′ ⊂ B such that |B ′| ≤ |α|+ω and π(Eα)∪{a, b, c} ⊂ A(B ′).
Since |B ′| < c = |D| we can find two points u and v in `α such that at least one of their
coordinates is in D \ B ′.

In order to prove that u and v are not in L(K∪Eα) assume that for instance u = (x, y) ∈
L(K ∪ Eα). There exist two distinct points (x1, y1), (x2, y2) ∈ K ∪ Eα such that u is the
unique point of intersection of `α and the line through (x1, y1) and (x2, y2). Consequently,
x and y are elements of the field Q({x1, x2, y1, y2, a, b, c}) and hence elements of the field
Q
(
π(K ∪ Eα) ∪ {a, b, c}

)
. Since A(Z ∪ B ′) is a field that contains both π(K) and π(Eα) ∪

{a, b, c} we have that it also contains x and y. We may assume without loss of generality
that x ∈ D \ B ′. Since x is an element of the free set B we have that x /∈ A(B \ {x}). Since
Z ∪ B ′ ⊂ B \ {x} we have that x /∈ A(Z ∪ B ′), contradicting a result obtained above. So
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we may conclude that neither u nor v are elements of L(K ∪ Eα). This property guarantees
that if we define

Eα+1 =

{
Eα ∪ {u}, if nα = 1

Eα ∪ {u, v}, if nα = 0

then K ∪ Eα+1 is a partial two-point set which intersects `α in exactly two points. The
induction is now complete. It is obvious that K ∪ Ec is a two-point set.

Since every dense Gδ-subset of for instance K(circle) contains Cantor sets we have the
following immediate consequence of Theorem 2 (which was already established in [1]):

Corollary 5 There exist two-point sets that contain Cantor sets.

On the other hand we have:

Proposition 6 There exist two-point sets that contain only countable compacta.

Proof Let {Cα : α < c} and {`α : α < c} enumerate all uncountable compacta re-
spectively all lines in the plane. We shall construct by induction a nondecreasing sequence
{Eα : α < c} of subsets of the plane and a sequence {xα : α < c} of points in the plane
with induction hypotheses:

(1) Eα is a partial two-point set,
(2) |Eα+1 ∩ `α| = 2,
(3) |Eα| ≤ |α| + ω,
(4) for every β ≤ α, xβ ∈ Cβ \ Eα.

Put E0 = ∅ and for every limit ordinal λ ≤ c, Eλ =
⋃
β<λ Eβ . It is an obvious consequence

of the induction hypotheses that Ec is a two-point set. In addition, hypothesis (4) states
that every Cβ has an element xβ that is not contained in any Eα for β ≤ α < c. Since Eα is
a nondecreasing sequence we have xβ /∈ Ec and hence Ec contains none of the Cβ ’s.

It remains to perform the successor step of the induction. Assume that Eα has been
constructed. Since |Eα| ≤ |α| + ω < c = |Cα| we can find an xα ∈ Cα \ Eα. If `α intersects
Eα in two points then we put Eα+1 = Eα. Let |`α ∩ Eα| ≤ 1. Then every line that is
determined by two points in Eα intersects `α in at most one point and hence we have

|L(Eα) ∩ `α| ≤ |Eα|
2 ≤ (|α| + ω)2 = |α| + ω < c.

Since also {xβ : β ≤ α} has less than c points we can find two distinct elements u and v in
`α \
(
L(Eα) ∪ {xβ : β ≤ α}

)
. Let Eα+1 be Eα ∪ {u} or Eα ∪ {u, v} as needed. It is obvious

that the induction hypotheses are satisfied.
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