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Abstract

We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of com-
pact type within the framework of quasi-coactions, one based on the Enriquez—Etingof cyclotomic Knizhnik-
Zamolodchikov (KZ) equations and the other on the Letzter—Kolb coideals. This equivalence can be upgraded to
that of ribbon braided quasi-coactions, and then the associated reflection operators (K-matrices) become a tangible
invariant of the quantization. As an application we obtain a Kohno-Drinfeld type theorem on type B braid group
representations defined by the monodromy of KZ-equations and by the Balagovié—Kolb universal K-matrices. The
cases of Hermitian and non-Hermitian symmetric spaces are significantly di erent. In particular, in the latter case
a quasi-coaction is essentially unique, while in the former we show that there is a one-parameter family of mutually
nonequivalent quasi-coactions.
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Introduction

This paper is about quantization of symmetric spaces of compact type. It will be su  cient to concentrate
on the irreducible simply connected symmetric spaces of type I, that is, the spaces of the form /
for a compact simply connected simple Lie group U with an involutive automorphism . Our approach
is motivated by the groundbreaking work of Drinfeld [Dri89b], in which he gave a new algebraic
proof of Kohno’s theorem [Koh87] on equivalence of the braid group representations that appear as
deformations of representations of the symmetric group on tensor powers of some representation of
= €. The representations in question are defined by the monodromy of the Knizhnik-Zamolodchikov
(KZ) equations, on the one hand, and by the universal R-matrix of the Hopf algebraic deformation ()
of the universal enveloping algebra () on the other.

Drinfeld developed a framework of quasi-triangular quasi-bialgebras, which captures both types of
representations. He showed that a deformation of () among such quasi-bialgebras is controlled by the
co-Hochschild cohomology of the coalgebra (), up to a natural notion of equivalence derived from
tensor categorical considerations. This cohomology is the exterior algebra  , and the part giving the
deformation parameter is the one-dimensional space (2 ) . Moreover, this parameter is detected by
the eigenvalues of the square of the braiding.

In the course of developing the theory, Drinfeld also clarified the geometric structures behind such
deformations. Namely, the first order terms of the deformations correspond to Poisson-Lie group
structures on U, or structures of a Lie bialgebra on . The two types of representations of the braid
groups arise from di erent models of quantizations of Poisson—Lie groups, and Drinfeld’s result says
that such quantizations are essentially unique. In hindsight, his result can be interpreted as an instance
of the formality principle, which roughly says that deformations of algebraic structures are controlled
by first order terms through a quasi-isomorphism of di erential graded Lie algebras.

Having understood quantizations of Poisson—Lie groups, one natural next direction is to look at
quantizations of the Poisson homogeneous spaces. The first important step towards a classification of
such spaces was again made by Drinfeld [Dri93]: For the standard Poisson—-Lie group structure on U,
they correspond to the real Lagrangian subalgebras of . A complete classification of these spaces (with
connected stabilizers) was then given by Karolinsky [Kar96].
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The first classification result for quantizations of Poisson homogeneous spaces was obtained by
Podles [Pod87]. He classified the actions of Woronowicz’s compact quantum group SU (2) [Wor87]
with the same spectral pattern as that of SU(2) acting on (the functions on) the 2-sphere 2. In other
words, he considered coactions of the C -bialgebra (SU (2)), which is a deformation of the algebra
of continuous functions on SU(2) and is dual to (an analytic version of) (' ). Podle$ showed that
there is a one-parameter family of isomorphism classes of such coactions. From the geometric point
of view, this is explained by the fact that the covariant Poisson structures on 2 form a Poisson pencil
[She91].

Tensor categorical counterparts of Hopf algebra coactions are module categories. Although the
precise correspondence, through a Tannaka—Krein type duality, came later [Ost03, DCY13, Nes14],
in the context of quantization of Poisson homogeneous spaces there is already a rich accumulation of
results obtained from various angles, all related to the reflection equation.

This equation was introduced by Cherednik [Che84] to study quantum integrable systems on the half-
line. While braiding (Yang—Baxter operator) represents scattering of two particles colliding in a one-
dimensional system, a solution of the reflection equation (reflection operator) represents the interaction
of a particle with a boundary. Adding this operator to a braided tensor category (where the Yang—Baxter
operators live) gives rise to a new category with a larger space of morphisms, which admits a monoidal
product of the braided tensor category from one side, thus yielding a module category [tDHO98], or
more precisely, a braided module category [Bro13].

Matrix solutions of the reflection equation for the universal R-matrix of quasi-triangular Hopf
algebras lead to coideal subalgebras, as originally pointed out by Noumi [Nou96] and further clari-
fied by Kolb-Stokman [KS09]. In this direction, the best understood class is that of quantum sym-
metric pairs, that is, the coideals which are deformations of ( ) for a conjugate of  such
that  is maximally noncompact relative to the Cartan subalgebra defining the deformation ().
Following Koornwinder’s work [Koo93] on the dual coideals of the Podle$ spheres, Letzter [Let99]
developed a systematic way of constructing such coideal subalgebras '( ) < () for finite
type Lie algebras, which was refined and extended by Kolb to Kac-Moody Lie algebras [Kol14].
Next, a universal K-matrix for '( ), which gives reflection operators in the representations of

t( ), was defined by Kolb and Balagovi¢ [Kol08, BK19] expanding on the earlier work of Bao
and Wang [BW18] on the (quasi-split) type Alll and AlV cases. The construction relied on a coideal
analogue of Lusztig’s bar involution [BW18, BK15]. Kolb [Kol20] further showed, developing on
the ideas from [tDHO98, Brol3], that these structures give rise to ribbon twist-braided module
categories.

On the dual side, a deformation quantization of / from the reflection equation was developed
by Gurevich, Donin, Mudrov and others [GS99, DGS99, DMO03b, DMO03a]. Here, one sees a close
connection to the theory of dynamical r-matrices [Fel95, EVV98].

There is a parallel theory of module categories over the Drinfeld category, that is, the tensor category
of finite-dimensional -modules with the associator defined by the monodromy of the KZ-equations.
The basic idea is to add an extra pole in these equations, then the reflection operator appears as a
suitably normalized monodromy around it. Conceptually, the usual KZ-equations give flat connections
on the configuration space of points in the complement of type A hyperplane configurations, and the
modified equations are obtained by looking at the complement of type B hyperplane configurations.
Following early works of Leibman [Lei94] and Golubeva—Leksin [GLO0] on monodromy of such
equations, Enriquez [Enr07] introduced cyclotomic KZ-equations. He also defined quasi-reflection
algebras, a particular class of quasi-coactions of quasi-bialgebras, which can be considered as type B
analogues of quasi-triangular quasi-bialgebras. This formalism turned out to have powerful applications
to quantization of Poisson homogeneous spaces, where the associator of a quasi-coaction gives rise to
a quantization of a dynamical r-matrix [EEO5].

Based on these developments and guided by the categorical duality between module categories and
Hopf algebraic coactions, we proposed a conjecture on equivalence between the following structures
[DCNTY19]:
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€ a category of finite-dimensional representations of  , considered as a ribbon twist-braided mod-
ule category over the Drinfeld category, with the associator and ribbon twist-braid defined by the
cyclotomic KZ-equations;

€ acategory of finite-dimensional modules over a Letzter-Kolb coideal '( ), considered as a ribbon
twist-braided module category over the category of  ( )-modules, with the ribbon twist-braid
defined by the Balagovi¢—Kolb universal K-matrix.

To be precise, the conjecture was formulated in the analytic setting, that is, =  was assumed to
be a real number and the categories carried unitary structures. In this paper, we give a proof of the
corresponding conjecture in the formal setting using the framework of quasi-coactions.

It should be mentioned that Brochier [Bro12] has already proved an interesting equivalence between
two quasi-coactions on (), where < s the Cartan subalgebra and one of the quasi-coactions
comes from the cyclotomic KZ-equations associated with a finite order automorphism  such that

= . In his setting, the extra deformation parameter space is the formal group generated by the
Cartan algebra. The construction of the equivalence follows the strategy of [Dri89b], this time relying
on the co-Hochschild cohomology studied by Calaque [Cal06].

Now, let us sketch what we concretely carry out:

€ Show that the quasi-coactions of Drinfeld’s quasi-bialgebra induced by the cyclotomic KZ-equations
are generically universal among the quasi-coactions deforming on ().

€ Give a complete classification of the corresponding ribbon twist-braids and show that the correspond-
ing K-matrices give a complete invariant of the quasi-coactions.

€ In the Hermitian case (see below), when there is a one-parameter family of nonequivalent quasi-
coactions, establish a correspondence with Poisson structures on / by studying coisotropic
subgroups which are conjugates (‘Cayley transforms’) of

€ Make a concrete comparison with the Letzter—Kolb coideals and the Balagovi¢—Kolb braided module
categorical structures.

In the first step, the main idea is to reduce the problem to vanishing of obstructions in a suitable
version of the co-Hochschild cohomology. This strategy is quite standard; see [Dri89b, Bro12], but
while these papers relied on the braiding/ribbon braids to have a good control of the cohomology, we
work with the cohomology classes directly, analogously to Donin-Shnider’s approach [DS97] to Lie
bialgebra quantization, and the identification of the ribbon twist-braids comes only towards the end.
The relevant co-Hochschild cohomology turns out to be isomorphic to Cfor C= , and the
deformation of a quasi-coaction is controlled by the invariant part of the second cohomology, that is,
( 2 ©) .Upto complexification, this space can be interpreted as the space of U-invariant bivectors
on / ,hence there is adirect connection to equivariant deformation quantization. This is where one
sees the formality principle in action.

At this point, we encounter an important dichotomy between the Hermitian and the non-
Hermitian cases. Although we already discussed it in [DCNTY19] based on the parameters t
for the coideals '( ), the following observation is perhaps more illuminating: The dimension
of ( 2 ©) s either zero or one and is equal to that of the center of . In the Hermi-
tian case, and only in this case, this dimension is one and the corresponding homogeneous space

/ has an invariant Hermitian structure, induced by an element of the center of (hence the
name).

In the non-Hermitian case, the triviality of the center eliminates cohomological obstructions, quickly
leading to rigidity of the algebra structure and coaction homomorphismson (). Our results in this
case can be summarized as follows.

Theorem A (Section 2.2 and Theorem 2.18). Let < be a non-Hermitian irreducible symmetric

pair. Suppose that : () () () and () ()?2 define a quasi-
coaction of Drinfeld’s quasi-bialgebra ( () , , kgz)thatdeforms : ( ) () (),
andlet( , )beanothersuchpair.Then(, )and( , ) areobtainedfrom each other by twisting.
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Moreover, the quasi-coaction ( () ,, ) admits a unique ribbon -braid E with prescribed
constanttermE@ 1 ().

In the above formulation, the ribbon twist-braid is allowed to live in a certain completionof ()
() . Namely, consider the multiplier algebra of the algebra of finitely supported functions on the
dual of [VD96], which is the direct product of full matrix algebras

Ut )= End( ),

where  runs over the irreducible finite-dimensional representations of which appear in finite-
dimensional representations of . We can further define

u( x )= End( ) End( ,) --- End( ),

where 1,... runover the irreducible finite-dimensional representations of . Then we take E as an
elementof U(  x )

The situation is more interesting in the Hermitian case. Even up to equivalence defined by twisting, the
quasi-coactions are no longer unique. In this case, we show that generic quasi-coactions are equivalent to
the ones arising from the cyclotomic KZ-equations with prescribed coe cients [EE05, DCNTY19]: The
associator gz, : , for parameters C\ Q* and C ,isgiven as the normalized monodromy
from =0to =1ofthedi erential equation

_ (5 ) 12 Cu+ D+ )
()= =t ().
+1 S1
Here, we put = —, and the coe cients are given as follows: , ,  are the canonical 2-tensors
of , = ,and = respectively, is the Casimir element of associatedto ,and Z is a

normalized element of ().

If =0,then gz, . makessensein ( ) () 2 ,butotherwisewe canonlysaythat xz :
isinU( x 2) . ltistherefore convenient to start working with the multiplier algebras throughout
instead of the universal enveloping algebras. Fortunately, the concepts of quasi-bialgebras and quasi-
coactions have straightforward formulations in this setting, and from the categorical point of view
this formalism is actually even more natural when dealing with semisimple module categories. Then
(UC ) , , kz :)isaquasi-coactionof (U( ) , , kz),andourresultscanbesummarized
as follows.

Theorem B (Theorems 2.16 and 2.19). Let < be an irreducible Hermitian symmetric pair, and
let be an invariant symplectic formon / . There is a countable subset C with the following

property: If :U( ) U( x ) and U( x 2) define a quasi-coaction
of (U( ) , , kz)thatdeforms :U( ) U( x ), and the first order term (I of

satisfies , (O C\ , then there is a pair (, ), unique up to translation by (2 Z,0), such that
(Uc ) ,, )isequivalentto (U( ) , , kz : ). Moreover, (U( ) ,, )admitsa

unique ribbon  -braid E with prescribed constant term E© 1 exp(S ) ().

We resolve the cohomological obstruction to equivalence by looking at the expansion of z - ,
where we follow Enriquez and Etingof’s work [EEO5] on quantization of dynamical r-matrices. Up to
a coboundary, kz, - has the expansion

(+) G ) v
5 1 S

)+...,

L)
Ux
Ux

KZ, : 18 2 tanh
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where . is the set of positive roots in € with respect to a choice of Cartan subalgebra in  , and

+ 1S a normalized root vector for + ; see Sections 2.3 and 2.5 for details. This shows that, under
a perturbation of , the associator changes in the term one order higher than the perturbation, with a
precise control of the cohomology class (formal Poisson structure) of the di erence in that term. This
leads to the universality of quasi-coactions with the associators kz, . and can be interpreted as ‘poor
man’s formality’ for equivariant deformation quantization.

We next apply these results to the Letzter—Kolb coideals. Since our classification is formulated in
the framework of multiplier algebras, we show that the coideals indeed give rise to such structures,
essentially by taking a completion. It should be stressed that the formalism of multiplier algebras is
important not only for making sense of z, . . The second and even more important reason is that it
allows us to check that the coactions defined by the Letzter-Kolb coideals are twistings of . The point
is that, since is not semisimple in the Hermitian case, the standard arguments based on Whitehead’s
first lemma are not applicable. By working with the multiplier algebras, which are built out of semisimple
algebras, we can circumvent the nonvanishing of Lie algebraic cohomological obstructions. We still
need to use Letzter’s result [Let00] on existence of spherical vectors for this, which means that we have
to consider -coideals '( ).

Next, in the Hermitian case, we have to verify the condition on the first order term (. For
this, we study Poisson homogeneous structures on /. More precisely, we have to compare two
Poisson structures, corresponding to two ways we obtain the quasi-coactions. On the one hand,
from the cyclotomic KZ-equations we obtain a Poisson pencil [DG95], where one takes the sum of
the left action of the standard r-matrix r on / and a scalar multiple of the Kostant-Kirillov—
Souriau bracket, which agrees with the bracket defined by the right action of r. On the other
hand, from the coideals we obtain the reduction of the Sklyanin bracket to quotients by coisotropic
subgroups.

Starting from the model = in the maximally noncompact position, where the subgroup is
coisotropic [FL04], we take a distinguished one-parameter family of subgroups that are conjugate
to by interpolated Cayley transforms and show that the associated fixed point subgroups
remain coisotropic. At the level of Lie algebras, this construction interpolates between the maximally
noncompact subalgebra  and the maximally compact one  (which contains ). Moreover, the Lie
algebras turn out to be the classical limits of the Letzter—Kolb -coideals '( ). By a detailed
analysis of the Cayley transforms, we are able to find the relation between the parameters and t, as
well as to compute the cohomology classes of (1) for the associators we get. In a bit imprecise form,
these results are summarized as follows.

Theorem C (Theorems 5.4, 5.5, 5.8 and 5.10). There is a parameter set T (consisting of one point
t = 0 in the non-Hermitian case) defining -coideals ( ) and satisfying the following properties. For
everyt T ,thecoideal '( ) gives rise to a coaction of a multiplier bialgebra which is equivalent
to the quasi-coaction (U( ) , , «kz ;)of (U( ) , , kz),where , < isasubgroup
conjugate to  , while R and R are uniquely determined parameters (equal to O in the
non-Hermitian case), with s given by an explicit formula. Under this equivalence, the Balagovi¢—Kolb
ribbon twist-braids correspond to the ones coming from the cyclotomic KZ-equations.

This implies a Kohno-Drinfeld type result (Theorems 5.12 and 5.13) for quantum symmetric pairs,
stating that representations of type B braid groups arising from the coideals and the cyclotomic KZ-
equations are equivalent.

A formulaforthe parameter in Theorem C can in principle be obtained by comparing the eigenvalues
of the reflection operators in the two pictures. In the general case, this step might be somewhat involved,
but at least for the Alll case (which corresponds to the symmetric pairs ( § )< ) this can
be done thanks to the classification of reflection operators by Mudrov [Mud02].

So far we have discussed the case of irreducible symmetric spaces of type I, thatis, /  with U
simple. However, the type 1l case, corresponding to U itself as a symmetric space, or the quotient of

x by the diagonal subgroup, can be handled in essentially the same way as the non-Hermitian type

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press



Forum of Mathematics, Pi 7

I cases. In particular, Theorems A and C can be adapted to this case. This implies that an analogue of
Theorem C holds in general for Letzter—-Kolb -coideals of () with semisimple.

Let us now briefly summarize the contents of the paper. In Section 1, we recall basic definitions and
introduce conventions which are used throughout the paper.

In Section 2, we prove our main conceptual results on classification of quasi-coactions and ribbon
twist-braids. As explained above, the non-Hermitian case is done by a more or less standard cohomo-
logical argument, while in the Hermitian case we look into the structure of the associators arising from
the cyclotomic KZ-equations.

In Section 3, we focus on the Hermitian case and look at conjugates of < in the maximally
compact position by interpolated Cayley transforms. We show that these conjugates generate coisotropic
subgroups and relate them to models arising from the cyclotomic KZ-equations, with an explicit formula
for the first order term.

In Section 4, we explain how the quantized universal enveloping algebra and the Letzter-Kolb
coideals fit into our setting of multiplier quasi-bialgebras and their quasi-coactions.

Finally, in Section 5, we combine the results of the previous sections and prove our main comparison
theorems. We finish the section with a detailed analysis of the Alll case.

There are three appendices, in which we collect some technical but not fundamentally new results
used in the paper.

Let us close the introduction with some further problems. First of all, a general formula for in
Theorem C would be nice to find, especially if this can be done in a unified way rather than via a case-
by-case analysis. Second, the analytic version of the conjecture, as originally proposed in [DCNTY19],
remains to be settled, together with a comparison with the “Vogan picture’ introduced there. On the
geometric side, one would like to extend the above results in the Hermitian case to all coadjoint orbits
of U.

1. Preliminaries
1.1. Conventions

We treat h as a formal variable and put = when we consider -algebraic structures. We put

the latter is mostly reserved for the KZ-equations. We denote the space of formal power series with
coe cientsin A by

and the space of Laurent series by

For [ SI, , we denote the smallest nsuch that () 0 by ord( ).
We denote the h-adically completed tensor product of C  -modules by . In particular, we have

C )« ) =( )
When =Cand C has constant term (9 > 0, we take its nth root = * to be the unique
solutionof = suchthat © is positive. A similar convention is used for log.
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1.2. Simple Lie groups

Throughout the entire paper, denotes a compact simple Lie algebraand denotes its complexification.
The connected and simply connected Lie groups correspondingto and are denoted by G and U.
We denote by (-, -) the unique invariant symmetric bilinear form on such that, for any Cartan
subalgebra < , its dual form on  has the property that (, ) = 2 for every short root . Let
2 pe the corresponding invariant tensor:

= , (1.1)

where () isabasisin and () isthe dual basis.

Recall that (-, -) is negative definite on . Therefore, if we define an antilinear involution on by
letting =S for ,then (, ) becomesan (Ad )-invariant Hermitian scalar product on

We denote the category of finite-dimensional algebraic representations of the linear algebraic group
G (equivalently, finite-dimensional representations of ) by Rep . It is equivalent to the category of
finite-dimensional unitary representations of U. We write Rep tosaythat isa finite-dimensional
representation of G, its underlying space is denoted by . We also fix a set Irr  of representatives of
the isomorphism classes of irreducible representations.

We will often have to extend the scalarsto C . Denote the category we getby (Rep ) . Thus,
the objects of (Rep ) are the G-modules over C  that are isomorphic to the modules of the form

for Rep

1.3. Multiplier algebras

For =1,2,..., weput

u( )= End( ) --- End( ).

We view G and as subsets of U( ) = U( 1).
Since for every irreducible Rep , there is a unique up to a scalar factor U-invariant Hermitian
scalar producton , we have a canonical involution onU( ). There is also a uniqgue homomorphism

tUC) U9
characterized by the identities ( 1 2)( ( )) = () forallintertwiners : L ,- Then
()= for . This characterizes the elements of G among the nonzero elements of U( ).
Similarly, the identity ( ) = 1+1 for characterizes inside U( ).

Denote by O( ) the Hopf algebra of regular functions (matrix coe cients of finite-dimensional
representations) on G. We occasionally write O( ) instead of O( ) when we think of it as a function

algebraon U.

There is a nondegenerate pairing between U( ) and O( ) that allows us to identify U( ) with the
dual space of O( ). Concretely, if is irreducible, End( ),! . , then for the matrix
coe cient Oo( ), . ()="(()), wehave

cao =),
and #, = 0 for the matrix coe cients f of the irreducible representations  inequivalent to
Similarly, U( ) isthe linear dual of O( ) . With respect to this duality, the bialgebra structures are
related by
#o#, ()= #4%, (M, 1 2= #,12

for # O( )and u( ).
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We can do the same constructions for any reductive linear algebraic group H over C. We then also

define
U¢c x )= End( ) End( ,) -~ End( )
Irr Irr
=1,...,
for0 < .Inamoreinvariant form,U( x )isthe lineardual of O( x ).
Assume in addition that H is an algebraic subgroup of G. Then the embedding extends to

an embeddingof U( *1)intoU( x ). In particular, the comultiplication : U( ) U( 2)can
be viewed as a homomorphismU( ) U( x ).

Note that in general H is not simply connected. In Lie algebraic terms, the category Rep  consists
of the finite-dimensional representations of that are subrepresentations of the finite-dimensional
representations of restricted to .

1.4. Quasi-coactions and ribbon twist-braids

The notion of a quasi-bialgebra [Dri89b] has a straightforward adaptation to the setting of multi-
plier algebras, cf. [NT11, Section 2]. We will be interested in multiplier quasi-bialgebras of the form

(UC) , ,$, ).Thus, isanondegenerate homomorphism U( ) U( » , mean-
ing that the images of the idempotents  (id ) ( Irr ) in End( , 5) add up to 1,
$:U() C is a nondegenerate homomorphism, and u( %) is an invertible ele-

ment (with (@ = 1) satisfying the same identities as in [Dri89b, Section 1].
The assumption of nondegeneracy for the counit $ implies that it is determined by its restrictions

to the blocks End( ) of U( ) . Since there are no nonzero (C  -linear) homomorphisms
End( ) C for dim > 1 and there is a unique such homomorphism for dim = 1, we
conclude that $ coincides with the standard counit $on U( ) . From now on, we will therefore
omit$ from the notation for a multiplier quasi-bialgebra.

Given a reductive algebraic subgroup H of G, a quasi-coactionof (U( ) , , )onU( )
is given by a nondegenerate homomorphism : U( ) Ui x ) and an associator

U( x 23  satisfying © =1,

(id 9% =id,
( id) ()=(d )y () uC) ), (1.2)
the mixed pentagon equation
1,23 0123 012> 01,23 01,23, (1.3)
with 1,23 = ( id)( ), o123 = (idy( ) id)( ), etc., and the normalization conditions

(d $ id)( )=(@d id $( )=1.

A multiplier quasi-bialgebra (U( ) , , ) defines a tensor category ((Rep ) , , ),
where the tensor product on (Rep ) is defined using and the associativity isomor-
phism is given by the action of . A quasi-coaction as above defines then the structure of a
right ((Rep ) , , )-module categoryon (Rep ) . Namely, the functor : (Rep ) X%
(Rep ) ( Rep ) defining the module category structure is induced by , while the asso-
ciativity morphisms are defined by the action of . See [DCNTY19, Section 1] for more details, but
note that in [DCNTY19] we worked in the analytic setting, meaning that =  was a real number and

uc ), U x 2.
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Next, letR  U( 2)  beanR-matrix (withR® =1)for (U( ) , , ) thatis, R ()=

P()R and R satisfies the hexagon relations. Let %be an automorphism of the quasi-triangular

multiplier quasi-bialgebra (U( ) , , ,R). A ribbon %braid is given by an invertible element
E U( x ) satisfying

EGd % ()= ()E ( U() ), (L4)
( id(E) = SRxu ouFe(d id %( SLRn ), (15)

(id ) =Ra ouFr(d id %B( FRw )Enld % H( . (1.6)

When %is the identity map, we just say ‘ribbon braid’ instead of ‘ribbon id-braid’. We want to stress
that, asopposedto , and R, we do not require E©© = 1. Aquadruple (U( ) ,, ,E) satisfying
equations (1.4) and (1.5) is a version of a quasi-reflection algebra [Enr07]. In categorical terms, the action
of Eon & ' defines the structure of a ribbon %braided module categoryon ((Rep ) , , ).
See again [DCNTY19, Section 1] for more details.

1.5. Twisting
We can transform a quasi-coaction (U( ) ,, )of (U( ) , , ) intoanew one as follows.
Suppose that we are givenelementsF~ U( 2) andG U( x )  suchthatF @ =1,GO =1
and
($ idF)=(>Gd $(F)=1, (id $(G =1.
Then the twisting of the quasi-coaction by (F, G) is the quasi-coaction (U( ) , &, r.) Of the
multiplier quasi-bialgebra (U( ) , ¢, Fr),where
F=F  (F FE@ F)id  )(F) ( iFSHFES 1),
=G ()G, Fe=(1 F)(d )(©) (GG ).
Twisting defines an equivalence relation on the quasi-coactions. In categorical terms, it means that
wepassfrom((Rep ) , , )totheequivalenttensorcategory ((Rep ) , r, fr),withthe
tensor product defined by g, and, up to this equivalence, the ((Rep ) , , )-module category
((Rep ) , , )isequivalenttothe ((Rep ) , r, r)-module category
((Rep ) . < F.o)

As the following result shows, twisting often allows one to push all the information on a quasi-
coaction into the associators.

Lemma1.1. Assume H is a reductive algebraic subgroupofGand (U( ) ,, )isaquasi-coaction
of(U( ) , , )suchthatboth and equal moduloh. Then this quasi-coaction is a twisting
of a quasi-coaction (U( ) , , Jof(U( ) , , )forsome and

Proof. Take irreducible representations ; and ; of G. Consider the homomorphisms #=( 1  2)
and # =(1 2) fromU( ) into End( ,) . The assumption of nondegeneracy for

implies that there exists a finite set ( Irr  such that # factors through End( ) .By
taking F large enough, we may assume that the same is true for f. Since the algebra End( )
is semisimple, there are no nontrivial deformations of any given homomorphism End( )
End( , ,). Hence, there exists F |, , End( 5) such that F (?) , =land # =
(AAF | )# ThenF = (F . ,), , U( 2  satisfies F©® =1and =F ()FSL
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Furthermore, since the counitof (U( ) , , )is$ wecouldtake F , , = 1 ifeither 1 0r »
were trivial representations. In this case, F would additionally satisfy ($ id)(F) = (id $)(F) =1.

Inasimilarway,wecanfindG U( x ) suchthatG® =1,() $(G) =1land =G ()G
Then the twisting by (F St, G31) gives the required quasi-coaction.

Next, given a quasi-coaction (U( ) ,, )of(U( ) , , ),assumeinaddition we have an
automorphism %of (U( ) , , ).IfF satisfies (% %(F) = F, then %remains an automorphism
of(U( ) . ,r, r).AssumealsothatR U( 2) isan R-matrix for (U( ) , , )that
is fixed under % Then Rg = F»;RF ! is an R-matrix for (U( ) , g, f), again fixed by %
Given a ribbon %braid E for the original quasi-coaction we get a ribbon %braid Eg for the twisted
quasi-coaction (U( ) , &, ra)Of(U( ) ., r, r,Rg)definedby

Es =GHid %(0)S. (1.7)

The condition (% %(F) = F can be relaxed; we will return to this in Section 5.1.

1.6. Symmetric pairs

Let be a proper Lie subalgebra of . We say that < is a symmetric pair, or more precisely, an
irreducible symmetric pair of type I, if there is a (necessarily unique) involutive automorphism  of
such that = . Whenever convenient, we extend to U( ), in particular,to . Let* = . The
compact group K is connected by [Hel01, Theorem VI11.8.2]. Using the Cartan decomposition of G, we
can also conclude that is connected.

Given such a symmetric pair, put

= | ()=S 1},

which is the orthogonal complement of in  with respect to the invariant inner product. We also write
C= R Cforits complexification.
We say that a symmetric pair < is Hermitian, if /* isa Hermitian symmetric space. Such sym-
metric pairs are equivalently characterized by either of the following conditions; see [Bor98, Proposition
VI1.1.3]:

€ The center () is nontrivial (and 1-dimensional);
€ The space  has a (unique up to a sign) -invariant complex structure.

The following closely related characterization will be crucial for us.

Lemma 1.2. For any symmetric pair < , we have dim( 2 ) =1if < is Hermitian, and
dim( 2 ) =0 otherwise. We always have = 0.

Proof. Since U is simple by assumption, /* isan irreducible symmetric space, so K acts irreducibly
on = 1( /*).As [* isnotone-dimensional, this cannot be the trivial action,andwe get = 0.
Next, since  has a -invariant inner product, the space ( 2 ) is isomorphic to the space of -
invariant skew-adjoint operatorson . Assume we are given such anonzerooperator A. Then 2=§
is self-adjoint, with negative eigenvalues. Hence, 2 is diagonalizable, and by irreducibility of the action
of on we conclude that 2 must be a strictly negative scalar. Therefore, by rescaling A we get a
-invariant complex structure on . Since there is a unique such structure up to a sign in the Hermitian
case and no such structure in the non-Hermitian case, we get the result.

Remark 1.3. In the non-Hermitian case, the centralizer ~ (* ) of K in U is a finite group that either
agrees with the center () of U or contains it as a subgroup of index 2. Indeed, we have () =0
from the above lemma, which implies the finiteness of ~ (* ). To see that the indexof ( )in  (*)
is at most 2, observe that any K-intertwiner on  has to be a (real) scalar by the vanishing of ( 2 ) .
Then, given (*), the restriction of the finite-order K-intertwiner Ad to  should be £1, which
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implies that either ( YorAd = .Iftheinclusion < is of equal rank, there are elements
g satisfying Ad = ,henceweobtain|[ (*): ( )] = 2. Otherwise there is no such g, hence we
obtain  (*)= ().

An irreducible symmetric pair of type Il is an inclusion that is isomorphic to the diagonal inclusion of
into (with a simple compact Lie algebra ). This corresponds to the involution (, )=(, )
on . For such a pair,we canput = {(, S )| }. Since both and ( 2 ) aretrivial,
such pairs behave in many respects similarly to the non-Hermitian type I pairs. We will therefore mostly
focus on the type | case and only make a few remarks on the type Il case.
Back to type | symmetric pairs, in the Hermitian case, it is known that an invariant complex structure
on isdefined by an element of ( ). The correct normalization is given by the following.

Lemma 1.4. Assuming that < is a Hermitian symmetric pair, let (') be a vector such that
(, ) =S1.Thenon wehave(ad )2=S ?id, where

2 +
dim

+ {1,2,3} is the ratio of the square lengths of long and short roots of and s the dual Coxeter
number of .

Proof. As (ad )| is -invariant and skew-adjoint, by the proof of the previous lemma, we have
(ad )>=S 2on forsome scalar 0. Hence, for the Killing form jyon wehave gin(, )=
Tr((ad )% = S 2dim . The Killing form and the normalized bilinear form (-,-) are related by
kit =2 +(-,-) ; see [Kac90, Chapter 6, Exercise 2]. Combining this with ( , ) = S1, we get that

Corollary 1.5. The -invariant complex structures on  are given by +-L-(ad )| . For the involutive
automorphism suchthat = , we have

—exp —ad

In particular, we see that K is the stabilizer of Z in U with respect to the adjoint action. As the
adjoint and coadjoint representations are equivalent, this leads to yet another known characterization of
the Hermitian symmetric pairs: A symmetric pair < is Hermitian if and only if the homogeneous
U-space /* isisomorphic to a coadjoint orbit of U.

2. Classification of quasi-coactions and ribbon braids

Throughout this section, = < denotes a symmetric pair. Our goal is to classify using the co-
Hochschild cohomology a class of quasi-coactionsof (U( ) , , )onU( )

2.1. Co-Hochschild cohomology for multiplier algebras

The co-Hochschild cochains will play a central role in this paper. Let H be a reductive algebraic subgroup

of G. Put N’ =U( x )Yfor0 < ,anddefineadi erential ’ ’+1 by

()= o012, 1S 012, s+ o+ (S o1 (s *+ (S Pon (2.1)
where o, A, 41 = (idy < sy idy¢ sy)()and o1, = 1. The group H acts
diagonally by conjugationon U( x ), thedi erential - ;4 is equivariant with respect to this action.

We put
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Proposition 2.1. The cohomology of ~ is isomorphic to the exterior algebra  / as a graded
H-module.
Proof. The complex ~ s the algebraic linear dual of = = (O( ) O( ) ) ., with the
di erential-: O( ) O( ) O( ) O( ) Stgivenby
S1
(B #)= (BB o g o #4(S) OB - #s
=0
where ## is the product of #)Nand the restriction of # to H. Thus, the cohomology of i . isthe
linear dual of the homology of o asan H-module.
The complex ~ ’ is the standard complex computing the Hochschild homology

HH (O( ),resO( ) ) =Tor?( ) CCN(0( ), 1es0( ) ),

where the bimodule sO( ) has the underlying space O( ) with the bimodule structure #. .# =
#()# for#,# O( )and O( ). In other words, we are computing

Tor®C X 1(0( ),0( *x{ 1),

where x is the diagonal. By [BGI71, Proposition VI1.2.5], this is the exterior algebra on
Tor(f( * )(O( ),O0( x{ })), and the latter is the conormal space of at the point e. Since
this conormal space is the dual of / , we obtain the assertion.

Remark 2.2. Proposition 2.1 and its proof are valid for any linear algebraic group G over C and any
algebraic subgroup H, if we define U( x ) asthedualof O( ) O( )

Corollary 2.3. For any reductive algebraic subgroup < , the cohomology of is isomorphic
to( /)
Proof. As the factorsEnd( ) End( ,) --- End( )of - decompose into direct sums of

isotypical components, taking the H-invariant part commutes with taking cohomology.

We will mainly need the following particular case.
Corollary 2.4. The cohomology of | is isomorphic to ( S,

Proof. This follows from the previous corollary since isconnectedand = C.

Remark 2.5. Instead of the multiplier algebras we could use the universal enveloping algebras and

define complexes ~ and | ; see Appendix A. The canonical maps () U( )and ()
U( ) are injective homomorphisms compatible with the coproduct maps U( ) U( x )and
u( ) U( x ). Thus, we get an inclusion ~ , ~, , and if H is connected, we also get an
inclusion .. Corollary A.5 shows that these maps are quasi-isomorphisms.

2.2. Classi“cation of associators and ribbon braids: non-Hermitian case

Assume the symmetric pair < is non-Hermitian.

Consider a multiplier quasi-bialgebra (U( ) , , )suchthat = modulo h. We claim that
up to twisting by (1, G) it has at most one quasi-coaction (U( ) ,, )suchthat = modulo h.
Since by Lemma 1.1, we may assume that both and equal , the following is an equivalent
statement.
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Theorem 2.6. Let = < be a non-Hermitian symmetric pair, and , U( x ?)
be two associators defining quasi-coactions of (U( ) , , ), with the coaction homomorphisms
= = .ThenthereisanelementH 1+ U( x ) such that (id $)(H) = 1 and
= Ho HELHEL
Proof. Suppose that () = () for < . We claim that there is U(  x ) such that
(id $)()=0and andHoiz HF',HF} have the same terms up to (and including) order n for

H=1S . The lemma is then proved by inductively applying this claim and taking the product of
the elements 1 S we thus get. Note only that by -invariance the elements ¢ 1 and 1,2 obtained at
di erent steps commute with each other.
Take the di erence of identities (1.3) for and  and consider the terms of order n. Since  and
have the same terms up to order S 1, we get

( O8 O+ ( O8 Oyao=( OS85 Ogrog+( S Ogyps.

Since and are -invariant by equation (1.2), it followsthat ()S ()isacocyclein 2 . As

we are in the non-Hermitian case, by Corollary 2.4 and Lemma 1.2, wehave ()S () =- () for
some U( x ).As(id $ id( OS ())y=0 wehave (id $)( )=0.Thus, T satisfies
our claim.

Remark 2.7. Analogous results are true at the level of the universal enveloping algebras instead of
the multiplier algebras. More precisely, given a quasi-bialgebra ( () , , ) such that =
modulo h, up to twisting by (1, G) there is at most one quasi-coaction ( () ,, ) of this quasi-
bialgebra such that = modulo h. This is proved along the same lines as Lemma 1.1 and Theorem
2.6, but now relying on Whitehead’s lemma for the semisimple Lie algebras and  to show that there
are no nontrivial deformationsof : () () (Yand : ( ) () (),andusing
Corollary A.5 instead of Corollary 2.4.

Next, let us fix a -invariant R-matrix R~ U( ) for ( , ) and look at compatible ribbon
-braids. Note that the left-hand side of equation (1.4) becomes E () in the present case.

Theorem 2.8. Let = < be a non-Hermitian symmetric pair, and let u( 3 and
R u( ?) be -invariant elements defining the structure of a quasi-triangular multiplier
quasi-bialgebra (U( ) , , ,R). Assume further that we are given a quasi-coaction of the form
(U( ) , , ) bythis quasi-bialgebra andthat E U( x ) is a ribbon -braid for R.
Then E® =1  for an element g in the centralizer ~ (* ), and any other ribbon -braid, for the
same , and R, and with the same order 0 term, coincides with E. Furthermore, if R @ 4+ Rg) 0,
then ()

The group  (*) is finite as remarked in Remark 1.3, so we have at most finitely many ribbon
-braids.

Proof. From equation (1.5), we get that (  id)(E(@) = Eo(g) This implies that E© =1 | with

=($ id)(E@) U( ). From equation (1.6) we then get () = , hence . But then
equation (1.4) shows that ( ).Finally,as ()= ()®=0,using the Cartan decomposition
of Gweseethat (*)=  (*), hence *).

Assume now that E is another ribbon  -braid with E(® =1 . We want to show that E = E. It
will be convenient to first get rid of g. By multiplying both elementsby 1 I on the right, we get new
ribbon ~-braids Eand E inU( x )  with the order zero terms 1, where ~ = (Ad ) .

We argue by induction on n that E(¢ ) = E (). Suppose that we already know that E¢ ) = E () for

< . Comparing the terms of degree n in equations (1.5) and (1.6), we obtain

01,2= 0,2 012= 02% o1

for =EC)SEQ),
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The first equality says that =1 for =($ id)( ) U( ). Then the second equality says
()= 1+ , thatis, Y is primitive, and we obtain

Comparing the terms of degree n in equation (1.4), we see next that Y has to centralize . Hence

=0and E() = EQ),

It remains to prove the last statement of the theorem. So assume R @ 4 Rg) 0. Let us write ~

,etc, instead of | {3, o

By an analogue of [Dri89b, Proposition 3.1] for the multiplier algebras, by twisting  we may
assume that = 1 modulo 2. Such an analogue is proved in the same way as in [Dri89b] using that
the embedding map ~ " is a quasi-isomorphism by Corollary A.5.

Namely, consider the normalized skew-symmetrization map Alt: 3 "3 This map kills the
coboundaries and transforms the cocycles of the form 2 3 , into cohomologous ones
by Remark A.4. But the classes of such cocycles span the entire space H3(~ ) by the same remark and
Corollary A.5. Therefore, if "3 is a cocycle killed by Alt, then it is a coboundary. The hexagon
relations imply that Alt( M) = 0,s0 @ = -4( ) for some "2 \We may assume that T is
G-and -invariant since (@ has these invariance properties. Then the twistingby F = 1S  proves
our claim.

Note that twisting does not change the element R @ 4 RS’. The hexagon relations imply then that
R (see the proof of [Dri89b, Proposition 3.1]), and since R commutes with the image of

,we get RM  ( ) .Hence, R® =&/ forsome/ 0, where is the normalized invariant
2-tensor defined by equation (1.1).

Next, identity (1.3) implies that (@ is a 2-cocycle in ~; hence, by twisting we may assume
that = 1 modulo 2. We remind also that under twisting the ribbon twist-braids transform via
formula (1.7).

Now;, by looking at the first order terms in equation (1.5) for a ~ -braid E, with E© = 1, we get

ég;)z =g 2Vl+|§0(,12) SGd id ") 4.

The tensor  lies in + . Denote the components of  in and by and ,resp.
Then the above identity can be written as

Egi)z =32/ l,2+|§(§'12) +(id id Ad ) 1) S/ 4,

Applying $to the Oth leg and letting = ($ id)(E(), we obtain

ED =82 +1 +(@Gd Ad)(/ )S/ . (2.2)
But we musthave E®  U(  x ).Since = forabasis ( ) in  and the dual basis
() ,thisis possible only when Ad acts trivially on . Hence, ().

Remark 2.9. Theorems 2.6 and 2.8 also hold for the type Il symmetric pairs with appropriate modifi-

cations. Namely, consider ~ = x  and its diagonal subgroup () < ", which is the fixed point
subgroup of the involution (, ) = (, )on . Then for the quasi-coactions of (U( ) , , )
on the multiplier algebra U( ), with the coaction map extending _ ( ., ) x and

with associators u( x ? andribbon -braidsE U( x ) ,onecan easily prove ana-
logues of these theorems. First, the proof of Theorem 2.6 carries over almost without a change. Indeed,
its proof relies on Lemma 1.2 and Corollary 2.4, both of which have analogues for ()< .
As for Theorem 2.8, we have -( ) = 0 for the diagonal inclusion < “yand ~-( )= ( )x (),
which is enough to adapt the first half of the proof.
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2.3. Associators from cyclotomic KZ equations

We want to extend the results of the previous subsection to the Hermitian case. Since H>( | ) isnow
one-dimensional by Lemma 1.2, we should expect a one-parameter family of nonequivalent associators.
In this subsection, we define a candidate for such a family arising from the cyclotomic KZ-equations.

Thus, assume < is a Hermitian symmetric pair. We have an element (), unique up to a
sign, such that

(, ) =82

This normalization is equivalent to (ad )2 = S1on by Lemma 1.4. We fix such Z for the rest of
this section. The operator ad  has eigenvalues + on ©. Denote by . € the corresponding
eigenspaces.
We remind that we denote the components of the normalized invariant 2-tensor  in and
by and ,resp. The tensor  liesin st 8 +. We denote the components of  in
+ by *.We thus have

= 4 s @ i H=x x5, (d ad )( )= @23

Given C, consider the following elements of U( x  2)

1= (125 1) 1= 12 0= Qg+ D+ 1 (2.4)

where is the Casimir element of , the image of under the product map () () ().
These lead to the shifted modified 2-cyclotomic KZ,-equation [EE05, DCNTY19]

()= f11+ gt— (). (2.5)

Remark 2.10. Consider a C[ S!, -valued character Oon () suchthatO( ) = $(2 2)S! . Then
the slicingmap 1 = (0 id) isan algebra homomorphism () ()[ 5%, satisfying

(1 id@)=2 + S )

and commuting with the right coaction by (). In particular, at least formally speaking, equation
(2.5) is obtained from the case = 0 by slicing. But since 0 cannot be extendedto () , one should
be careful with this construction.

The normalized monodromy z,  U( x ?) of equation (2.5) from =0to =1is
well-defined as long as the operator ad( ) on U( ) does not have positive integers in its spectrum, cf.
[NT11, Proposition 3.1]. Since each matrix block End( ) in U( ) is generated by the image of , the
eigenvalues ofad are for Z by Lemma 1.4 and our choice of normalization. Therefore, kz, is
well defined for all Q*. Theelement gz together with the coproduct :U( ) U( x )
givesaquasi-coactionof (U( ) , , kz)onU( ) ,where kz= ( 1, o) U( %)
is Drinfeld’s KZ-associator for G.

In more detail, kz, isdefined as follows. Under our restrictions on s, a standard argument (see, e.g.,
[NT11, Proposition 3.1]) shows that there is a unique U( 2)  -valued solution ¢ of equation
(2.5) on (0,1) such that o( ) ° ° extends to an analytic function in the unit disc with value 1 at

= 0. Similarly, there is a unique solution 1 of equation (2.5) suchthat (1S ) S textendstoan
analytic function in the unit disc with value 1at = 0. Then

kz, = 1()% o)
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forany 0 < < 1. We can also write this as

kz, = lim(18 )%+ o( )=1lim(aS )+ o( ) 5o (2.6)

The case = 0 is special: In this case, it can be shown, using for example iterated integrals [Kas95,
Chapter XIX][Enr07], that zo lives in the algebra ( 2) rather than in its completion
U( x 2) . Note also that this associator is well defined in the non-Hermitian case as well. We

will denote it by kz.
Observe also that if R, then ¢ is unitary; hence, kz, is unitary as well. Indeed, in this case
( o( ) )S! has the defining properties of (), hence coincides with it.

Proposition 2.11 (cf. [EEO5, Proposition 4.7]). For every Q*, we have

ce3 i s +4( ?),

1.
kz, =1+— (log2) ,+2,+3 ESE 12 277 12

where 2 is Euler’s constant and 3 = — is the digamma function.

Proof. If we restrict to a finite-dimensional block of U( x  2), thenad( 1) has a finite number of
eigenvalues there, so the corresponding component of kz, is well defined for all ' S17* for some
N. As it is analytic in s in this domain, it therefore su ces to consider real s.

Put o( )= o( ) S o Then | satisfiesthe di erential equation

o( )= g o)+ =2 o()

and the initial condition ¢(0) = 1, and by equation (2.6) we have
kz, = 1im (1S )%+ o( ).

Consider the expansion in h. For the order zero terms, we immediately get |(<(2 = éo) = 1. Next,

consider the order one terms. Let us write H for él), sothat g=1+ +4( 2. Then

and (0) =0, while
2, = lim( ()Slog(1S ) ;).

By equation (2.3), we have

12 12 12
= — + —= -5
» o 5 5+1 531
_ 1,1, N R S
", 25+1 5381 5 122 5 2 5+1 581

Note that this integral is well defined for O < 1lassisassumed to be real. We then get

1 . 2\ s
|(<z) = ptH() g, tHS) gy
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where
= lim L o 1 58109018 ) =log2
- M, B+1 5381 d 1994
+() = lim L st 5510908 )
- 581 °5+1 J '

To compute +( ), we write (52 S 1)é1 as a power series, integrate and get

N

+1
+)=1lim § ———Slog(1S ).
() ) 18, g( )

N

Together with the Taylor expansion of S1 log(1S 2) and the standard formula

1

1
@225 —yS—g

=0

this gives
ol S & 2 &pa(1E Nyea L&
+)=3 > S 5 +2+ |Im1( log(1S “)Slog(1S ))=3 > S 5 +2+log2,
which completes the proof of the proposition.

Using the formula 3(1S6) S3(6) = cot( 6), it will be convenient to rewrite the result as

3357 +33+7
kz, =1+— (log2) ,, + 2+ > 12
Sftanh > S S +4(). (2.7)
Now, take C . Replacing Q* by + inequation (2.4), we can construct yet another
associator, which we denote by «z, . . If R and R ,then gz . isunitary for the same

reason as for kz, .

Remark 2.12. Similarly to Remark 2.10, kz, ; could be obtained from z, by slicing by a character

Oof () satisfying O( ) = S(2 2)S' . Since such a character does not always extend to U( ),

to make sense of this we should have allowed in the construction of gz arbitrary finite-dimensional

representations of instead of those in Rep . Alternatively, with R fixed, both kz . and
kz, + for small z are specializations of an associator in U( x 2) constructed by treating
as a second formal parameter. But this implies that kz, . is obtained from the Taylor expansion of
kz, + at6=0 by simply taking as the argument:

k2, = —— = K& (2.8)

This also works for (R\ Q) if we consider only the components of z, . in finite-dimensional
blocks of U( x 2), which are well defined and analytic in a neighborhood of s.
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Corollary 2.13. For all Q*and ,0 C ,wehave

- 1 1
Kz, : + S Kz, . = 1+ord( )0(ord( )) 4_ 3 §+

Proof. By equation (2.8), we have

I C))

KZ, : + S Kz, . = 1+ord( )0(ord( )) -KZ, +4( 2+ord( ))'

Hence, the result follows from equation (2.7).

2.4. Detecting co-Hochschild classes

19

To see that the associators kz, . are not all equivalent, we need to see that a perturbation of the
parameter gives rise to a nontrivial 2-cocyclein . We can actually see that this is the case from

results in Appendix A, but let us present a concrete cycle to detect this.
Consider the tensor

[2l= [ ] :

(2.9)

with () and () as in equation (1.1). Every element defines a function on G such that
( , (Ad )()).Thisway definesanelementof O( ) O( ) O( ), which by slightly

abusing notation we continue to denote by . Thus, for (, , ) X X

(v )= [(Ad ) ). (Ad )L (AD )() = [(Ad )( ). (Ad )( )],

since stabilizes Z. This is a 2-cycle in the complex ~ ’ from the proof of Proposition 2.1, as

(v )S (v )+ (,,)=0

forall (, ) x .Hence,themap ,-:U( x 2) Cdefined by pairing with  passes to

H2( ). Explicitly, for — U(  x 2),wehave

v =3(0) [(ad )( ). (ad 2)( )],

where ad denotes the extension of the adjoint representation of to U( ).

Proposition 2.14. The elements ,, ,* are 2-cocyclesin . Furthermore, ,and ,, = ; 125
are coboundaries, while
y 121 == z dim
In particular, ,," and S 1; represent the same nontrivial class in H( | ).
Proof. It is easy to check that - ;4 (1 )=0forall , .As ,and - are -invariant, they

are therefore 2-cocycles in
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We have

~en( )= 58 (et =52,

SR is a coboundary. Similarly, -cu( ;) = S2 1, So that , is also a coboundary, and hence ,, =
S , isacoboundary as well.

Next, take a basis () in + and the dual basis () in &. Usingthatad acts by the scalar +
on 4, we then compute:

12

v = M@d )()d ), = (., L)y= (.0, D
= ( , ) = dimc +=§dimR
The value 1; is obtained similarly, but it also follows from the above, as 123 = 5 S 1;and o,

is a coboundary.

Remark 2.15. Let us give a di erent perspective on the above pairing and its nontriviality.

We can view the tensor (2.9) also as a function on ( /* )3 in the same way as above. Let us call
this function . Then it is again easy to check that is a 2-cycle in the Hochschild chain complex
( (, )= U HYfor =0() ( /*). Under the Hochschild-Kostant-Rosenberg map,
this cycle corresponds to the di erential 2-form associated with the Kostant—Kirillov—Souriau bracket
on the coadjoint orbit of (-, ) , which in turn defines a nonzero class in H3( /*;C) C.

We have a left U( )-module structure on O( ) given by right translations: . = () (1,
Given , We can then define an n-cocycle 7 inthe Hochschild cochaincomplex ( (, )=

Hom( ,),8)by
7 (1eeey )=8(0)( 1 2) (. ).

The Hochschild cochains act on the chains by contractions: Given 7 (, ), wehave
|- (! ) é(! )1 o - 07(11--'1 ) +1 " 1]
with the convention , =0if <9 .
Now, if and + (, )isU-invariant (with respect to left translations), then , +

is U-invariant, hence a scalar. It can be checked that if + = 0, then this scalar depends only on the
cohomology class of T. Taking += , we recover pairing (2.10): =,

2.5. Classi“cation of associators: Hermitian case

We are now ready to establish, in the Hermitian case, a universality result for the associators gz, . for
generic quasi-coactions(U( ) ,, )of(U( ) , , kz)suchthat = moduloh. Similarly
to Section 2.2, it su ces to consider the case =

Theorem 2.16. Let = < be a Hermitian symmetric pair. Assume we are given a quasi-coaction

(UC ) , , )of(U() , , kz)suchthatthenumber , @ defined byequation (2.10)is
neither + Edim , hor 2((:: ii)) dim

for a root of unity :  £1. Then there exist Q, C andH 1+ U( x ) such

that (id $)(H)=1land gz : =Ho1 Hg’llegll. Furthermore,
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(i) The number s is unique up to adding 2 ( Z), and once s is fixed, the element is uniquely

determined;
(ii) We can choose Rifandonlyif , @ isa purelyimaginary number in the interval
éi dim > dim
(iii) If Rand is unitary, then R and H can be chosen to be unitary.

We will later (Remark 2.20) slightly improve this result by showing that for any  the parameter
is independent of the choice of s.

Proof. By Proposition 2.14 and our restrictions on , we can choose Q* such that

.1 o« < .

Sstanh — 7S P =Sjtanh — dim =, @ (2.11)
We then start with H = 1 and = 0 and modify them by induction on n to have «z ;. =
Ho12 Hgi,Hg; modulo  *1.

Consider = 1. By the proof of Theorem 2.6, }(<lz) . S Wisa2-cocyclein ~ .BylLemmal?
and Corollary 2.4, we have dimH?( . ) = 1. Hence, our choice of s, identity (2.7) and Proposition
2.14implythat &) . § @ isacoboundarysothat S & . =-n()forsome  U( x ).
LettingH® =  wethenget «z,; =Ho1 HSL,H3% modulo 2.

For the induction step, assume we have kz, ; =Ho12 Hgi,Hg} modulo ** for some 1.

Then, again by the proof of Theorem 2.6,

¢ +l? S (Ho12 H§1l,2H§,11)( )

KZ,
isa2-cocyclein . On the other hand, by Corollary 2.13, for any C, we have
( +1) & (+) & 2 & S
Kz + O Kz : —stech > 2SSt o
for some C, and +(<z) e = ,(Q) : for CAs S 125 represents a nontrivial conomology

class, the value of sech is nonzero for our sand ,, is cohomologically trivial, we see that with di erent

choices of a the above di erence can represent arbitrary classes in H>( . )  C. In particular, we
can find C such that

(Hozz HSLHSHDS W =) (2.12)

forsome  U( x ).ReplacingH by (1+ ** )Hand )by )+  wethenget kz . =
Ho1 H3! H§11 modulo  *2, proving the induction step.

01,2 N
As at the step n of our induction process we only modify (5D and H () for , in the limit we
get the required and H. It remains to prove (i)—(iii).
(iii): Assume R and that is unitary. In this case, we slightly modify the above inductive
procedure to make sure that at every step we have unitarity of H and that R
Consider = 1. We found H such that gz, : = Ho12 H(?llyzHg‘,l1 modulo 2. The unitarity of

kz, - and implies then that the same identity holds for the unitary H (H H)SY2 instead of H, cf.
the proof of [NT11, Proposition 2.3].
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For the induction step, we assume that we have kz, ; =Ho12 H3L,HS} modulo  * for some

1, R and unitary H. Then we take the unique C such that

o 3 . .
(Ho12 Hgl{zHOS}l)< ) § P((ZJ') + Zsech2 5 1 S g

is a coboundary. By taking adjoints and using that (  *) = S, we also get that

S1 481 1) & +1 &~ 2 +& 5
(Hoze HGiHZD( ™S (98 z%ech” — Sy

is a coboundary. Hence, in order to conclude that Ritsu ces to show that if we have two unitaries

1and ,inl+ U(  x 2)  suchthat ;= ,modulo *!,then the element 1(+1)é 2(+l)

is skew-adjoint. But this is clear from the identity
( 1é 2) =S 1( lS 2) 2-
Then we take T satisfying equation (2.12) and replace () by () + andH by
S1/2
a1+ THy@a+ toHya+ 1) H,

similarly to the step = 1. . )

(i), (i): If kz,; =How Hg,Hy then 'S }((12) = - ex(H D). Hence, equation (2.11) is

not only su cient but also necessary for the existence of H and . Therefore, s is determined uniquely
uptoadding2 (  Z). This also makes (ii) obvious.

Next, assume iz : = Ho12 Kz : HosllvzH(?’l1 for some Q*, C and H
1+ Ul x ) . We have to show that = . Assume this is not the case.

Let 1 bethesmallestorder suchthat () ().ByCorollary 2.13,wehave z, . = «kz :
modulo  **. We claim that we can modify H so that we still have kz, ;. =Ho12 Kz : Hgr,Hpis
butH = 1modulo *. o

We will modify H by induction on toget kz . =How kz : H(?11’2H§’11 and H = 1

modulo  *1. Assume we have these two properties for some < . Then

“a(HO) = (08 0 =0,

AsHY( )= 0 by Lemma 1.2 and Corollary 2.4, there exists a central element U( ) such
that H(*D = o S . Putting H = exp(S **( 01 S o)), we see that kz . commutes with
H, .., hence we have H c HGLHPE = Kz ; - Itfollows that by replacing H by H H we get

0,12 0,12 KZ,; Mo12
kz,; =Hoi2 kz,; H3I,HZ  andH = 1modulo  *2. Thus, our claim is proved.
It follows now that ;) & (= - (H(*D). Since 7 § 8 is not a coboundary, this

contradicts Corollary 2.13. Hence, =

Remark 2.17. In view of Corollary A.5, a similar result should in principle be true at the level of the
universal enveloping algebras as well. However, since we only know that kz, . U( x )
(for 0), in the first place one has to show that kz, . belongsto ( ) ()? atleastup
to some twist.

2.6. Classi“cation of ribbon braids

We complement our classification of associators by describing compatible ribbon twist-braids, both in
the Hermitian and non-Hermitian cases.
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In the following, we always take the universal R-matrix

Rkz=exp(S ) U( ?

for(UC ) ., ka)-
Theorem 2.18. If = < is a non-Hermitian symmetric pair, then the ribbon -braids for the
quasi-coaction (U( ) , , kz)of (U( ) , , «kz,Rkz) are the elements
Exz 1= eXp(S (2 ot 1)) 1s
where ().

Proof. The fact that exp(S (2 oo T 1)) is aribbon -braid is essentially proved in [Enr07]; see

[DCNTY19, Theorem 3.8]. Hence, the elements exp(S (2 at ) 1l ( ))areribbon -braids
as well. The claim that these are the only ribbon -braids follows from Theorem 2.8.

A similar result holds in the Hermitian case, but the proof is more involved.

Theorem 2.19. If = < is a Hermitian symmetric pair, Q* and C , then the ribbon
-braids for the quasi-coaction (U( ) , , kz :)of(U( ) , , kz Rkz)aretheelements

Exz, 1=exp(§ (201+ 1)§ (+) 1)1,

where ().
Proof. The fact that the element E = Exz, . =exp(S (2 nt 1) S ( + ) 1)isaribbon -braid,
and hence that the elements E(1 ) ( () are ribbon -braids as well, follows again from the

proof of [DCNTY19, Theorem 3.8].

Let E be another ribbon -braid. The same argument as in the proof of Theorem 2.8 shows that
E@ =1 for an element (). We now use the same strategy as in the proof of the last
statement of that theorem to get more restrictions on g. Namely, we replace E by E (1 ~ S!) to geta
ribbon ~ -braid, where ™ = (Ad ) ,andthentwistE and kz . further by an element H to get rid

oftheterms and in ,212) . ; see equation (2.7) and recall that by Corollary 2.13 identity (2.7) is still

valid for kz, . . Note fora future use that by the proof of Proposition 2.14 we can take H of the form

H=1+ ( ,+ ) (2.13)
for appropriate constants a and b. Thus, our new associator = Hgi12 kz : H §lle gll satisfies
= 1Sotanh — (1S ) +4( 2). (2.14)

Looking at the order one terms in equation (1.5) and applying $ to the Oth leg, instead of equation
(2.2), we now get

EM=8 +1 +(d Ad)( )S
+tanh — ( +$  $) +tanh - (id Ad )( +§ %),

where = ($ id)(E®) and we used that ,* = ,, .AsE() U(  x ), this means that
Ad Sid tanh - id tanh - Ad =0 on .. (2.15)
Hence, Ad = * idon ., whichimpliesthat =exp(S ) for some ()= ().
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Without loss of generality, we may assume that = , and then we want to prove that our original
E coincides with E. It is more convenient to modify E in the same way as E , that is, by replacing it by

HE@QL  Shad “)(H)S =exp(S Qu+ )8 0,

where we used that H has the form (2.13). 3
Thus, our new setup is that we have two ribbon ™ -braids E and E, with ™ = (Adexp(S )
with respect to an associator ~ satisfying equation (2.14), E (9 = E® =1,

ED=8@2,+ ,+ O ), (2.16)

and the goal is to show that E = E.
We will prove by induction on nthat E( ) = E( ). Consider the case = 1. Put

; =tanh — d = +S s,
) an 5 an

By the argument in the proof of Theorem 2.8, we have E() = E® +1  for some ()=C .
Putalso =E SE@,

Using equation (2.14), formula (1.5) for E, modulo 2 and terms depending only on Rkz and
becomes

(1+ E@+ 2E@)p=(1+ (128 1)1+ EW+ 2E@),
x(id id T)AS (a2t o))

where we again used that 1 = S 1. We have a similar formula for E . Taking the di erence and
comparing the coe cients of 2, we obtain

02= 02+( 125 15) 2S 2(d id ) 12+ 4,
Using the identity
;S )S@d ~); + )=0, (2.17)
which is an equivalent form of equation (2.15), we can write this as
012= 0252 122+ 12 S 120 2] (2.18)
Similarly, formula (1.6) for E, modulo 2 and terms depending only on Rz and , becomes
(1+ E®+ 2E@) = 1+ ;51,23 1o 1+ E®+ 2E@),
x(id id T)AS Gzt )@+ ED+ ZEDi(id T 7)1+ Do,

and we have a similar identity for E . Taking the di erence and comparing the coe cients of 2, we
obtain

012= 02+ 01+ 5125 1, (1+ 2)S 2%id id ") 12+ 1))

2
SGd id )G a2+ ) 1t (a+ D T T) S+ OB HED 1+ 12
Usingthat = 7 is the identity on  + and thatad ; = Sad ,o0n ., we can write this as

012= 02+ 01+ (125 1,)(1+ 2)S 2(id id )G 12+ 1,)

S(id id ") 12+ 1) 1+ 2BG+EY 1+ 12,
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and then, using again equation (2.17), we get

012= 02+ 0152,(1+ 2)+[; 125 1, 2]+ zEéll) +Eélz) 1+ 1 2. (2.19)

Subtracting equation (2.19) from equation (2.18), we obtain
() =23, 1SEY 28EY 1S 1.

By equation (2.16), this means that

cH( )= @420+ o+ W) v @+ v W) S g
As C , we can also write this as

~H( ) =@+ 20+ )1+ Q2+ +2 D)8 o

On the other hand, a straightforward computation shows that the right-hand side of the above identity
is the coboundary of

L -
20+ ;0% g1+2 P 518 o1

As HY( . ) =0 by Lemma 1.2 and Corollary 2.4, it follows that there exists S in the center of
U( ) such that

_ & 1 &
= 0SS 0*t25; 0%t ot g1t2 @518 01

The only consequence of the above identity that we need is that U( X ). By looking at
equation (2.18), we see that this implies

S 1 1=(GSyHr ~1 1SG+Yl 51 1 uC x ).

AsY is a scalar multiple of Z and ad  acts by nonzero operators on ., this is possible only if = 0.
This shows that E () = E®,

The induction step is similar. Assuming that E( ) = E() for <  for some 2, we have
EC)=EC)+1  foran element ()=C .Then,with =E(*) SE(*D comparing the
coe cients of *!in equation (1.5), we get the same identity (2.18). If we do the same for equation
(1.6), the only di erence from equation (2.19) is that we do not get the term 1 , at the end. But this
has almost no e ect on the rest of the argument; we just have to remove the terms 1 2 and ¢ ;1 inthe
subsequent identities. Thus, we get = 0.

Remark 2.20. Theorem 2.19 implies that in the Hermitian case the ribbon twist-braids contain complete
information about the associators. Namely, assume that kz, ; = Ho12 kz, ; H5L,HGY for some

01,2
H 1+ U( x ) . By equation (1.7) and Theorem 2.19, it follows that

Hexp(é (201+ 1)S ( + ) 1)(id )(H)él:exp(g (201+ 1)S ( + ) 1) 1

for some ().Since ($ id)(H)isa -invariantelementofU( )and isaninner automorphism
defined by an element of K, we have (($ id)(H)) = ($ id)(H), and then by applying $ to the Oth
leg we get

exp(S S (+))=exp(S S ( + )).

This impliesthat = +2 for some Z,and =
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3. Interpolated subgroups

In this section, we fix an involutive automorphism O of suchthat < isan irreducible Hermitian
symmetric pair. We are going to fix a Cartan subalgebrain  and then apply the results of the previous
section to particular conjugates of 0 and true coactions of a quantization of (U( ), ). Along the way,
we will study a distinguished family of coisotropic subgroups of U that are conjugates of . The main
result is Theorem 3.17, where we in particular relate the induced Poisson structures on the associated
homogeneous spaces to a Poisson pencil for the Kostant—Kirillov—Souriau bracket which appears from
the cyclotomic KZ-equations.

Throughout this section, we use the subscript O for the Lie algebra constructions we had for . Thus,

={ lo( )=S }, ()

3.1. Root vectors and Poisson structure

Let us quickly review a standard Poisson—Lie group structure on U making  a Poisson—-Lie subgroup
(for Hermitian symmetric pairs).
Let beaCartansubalgebraof containing ( ).Then iscontainedin ,and its complexification
is a Cartan subalgebra of .

Recall that aroot is called compact if , and noncompact otherwise. As is the centralizer
of ( ), arootiscompact if and only if it vanisheson ( ). 5
As in Section 2.3, we fix ( )suchthat ( , ) =S %2 Letus fix an ordered basis in ,

withS  being the first element of the basis and consider the corresponding lexicographic order on the
roots. Then, in this order, any noncompact positive root is bigger than any compact root. Furthermore, the
noncompact positive roots are totally positive in the sense of [HC55], meaning that if 2 is a noncompact
positive root, 1,..., arecompactrootsand9g1,...,9 areintegerssuchthat2 =2+ _,9 s
aroot, then 2 is positive.

‘We denote by  the set of all roots and by * that of positive roots. We further denote by . (resp.

> ) the set of positive (resp. negative) noncompact roots. Let = { } - be the set of simple positive
roots. Recall that we denote by & C the eigenspaces of ad  corresponding to the eigenvalues
+ . Itis clear from our choice of the ordering that

+
|
x

11

+ S
Since 2 is not an eigenvalue ofad ,we have [ 4, 4] = 0. It follows that = + +isa
parabolic subalgebra of . As acts irreducibly on / &, this parabolic subalgebra is maximal.

Hence, it corresponds to a maximal proper subset of . This set must consist of compact roots, and
hence its complement consists of one noncompact root. We denote this unique noncompact simple
positive root by 4. It corresponds to the black vertex in a standard Vogan diagram of O.

For every root , let be the element dual to the coroot = ﬁ so that we have

(s)=0G%) (% ),

where (-, -) is the scalar product dual to the restriction of (-,-) to . For positive roots , we choose

root vectors such that the antilinear involution for satisfies
2
( ’ ) - (,
Then[ , ]= ,andweput g =
Let
= ( +s) 05y (0
- 2 S ] - 2 S 1]
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and consider the antisymmetric tensor

(0p4
N—r
N

== (, )
Note that we can also write

s s sy 2 @

>0

Then =+  (with  defined by equation (1.1)) satisfies the classical Yang—Baxter equation, and
becomes a Lie bialgebra with the cobracket

84 )=1[= ()]
Thus, U becomes a Poisson—-Lie group with the Sklyanin Poisson bracket
{#, #)sc =9 (FERS=N (x4 #),

where m is the product map, and for and # () we put

( @H()=—# " )l ( P9()=—# Ol
Note that if we as usual view and U as sitting inside U( ), then we can write the Sklyanin bracket as

{(#. #8}s()=# #[=. 1 ( ., #.,#% 0()).

The Lie algebra s the intersection of  with a parabolic subalgebra of , namely, = Lt
is well known that this implies that  is a Poisson-Lie subgroup of U.

3.2. Satake form

We will have to conjugate in order to go beyond the Poisson—Lie subgroups, making it closer to
the coisotropic subgroup associated with symmetric pairs [FL04]. In order to do so, let us review the
Satake form of involutions.

For ?, we denote by ( thesubset{ | @ } . Assume is a nontrivial involution on
such that its extension to  leaves globally invariant. We write End( ) for the endomorphism
dualto | .
Definition 3.1. We say that is in maximally split form, or in Satake form, with respect to ( , *), or
that ( , *)isasplitpair for , if there exists ?satisfying the following conditions:
1. + ( +) = + Z ( ,
2. =idon forall T Z (.
The above set X is then uniquely determined, representing the black vertices in the corresponding
Satake diagram. Then there exist unimodular C such that
()= () ( )
Moreover, there exists a unique Dynkin diagram involution A such that
()=S (A() ( ) 3.2
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with ( the longest element of the Weyl group associated to X. This involution leaves the set X globally
invariant. See [KW92] and [Kol14, Appendix A] for details.
Put

?ns

{ 2 |A()= and( , )=Oforall @ },

which corresponds to the A -stable white vertices not connected to any black vertices in the Satake
diagram. We then put

={ %l(C , ) 2Zforall @ %s}.

We also put

z={ v JA() and( , ( ))=0}
It can be shown that this is the set of white vertices not fixed by A such that, if ~ is the corresponding
restricted root, then 2" is not a restricted root; see [Ara62][Hel01, p. 530].

We will use the following definition from [DCNTY19].

Definition 3.2. We say that a Hermitian symmetric pair < is

€ of S-type, if % ,
€ of C-type, if there exists 2\ ( %) such that A ()

See [DCNTY19, Appendix C] for a concrete classification of the Hermitian symmetric pairs into
these types. Recall that the restricted root system is always of type C or BC in the Hermitian case
[Moo64, Theorem 2]. By a case-by-case analysis (see, e.g., [OV90, Reference Chapter, table 9][Hel01,
Chapter X, Table VI][Kna02, Appendix C]), one sees that we are in the S-type case exactly when the
restricted root system is of type C, while we are in the C-type case when the restricted root system is of
type BC.

Moreover, by [DCNTY 19, Lemma C.2], in the C-type case there exists exactly one A -orbit of the form
{B B=AB}InA( %).Wecalltheroots yand # distinguished. By the same lemma, in the S-
type case the set % consists of one root x, which we again call distinguished. Note that we use the same
label o for one of the distinguished roots as for a noncompact root in Section 3.1. This will be justified in
Proposition 3.5.

We now recall the construction of a cascade of orthogonal roots in the setting of Section 3.1. Let 2;
be the largest in our lexicographic order (hence necessarily noncompact) root of (® = and let (D
be the centralizer of . I1f @ , then let 2, be the largest root such that ), () and let @ be
the centralizer of { ),, ),}. Continuing this until we have @) , We obtain a strictly decreasing
sequence of Lie subalgebras ( () -, and noncompact positive roots 2y, ..., 2. Furthermore, these
roots form a maximal family of mutually orthogonal noncompact roots, and they are mutually strongly
orthogonal, that is, 2 + 2 is never a root; see [Kna02, Lemma 7.143].

Let * consist of all with 2 () = 0 for all i. Let S be the complex linear span of
{ y | =1,..., }.Thenclearly = * S, andhence for the dual spaceswehave = ( *) ( ).
Using this decomposition, we will often think of the 2 as elements of ( S) .

On the other hand, let S be the complex linear span of { ) S § | =1,...,} Then also

*  SisaCartan subalgebra of . This is a version of Harish-Chandra’s construction of maximally

split Cartan subalgebras.
To relate the two Cartan subalgebras, we consider the (partial, unitary) Cayley transform Ad 1, where

1=exp — (3§ +,H)
=1
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of. [Kna02, Section VI.7]. Then (Ad 1)( y)= ) S & (see Lemma3.9below),so (Ad 1)( 5) =
S while Ad 1 actsasthe identity on *. We then have the following concrete presentation of maximally

split involutions.

Proposition 3.3. The involution = (Ad 1)§1 0 (Ad ;) isin maximally split form with respect to

(, *),withthe associatedset ={ ?]| *1.

In order to prove this, we will need some detailed information on the restricted roots. We will follow
closely the treatment of Harish-Chandra in [HC56]. §

For /, , let us write / when they restrict to the same functional on . For each i, let
denote the set of compact positive roots  such that %2 . Similarly, let C be the set of noncompact
positive roots 2 such that 2~ 32

Next, for < @let denote the set of compact positive roots  such that %(2 S2).LetC
denote the set of noncompact positive roots 2 such that 2 %(2 +2).

Finally, let Cy = {21,...,2}, and ¢ denote the set of positive roots  such that 0, that
is, *, or equivalently, is orthogonal to 2;,...,2. The set ¢ consists of compact roots, as
{24,...,2} isamaximal family of mutually orthogonal noncompact positive roots.

Proposition 3.4. The set * is partitioned by the subsets Co, o, (C)_;, ( )., (C )1 < ,and
( )1 < .Moreover,

(i) If o0, then is strongly orthogonal to 2 for all i;
(ii) Forevery 1 , the map 2 S 5 is a bijection from  onto C;
(iii) Foralll < @ ,themaps 2S and 2 + arebijectionsfrom  onto C .

The proof is practically identical to that of [HC56, Lemma 16], we therefore omit the details.

Proof of Proposition 3.3. First of all, observe that by construction =idon *and = Sidon S This
already implies that

Tz { >0 ()=} T (D

Next, by Proposition 3.4, every positive root restrictsto 0, 2, %2 or %(2 +2 ) forsomei,jwith < @
From this we see that the intersection of the restrictions of *and ( *) is at most {0}. In particular,
if * (%), then restricts to 0. Decompose such an into a combination of the simple roots
and restrict to  S. Since no nontrivial sum with nonnegative integral coe cients of the vectors 2 , %2
and %(2 +2) ( < @iszero, it follows that decomposes into a combination of the simple roots that
restrict to O, that is, * Z (. This proves property (1) in Definition 3.1.

To establish property (2), take T Z (,thatis, isa positive root restricting to 0. This root
must be compact, since {24, ..., 2 } is a maximal family of mutually orthogonal noncompact roots, and
it is strongly orthogonal to 2 by Proposition 3.4 (i). Therefore, and  centralizers g + .
Hence, acts trivially on

Refining the observation after Definition 3.2, we have the following.

Proposition 3.5. With the above notation, the roots 21, . .., 2 are all of the same length. The restriction
map | ¢ defines a bijection between the A -orbitsin \ ( and a basis of the restricted root
system. This basis and the distinguished roots are concretely described as follows.

€ S-type: The restricted root system is of type C , consisting of {+ %(2 +2)}< {£ 2}, withthe

basis{%(z S2.1)} fll { 2 }. The unique noncompact root # is distinguished, and it coincides
with 2 .

€ C-type: The restricted root system is of type BC , consistingof {+ 3(2 £2 )} < {x 2} { 32},
with the basis {%(2 32 +1)} fll { %2 }. The unique noncompact root # is distinguished,

and its restrictionto ° is %2 . The second distinguished root is the only other simple root 4 that
restricts to 12 .
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Proof. Observe that since S ( Z ( foranyroot ,wehave ( )+A () Z ( byequation
(3.2). It iswell known and not di  cult to see that this implies that the restriction map | s defines
a bijection between the A -orbitsin  \ ( and a basis of the restricted root system.

Next, by a case-by-case analysis (see, e.g., [Kna02, Appendix C] again), we know that the restricted
root system is of type C in the S-type case and of type BC in the C-type case. By counting the number
of roots and Proposition 3.4, it follows that the restricted root system is {+ %(2 +2)} {2}
(S-type) or {£3(2 +2 )} {£ 2} {x 22} (C-type). Now, on the one hand, the restriction of

\' ( gives a basis of the restricted root system. On the other hand, the nonzero restrictions of the
positive rootsisthe set {3(2 £2 )} < { 2} (S-type)or{3(2 +2)}< {2} { 32} (C-type).
From this we may conclude that the basis we get by restriction must be {%(2 S2.) 3 {2} (s
type) or {%(2 S2.1)} fll { %2 } (C-type). Since this is a basis of root systems of type C or BC , it
follows that the roots 24, ..., 2 are of the same length.

It remains to identify the distinguished roots. Consider the unique noncompact root 4 . ts
image in the restricted root system must be either 2 (S-type) or %2 (C-type). Indeed, a noncompact
positive root can only restrictto 2, 32 or 2(2 +2 ) ( < @by Proposition 3.4, and the claim follows
by taking the intersection with the image of the simple positive roots.

Consider the C-type case. By the remark after the definition of %, in this case the distinguished roots
have the property that if %is their common restriction, then 2%is still a restricted root. Since %must be
an element of the basis {%(2 S2.1)} fll %2 } of the restricted root system, we have %= %2 . We
already know that 4 restrictsto %2 ,S0 # isone of the distinguished roots, and then the otheris A ( #).

Consider now the S-type case. Again, we already know that the restriction of 4 is2 . By Proposition
3.4, the only positive root restricting to 2 is 2 itself. Hence, » =2 and A (2) =2 . It remains to
check that 4 is the unique element of %. The equality A (2 ) = 2 means that 2 is not connected by
an arrow to any other vertex in the Satake diagram. It also needs to be separated from the black vertices,
as 2 isorthogonal to (. Looking at the Satake diagrams, this is already enough to conclude that 2 is
the distinguished vertex, except for the ClI case . But in this remaining case we have * =0, and
the restricted roots are the same as the entire roots. Thus, 2 represents the unique long simple positive
root, which is indeed the distinguished root.

Corollary 3.6. In the S-type case, we have

= — ) y
2

aswellas =2/ ~for and = 2/ inall other cases.
Proof. Since in the S-type case the compact positive roots restrict to 0 or %(2 S$2)( < @ such roots
vanishon _, ) .Therefore, _, ) ( ). Aswe musthave 2 ( ) = forany j, we get the
formula for  in the formulation.

A case-by-case verification shows that 2 = 4 is a short root in all cases except for , while
in the last case it is a long root of length 2. Since the roots 21, ...,2 are all of the same length and
( , ) =S 52 we then get the formula for

3.3. A family of coisotropic subgroups

Now, we are ready to introduce a one-parameter family of involutive automorphisms interpolating
between 0Oand = (Ad 1)S! 0 (Ad 1), which define coisotropic subgroups of U.
For R, let

czep — (9 + ), c=(Ad +)  (Ad )%
=1

sothat o= and 1 =0.
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Definition 3.7. We will write * « for = «& 18+ and denote its Lie algebra by «.
Our first goal is to understand how the r-matrix (3.1) transforms under .

Proposition 3.8. For all R, we have
(Ad +) %(9) Scos - = +
For the proof, we need to introduce a more convenient basis for computations. We will write
=S
to adapt to the conventions of [Bou07, Tit66]. Note that then
=Ss and [ ,5]=S

Letuswrite[ , gs]=' s +swhen ,%and + %areroots. We then have ' s =' g sggand
s, =5 ( +1), s = 41, (3.3)

where p, resp. g, is the largest integer such that %t ; , resp. %S , is aroot [Bou07, Section VI11.2.4].
(In fact, if we were more careful in choosing root vectors, we could arrange ' ¢ to be real, with the
signof ' ¢ described in [Tit66].)

Recall from Proposition 3.4 that ™ is partitioned by the subsets Co, 0,(C)_;,( ), (C )1 <
and ()1 < . We will consider these subsets one by one.

We start with Cy. For each i, put

D= y 9 and E = ) IS S) -
Lemma 3.9. The map Ad « acts as follows:
— Ssin — in — E + — .
D D, E cos > E Ssin > ) ) sin = E +cos > )

Proof. Since 2 is strongly orthogonal to 2 for @ , we have

(g +))D =0, (s +))E =2, (s +,y), ) =S2E.
=1 =1 =1
Since
_ < . 0S8/ _ cos/ Ssin/
F e ST —1( SIS )| Py 0 T sin/ cos/ (3.4)
we get the result.
As Ad « acts trivially on the orthogonal complement of { ,,,..., ) } in , this lemma already

describes the action of Ad « on the Cartan subalgebra.
Lemma 3.10. If o,then Ad « actstriviallyon . and
Proof. This follows from Proposition 3.4 (i).

Next, on the root vectors of C and  we have the following description of Ad «.
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Lemma 3.11. Assume 1 ,and2 C and aresuchthat2+ =2 .ThenAd =« acts as
follows:

) cos )é'_),g)sinj 5, s ').@sin - )+cos - s,

and we have |' ) g |=1.

Note that we also get formulas for the action on &) and by taking adjoints.

Proof. From Proposition 3.4, we seethat2+2,2S522 and2+ 2 for @ are not roots. Hence,

# $
(3 +))) =[5 .H)]1="35,)35 =")98 s,
=1

and' g )'y.s =Sland| g ,|=1byequation (3.3). Similarly,2 + and +2 for @ are
not roots, hence

# ) $ )
(5 +Hy)'ys s =[).,")s s1=S),.
=1

The lemma follows by again using equation (3.4).

Considernow2 C ,andput =2S2 . By Proposition 3.4 (iii), we also have roots2  C
and such that

PutF(2)="¢ )" ¢ ).F()="% . '), ,andtakethe elements
D=)SF2 s, B=)+F2 s, D= SF)s, E= +F)s .

Lemma3.12. If2 C and aresuchthat2S =2 , then the map Ad « acts as follows:

D b, D D, B cos7E)é"),g)sin7E,
E 'y & sin — + — E,
) .9 sin = B +cos >
and we have |F(2)| = |F( )|=1") 5 |=1
Proof. First of all, observe that
282= 282 =, 2 S2=§, 2 S2 =5 . (3.5)

From Proposition 3.4, we see that S2 S 2 and 22 S 2 are not roots, hence |' y ) | = 1 by the second
identity in equation (3.3). For similar reasons, the numbers ' y &) ,"' ) 5 and' ) s are of modulus
one, and by the first identity in equation (3.3) we have

)99, THe ey, =) 9 9s =)y g8 =SL (3.6)
We claim that also the following identity holds:

S5 &, 8 ) (3.7)

v
7
@
=

1
»
@
w
)
<
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Indeed, the expressions on both sides are precisely the coe cients of & in[ g ,[ 5, )]] and
[ 5.,[ 3% ,)l]. BytheJacobi identity,

[ 5 .08 . H)11S[s.[5.H11=0).[%. 9]l

Butwe have [ 5 , s ] = 0 by strong orthogonality. Thus, our claim is proved.
Now, a simple computation using equations (3.5)—(3.7) gives

# $ # $
(s +))D = (s +,)D =0
# R o i $
2109 vy )G =2y §E, 408 +y)'y §E =8S2B.

The lemma follows again from equation (3.4).

Proof of Proposition 3.8. We have

-=3

—~
U
U
U
~

We will use the partition of  * into the subsets Co, 0, (C)_;,( ), (C )1 < ,( )1 < and
check how the corresponding components of r transform under (Ad «) 2.

We start with 2 = 2 Cp. Up to the factor S S14-22 0 ) ) the corresponding component of r is
D ESE D.BylLemmas3.9, itsimage under (Ad «) 5 modqu + , 1S

cos —- (D ESE D),

as needed.

Next, by Lemma 3.10, if o, then the corresponding components of (Ad «) 2(=) and r are
already in :

Consider 1 , and take roots 2 C and relatedby 2=2 S .Since2=S |, these
roots have the same length. Therefore, up to a factor, the component of r corresponding to 2 and is

9 1S) 9§+t S 5 -
By Lemma 3.11, its image under (Ad «) 2, modulo + , IS
2 &ain2 - & “ ) — (o« & -
cos™ — Ssin 7 (s S,y ¢g)=cos 5 (s H»SHy 9).

This is equal (up to the same factor as before) to the contribution of 2 and to cos( )= modulo
+

Considernow 2 C .Let2 =2 +2 S2. Using equation (3.6), we get from equation (3.7) that
"§)'8 ) ="9% )" § ,,thatis, F(2) = F(2 ). We then have

D §ESE DB+D BSEH D =2F2)() $§Ss& H+) &S )

The roots 2 and 2 are of the same length since2 = S y ) 2. Therefore, up to a factor, the component
of r corresponding to 2 and 2 is

D BESE D+D BSH D.
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Note that it is possible that 2 = 2 , but this only changes the overall factor. By Lemma 3.12, the image
of the above expression under (Ad +) 2, modulo + , IS

cos — (3 B SE B+O BSH D),

as we need.
Finally, take .Let =2 S2 S .Then,similarly to the previous case, the contribution of
and toris, up to a factor,

D ESE D+D ESE D.

By Lemma 3.12, this expression transforms under (Ad «) 2 into an element of +

Corollary 3.13. For every R, the subgroup * « of Definition 3.7 is a coisotropic subgroup of (, =),
that is,

80/((*) * + *

It is a Poisson-Lie subgroup if and only if is an odd integer.

Proof. By definition, we have « = (Ad ~&)( ).Since isa Poisson-Lie subgroup of (,=), * «
is a Poisson—Lie subgroup of (, (Ad +351) 2(9). As

(1s)

2 (Ad s 20 -+ -

=S cos
this shows that * « is coisotropic in (,=).

Assume now that * « is a Poisson—L.ie subgroup of ( ,=) for some . Since * + has the same rank as
U, it follows that » must contain the Cartan subalgebra (see, e.g., [Sto03, Proposition 2.1]). Therefore,
»=(Ad +5) 0 (Ad «51)>! acts trivially on . From Lemma 3.9, we see that this is the case if

and only if sin(@) =0, thatis, isan odd integer.
Assume that indeed =2 +1 forsome Z. In the S-type case, when the sets C and  are empty
for 1 , we see from Lemmas 3.10 and 3.12 that $ = ,so*« = is a Poisson-Lie subgroup.

Consider the C-type case. If n is even so that cos(@) = +1, we see from Lemmas 3.10-3.12
that $= ,so*« = is again a Poisson-L.ie subgroup.

Assume now that n is odd. Then sin(@) = +1, and we see from Lemmas 3.10-3.12 that ¢ is
spannedby , + ( 0, v (2 C,1 Jand + ( ). Moreover, by Proposition 3.5,
the nondistinguished simple roots in -\ ( lie inthe sets | .1, while the distinguished roots satisfy

# C and . We conclude that we have « € for the nondistinguished simple roots

+ Cand . €. It follows that if is the parabolic subalgebra defined by the subset
\{ 4} of simple roots, then . We have a Dynkin diagram involution A mapping \{ 4}
onto \{ &}. Thenthe corresponding automorphismof maps onto = + ..Since =
is a maximal proper Lie subalgebra of , it follows that is a maximal proper Lie subalgebra of
Hence, = «,and therefore * « is a Poisson—Lie subgroup of (,=).

Remark 3.14. We see from the above argument or directly from Lemmas 3.9-3.12, that (Ad «)( ) =
if and only if 2Z in the S-type case and 4Z in the C-type case.

We finish this subsection by exhibiting generators of €.

Proposition 3.15. If R\ (1+22), then the Lie algebra ¢ is generated by the following elements:

, + for (> + () for the nondistinguished roots \' (, plus the following
elements:
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€ S-type: + ( )S & ,where 4= tan(—);
€ C-type: ++ ( )and ++21 (), where + = Scot(5( S1)).

Proof. We denote by « the Lie algebra generated by the elements in the formulation. For = 0,
the generators of ¢ are the adjoints of the generators of  from [Kol14, Lemma 2.8]. Since s
-invariant, we therefore get o = , thatis, the proposition is true for = 0. In order to prove it for all

R\{1+2Z}itsu cestoshowthat « = (Ad +)( o).
We will check how Ad « acts on the generators of . By definition, Ad « is the identity map on
= *. By Lemma 3.10, it is also the identity mapon . for ( 0-
Next, consider a nondistinguished root \' (. Then . +1 for some 1 S1. As
=(Ad &) O (Ad 1), fromLemma3.12weseethat (D) =D and (E ) = SE . It follows that
( )=SF( ) s ,and therefore,

+ ( )= + ( )=D.

By Lemma 3.12, Ad « acts trivially on this element.

It remains to understand what happens with the generators corresponding to the distinguished roots.
Consider the S-type case. Then the distinguished rootis 4 = 2 . By Lemma 3.9, we have (D) = SD
and (E)=E,hence ())=S g .Therefore,

By Lemma 3.9 we then get

(Ad (. + ( ))=cos — ( + ( ))Ssin7 )

which is exactly the remaining generator of « multiplied by cos(%).

Consider now the C-type case. In this case, the distinguished roots are 4 C and & .
Generally, if 2 C and are such that 2+ = 2, then by Lemma 3.11 we have ( )) =
s ) .8 & - Applying the same lemma again, we get

(Ad )( )+ ()))= cos o Ssin - )+ cos o +sin — ().

For 2 = 4, the right-hand side is, up to the factor cos(%) ésin(%) =8 2sin( (*fl)), the generator

of « corresponding to . We similarly get

(Ad «)( + ( )= 2cos (431) S 2sin (481) ( ),
so again we see that for = 4 the right-hand side is, up to a factor, the corresponding generator of «.
Thus, the identity « = (Ad +)( o) is proved.
Definition 3.16. Denote by + the subgroup =(Ad «z)( )ofG.

3.4. Coactions of quantized multiplier algebras

Let us relate the computation of the previous subsection to the associators from Section 2.3.
Given a reductive algebraic subgroup H (which will be  +) of G, consider a coaction (U( ) , )
of a multiplier Hopf algebra (U( ) , ). By Lemma 1.1, if and both equal modulo h,
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they can be twisted to . We will assume that this can be done by elements satisfying extra properties.
Specifically, assume there exist F~ U( x ) andG U( x ) such that

GO =1, (id 9 (0 =1, =G ()G, (3.8)
FO =1, ($ id)(F)=(d $(F)=1, =F ()FS, (3.9)
F=1+ —+4(?), (3.10)

(d HYFEHA FHE D idDF)= ke (3.11)

Weremind that kz = ( 15, ,3) ()3 is Drinfeld’s KZ-associator for G. Then by twisting
by (F S, G31) we get a quasi-coaction (U( ) , , )of(U( ) , , kz)andwecantrytoapply
the results of Section 2.

Theorem 3.17. Let < be a Hermitian symmetric pair, and let « be as in Definition 3.16 for some

R\ (1 +2Z). Assume we are given a coaction : U( +) U( »x ) of a multiplier
Hopfalgebra (U( ) , ).AssumealsothatthereexistF U( x ) andG U( =x )
satisfying conditions (3.8)—(3.11). Then there exist unique « R and C such that the
coaction is obtained by twisting the quasi-coaction (U( «) , , kz :)of (U( ) , , «kz)-

The parameter « is determined by

*

sin — =tanh 3.12
in - > (312
If, in addition, F and G are chosen to be unitary, then R

Here, kz . is defined for the Hermitian symmetric pair » < as in Section 2.3, using the

element « = (Ad +g1)( )of («).We will give examples of coactions satisfying the assumptions
of the theorem in Section 4.
We will need the following lemma for the uniqueness part.

Lemma 3.18 (cf. [Dri90, Proposition 3.2]). Assume we are given a homomorphism  : U( )
Ui x ) andtwo elements F,F  U( x ) satisfying equation (3.9) and the identity

d HFSHE FSH(F 1( idF)=Gd HFSHE FSHF  1(  id(F),
(3.13)

defining a G-invariant element of U( 3) . Then there exists a unique central element5 U( )
such that 5 = 1 modulo h and

F =F( 5 (5°5.

If, in addition, F and F are unitary, then u is also unitary.

Proof. To be able to use an inductive construction for u, itsu ces to show thatif F = F modulo *!
then there exists a central element U( ) such that

FOD=p(Dy 141 § ().

By considering the order + 1 terms in equation (3.13), we get that the element =F ( *1) SE(+D)
satisfies

d ) )+1 S 18( id)()=0.
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This means that S is a 2-cocycle in the complex ~ =~ from Section 2.1. Furthermore, F Sip
commutes with the image of , hence S also commutes with the image of . Therefore, S is a 2-cocycle
in the complex = . By Proposition 2.1, the cohomology of is , and then the cohomology

of is( ) .Inparticular, H*( ) = 0, which implies the existence of T.

Assume now that we have two central elements u and 5 with the required properties. Consider the
central element! =55 U( ). Then! = 1modulohand (!)=1! !.Assume! 1 and take
the smallest ~ 1suchthat!() 0.Then (1())=1() 141 10) hence!() . Butasvis
central, we must have ! () (') = 0, which is a contradiction. )

Finally, if F and F are unitary, then (5°!) has the defining properties of u, hence (55!) = 5.

Proof of Theorem 3.17. Taking =« R defined by equation (3.12), let us first prove the existence
of . By twisting the coaction by (FS%,G°), we obtain a quasi-coaction (U( «) , , ) of
(U() ., kz),where

= ([d )SH(L FIH( OEG H=@d NSHL FIG (o)
and hence

B =822 +-0u(GY). (3.14)

Let us use the subscript  for the constructions we had in Section 2 applied to the pair + < . By

Theorem 2.16, in order to prove the existence of ,itsu cestocompute «, @ .

Since « is a cycle in the chain complex ~‘ , the term - ¢4 (GW) in equation (3.14) does not
contribute to the pairing. By Proposition 3.8, we have

=Scos E(lé ) (Ad +&) 2( o« o+ ..

Wealsohave == +S S modulo chence (Ad «&) 2(3)= +*S  Smodulo « .
Therefore,

2
As « centralizes «,anycochaininl  « +1 « pairs trivially with  «. Hence,
.1 < .
1 - - + S
. @ =83sin — . 78,0
By Theorem 2.16 and identity (2.11), it follows that (U( «) , , ) is obtained by twisting the
quasi-coaction (U( +) , , kz - )forsome C ,andif, inaddition, F and Gare unitary,
we can choose R .
Assume now that the coaction : U( ) U( = x ) is obtained by twisting the quasi-
coaction (U( «) , , kz : )of(U( ) , , kz) forsome other Rand C . Let

(F ,G) be a pair defining this twisting. By Lemma 3.18, we have F =F (5 5) (S)S{for a central
element5 U( ) such that 5 = 1 modulo h. But then the pairs (F ,G)and (F, (1 5°1)G) define
the same twistings. In other words, without loss of generality we may assume that F = F. Then the
quasi-coaction (U( =) , , kz : )isobtained from (U( ) , , kz ) by twisting with
(1,G51G). By Theorem 2.16, this impliesthat = « and =

Remark 3.19. Using isomorphisms and twistings that are not trivial modulo h, we can pass from
« to its conjugate by an element . Namely, the conjugation by Ad in the Oth leg
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transforms the quasi-coaction (U( «) , , kz :)of (U( ) , , kz) into the isomorphic
quasi-coaction

U =S J(Ad ) (Ad)SL(AD ol kz ;)

of (U( ) , , kz),and then the twisting by 1 Ul =« S1x ) gives the quasi-coaction
U «SH ,, kz :)of (U() , , kz), where kz . now denotes the associator
defined by the symmetric pair (Ad )( +) <

Before moving on to the next part, let us explain some geometric structures motivating the above
computations.
Starting from the KZ-equations, after fixing a twist F satisfying equations (3.9)—(3.11), an associator

U x 2 defines an associative product onO( / ) =0() ; see [EEO5,
Section 6]. Moreover, the algebra (O( / ) , ) becomes a comodule algebra over the quantized
function algebraO ( ), the restricted dual Hopfalgebraof (U( ) , ). Thisstructure corresponds
to the module category ((Rep ) , ) under the Tannaka—Krein type duality for module categories
and coactions.

To be more precise, given an element uc x 2 suchthat (U( ) , , )isa
quasi-coactionof (U( ) , , kz),wedefine# # by

# #, =4# #HF ()& id() ( UC).
Aswe have F(D S Fz(ll) = =, the corresponding Poisson bracket
.1 -~
{# #} =lim—(# #S# #)

is characterized by

% ) o &
{(#.#} ., = #4 #=()S ()& i PSS ),
Ifwehave =Hgg H§11,2H§’11withH 1+ U( x ) , the invertible transformation Gy

of O( / ) characterized by
Gi(#), = #,($ id(H)

satisfies Gy (#  #) = G (#) & (%), that is, we get isomorphic deformation quantizations from
twist equivalent associators. From this we obtain { #, #} = {#, #} forsuch and
Combined with the identification of H*( ), we obtain a decomposition

{#, #} ={# #} +04, #}s, 3.15)

for some complex number x (which is real for unitary ), with

{#,#) =9=CF4H #), {#,#)s=9(,"S LA #).

Note that { #, #}¢ is invariant for the left translation action of U, while { #, #} is equivariant for the
Sklyanin bracket on U. The left invariance of { #, #}¢ implies that the associated Poisson bivectors
commute with respect to the Schouten—Nijenhuis bracket. Note also that we can write { #, #}s =
9=(%%#  #), and in fact it is the Kostant—Kirillov—Souriau bracket if we identify /  with a
coadjoint orbit as in Remark 2.15; see [DG95]. The Poisson bracket associated with 7z . is given by
D= tanh(-").
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Turning to the side of coisotropic subgroups, by Corollary 3.13, /* « admits a Poisson bracket
which is just the restriction of the Sklyanin bracket: { #, #}+ = {#, #}skfor # O( /*«) O( ).
This gives the structure of a Poisson homogeneous space on  /* « /[ over(,=).

In fact, any Poisson homogeneous structure of /  over (, =) is of the form (3.15) (this seems to
be folklore, but the idea can be traced back to [She91, Appendix]). We thus obtain a correspondence
between the parameters and s through the comparison of the factor x.

Remark 3.20. The bracket (3.15) defines a Poisson action of (,=) on /  for any X, but there is
a distinguished range which naturally shows up in our considerations: S1 < D < 1. Starting from
the KZ-equations the value of tanh(—-) is confined in this range when R and we have a unitary
associator. On the side of the Cayley transform, this corresponds to the case that * « is coisotropic but
not a Poisson—L.ie subgroup of (,=). In this case, the Poisson bivector vanishes on a nondiscrete subset
of / , while in the limit case D= %1 it only vanishes at one point; see the next subsection. When
|0 > 1, we get a symplectic structure.

3.5. Regularity of ribbon braids

We finish this section with a technical result, which we will need later, showing that in the non-Poisson
subgroup case a ribbon braid in the algebra of formal Laurent series must lie in the algebra of formal
power series. More precisely, we will prove the following.

Theorem 3.21. Let < be a Hermitian symmetric pair, and r be an r-matrix of the form (3.1) for
some Cartan subalgebra < and a choice of positive roots. Assume we are given a coaction

U ) uc x )
of a multiplier Hopf algebra (U( ) , ) such that there exist F Ui x ) and G
uic x ) satisfying conditions (3.8)—(3.11). Assume also that there exists a ribbon braid
E End( +) End( )[ S,
+ Irr
Irr
for this coaction with respect to the R-matrix R = Fo exp(S  )FS'of (U( ) , ). Then, unless

is a Poisson-Lie subgroup of (,= ), wemusthaveE U( x )

Consider the K-matrix K = ($ id)(E), and put5 = ($ id)(G). Then from identity (1.5) for our
ribbon braid we get

(5 DEG? 1)=Ru(l K)R.
Therefore, in order to prove the theorem itsu cestoshowthat K U( ) unless is a Poisson—
Lie subgroup of (,=).
Identities (1.4) and (1.6) imply
K(Ad5)( ) = (Ad5)( )K forall uc ) (3.16)
(K)=R21(1 K)R(K 1). (3.17)
A key step now is to prove the following.

Proposition 3.22. With ,  and R as in Theorem 3.21, assume we are given an invertible element

K End( )[ S,

Irr
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satisfying conditions (3.16) and (3.17) for some 5 U( ) , 5 = 1 modulo h. Assume also that
K& = ad(K) End( )[ S!, has a negative order term. Then is a Poisson-Lie subgroup of

(.=)-

We will prove this by analyzing certain Poisson structures on /
Take a Cartan subalgebra and a system  of simple roots as in Section 3.1, but for the Hermitian

symmetricpair < .Thenthereexists suchthat Ad maps onto, while the dual map maps )
onto . Now, the Cartan subalgebra is as in Section 3.1 for the automorphism 0 = (Ad )S! (Ad )
of and some ().

As we remarked in Section 3.4, on the compact symmetric space / , both the left and the right
actions of the r-matrix r define (real) Poisson bivector fields, denoted by =(%%and =(%-% (As part of
the claim, the bivector field =(*:%on U preserves the right  -invariant functions.) Thus, the linear
combinations of these commuting bivector fields define Poisson bracketson /  asinequation (3.15).

Lemma 3.23. The bivector field =&%5=(*-%on /  vanishesonlyat[ ].Similarly, the bivector field
=& %4 =(% %yanishes only at [ o], where "o is any lift of the longest element ¢ of the Weyl group.

Proof. As is a Poisson—-Lie subgroup of (,=), the first statement follows from the well-known
description of the Poisson leaves of the reduction =(%%& =(%.%of the Sklyanin bracket [L\W90].

As for the bivector field =(&%+ =(%.% first note that (Ad ~g) 2(9) = S= This means that the
Poisson bivector =&#+=(%.%on /  vanishes at the point [ "53] = [ ~]. Thus, the U-equivariant
di eomorphism

/ I(AD"0)( ), [1 1 54

transforms the Poisson bivector =(%%+ =(*.%0n / into a Poisson bivector on /(Ad ~¢)( )
which vanishes at the basepoint.

On the other hand, (Ad "¢)( ) is again a Poisson-Lie subgroup of U. Hence, has to agree
with the reduction of the Sklyanin bracket, which vanishes only at [ ] [/(Ad "o)( ). Asaresult
=&&+ =(%Yyanishesonly at [ o]  /

Identity (3.17) implies that K satisfies the reflection equation
(K 1DR2(1 K)R=Ry(l K)R(K 1).
Using this, we are going to introduce another Poisson structureon /  following [DM03a][DMO03b].

Let us write t for . Consider a finite-dimensional representation of G. Put = ( )(), and
consider the set

Mo ={ End( )]|( ) = ( )}

We have three actions of on End( ) given by multiplicationby ( ) on the left, on the right and
by conjugation by (). For , we will denote by @, ¥ and (@ the corresponding vector
fieldson End( ). Thus, @) = (S (% The RE bracketon M is defined by

{#, #lre =9 =00+ (EPS 8 (4 4).

More precisely, since M is not a smooth manifold in general, this defines a Poisson bracket on the
algebra of polynomial functions on M . But in any case what is going to matter to us is only that
=(edad) 4 ((&.%G (%.B js a well-defined bivector field on End( ).

The following observation is from [DMO03b].
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Lemma3.24. PutR = ( )(R), and assume that End( ) hasconstantterm = @
M and satisfies the reflection equation

( DRy )R =Ry IR ( .

Then the RE bracket vanishes at A.
Proof. Letting= = )(3), the bivector field =(@dad) + ( (&.%S (%R at the point ~ End( ) is

= ( )+ ( )=S@ )=( S( =@ )
+1 ) C npsC vy a ).

By looking at the order one terms in the reflection equation and usingthat R = 1S ( + =) +4 ( ?),
R,1=1S (S 9)+4( ?and( Yy = ( ), we see that this bivector is zero.

We want to apply this to the element K2 for = Sord(K) so that K2 starts with an order
zero term. Denote the orthogonal (with respect to the U-invariant Hermitian form) projection +
by C:, and put C. = (Ad )(C.), so C, isthe projectiononto .

Lemma 3.25. Under the assumptions of Proposition 3.22, the lowest order nonzero coe cient of K2
is, up to a scalar factor, either C, or Cs.

Proof. Let us more generally consider the elements K = (K) for finite-dimensional representations
of G. Denote by  the order of the lowest nonzero term of K .
Applying the counit to equation (3.17) we get $(K) = 1. Consider the contragredient representation
" of G. The antipode ~ for (U( ) , ) hastheform! ()!Sforsome! U( ) ,! =1
modulo h. Applying 9 (id ) to equation (3.17) we then get

1= * KO K CN+a( Y in End( )[ S,

Hence, + - O,andif + -=0,thenK () (K- (7)) =1 whileif + - <0, then
K- () (k-(I))=o.

Consider now the adjoint representation ad. Since it is self-conjugate and by assumption 44 < 0, we
get K2 () (K2d.(2)) = 0. By equation (3.16), we know also that K2 ( «) is an intertwiner for
As a representation of , we have the decomposition

=)o 1 + s

where the derived Lie algebra[ , ] is either zero, simple or the sum of two simple ideals. As these
components are mutually nonequivalent, K2 ( =) s a linear combination of up to 5 projections.

The antipode S restricted to the block End( ) of U( ) is the adjoint map with respect to the invariant
form (-, -) , that s,

(. )= ()) for End() (, ).

Since the invariant form is nondegenerate on the irreducible componentsof = () [ , 1,
we conclude that the corresponding projections are S-invariant. We can also conclude that (C.) = Cx.
Therefore, the identity K2 ( ) (K2( a)) = 0 can be true only if K2 ( «) js a scalar multiple of either

C, or Cg.

Lemma 3.26. We have C, M &,

Proof. Since = , in order to prove that 2 commutes with C,  C, itsu ces to check that
e G P (3.18)
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Recallthat = + ++ S where = ,and = JAsT 4, 4] =0, we see that

I+

a=(ad ad)( ) on N .
which obviously implies equation (3.18). The proof for Cs is similar.

Consider now the (Ad )-orbit 4 . of C.. By the previous lemma, it is contained in M 29, Since
stabilizes C: and  is a maximal proper Lie subalgebra of , it follows that is the connected
component of the stabilizer of C.. Hence ; +: / 4., 1 ( Ad )(C),isacovering map.

Lemma 3.27. The RE bracket on M 24 restricts to 4 .. Being lifted to / via ; +, this restriction
coincides with the bracket defined by =(&% =(%.%

Proof. The coveringmap ; +: / 4 , intertwines the action by left translations with the adjoint
action. From this it is clear that the bivector field =429 at the points of 4. M 2 indeed defines a
bivector field on 4 ., and, being lifted to / , this gives the bivector field =(&%

We next want to compare =% %with S ( (&%S (%8 We claim that

Crpe e =R =S (@%S ®Hc,).

Since the bivector fields =&%and =*-%on /  coincide at [ ] and the pushforward of =(& s =(ad.ad),
this is equivalent to

e (C,) = § ((@%S B (C,).

Using againthat [ +, +] =0,weget(ad )Ci=0andCi(ad g ) = 0 for all A
simple computation using these properties, together with the fact that  stabilizes C., gives
=@dad) (c,) = % Ciad ) (ad §)C:S(ad §)C Ci(ad ),

+
nc

and a similar computation for S ( (&%S (%8 (C,) gives the same answer. Thus our claim is proved.
Since =(%-%js left U-invariant and S ( &%S (%® js (Ad )-invariant, we then get

Crpe rns) =0 D =S(EPS /G D) ( )-
This finishes the proof of the lemma for 4 ... The proof for 4 g is similar.

Proof of Proposition 3.22. By Lemmas 3.24, 3.25 and 3.26, the RE bracket vanishes eitherat C, 4.

oratCg 4 s.ByLemma3.27 this means that either =(&¥S5=0 Yor =(& %+ =(% Yyanishesat[ ]  / .

But then by Lemma 3.23 we have either or "o ,and therefore = (Ad )( )iseither
or (Ad “o)( ).

Remark 3.28. As =(&%&=(%%has to vanish on ; S1(C.), we can also conclude that ; 4 is injective, that
is, is exactly the stabilizer of C.. Similarly, or by symmetry, is the stabilizer of Cs.

Proof of Theorem 3.21. Assume is not a Poisson—Lie subgroup. To prove the theorem it su ces to
show that K End( ) for all finite-dimensional representations of G. By Proposition 3.22 and
identity (3.17), this is already the case if belongs to the tensor subcategory generated by ad, that is,
factors through the adjoint group 5 = Ad . Forarbitrary , if K contains a term of negative degree,
then, using that R = 1 modulo h, we see from equation (3.17) that K contains a term of negative
degree for all 1. But when s irreducible, we have Rep aq for some 1, so this cannot
happen.
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4. Letzter-Kolb coideals

Our next goal is to put the Letzter—Kolb coideals in the framework of multiplier algebras. This is again
easy in the non-Hermitian case. In the Hermitian case, we will relate the classical limits of the coideals
to the coisotropic subgroups of the previous section. Combined with a rigidity result for the fusion rules,
this will allow us to define multiplier algebra models of the coideals. We will also cast the Balagovi¢—
Kolb universal K-matrix in our setting.
Throughout this section, we fix a nontrivial involutive automorphism of |, a Cartan subalgebra of
and a system * of positive roots such that is in Satake form with respectto ( , *), where = C,

4.1. Quantized universal enveloping algebra and Letzter...Kolb coideal subalgebras

Let | be the label set for the simple roots,so = { } -.Asin Section 3.1, for every positive root
we fix an element normalizedsothat[ , ]= ,andput § =

The quantized universal enveloping algebra () is topologically generated over C by a copy
of ()andelementsH, ( ( 7 satisfying the following standard relations:

. I g 8
[vH]: ()Hv[v( ]:S ()(1[H1(]:8/§—§/1
18 = 18 ,
Gy % WS SHu=0= @) T (P S((. ( @
=0 =0
where , o=, =1l="1T =%, ) ( ), istheCartanmatrix,so =( , ),
and
9 [9] ! s S
e Y != = —.
TeE T [9] =1[], [] ==
We will write () for the copy of () inside ().
Put* = '/ . More generally, for ,let o be such that ( o) = (, ). Define
*g = .Then* =*
The coproduct : () ()" () isdefined by
()= 1+1 ( ), (H)y=H 1+* H,
(()=( *%t+1 (.
Finally, the -structure is defined by
= , H :(*, ( :*SIH.

By assumption, the involutive automorphism of s in Satake form with respectto ( , *) (recall
Definition 3.1). Then has the following form:

= (Ad69(9o) A A=(Ad69() A (4.1)

where 9 gand 9 ( arethecanonical liftsof o | and ( | ( toU, istheChevalleyautomorphism,
A is the diagram automorphism satisfying = (Ad9g) A, and z is an element of the maximal torus
exp( ). The element z is determined up to a factor in (). It automatically satisfies the following
conditions:

6=1 ( ) 66, ()= (S)* ) (2, (4.2)
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where 6 = 6( ) and G is half the sum of the positive coroots of the root system generated by X. See,
for example, [DCNTY 19, Section 2.1] for details.
Consider the following parameter sets:

C={c=(+) n( |+ C ,+=+(for 2%},
S={s=() | C , =0for %},
where C denotes the units of C , that is, the series with nonzero constant terms. We write

t=(c,s) foranelementof T =Cx S.
Fixt T.Foreach ?\ | we define

. g * S1 é 1

:( S+61 () (Hl ())* Sl+ Jw, (43)

whereJ =exp( 513 ) isthe square rootof 6 with0 3 < 1,and is the Lusztig automorphism
associated to the longest element (| (. It will also be convenient to put

=C C )

Denoteby  ( () () the closure in the h-adic topology of the C  -subalgebra generated by
the elements , H and ( for

Definition 4.1. We define '( ) ( ) asthe closure in the h-adic topology of the C  -subalgebra
generatedby (), ( ()andtheelements for 2\

Remark 4.2. In [BK19][DCNTY19], the element z in equation (4.1) is assumed to have the property
6 =1forall ?\ suchthat A () = ,whichimposes extra conditions on . Although the relevant
proofs work in the generality presented here, it is also possible to reduce the situation to this normalized
form as follows. Starting from our convention, choose 6  exp( ) such that 6 = J for i as above and
6 = 1forallother 2Then = (Ad6)S! ( Ad6) satisfiesthe normalization condition. Moreover,
Ad 6 lifts to a Hopf -algebra automorphism of (), and we have (Ad6)( '( ))= t( ).

Remark 4.3. The above choice of J is, of course, a matter of convention. If we replace J by SJ in
equation (4.3), the corresponding subalgebra will be conjugate to  t( ) by an inner automorphism of
() defined by an element of the torus.

It follows from [Let99][Kol14] that t( ) isaright coideal of ( ):
CtCn )T O
We will only be interested in the coideals ' ( ) defined by smaller parameter sets
T =CxS To=GxS. T.
In the non-Hermitian case both T and T consist of just one point defined by
sz SC59 =0 (4.4)
forall 2\ ,where S=3( § ().

In the Hermitian case, recall from our discussion in Section 3.2 that there are one or two distinguished
rootsin ?\ . Then we define T (resp. T.) by allowing the following exceptions from equation (4.4):

€ S-type: if 4 is the unique distinguished root, then we require & R (resp. # C and
# =i),
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€ C-type: if 4 isadistinguished root, then we require +4+ R and +§°’ >0(resp. v C and
+§°) t),and, for both T and T,
ety = 2059,
By the proof of [DCNTY 19, Theorem 3.11] (see also Remark 4.2), the coideals '( ) are -invariant
fort T .

We will mainly work with T and then explain how our results extend to generic points of T_. The
point of T defined by equation (4.4) for all ?\  is denoted by 0, and the corresponding coideal
subalgebra is denoted by (). We will also refer to this as the standard or no-parameter case. Thus,
in the non-Hermitian case, () is the only coideal subalgebra we will be working with.

The classical limitof '( ) is given by the following:

Definition 4.4. Fort T, we define , to be the Lie subalgebra of generated by , ( and the
elements

s ++% s+ P ()

The image of () under the isomorphism  ( )/ () () (mapping H into and (

into g )is (). Inthe standard case, we have +9 =1and © =0 foral ?\ , and the

corresponding Lie subalgebra  isexactly by [Kol14, Lemma 2.8]; see also Proposition 3.15.

4.2. Untwisting by Drinfeld twist

Let us quickly review how to relate the quantized universal enveloping algebra to the classical one; see,
for example, [Drig9a] for the details. First, by 2( , ()) =OthereisaC  -algebra isomorphism
() () such that

()= H)y= (()= s (mod ). (4.5)
Moreover, if 7 is another such isomorphism, then © = (Ad5) for anelement5 1+ () by
(', ())=0.Inasimilarway, foranytwoC  -algebrahomomorphisms 5 : () U( )

satisfying equation (4.5) thereis5 1+ U( ) suchthat ™ = (Ad5) . In what follows, we fix such
a homomorphism

While a particular choice of is not going to matter for our results, in some arguments it is convenient
to have extra properties.

Lemma 4.5. Thereisa -preserving C  -algebra isomorphism : () () such that
()= . )=, (*"= 5 (mod 2.  (46)
Proof. We have a homomorphism G. () () % () suchthat
a )=, q )=*"%H, qs)=(*"
the key point being that since [ ] = +4( 2), the coe cients of the quantum Serre rela-
tions reduce to the classical ones modulo 2. Taking now an arbitrary C  -algebra isomorphism

() () satisfying equation (4.5), we must have that the homomorphism G ()
/ () is of the form

O
( 9()= +8() ( ()
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for a derivation 8: () ( ).Replacing by 2 | wegetanisomorphism () ()
satisfying equation (4.6).

Next, the homomorphism () () () . also satisfies equation (4.6). It follows
thatthereexists5 1+ 2 () suchthat ( ) =5 ( )5°. By taking the adjoints and replacing
Tby ,wealsoget () =5 ( )(5)>. Hence,5 = 5! for a central element ! () such
that ! = 1 modulo 2. This element must be unitary, hence IY2 1+ 2 () s unitary as well.

Replacing u by 512, we can therefore assume that 5 = 5. But then replacing by (Ad5Y2) , we get
a -preserving isomorphism satisfying equation (4.6).

Remark 4.6. We may further assume that the exact equality ( ) =  holds in the above lemma, as
follows. In equation (4.5), we can arrange so that ( ) = holds exactly by [Dri89a, Proposition
4.3]. Then the construction in the proof of Lemma 4.5 preserves this property. Indeed, first we have
8( )=0sothat S2 ()= holds. Then we have (Ad5) ( )= ( ) = , hencewe
obtain (Ad5Y2) ()= aswell at the last step.
With : () u( ) fixed, there is a unique coproduct  : U( ) Ui x )
such that
( )=

By a Drinfeld twist, we will mean any elementF 1+ U( x ) such that

($ id(F)=(d $(F)=1, =F ()F%,

(d HFSHA FHE D idF) = ke 47)

Consider the r-matrix r defined by equation (3.1) and the corresponding cobracket 8 ) =[=, ( )]
on .

Lemma4.7. If isasinLemma 4.5, then there is a unitary Drinfeld twist F ()? such that

F=1+ —+4( 2. (4.8)

2

Proof. We start with an arbitrary Drinfeld twist F 1+ () 2, which exists by [Dri90]. By our
choice of , we have

(= O+ A sy o
It follows that the element =F® S1=" () 2 commutes with the image of . Since z =1
modulo 2, identity (4.7) implies (similarly to the proof of Lemma 3.18) that S satisfies the cocycle
identity
(id )()+1 S 1S( id)()=0.
Hence, = 1+1 S () for acentral element (). Replacing F by

F@a+ ) (1+ ) @+ )

we get a Drinfeld twist satisfying equation (4.8). Replacing further E by F (F F)SY2, we also get
unitarity; see [NT11, Proposition 2.3]. Note that this does not destroy equation (4.8) since = = =
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Denote the universal R-matrix of () (or, the one for () in the conventions of [DCNTY19])
by . Then any Drinfeld twist F satisfies

() )=Fuexp(S )FL (4.9)

Indeed, this identity holds for a particular Drinfeld twist by [Dri90], but then it must hold for any
Drinfeld twist by Lemma 3.18 and the invariance of exp(S ). WeputR = ( )( ), whichisa
universal R-matrix for (U( ) , ).

4.3. Parameter case and Cayley transform

Suppose that < is a Hermitian symmetric pair. Let us relate the Lie algebras , to the Cayley
transform we considered in Section 3.2. §
Choose ( ) normalizedas ( , ) = $ S2. Let us choose a Cartan subalgebra ~ of
containing (), and choose positive roots as in Section 3.1, but now for the pair (, ) instead of
+

(0, ). We denote the corresponding Borel subalgebra by ~*.

Take such that (Ad )(O) = and (Ad )("*) = *.Put 0= (Ad ) (Ad )S! and
= (Ad )( ). Then and our fixed positive roots are defined as in Section 3.1 for our new pair
0, )

Let ; be the Cayley transform for O with respectto () .

Lemma 4.8. There exist an element 6  exp( ) such that (Ad6 ) (Ad6 )gl coincides with the
automorphism = (Ad 1) 0 (Ad j)and = (Ad 16)S( ).

Proof. First, note that is in Satake form with respectto ( , ).

We have = (Ad 5! ;) (Ad St 1)SL 1t follows that is in Satake form both with respect to
(, "and ((Ad 5t 1)(),(Ad St )( *)). By [KW92, Corollary 5.32], we can find such
that (Ad S 1)( )= and(Ad S q)( *)= *.Then S! ; exp( ). Moreover, we still have

=(Ad Sty (Aad St

Consider the Cartan decomposition 5! ; =6 ,s06  exp( ) and exp( ). As , are
-preservingand (Ad6> )= (Ad6> ) ,wealsohave (Ad 6 )= (Ad 6 ) .Itfollows
that Ad 2 commutes with . This means that ( 2) ()%= () %hence (2= 2 and
then () = . Therefore,

= (Ad6 )t (Ad6)=(Ad 16)S! 0 (Ad 16).
We also have
(Ad 16)S'( )= (Ade" PH( )=(Ad SH( )=(Ad )( )=
where we used that (Ad f’l)( ) ( )isinvariant under

We can now talk about compact/noncompact positive roots for ( , *) with respect to 0, as in
Section 3. Recall that by Proposition 3.5, in the S-type case the unique noncompact simple root 4 is
exactly the distinguished root. We have the following characterization for the C-type case.

Lemma 4.9. In the C-type case, the unique noncompact simple root 4 is determined among the
distinguished roots { #, # } by the inequality

S #(")>S ()

where ~ is the component of = lying in
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Proof. By the definition of the order structure in Section 3.1, we have #(S ) >0= 4 (S ).
By Proposition 3.5, # and # have the same restriction to S={ )= S }. It follows that if
= *+ Sijsthe decomposition of  with respectto = S, then

S #(M>S #( ).

On the other hand, the inverse (Ad 1)é1 of the Cayley transform acts trivially on ~ and maps s
onto the linear span of the vectors ) S g (Lemma3.9).As = (Ad 16 )SL( ), it follows that
= *, proving the lemma.

Thus, in both S-type and C-type cases, once s fixed (between the two possibilities), 0 is uniquely

and explicitly determined: O acts trivially on  and the root vectors . for ?\ { B}, while
O(+ )=S .+ .Since zisa noncompact positive root, #(S Nisa positive number. This,
together with the normalization ( , ) =S 2 determines . Inthe S-type case, the pair (0, ) is

therefore independent of the choice of . In the C-type case, changing the sign of ~ swaps the notions
of compactness/noncompactness for the distinguished roots. Note also that by looking at the basis of
the restricted root system obtained by restricting \ ( to S| we can recover the roots 21, ..., 2 and
then the element ;.

The element 6 is not easily determined, but the following lemma will be enough for our purposes.
Recall the factorization of given by equation (4.1).

Lemma 4.10. In the S-type case, 6 ( #) is a square root of 6§1.

Proof. Since o is fixed by A, wehave ( g ) =S6: . As we already observed in the proof of

Proposition 3.15, Lemma 3.9 implies that (Ad 1)31 0 (Ad 1) ( )=S & . It follows that
( )=S6 ( 4)? & ,andcomparing this with the above formula we get 6 ( #)? = 6§1.

Consider now the subgroups =+ ( R) from Definition 3.16. (Note that we have to use  from
Lemma 4.8 as in Section 3.3.) It is convenient now to allow also C.Then « =(Ad +)( )
are still well-defined subgroups of G.

Lemma4.11l. If < isHermitianandt T_, then . = (Ad6 )gl( +), where Cisany number
satisfying the following identity:

6 (#) D= tan - (SStype) or +2 =Scot Z( S1) (CStype).

In particular, the Lie algebras , are all conjugateto  in .

Proof. This follows from Proposition 3.15 (and its obvious extension to complex ) and the definition
of ., combined with Lemma 4.8.

Fort T.,let , = (Ad6 )él( ) be the (connected) algebraic subgroup integrating
with  as in the lemma above. Then * ; = (Ad 6> «&;)( ) is its compact form. Note that ift T ,
then we can take Rsothat « and hence ¢ =

Remark 4.12. In the C-type case we get an element
L= (A6 a)( )= (AT B)( ) ()

which by Lemma 3.9 does not depend on the choice of  (such that +§O) = écot(z( S 1))). Using
Lemma 4.9, we can quickly recover O from t. Namely, let ~tv be the component of ' in . Then,
again by Lemma 3.9, "t and ~ di eronly by an element of 5. Hence, # is determined among the
distinguished roots { x, # } by the inequality

S «(TH+ #(TH>o0
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In the S-type case, the element (Ad 6! «51)( ) 1 ) does depend on the choice of . Here, we
cantakeany '  (,)suchthat( ', ') =S SZandthen maketheidentity = (Ad6> «51)( )
an extra condition on . This works because by Corollary 3.6 and Lemma 3.9 we have (Ad 2)( ) =
S . We can formulate this in a more intrinsic way with respect to ¢ as follows. Recall that we have
3 y by Corollary 3.6. Then Lemma 3.9 implies

: 1 S < .
(Ad 6> «51)( ) = 5008 — (AdEe*Y)( 5 S ) )+ 5sin — )

forall . It follows that if t = (Ad 65t «31)( ), then

(4% ) (s . ) 1

— = = > 0.
6 ( #) cos(—) 2 (. )

4.4. Multiplier algebra model of Letzter...Kolb coideals

Back to the general , let us next explain how to cast the Letzter—Kolb coideals in the setting of
multiplier algebras. Let P be the weight lattice. Denote by 3 an irreducible -module with highest
weight/  C,. We denote by 3: () End( 3) the corresponding homomorphism and use the
same symbol for the extension of 3 to a homomorphism () End( 3) . We also put

3 = 3 () End(s3)
Lemma 4.13. Foreveryt T ,thereexistelements5; End( 3) ,/ Cs,such that
50 =1, (Ad53) 3, ‘() = s () (4.10)
3 3
for any finite subset ( C.. If is -preserving, then 53 can in addition be chosen to be unitary.

Proof. Let us first fix a finite subset ( C; and show that there exist elements 53,/  (, satisfying
equation (4.10).

Denote by  the -module 4 zandby  therepresentation 4 3. Write  for .
Let be the commutant of YC ) inEnd( ) . ltis clear that isaclosed C -
subalgebra of End( ) and End( ) = . Itfollows that isafreeC  -module
and / can be considered asasubalgebraof End( ) sothat isadeformation of this subalgebra.
We claim that

/ = End . ( ).
The inclusion s clear since the image of Y( )in ( )/ () ()is (). Forthe

opposite inclusion, using the Frobenius isomorphism

End () Hom (o, ),
defined by duality morphisms for -modules, and a decomposition of ~ into simple -modules
, We see that the problem reduces to the question whether every , -invariant vector in  can be
liftedtoa '( )-invariant vector in . This is indeed possible by a result of Letzter [Let00]; see

Appendix B for more details.
Since the algebra End . () is semisimple, it has no nontrivial deformations, so thereisaC -

algebra isomorphism End . () that is the identity modulo h. Furthermore, there are
no nontrivial deformations of the identity homomorphism End . () End( ), that is, all such
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deformations are given by conjugating by elements of 1 + End( ) . It follows that there is
1+ End( )  suchthat S1 = End )
Next, consider the subalgebra End . () spanned by the projections 3: 3. Since
,wehave (Ad )( ) End . () .AsBisalsosemisimple, the inclusion map End . ()

cannot be nontrivially deformed, that is, thereis! 1+ End . () suchthat Ad = Ad! onB.
It follows that the element 5= 1S still has the property

5 5%=End () (4.11)

but in addition it commutes with the projections 3, / C. Hence 5 = (53)3 for some 53
1+ End . ( 3)
By taking the commutants, we get from equation (4.11) that

5, t()s™ ()

where we used that the . -module is completely reducible and hence ( ) isthe commutant

t
of End . (). The above inclusion becomes an equality modulo h. Since () is complete in the
h-adic topology, we then easily deduce that the inclusion is in fact an equality. This finishes the proof
of the lemma for a fixed finite set F, apart from the last statement about unitarity.

Now, consider an increasing sequence of finite subsets ( C, with union C,. For every n, choose
elements 5() = (Sé s, satisfying equation (4.10) for ( = ( . To finish the proof, it su ces to

show that we can inductively modify 5¢ *1) in such a way that we get 5§ D = 5§ Yfor/ (.

For this, consider the element = (5§ )(5§ +1))31)3 End( ) .Wehave
© =1, (Ad ) (¢) = (¢)
Since ( ) issemisimple, it follows that there is an element ! 1+ (¢) such
that Ad = Ad! on () .Liftvtoanelement5 1+ (,) .We then modify 5( *1) by

replacing 5{ ™ by 5’ for/  ( andby 3(5)5{ ™ for/ ( w1\ ( .
Finally, assume in addition that is -preserving. In this case, it su ces to show that at every stage
of the above construction of 53 we can get unitary elements with the required properties. Specifically,

we claimthatif5 = t( ) 55 = () for a finite set F and an element u, 50 = 1, then
the same identity holds for the unitary (55 )é1’25. Indeed, taking the adjoints we get tC) =

5 () (5 )él. It follows that Ad(55 ) defines an automorphism %of (¢) . As
%= id modulo h, this automorphism has a unique square root %/?2 such that %/2 = id modulo h. Then
Ad(55 )SV2 = o512 o (¢) , and our claim is proved.

We continue to assume that T . In the Hermitian case, recall the subgroups , <  from the
previous subsection. In the non-Hermitian case, let us put , = . The collection (53)3 4, defines
anelement5=5' U( )  such that

50 =1, 5 (Y N5 U(,) . (4.12)

Furthermore, the last inclusion is dense in the sense that the images of both algebras in End( )
coincide for any finite-dimensional -module V.

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press



Forum of Mathematics, Pi 51

Consider the homomorphism  : U( ) Ui x ) defined by
D=6 1) E'DyGE* 1),

IfD=5 (B5 forsome E  t( ), we have

D= (5 (B5%) = (Ad5) (B.

By the density of 5 ( ( ))5Sl inU( ) ,weconcludethat (U( ) ) U( x ) ,
and the strict coassociativity ( id) = (id ) holds. Thus, we getacoactionof (U( ) , )
onU( ;) making the following diagram commutative:

) — Y ()

%
(Ad5Y) l \L(Ad 5t

Ut () ——>U(x )

Definition 4.14. Fort T , we call the coaction (U( ,) , )of (U( ) , ) the multiplier
algebra model of the Letzter-Kolb coideal t( ).

Itis notdi cultto see that up to twisting this model does not depend on the choice of and u.
Let us record an immediate consequence of the construction of , which we will use later.

Proposition 4.15. Foreveryt T ,thereisanelementG U( , x ) such that
GO =1, (id $)(G) =1, =G ()G

If is -preserving, then Gcan in addition be chosen to be unitary.

Proof. Since. = mod ,Lemma 1.1 implies the existence of such anelementG. If  isin addition
-preserving, then we can replace G by the unitary G(G G)>Y2.

Remark 4.16. By the above arguments and Remark B.8, the multiplier algebra model can also be
defined forallt T excluding a countable set of values of 7&0) (S-type) or +§°) (C-type).

Remark 4.17. By Proposition C.1, for every t T, the algebra *( ) is a deformation of ( ).
In the non-Hermitian case, , = is semisimple and standard arguments show that if has image

() ,thenthereexists5 1+ () suchthat5 ( ())5°'= ( ) . Therealso exists
G 1+ () () satisfying the conditions in Proposition 4.15, analogously to Remark 2.7.
(Moreover, by the remark following Proposition C.3 we can go beyond the standard case and consider
any t = (c,s) T such that +O =1 for all ?\ ) In other words, in the non-Hermitian case the
multiplier algebra model does not have any particular advantages over the coideal picture.

In the Hermitian case, it is still true that '( ) is a trivial algebra deformation of ( ,); see
Proposition C.3. Butsince in this case the first cohnomology of , withcoe cients in afinite-dimensional
module is not always zero, it is not clear whether u and G exist at the level of the universal enveloping
algebras.

Remark 4.18. Type Il symmetric pairs can be dealt with analogously to the non-Hermitian case. The
relevant involution on in the Satake formisgivenby (, )=( (), ( )) forthe Chevalley
involution . The corresponding Satake diagram is the disjoint union of two copies of the Dynkin
diagram of , with the corresponding vertices joined by arrows. Cohomological considerations as above,
both for multiplier algebras and universal enveloping algebras, carry over.
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4.5. K-matrix of Balagovi ...Kolb

Next, let us recall the construction of universal K-matrices for the coideals '( ) according to
[BK19][Kol20][DCNTY19]. (Strictly speaking, these papers have an extra normalization condition on

as in Remark 4.2. We can either adapt their construction to our setting, or we can first put this extra
condition and then use Ad 6 as in Remark 4.2 to remove it later.)

Denote by () the C( V/)-subalgebraof () ¢ C[ S, generatedby*o ( C), H
and ( ,where = and- =4det(( ), ).(We usethe same notation in Appendix B for the algebra
defined over K = C[ S, , but since we are not going to use that algebra here, this should not lead
to confusion.) As usual, we denote by D Dthe bar involution, the C-linear automorphism of ()
characterized by

1//: Sl/lv q:*é()! W:Hl (_:(

In a similar way, as before we define coideals '( ) () fort=(c,s)suchthat+,  C( Y/).
We will first construct, following [BK19], the K-matrix for a particular parametert T defined by
+= 20 ()82 ) =0,
where G is half the sum of the positive roots of the root system generated by X. The parameter
t = (c,s) satisfies the assumptions in [BK19, Section 5.4].
A key ingredient of the construction in [BK19] is a quasi- K-matrix . Denote by * () the

C( Y/)-subalgebra generated by the elements H, and by * * the subspace of vectors of weight
K., where Q is the root lattice. Then

= ( ),
6+
where the sum is considered in a completion of () defined similarly to our multiplier algebra U( ),

but over the field C( ¥/). The elements are uniquely determined by ¢ = 1 and the following
recursive relations:

[0 1= s w(yF #8308 gy (9, (413

3

with the conventionthat s + ( )=0if S + () K. Here, we put
=0 (), =S61() (Hi¢) ( 2\ ).

Touse inour setting, we need the following integrality property. LetL  C( YTy pe the localization
oftheringC[ ¥/]at Y/ =1.Denoteby *" the R-subalgebraof * generated by the elements H,
andput *Mt= o+ wint

Next, let? 2\ be aset of representatives of the A -orbitsin ?\ . As we already used in Section
3.2 (although only in the Hermitian setting), the elements S = %( S () for ? form a basis

of the restricted root system, and we have 3 O S for all i.

Proposition 4.19. Take Ks, 0. If has the form

for some 2Z., then ( ¥'81) *" Otherwise = 0.
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Proof. Let us start with the second statement, thatis, = 0ifeither () S ,or ( )=S butin
the decomposition = " S some integers 0 are odd. This is a refinement of a condition in
[BK19, Section 6.1], and the proof is basically the same.

To be precise, consider the height of  defined by ht( ) = 9 it = «9 . We verify
the condition by inductionon ht( ).Since S + ( )= S2 Sfor ?\ iseither notin K,
or it satisfies the same assumptions as , by the inductive hypothesis we get from equation (4.13) that
[(, ]=0forall 2 Thismeansthat Lusztig’s skew-derivatives =( )and=( ) are zero, which
is possible only if = 0; see [Lus10, Proposition 3.1.6 and Lemma 1.2.15].

Turning to the first statement, assume = S with 2Z,.Putht ()=% . .We
will prove the statement by induction on ht ( ).

Considerthecaseht ( ) =1.Then =2 S= S ( )forsome @ ?.From equation (4.13),

we then get
[, 120 ( {@A@), [(, 1=+ *§ 350 (St (=@ 4@

(4.14)

Denote by M the R-subalgebra of () generated by the elements * *1, 7—3511 H and ( . Then we

have an isomorphism M/( Y/ §1) int ( ) such that

s * S1
% £l 11 ﬁ - ) H ) ( é
Since int by equation (4.14) we concludethat[( , ] ( Y/ S1) ™forall 2 Weclaimthat

this implies that ( Y/S1) " hence ( YI81) Hintag( V/&1) it o+ = UGy int+
by the triangular decomposition of ™.

Indeed, assuming 0,let  Zbe the smallest number such that ( ¥/ $1) int 1f 0,
then, on the one hand, the image of ( ¥/ $1) in () isanonzeroelementof ( *) ,andonthe
other hand this image commutes with & for all i. But this is impossible, hence S 1.

The inductive step is similar. Using equation (4.13) and the inductive hypothesis, we get [( , ]
(Y7 S1) Mforall 2 Hence, ( VI &) Hint

Recallthat : () U( ) denotes a fixed homomorphism satisfying equation (4.5). When
itis convenient, we extenditto () ¢ C| SI and th{e completion of )( ) from [BK19], but
then the target algebra should be U( )[ S!, and o End( D[ S, 7, respectively.

Corollary 4.20. Wehave () 1+ U( )
Following [BK19], consider a homomorphism 2: C  C( ¥/)* such that

2( )=+61(y ( 2\ ), 2()=1 (C ), (4.15)
and put

M )=2( ) S©°09+ (5 90 )

where +:%( + ( ))and (N ) - isthedual basis (fundamental coweights) of ( ) -;see [BK19,
(8.1)]. It satisfies the relation

M + )=2( )é( C NSO, + ( M )

for Cand ? which is enough for most of the purposes. We can view Mas an element of a
completionof () ( ). Then one takes
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where and , now denote the canonical elements implementing the Lusztig automorphisms. This
gives a universal K-matrix for t( ) in the conventions of [BK19].
To pass to our setting, consider the element o of  characterized by

(0,020 ( ) (o0 )=2( (1S 108 ()+2q, ) ( 2 ),
and use the isomorphism Ad* g, of '( )onto (). Namely, define
=AA (Ad*oy)( ) =(Ad*0,) AA( ), (4.16)

where A A is the automorphism of the Hopf algebra () induced by the automorphism A A of the
Dynkin diagram. Finally, using the universal R-matrix of (), we put

= a1 )@(d AA)( ). (4.17)
This is a ribbon A A-braid for (), hence also for ~ ( ); see [DCNTY19, Section 3.3]. Then
E =((Ad5)  )() U(C x )

is a well-defined ribbon (A A) -braid for the multiplier algebra model of (), where u is the element
(4.12) (fort = 0) and (A A) denotes the unique automorphism of U( ) such that

Ah=(AA) . (4.18)

We call (and also E ) a Balagovi¢—Kolb ribbon (A A) -braid. Note that this element depends on the
choice of 2, and the set of these twist-braids forms a torsor over ().

Remark4.21. Itisnotdi cultto seethat Corollary 4.20 and identities (4.2) implythatE =1 69 ( 99
modulo h for some (). This is consistent with Theorems 5.5 and 5.10 below.

This finishes our discussion of the ribbon twist-braids in the standard case. Assume now that <
is Hermitian, and take t  T. Note that A A = id now, since is an inner automorphism. The coideal
t( ) can be obtained from () by twisting and h-adic completion similarly to [DCNTY19,
Theorem C.7]. Namely, define a character Q: () CJ[ S1 asfollows:

€ S-type: Q(* o) =1 for C,Q=%on ( () Q( )=0forthe nondistinguished vertices i,

_ #de

Q( #) = & &1

€Ctype: Q =%on (), Q( )=0foralli, Q(*o) =/( ) for C ,where/: C
C[ !, *isany homomorphism such that/ ( ) =1 forall ?\{B} and

&1 & § 8
FCa=at 2000,

Then (Q id) maps the generators of () into those of ' ( ), except that in the type S case 4
is mapped into
. . * §1
(#S+61 1 (Hy @) 5+ #J#g,—él,
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but this di ers only by an additive constant (which may, however, lie in Sic rather thaninC )
from the corresponding generator of (). By applying this map to the first leg of  and using the
factorization of ~ given in [K0l20], we get a ribbon braid tfor t( ). Then

E'=((AdS)  )( 9

is a ribbon braid for the multiplier algebra model of t( ), whenever this model is well defined. We
call t(and E') again a Balagovi¢-Kolb ribbon braid.
One problem, however, is that in the S-type case the construction of ¢ guarantees only that

Et End( +) End( )[ S,

+ Irr
Irr

t:

Proposition 4.22. Forallt T, we have ( WY Ul x )

Proof. We need only to consider the Hermitian S-type case. Assume firstthatt T ,thatis, » R .
Then E! is aribbon braid for the coaction (U( ¢) » )of(U(C ) , ,R ). Hence,theassertion
follows from Theorem 3.21, which is applicable by the results of Section 4.4 and Corollary 3.13. For
the general case, observe that by construction the coe cient of  of the component of ( ) YHin
End( ) End(l )[ Sl s arational function in finitely many parameters ;& ) Since for < 0 this
function vanishes for purely imaginary ;& ) it must be zero.

In particular, if the multiplier algebra model of () is well defined for some t Tc, then we have
E' U( ,x ) .Itwould still be interesting to find a more explicit construction of * similar to
that for  and provide a more direct proof of the above proposition.

5. Comparison theorems

We will combine the results of the previous sections to compare the Letzter-Kolb coideals with the
quasi-coactions defined by the KZ-equations.

5.1. Twisting of ribbon twist-braids

Let us start by refining the twisting procedure from Section 1.5. Assume H is a reductive algebraic

subgroup of G and (U( ) ,, ) is a quasi-coaction of (U( ) , , ). Then, given F
U( % adG U( x ) suchthat F©® =1, G% =1and

($ d(F)=(@d 9$((F)=1, (id 9 =1,
we get a quasi-coaction (U( ) ,, re)of(U() ., F, F).

Now, assume in addition that %is an involutive automorphism of (U( ) , , ) and!

U( ) isanelementsuchthat!(©@ =1

196(1) = 1, F=( 1Y% %F) (). (5.1)
Proposition 5.1. Under the above assumptions, % = !%(-)!él is an involutive automor-
phism of (U( ) , e, g). Furthermore, suppose that R u( ? is an R-matrix for
(uc) , , ) fixed by %and that E Ui x ) is a ribbon %braid for R. Then
Rr = FxRF SlisanR-matrixfor (U( ) , F, ¢) fixedby %, and

Es =GHid %(©)%@1 !Sh=cHL !ShH(d %)(©Q)S (5.2)
is a ribbon % -braid for the quasi-coaction (U( ) , e rc)Of(U( ) , . F, r,RE).
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Wecall(U( ) , r, r,%)thetwistingof (U( ) , , ,%by(F,!).

Proof. The claimsare notdi cultto check by a direct computation, but let us explain a more conceptual
proof using crossed products (or smashed products), cf. [DCNTY 19, Remark 1.13]. Namely, consider

the algebra
u( ) sZ2122={ + Is|, U() /§=171s =% ) s}
We can extend in the usual way the coproduct ~ onU( ) toacoproduct ~ onU( ) $Z2/2Z
by letting (/g)=/¢ [/g¢.Then (U( ) $Z/2Z, , )isamultiplier quasi-bialgebra.
Now, given (F,!) as above, we can twist (U( ) $ Z/2Z, , ) by F to get a new
multiplier quasi-bialgebra (U( ) $ Z12Z,( )r, £). On the other hand, we can first twist
(UC) , , ) by F and then consider the crossed product by % to get (U( ) $

Z2/12Z,( ¢), £).Themap
# U( ) $2/2Z  U() s 2127, L g 1S,
is an isomorphism of these two multiplier quasi-bialgebras. In particular,

(U( ) $ ZIZZ!( ,F) ' F)

is indeed a multiplier quasi-bialgebra, and hence % is an automorphismof (U( ) , | F, F).
Let us turn to ribbon twist-braids. First note that R is still an R-matrix for (U( ) $Z2/2Z, , )
by its %invariance. Moreover, we canview (U( ) ,, )asaquasi-coaction of this multiplier quasi-

bialgebra. Then an elementE  U( x ) is a ribbon %braid for the original quasi-coaction and
R ifand only if E(1 /) is aribbon braid for the new one and R again.
Finally, the map f satisfies

(id #(GHL /)G =E, (1 /s),

showing that formula (5.2) is a consequence of equation (1.7) for the crossed products and trivial
automorphisms.

Remark 5.2. Let us also mention a categorical perspective on conditions (5.1), which does not rely
on crossed products. The automorphism %defines an autoequivalence (¢ of ((Rep ) , , ).The
twisting by F produces an equivalent category ((Rep ) , ,r, &). The functor (¢ gives rise
to an autoequivalence of this new category, which, however, is not defined by any automorphism in
general. Conditions (5.1) ensure that this autoequivalence is naturally monoidally isomorphic to an
autoequivalence defined by an automorphism, namely, to (s .

We now return to the setup of Section4.2.Let : () U( ) be a homomorphism satisfying
equation (4.5). Assume %is an involutive automorphism of the Dynkin diagram of . We denote by
the same symbol the corresponding automorphisms of ( (), )and (U( ) , ); it will always
be clear from the context which one we are using. These are automorphisms of the quasi-triangular
(multiplier quasi-)bialgebras ( (), , )and(U( ) , , kz,Rkz). Wealso note that, similarly
to equation (4.18), there is a unique automorphism % of (U( ) , ) such that

%= %

Lemma 5.3. Let F be a Drinfeld twist for  (in the sense of Section 4.2). Then there exists a unique
element! 1+ U( ) such that

% = 19()! 5, F=( D% AF) O (5.3)

We also have 1%(!) = 1. If, in addition, is -preserving and F is unitary, then v is unitary.
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In other words, once F is fixed, % is a twisting of the automorphism %of (U( ) , ) inaunique
way.

Proof. Since the homomorphisms  %and %  are equal modulo h, there exists 1+ U()
suchthat %= (Ad ) % .Then% =(Ad ) %

We claim that ( )(% %(F) ( )S!isagain a Drinfeld twist (for the same ). Since z is
invariant under % condition (4.7) is satisfied for (% %(F ), hence also for ( (% %(F) ().
It remains to check that

= )% BF) ()% () ()% HFSH( St S,

or equivalently,
%() =( )% AF) (I %) ()% BESH S Y.

But this is true, as the right-hand side of the above identity is easily seen to be equal to (% %)

By Lemma 3.18, it follows that by multiplying w by a central element we get an element !
1+ U() satisfying equation (5.3). Assume ! is another element with the same properties. Then
I'S11 is a central element, hence it also equals ! !5t and

F = (I ]Sl I |S1)F (| !él)gl.

By the uniqueness part of Lemma 3.18, we conclude that ! 15! =1

Next, since % and %are both involutive, the element %! )>! has the same properties as v, hence
%! )St = 1. Similarly, if is -preserving and F is unitary, then % is -preserving as well, and the
element (! )S! has the same properties as v, hence (! ) =1.

5.2. Comparison theorem: non-Hermitian case

We are now ready to prove our main results relating the multiplier algebra models of the Letzter—Kolb
coideals to cyclotomic KZ-equations. Let us first consider the non-Hermitian case.

Theorem 5.4, Assume = < isanon-Hermitian symmetric pair, with in Satake form (4.1). Then
the multiplier algebra model of the Letzter-Kolb coideal ~ ( ), whichisacoaction(U( ) , )of
(U( ) , ), isobtained by twisting from the quasi-coaction (U( ) , , kz) of the multiplier
quasi-bialgebra (U( ) , , «kz).Anysuch twisting extends to a twisting between the automorphism
AAof (U( ) , , kz)andtheautomorphism (A A) of (U( ) , ).

Proof. Usinga Drinfeld twist F and an element Gprovided by Proposition 4.15, we can twist the coaction
u(e ) , )of(u( ) , )toagquasi-coaction(U( ) , , )of(U( ) , , kg for
some . The first statement of the theorem follows then from Theorem 2.6. The second statement, on
twisting A A to (A A) , follows from Lemma 5.3.

Theorem 5.5. The twisting provided by Theorem 5.4 establishes a one-to-one correspondence between
the following data:

€ the ribbon A A-braids for the quasi-coaction (U( ) , , kgz) ofthe quasi-triangular multiplier
quasi-bialgebra (U( ) , , kz,Rkz), given by

Bz 1=6xp(S (23 + 1))(69(90 11 ( (M (5.4)

€ the Balagovi¢-Kolb ribbon (A A) -braids (or their images E ) for the coideal () of the quasi-
triangular bialgebra ( (), , ), fordi erentchoices of 2 satisfying equation (4.15).

Under this correspondence, we have E@ =1 69( 90 .
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Proof. By Theorem 2.18, we have a complete classification of ribbon -braids for the quasi-coaction
uc ) ., kzx)of (U( ) , ., kz).Since = (Ad69(9¢9) A A, the multiplication by
1 69( 9 on the right gives a one-to-one correspondence between the ribbon -braids and the ribbon
A A-braids, so the latter ones are given by equation (5.4). As any Drinfeld twist F satisfies equation
(4.9), formula (5.2) provides a correspondence between the ribbon A A-braids and the (A A) -braids.
Since both the ribbon A A-braids and the Balagovi¢—Kolb ribbon (A A) -braids are torsors over the
finite group (), this gives a bijective correspondence stated in the theorem.

Finally, since by definition the elements F, G and v used in the twisting have constant terms 1, we
get the claim about O,

Remark 5.6. As we pointed out throughout the paper (see Remarks 2.7 and 4.17), in the non-Hermitian
case there is no real need to consider the multiplier algebra model, so a similar result holds at the level
of the universal enveloping algebras, also beyond the standard case.

Let us formulate this more precisely. Lett = (c,s) T besuchthat +{O =1foral A (recall also

that, by definition, we have = 0 for all ?\ ). If we fix algebra isomorphisms () ()
and t( ) () that are identity modulo h (that is, they are given by equation (4.5) and
Proposition C.3), then the coproduct : () ()" () definesacoproduct on ()
and acoaction : ( ) () () of( () , ).

The claim then is that this coaction is obtained by twisting from the quasi-coaction
C () ., kpof( () , ., kz) Anysuch twisting extends to a twisting between the auto-
morphisms AAof ( () , , kz)and( () , )and,inthe standard case t = O, provides a

one-to-one correspondence between the ribbon A Ay-braids as in Theorem 5.5.

Remark 5.7. The type Il symmetric pairs admit analogues of Theorems 5.4 and 5.5 and Remark 5.6,
with essentially the same proofs. Indeed, as we have explained along the way, the intermediate results
used in the proofs, such as Theorems 2.6 and 2.18 and Proposition 4.15, all have analogues for the type
Il case.

5.3. Comparison theorem: Hermitian case
In the Hermitian case, we do need to consider the multiplier algebra model in our approach.

Theorem 5.8. Assume < is a Hermitian symmetric pair, with in Satake form equation (4.1).

Taket T ,andchoose '  (,)suchthat( ', ') =& 52 Then the coaction (U( ,) , )
of (U( ) , ) is obtained by twisting from the quasi-coaction (U( ) , , kz ;) of
(U( ) , , kgz) foruniquely defined R and R ,where gz ; isdefinedusing °.

The parameter R is determined as follows:

€ S-type: If 4 is the unique distinguished root and += S ,&0), then
= J_rglog A++#)V2 4+
where = isthesignof Jx( ', ) ; } ) ) 5
€ C-type: If 4 is the unique distinguished root such that S #( ')+ 1 % ( ') > 0, where s
the component of tin , and += +, then

2
= —log+.

Proof. Choose ( )suchthat( , ) =8 2 In the C-type case, we require also that if 4
is the distinguished root as in the formulation of the theorem, then S »( )+ 1 @ ( ) > 0, which
determines  uniquely. By Lemma 4.8 and the discussion following it, we then get a pair (0, ) asin
Section 3.
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By twisting the coaction, we may assumethat : () U( ) defining the multiplier algebra
model is as in Lemma 4.5. Then by Lemma 4.7, there is a unitary Drinfeld twist such that

F=1+ —+4(?.

2
By Lemma 4.13, we could also choose u satisfying equation (4.12) to be unitary, which means that by
twisting  we may assume  to be -preserving. Hence, by Proposition 4.15, is a twisting of by
a unitary element G. 5 5

By Lemma4.11, we have , = (Ad6 )>!( ~)and ' = (Ad6> «&)( ), where isdetermined
as follows (see also Remark 4.12):
€S- o % ) :

-type: 6 ( #) &'y = tan( yand ————— > 0;
6 ( #)cos(—)

€ C-type: + = Scot(5( S1)).

The map Ad6 defines isomorphisms U( ) U( +)and U( ) U( ) and transforms the

coaction (U( ) , )of(U( ) , )intoacoaction(U( ) ,” )of (U( ) 7). As
[6 6,3 =0, the latter coaction satisfies the assumptions of Theorem 3.17. Hence, this coaction is a
twisting of the quasi-coaction (U( +) , , kz :)of(U( ) , , «kz) foruniquely determined

Rand R, with s determined by

sin — =tanh — .
N3 2

Applying (Ad 6 )Sl, we conclude that our original coaction is obtained by twisting from the quasi-
coaction (U( ) , , kz ;)of(U( ) , , kz),andthepair (, ) isthe only one with this

property.
It remains to verify the formulas for s in the formulation of the theorem
In the S-type case, using # O - +we canwrite 6 ( #)Jy+=tan(—-). Wealsohave 6 ( #)Js = £1

by Lemma 4.10. We thus obtain sin(—-) = £+(1 + +)5U2, or equwalently

1++(1++2)S12

1S +(1+ )52 =tlog (1++#)12++,

—+1Io
__2 g

with the + being equal to the sign of +51 sm(—) =6 ( #)Jdx cos( ). This is equal to the sign of
Je( Y, ) because (6 ( #)cos(—))SI( Y, ) >0

In the C-type case, writing + HY =+ >0, we have
: _ 281 +845
N T e T e
hence — = log +

Remark 5.9. Throughout the paper we made a number of statements about unitarity. We used them in

the proof of Theorem 5.8 to make sure that fort T we get R and R . It follows that
kz, . isunitary, and once we know this, a standard argument based on polar decomposition shows that
if © () U() and  are -preserving, then the twisting can be done by unitary elements.

The same is true for Theorem 5.4.

The parameter can in principle be determined by comparing the K-matrices using the next theorem.
We will do this in detail in the type Alll case in Section 5.5.

Theorem 5.10. The twisting provided by Theorem 5.4 establishes a one-to-one correspondence between
the following data:
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€ the ribbon braids for the quasi-coaction (U( ) ., , kz ; ) of the quasi-triangular multiplier
quasi-bialgebra (U( ) , , kz,Rkz), given by
Bz . 1=8xp S 25+ )+ (1S S ) h 1 ( (Q)F (5.5)

€ the Balagovié—Kolb ribbon braids ! (or their images E!) for the coideal '( ) of the quasi-
triangular bialgebra ( (), , ), fordi erent choices of 2 satisfying equation (4.15).

Under this correspondence, we have E' =1 exp( (1S ) ') mod

Proof. This is proved similarly to Theorem 5.5, but now using the classification result from Theorem
2.19, applied to = exp( ad ') and the fact that the multiplication by 1 exp( ') on the right
gives a one-to-one correspondence between the ribbon -braids and the ribbon braids.

Analogous results hold for generic t ~ T.. More precisely, we have to exclude a countable set of

values of ;&0) (S-type) and +§¢0) (C-type) for the distinguished roots to be sure that a multiplier algebra
model for t( ) exists; see Remark 4.16. We also have to make sure that kz, . is well defined,

which means that s should be outside a set A satisfying (1 +22) Q.

Proposition 5.11. In the S-type case, for generic t Tc, the coaction (U( ) , )
of (U( ) , ) is obtained by twisting from the quasi;coaction U ) s kz ;) of
(U() , , kz)for Csatisfying = (1++#)Y2++ with+=5 2, and auniquely deter-
mined C , where the square root (1 ++%)Y2 is chosen such that (1 + +#)Y2J,( t, ) >0.
In the C-type case, the same holds for s satisfying = +2, with + = +¥, where 4 is the unique

distinguished root such that S (" t) + 1 (#)(Nt) > 0. Such a twisting establishes a one-to-one
correspondence between the ribbon braids (5.5) and the Balagovi¢—Kolb ribbon braids.

Proof. The proof is essentially identical to that of Theorems 5.8 and 5.10. Let us only explain where
the condition (1 ++%)Y2J,( ', ) > 0in the S-type case comes from.

Recall that (1 + +2)S1 = cos? (). We want to choose the square root (1 + +2)2 so that sin(—-) =
+(1 + +)5Y2 holds. Then we obtain

2
& 1++¥)Y2++ S1
S1 2\31/2 (
= — =41+ =
) tanh > (1 )

2
QA+P)V2++ +1
which gives the asserted formula for . From the proof of Theorem 5.8, we see that the desired choice
is given by

1
6 ( #)3scos()

(1++2)1/2 —

Then we have

)
1+2)V23, 0t - >
(1++)73u( ) 6 ( 1) cos(=)

hence the condition in the statement of the theorem.

5.4. A Kohno...Drinfeld type theorem

The above resul