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Abstract
We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of com-
pact type within the framework of quasi-coactions, one based on the Enriquez–Etingof cyclotomic Knizhnik–
Zamolodchikov (KZ) equations and the other on the Letzter–Kolb coideals. This equivalence can be upgraded to
that of ribbon braided quasi-coactions, and then the associated reflection operators (K-matrices) become a tangible
invariant of the quantization. As an application we obtain a Kohno–Drinfeld type theorem on type B braid group
representations defined by the monodromy of KZ-equations and by the Balagović–Kolb universal K-matrices. The
cases of Hermitian and non-Hermitian symmetric spaces are significantly different. In particular, in the latter case
a quasi-coaction is essentially unique, while in the former we show that there is a one-parameter family of mutually
nonequivalent quasi-coactions.
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Introduction

This paper is about quantization of symmetric spaces of compact type. It will be sufficient to concentrate
on the irreducible simply connected symmetric spaces of type I, that is, the spaces of the form 𝑈/𝑈𝜎
for a compact simply connected simple Lie group U with an involutive automorphism 𝜎. Our approach
is motivated by the groundbreaking work of Drinfeld [Dri89b], in which he gave a new algebraic
proof of Kohno’s theorem [Koh87] on equivalence of the braid group representations that appear as
deformations of representations of the symmetric group on tensor powers of some representation of
𝔤 = 𝔲C. The representations in question are defined by the monodromy of the Knizhnik–Zamolodchikov
(KZ) equations, on the one hand, and by the universal R-matrix of the Hopf algebraic deformation𝑈ℎ (𝔤)
of the universal enveloping algebra 𝑈 (𝔤) on the other.

Drinfeld developed a framework of quasi-triangular quasi-bialgebras, which captures both types of
representations. He showed that a deformation of𝑈 (𝔤) among such quasi-bialgebras is controlled by the
co-Hochschild cohomology of the coalgebra 𝑈 (𝔤), up to a natural notion of equivalence derived from
tensor categorical considerations. This cohomology is the exterior algebra

∧
𝔤, and the part giving the

deformation parameter is the one-dimensional space (
∧3 𝔤)𝔤. Moreover, this parameter is detected by

the eigenvalues of the square of the braiding.
In the course of developing the theory, Drinfeld also clarified the geometric structures behind such

deformations. Namely, the first order terms of the deformations correspond to Poisson–Lie group
structures on U, or structures of a Lie bialgebra on 𝔲. The two types of representations of the braid
groups arise from different models of quantizations of Poisson–Lie groups, and Drinfeld’s result says
that such quantizations are essentially unique. In hindsight, his result can be interpreted as an instance
of the formality principle, which roughly says that deformations of algebraic structures are controlled
by first order terms through a quasi-isomorphism of differential graded Lie algebras.

Having understood quantizations of Poisson–Lie groups, one natural next direction is to look at
quantizations of the Poisson homogeneous spaces. The first important step towards a classification of
such spaces was again made by Drinfeld [Dri93]: For the standard Poisson–Lie group structure on U,
they correspond to the real Lagrangian subalgebras of 𝔤. A complete classification of these spaces (with
connected stabilizers) was then given by Karolinsky [Kar96].
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The first classification result for quantizations of Poisson homogeneous spaces was obtained by
Podleś [Pod87]. He classified the actions of Woronowicz’s compact quantum group SU𝑞 (2) [Wor87]
with the same spectral pattern as that of SU(2) acting on (the functions on) the 2-sphere 𝑆2. In other
words, he considered coactions of the C∗-bialgebra 𝐶 (SU𝑞 (2)), which is a deformation of the algebra
of continuous functions on SU(2) and is dual to (an analytic version of) 𝑈ℎ (𝔰𝔩2). Podleś showed that
there is a one-parameter family of isomorphism classes of such coactions. From the geometric point
of view, this is explained by the fact that the covariant Poisson structures on 𝑆2 form a Poisson pencil
[She91].

Tensor categorical counterparts of Hopf algebra coactions are module categories. Although the
precise correspondence, through a Tannaka–Krein type duality, came later [Ost03, DCY13, Nes14],
in the context of quantization of Poisson homogeneous spaces there is already a rich accumulation of
results obtained from various angles, all related to the reflection equation.

This equation was introduced by Cherednik [Che84] to study quantum integrable systems on the half-
line. While braiding (Yang–Baxter operator) represents scattering of two particles colliding in a one-
dimensional system, a solution of the reflection equation (reflection operator) represents the interaction
of a particle with a boundary. Adding this operator to a braided tensor category (where the Yang–Baxter
operators live) gives rise to a new category with a larger space of morphisms, which admits a monoidal
product of the braided tensor category from one side, thus yielding a module category [tDHO98], or
more precisely, a braided module category [Bro13].

Matrix solutions of the reflection equation for the universal R-matrix of quasi-triangular Hopf
algebras lead to coideal subalgebras, as originally pointed out by Noumi [Nou96] and further clari-
fied by Kolb–Stokman [KS09]. In this direction, the best understood class is that of quantum sym-
metric pairs, that is, the coideals which are deformations of 𝑈 (𝔤𝜃 ) for a conjugate 𝜃 of 𝜎 such
that 𝔤𝜃 is maximally noncompact relative to the Cartan subalgebra defining the deformation 𝑈ℎ (𝔤).
Following Koornwinder’s work [Koo93] on the dual coideals of the Podleś spheres, Letzter [Let99]
developed a systematic way of constructing such coideal subalgebras 𝑈t

ℎ (𝔤
𝜃 ) < 𝑈ℎ (𝔤) for finite

type Lie algebras, which was refined and extended by Kolb to Kac–Moody Lie algebras [Kol14].
Next, a universal K-matrix for 𝑈t

ℎ (𝔤
𝜃 ), which gives reflection operators in the representations of

𝑈t
ℎ (𝔤

𝜃 ), was defined by Kolb and Balagović [Kol08, BK19] expanding on the earlier work of Bao
and Wang [BW18] on the (quasi-split) type AIII and AIV cases. The construction relied on a coideal
analogue of Lusztig’s bar involution [BW18, BK15]. Kolb [Kol20] further showed, developing on
the ideas from [tDHO98, Bro13], that these structures give rise to ribbon twist-braided module
categories.

On the dual side, a deformation quantization of 𝑈/𝑈𝜎 from the reflection equation was developed
by Gurevich, Donin, Mudrov and others [GS99, DGS99, DM03b, DM03a]. Here, one sees a close
connection to the theory of dynamical r-matrices [Fel95, EV98].

There is a parallel theory of module categories over the Drinfeld category, that is, the tensor category
of finite-dimensional 𝔤-modules with the associator defined by the monodromy of the KZ-equations.
The basic idea is to add an extra pole in these equations, then the reflection operator appears as a
suitably normalized monodromy around it. Conceptually, the usual KZ-equations give flat connections
on the configuration space of points in the complement of type A hyperplane configurations, and the
modified equations are obtained by looking at the complement of type B hyperplane configurations.
Following early works of Leibman [Lei94] and Golubeva–Leksin [GL00] on monodromy of such
equations, Enriquez [Enr07] introduced cyclotomic KZ-equations. He also defined quasi-reflection
algebras, a particular class of quasi-coactions of quasi-bialgebras, which can be considered as type B
analogues of quasi-triangular quasi-bialgebras. This formalism turned out to have powerful applications
to quantization of Poisson homogeneous spaces, where the associator of a quasi-coaction gives rise to
a quantization of a dynamical r-matrix [EE05].

Based on these developments and guided by the categorical duality between module categories and
Hopf algebraic coactions, we proposed a conjecture on equivalence between the following structures
[DCNTY19]:
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• a category of finite-dimensional representations of 𝔤𝜎 , considered as a ribbon twist-braided mod-
ule category over the Drinfeld category, with the associator and ribbon twist-braid defined by the
cyclotomic KZ-equations;

• a category of finite-dimensional modules over a Letzter–Kolb coideal𝑈t
ℎ (𝔤

𝜃 ), considered as a ribbon
twist-braided module category over the category of 𝑈ℎ (𝔤)-modules, with the ribbon twist-braid
defined by the Balagović–Kolb universal K-matrix.

To be precise, the conjecture was formulated in the analytic setting, that is, 𝑞 = 𝑒ℎ was assumed to
be a real number and the categories carried unitary structures. In this paper, we give a proof of the
corresponding conjecture in the formal setting using the framework of quasi-coactions.

It should be mentioned that Brochier [Bro12] has already proved an interesting equivalence between
two quasi-coactions on 𝑈ℎ (𝔥), where 𝔥 < 𝔤 is the Cartan subalgebra and one of the quasi-coactions
comes from the cyclotomic KZ-equations associated with a finite order automorphism 𝜎 such that
𝔤𝜎 = 𝔥. In his setting, the extra deformation parameter space is the formal group generated by the
Cartan algebra. The construction of the equivalence follows the strategy of [Dri89b], this time relying
on the co-Hochschild cohomology studied by Calaque [Cal06].

Now, let us sketch what we concretely carry out:

• Show that the quasi-coactions of Drinfeld’s quasi-bialgebra induced by the cyclotomic KZ-equations
are generically universal among the quasi-coactions deforming Δ on 𝑈 (𝔤𝜎).

• Give a complete classification of the corresponding ribbon twist-braids and show that the correspond-
ing K-matrices give a complete invariant of the quasi-coactions.

• In the Hermitian case (see below), when there is a one-parameter family of nonequivalent quasi-
coactions, establish a correspondence with Poisson structures on 𝑈/𝑈𝜎 by studying coisotropic
subgroups which are conjugates (‘Cayley transforms’) of 𝑈𝜎 .

• Make a concrete comparison with the Letzter–Kolb coideals and the Balagović–Kolb braided module
categorical structures.

In the first step, the main idea is to reduce the problem to vanishing of obstructions in a suitable
version of the co-Hochschild cohomology. This strategy is quite standard; see [Dri89b, Bro12], but
while these papers relied on the braiding/ribbon braids to have a good control of the cohomology, we
work with the cohomology classes directly, analogously to Donin–Shnider’s approach [DS97] to Lie
bialgebra quantization, and the identification of the ribbon twist-braids comes only towards the end.
The relevant co-Hochschild cohomology turns out to be isomorphic to

∧
𝔪C for 𝔪C = 𝔤 � 𝔤𝜎 , and the

deformation of a quasi-coaction is controlled by the invariant part of the second cohomology, that is,
(
∧2 𝔪C)𝔤𝜎 . Up to complexification, this space can be interpreted as the space of U-invariant bivectors

on𝑈/𝑈𝜎 , hence there is a direct connection to equivariant deformation quantization. This is where one
sees the formality principle in action.

At this point, we encounter an important dichotomy between the Hermitian and the non-
Hermitian cases. Although we already discussed it in [DCNTY19] based on the parameters t
for the coideals 𝑈t

ℎ (𝔤
𝜃 ), the following observation is perhaps more illuminating: The dimension

of (
∧2 𝔪C)𝔤𝜎 is either zero or one and is equal to that of the center of 𝔤𝜎 . In the Hermi-

tian case, and only in this case, this dimension is one and the corresponding homogeneous space
𝑈/𝑈𝜎 has an invariant Hermitian structure, induced by an element of the center of 𝔤𝜎 (hence the
name).

In the non-Hermitian case, the triviality of the center eliminates cohomological obstructions, quickly
leading to rigidity of the algebra structure and coaction homomorphisms on 𝑈 (𝔤𝜎). Our results in this
case can be summarized as follows.

Theorem A (Section 2.2 and Theorem 2.18). Let 𝔲𝜎 < 𝔲 be a non-Hermitian irreducible symmetric
pair. Suppose that 𝛼 : 𝑈 (𝔤𝜎)�ℎ� → 𝑈 (𝔤𝜎) ⊗ 𝑈 (𝔤)�ℎ� and Ψ ∈ 𝑈 (𝔤𝜎) ⊗ 𝑈 (𝔤)⊗2�ℎ� define a quasi-
coaction of Drinfeld’s quasi-bialgebra (𝑈 (𝔤)�ℎ�,Δ ,ΦKZ) that deforms Δ : 𝑈 (𝔤𝜎) → 𝑈 (𝔤𝜎) ⊗ 𝑈 (𝔤),
and let (𝛼′,Ψ′) be another such pair. Then (𝛼,Ψ) and (𝛼′,Ψ′) are obtained from each other by twisting.
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Moreover, the quasi-coaction (𝑈 (𝔤𝜎)�ℎ�, 𝛼,Ψ) admits a unique ribbon 𝜎-braid E with prescribed
constant term E (0) ∈ 1 ⊗ 𝑍 (𝑈).

In the above formulation, the ribbon twist-braid is allowed to live in a certain completion of𝑈 (𝔤𝜎) ⊗
𝑈 (𝔤)�ℎ�. Namely, consider the multiplier algebra of the algebra of finitely supported functions on the
dual of 𝑈𝜎 [VD96], which is the direct product of full matrix algebras

U (𝐺𝜎) =
∏
𝜋

End(𝑉𝜋),

where 𝜋 runs over the irreducible finite-dimensional representations of 𝔤𝜎 which appear in finite-
dimensional representations of 𝔤. We can further define

U (𝐺𝜎 × 𝐺𝑛) =
∏

𝜋,𝜋1 ,..., 𝜋𝑛

End(𝑉𝜋) ⊗ End(𝑉𝜋1 ) ⊗ · · · ⊗ End(𝑉𝜋𝑛 ),

where 𝜋1, . . . 𝜋𝑛 run over the irreducible finite-dimensional representations of 𝔤. Then we take E as an
element of U (𝐺𝜎 × 𝐺)�ℎ�.

The situation is more interesting in the Hermitian case. Even up to equivalence defined by twisting, the
quasi-coactions are no longer unique. In this case, we show that generic quasi-coactions are equivalent to
the ones arising from the cyclotomic KZ-equations with prescribed coefficients [EE05, DCNTY19]: The
associator ΨKZ,𝑠;𝜇, for parameters 𝑠 ∈ C \ 𝑖Q× and 𝜇 ∈ ℎC�ℎ�, is given as the normalized monodromy
from 𝑤 = 0 to 𝑤 = 1 of the differential equation

𝐻 ′(𝑤) =
(
ℏ(𝑡𝔨12 − 𝑡𝔪12)

𝑤 + 1
+

ℏ𝑡𝔲12
𝑤 − 1

+
ℏ(2𝑡𝔨01 + 𝐶𝔨

1) + (𝑠 + 𝜇)𝑍1

𝑤

)
𝐻 (𝑤).

Here, we put ℏ = ℎ
𝜋𝑖 , and the coefficients are given as follows: 𝑡𝔲 , 𝑡𝔨 , 𝑡𝔪 are the canonical 2-tensors

of 𝔲, 𝔨 = 𝔲𝜎 , and 𝔪 = 𝔲 � 𝔨 respectively, 𝐶𝔨 is the Casimir element of 𝔨 associated to 𝑡𝔨 , and Z is a
normalized element of 𝔷(𝔨).

If 𝑠 = 0, then ΨKZ,𝑠;𝜇 makes sense in𝑈 (𝔤𝜎) ⊗𝑈 (𝔤)⊗2�ℎ�, but otherwise we can only say that ΨKZ,𝑠;𝜇
is in U (𝐺𝜎 ×𝐺2)�ℎ�. It is therefore convenient to start working with the multiplier algebras throughout
instead of the universal enveloping algebras. Fortunately, the concepts of quasi-bialgebras and quasi-
coactions have straightforward formulations in this setting, and from the categorical point of view
this formalism is actually even more natural when dealing with semisimple module categories. Then
(U (𝐺𝜎)�ℎ�,Δ ,ΨKZ,𝑠;𝜇) is a quasi-coaction of (U (𝐺)�ℎ�,Δ ,ΦKZ), and our results can be summarized
as follows.

Theorem B (Theorems 2.16 and 2.19). Let 𝔲𝜎 < 𝔲 be an irreducible Hermitian symmetric pair, and
let 𝜔 be an invariant symplectic form on 𝑈/𝑈𝜎 . There is a countable subset 𝐴 ⊂ C with the following
property: If 𝛼 : U (𝐺𝜎)�ℎ� → U (𝐺𝜎 × 𝐺)�ℎ� and Ψ ∈ U (𝐺𝜎 × 𝐺2)�ℎ� define a quasi-coaction
of (U (𝐺)�ℎ�,Δ ,ΦKZ) that deforms Δ : U (𝐺𝜎) → U (𝐺𝜎 × 𝐺), and the first order term Ψ (1) of Ψ
satisfies 〈𝜔,Ψ (1) 〉 ∈ C \ 𝐴, then there is a pair (𝑠, 𝜇), unique up to translation by (2𝑖Z, 0), such that
(U (𝐺𝜎)�ℎ�, 𝛼,Ψ) is equivalent to (U (𝐺𝜎)�ℎ�,Δ ,ΨKZ,𝑠;𝜇). Moreover, (U (𝐺𝜎)�ℎ�, 𝛼,Ψ) admits a
unique ribbon 𝜎-braid E with prescribed constant term E (0) ∈ 1 ⊗ exp(−𝜋𝑖𝑠𝑍)𝑍 (𝑈).

We resolve the cohomological obstruction to equivalence by looking at the expansion of ΨKZ,𝑠;𝜇,
where we follow Enriquez and Etingof’s work [EE05] on quantization of dynamical r-matrices. Up to
a coboundary, ΨKZ,𝑠;𝜇 has the expansion

ΨKZ,𝑠;𝜇 ∼ 1 − ℎ

2
tanh

(
𝜋(𝑠 + 𝜇)

2

) ∑
𝛼∈Φ+

nc

(𝛼, 𝛼)
2

1 ⊗ (𝑋𝛼 ⊗ 𝑋−𝛼 − 𝑋−𝛼 ⊗ 𝑋𝛼) + · · · ,
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where Φ+
nc is the set of positive roots in 𝔪C with respect to a choice of Cartan subalgebra in 𝔤𝜎 , and

𝑋±𝛼 is a normalized root vector for ±𝛼; see Sections 2.3 and 2.5 for details. This shows that, under
a perturbation of 𝜇, the associator changes in the term one order higher than the perturbation, with a
precise control of the cohomology class (formal Poisson structure) of the difference in that term. This
leads to the universality of quasi-coactions with the associators ΨKZ,𝑠;𝜇 and can be interpreted as ‘poor
man’s formality’ for equivariant deformation quantization.

We next apply these results to the Letzter–Kolb coideals. Since our classification is formulated in
the framework of multiplier algebras, we show that the coideals indeed give rise to such structures,
essentially by taking a completion. It should be stressed that the formalism of multiplier algebras is
important not only for making sense of ΨKZ,𝑠;𝜇. The second and even more important reason is that it
allows us to check that the coactions defined by the Letzter–Kolb coideals are twistings of Δ . The point
is that, since 𝔤𝜎 is not semisimple in the Hermitian case, the standard arguments based on Whitehead’s
first lemma are not applicable. By working with the multiplier algebras, which are built out of semisimple
algebras, we can circumvent the nonvanishing of Lie algebraic cohomological obstructions. We still
need to use Letzter’s result [Let00] on existence of spherical vectors for this, which means that we have
to consider ∗-coideals 𝑈t

ℎ (𝔤
𝜃 ).

Next, in the Hermitian case, we have to verify the condition on the first order term Ψ (1) . For
this, we study Poisson homogeneous structures on 𝑈/𝑈𝜎 . More precisely, we have to compare two
Poisson structures, corresponding to two ways we obtain the quasi-coactions. On the one hand,
from the cyclotomic KZ-equations we obtain a Poisson pencil [DG95], where one takes the sum of
the left action of the standard r-matrix r on 𝑈/𝑈𝜎 and a scalar multiple of the Kostant–Kirillov–
Souriau bracket, which agrees with the bracket defined by the right action of r. On the other
hand, from the coideals we obtain the reduction of the Sklyanin bracket to quotients by coisotropic
subgroups.

Starting from the model 𝜎 = 𝜃 in the maximally noncompact position, where the subgroup is
coisotropic [FL04], we take a distinguished one-parameter family of subgroups 𝑈 𝜃𝜙 that are conjugate
to 𝑈 𝜃 by interpolated Cayley transforms and show that the associated fixed point subgroups 𝑈 𝜃𝜙

remain coisotropic. At the level of Lie algebras, this construction interpolates between the maximally
noncompact subalgebra 𝔤𝜃 and the maximally compact one 𝔤𝜈 (which contains 𝔥). Moreover, the Lie
algebras 𝔤𝜃𝜙 turn out to be the classical limits of the Letzter–Kolb ∗-coideals 𝑈t

ℎ (𝔤
𝜃 ). By a detailed

analysis of the Cayley transforms, we are able to find the relation between the parameters 𝜙 and t, as
well as to compute the cohomology classes of Ψ (1) for the associators we get. In a bit imprecise form,
these results are summarized as follows.

Theorem C (Theorems 5.4, 5.5, 5.8 and 5.10). There is a parameter set T ∗ (consisting of one point
t = 0 in the non-Hermitian case) defining ∗-coideals𝑈t

ℎ (𝔤
𝜃 ) and satisfying the following properties. For

every t ∈ T ∗, the coideal 𝑈t
ℎ (𝔤

𝜃 ) gives rise to a coaction of a multiplier bialgebra which is equivalent
to the quasi-coaction (U (𝐺 𝜃t )�ℎ�,Δ ,ΨKZ,𝑠;𝜇) of (U (𝐺)�ℎ�,Δ ,ΦKZ), where 𝐺 𝜃t < 𝐺 is a subgroup
conjugate to 𝐺 𝜃 , while 𝑠 ∈ R and 𝜇 ∈ ℎR�ℎ� are uniquely determined parameters (equal to 0 in the
non-Hermitian case), with s given by an explicit formula. Under this equivalence, the Balagović–Kolb
ribbon twist-braids correspond to the ones coming from the cyclotomic KZ-equations.

This implies a Kohno–Drinfeld type result (Theorems 5.12 and 5.13) for quantum symmetric pairs,
stating that representations of type B braid groups arising from the coideals and the cyclotomic KZ-
equations are equivalent.

A formula for the parameter 𝜇 in Theorem C can in principle be obtained by comparing the eigenvalues
of the reflection operators in the two pictures. In the general case, this step might be somewhat involved,
but at least for the AIII case (which corresponds to the symmetric pairs 𝔰(𝔲𝑝 ⊕ 𝔲𝑁−𝑝) < 𝔰𝔲𝑁 ) this can
be done thanks to the classification of reflection operators by Mudrov [Mud02].

So far we have discussed the case of irreducible symmetric spaces of type I, that is, 𝑈/𝑈𝜎 with U
simple. However, the type II case, corresponding to U itself as a symmetric space, or the quotient of
𝑈 ×𝑈 by the diagonal subgroup, can be handled in essentially the same way as the non-Hermitian type
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I cases. In particular, Theorems A and C can be adapted to this case. This implies that an analogue of
Theorem C holds in general for Letzter–Kolb ∗-coideals of 𝑈ℎ (𝔤) with 𝔤 semisimple.

Let us now briefly summarize the contents of the paper. In Section 1, we recall basic definitions and
introduce conventions which are used throughout the paper.

In Section 2, we prove our main conceptual results on classification of quasi-coactions and ribbon
twist-braids. As explained above, the non-Hermitian case is done by a more or less standard cohomo-
logical argument, while in the Hermitian case we look into the structure of the associators arising from
the cyclotomic KZ-equations.

In Section 3, we focus on the Hermitian case and look at conjugates of 𝔲𝜎 < 𝔲 in the maximally
compact position by interpolated Cayley transforms. We show that these conjugates generate coisotropic
subgroups and relate them to models arising from the cyclotomic KZ-equations, with an explicit formula
for the first order term.

In Section 4, we explain how the quantized universal enveloping algebra and the Letzter–Kolb
coideals fit into our setting of multiplier quasi-bialgebras and their quasi-coactions.

Finally, in Section 5, we combine the results of the previous sections and prove our main comparison
theorems. We finish the section with a detailed analysis of the AIII case.

There are three appendices, in which we collect some technical but not fundamentally new results
used in the paper.

Let us close the introduction with some further problems. First of all, a general formula for 𝜇 in
Theorem C would be nice to find, especially if this can be done in a unified way rather than via a case-
by-case analysis. Second, the analytic version of the conjecture, as originally proposed in [DCNTY19],
remains to be settled, together with a comparison with the ‘Vogan picture’ introduced there. On the
geometric side, one would like to extend the above results in the Hermitian case to all coadjoint orbits
of U.

1. Preliminaries

1.1. Conventions

We treat h as a formal variable and put ℎ∗ = ℎ when we consider ∗-algebraic structures. We put

𝑞 = 𝑒ℎ and ℏ =
ℎ

𝜋𝑖
,

the latter is mostly reserved for the KZ-equations. We denote the space of formal power series with
coefficients in A by

𝐴�ℎ� =

{
𝑎 =

∞∑
𝑛=0

ℎ𝑛𝑎 (𝑛)




 𝑎 (𝑛) ∈ 𝐴

}
,

and the space of Laurent series by

𝐴[ℎ−1, ℎ� =

{
𝑎 =

∞∑
𝑛=𝑘

ℎ𝑛𝑎 (𝑛)




 𝑎 (𝑛) ∈ 𝐴, 𝑘 ∈ Z

}
.

For 𝑎 ∈ 𝐴[ℎ−1, ℎ�, we denote the smallest n such that 𝑎 (𝑛) ≠ 0 by ord(𝑎).
We denote the h-adically completed tensor product of C�ℎ�-modules by ⊗̂. In particular, we have

(𝐴�ℎ�) ⊗̂ (𝐵�ℎ�) = (𝐴 ⊗ 𝐵)�ℎ�.
When 𝐴 = C and 𝑎 ∈ C�ℎ� has constant term 𝑎 (0) > 0, we take its nth root 𝑏 = 𝑎

1
𝑛 to be the unique

solution of 𝑏𝑛 = 𝑎 such that 𝑏 (0) is positive. A similar convention is used for log.
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1.2. Simple Lie groups

Throughout the entire paper, 𝔲 denotes a compact simple Lie algebra and 𝔤 denotes its complexification.
The connected and simply connected Lie groups corresponding to 𝔤 and 𝔲 are denoted by G and U.

We denote by (·, ·)𝔤 the unique invariant symmetric bilinear form on 𝔤 such that, for any Cartan
subalgebra 𝔥 < 𝔤, its dual form on 𝔥∗ has the property that (𝛼, 𝛼) = 2 for every short root 𝛼. Let
𝑡𝔲 ∈ 𝔲⊗2 be the corresponding invariant tensor:

𝑡𝔲 =
∑
𝑖

𝑋𝑖 ⊗ 𝑋 𝑖 , (1.1)

where (𝑋𝑖)𝑖 is a basis in 𝔤 and (𝑋 𝑖)𝑖 is the dual basis.
Recall that (·, ·)𝔤 is negative definite on 𝔲. Therefore, if we define an antilinear involution ∗ on 𝔤 by

letting 𝑋∗ = −𝑋 for 𝑋 ∈ 𝔲, then (𝑋,𝑌 ∗)𝔤 becomes an (Ad𝑈)-invariant Hermitian scalar product on 𝔤.
We denote the category of finite-dimensional algebraic representations of the linear algebraic group

G (equivalently, finite-dimensional representations of 𝔤) by Rep𝐺. It is equivalent to the category of
finite-dimensional unitary representations of U. We write 𝜋 ∈ Rep𝐺 to say that 𝜋 is a finite-dimensional
representation of G, its underlying space is denoted by 𝑉𝜋 . We also fix a set Irr𝐺 of representatives of
the isomorphism classes of irreducible representations.

We will often have to extend the scalars to C�ℎ�. Denote the category we get by (Rep𝐺)�ℎ�. Thus,
the objects of (Rep𝐺)�ℎ� are the G-modules over C�ℎ� that are isomorphic to the modules of the form
𝑉𝜋�ℎ� for 𝜋 ∈ Rep𝐺.

1.3. Multiplier algebras

For 𝑛 = 1, 2, . . . , we put

U (𝐺𝑛) =
∏

𝜋𝑖 ∈Irr𝐺,
𝑖=1,...,𝑛

End(𝑉𝜋1 ) ⊗ · · · ⊗ End(𝑉𝜋𝑛 ).

We view G and 𝔤 as subsets of U (𝐺) = U (𝐺1).
Since for every irreducible 𝜋 ∈ Rep𝐺, there is a unique up to a scalar factor U-invariant Hermitian

scalar product on𝑉𝜋 , we have a canonical involution ∗ on U (𝐺𝑛). There is also a unique homomorphism

Δ : U (𝐺) → U (𝐺2)

characterized by the identities (𝜋1 ⊗ 𝜋2) (Δ (𝑇))𝑆 = 𝑆𝜋(𝑇) for all intertwiners 𝑆 : 𝑉𝜋 → 𝑉𝜋1 ⊗𝑉𝜋2 . Then
Δ (𝑔) = 𝑔 ⊗ 𝑔 for 𝑔 ∈ 𝐺. This characterizes the elements of G among the nonzero elements of U (𝐺).
Similarly, the identity Δ (𝑋) = 𝑋 ⊗ 1 + 1 ⊗ 𝑋 for 𝑋 ∈ 𝔤 characterizes 𝔤 inside U (𝐺).

Denote by O(𝐺) the Hopf algebra of regular functions (matrix coefficients of finite-dimensional
representations) on G. We occasionally write O(𝑈) instead of O(𝐺) when we think of it as a function
algebra on U.

There is a nondegenerate pairing between U (𝐺) and O(𝐺) that allows us to identify U (𝐺) with the
dual space of O(𝐺). Concretely, if 𝜋 is irreducible, 𝑇 ∈ End(𝑉𝜋), 𝑣 ∈ 𝑉𝜋 , ℓ ∈ 𝑉∗

𝜋 , then for the matrix
coefficient 𝑎𝑣,ℓ ∈ O(𝐺), 𝑎𝑣,ℓ (𝑔) = ℓ(𝜋(𝑔)𝑣), we have

〈𝑎𝑣,ℓ , 𝑇〉 = ℓ(𝑇𝑣),

and 〈 𝑓 , 𝑇〉 = 0 for the matrix coefficients f of the irreducible representations 𝜋′ inequivalent to 𝜋.
Similarly, U (𝐺𝑛) is the linear dual of O(𝐺)⊗𝑛. With respect to this duality, the bialgebra structures are
related by

〈 𝑓1 ⊗ 𝑓2,Δ (𝑇)〉 = 〈 𝑓1 𝑓2, 𝑇〉, 〈Δ ( 𝑓 ), 𝑇1 ⊗ 𝑇2〉 = 〈 𝑓 , 𝑇1𝑇2〉

for 𝑓𝑖 ∈ O(𝐺) and 𝑇𝑖 ∈ U (𝐺).
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We can do the same constructions for any reductive linear algebraic group H over C. We then also
define

U (𝐻 × 𝐺𝑛) =
∏

𝜋∈Irr𝐻,𝜋𝑖 ∈Irr𝐺,
𝑖=1,...,𝑛

End(𝑉𝜋) ⊗ End(𝑉𝜋1) ⊗ · · · ⊗ End(𝑉𝜋𝑛 )

for 0 ≤ 𝑛 < ∞. In a more invariant form, U (𝐻 × 𝐺𝑛) is the linear dual of O(𝐻 × 𝐺𝑛).
Assume in addition that H is an algebraic subgroup of G. Then the embedding 𝐻 → 𝐺 extends to

an embedding of U (𝐻𝑛+1) into U (𝐻 ×𝐺𝑛). In particular, the comultiplication Δ : U (𝐻) → U (𝐻2) can
be viewed as a homomorphism U (𝐻) → U (𝐻 × 𝐺).

Note that in general H is not simply connected. In Lie algebraic terms, the category Rep 𝐻 consists
of the finite-dimensional representations of 𝔥 that are subrepresentations of the finite-dimensional
representations of 𝔤 restricted to 𝔥.

1.4. Quasi-coactions and ribbon twist-braids

The notion of a quasi-bialgebra [Dri89b] has a straightforward adaptation to the setting of multi-
plier algebras, cf. [NT11, Section 2]. We will be interested in multiplier quasi-bialgebras of the form
(U (𝐺)�ℎ�,Δℎ , 𝜖ℎ ,Φ). Thus, Δℎ is a nondegenerate homomorphism U (𝐺)�ℎ� → U (𝐺2)�ℎ�, mean-
ing that the images of the idempotents Δℎ (id𝑉𝜋 ) (𝜋 ∈ Irr𝐺) in End(𝑉𝜋1 ⊗ 𝑉𝜋2)�ℎ� add up to 1,
𝜖ℎ : U (𝐺)�ℎ� → C�ℎ� is a nondegenerate homomorphism, and Φ ∈ U (𝐺3)�ℎ� is an invertible ele-
ment (with Φ(0) = 1) satisfying the same identities as in [Dri89b, Section 1].

The assumption of nondegeneracy for the counit 𝜖ℎ implies that it is determined by its restrictions
to the blocks End(𝑉𝜋)�ℎ� of U (𝐺)�ℎ�. Since there are no nonzero (C�ℎ�-linear) homomorphisms
End(𝑉)�ℎ� → C�ℎ� for dim𝑉 > 1 and there is a unique such homomorphism for dim𝑉 = 1, we
conclude that 𝜖ℎ coincides with the standard counit 𝜖 on U (𝐺)�ℎ�. From now on, we will therefore
omit 𝜖ℎ from the notation for a multiplier quasi-bialgebra.

Given a reductive algebraic subgroup H of G, a quasi-coaction of (U (𝐺)�ℎ�,Δℎ ,Φ) on U (𝐻)�ℎ�
is given by a nondegenerate homomorphism 𝛼 : U (𝐻)�ℎ� → U (𝐻 × 𝐺)�ℎ� and an associator Ψ ∈
U (𝐻 × 𝐺2)�ℎ� satisfying Ψ (0) = 1,

(id ⊗ 𝜖)𝛼 = id,

Ψ(𝛼 ⊗ id)𝛼(𝑇) = (id ⊗ Δℎ)𝛼(𝑇)Ψ (𝑇 ∈ U (𝐻)�ℎ�), (1.2)

the mixed pentagon equation

Φ1,2,3Ψ0,12,3Ψ0,1,2 = Ψ0,1,23Ψ01,2,3, (1.3)

with Ψ01,2,3 = (𝛼 ⊗ id) (Ψ), Ψ0,12,3 = (idU (𝐻 ) ⊗ Δℎ ⊗ id) (Ψ), etc., and the normalization conditions

(id ⊗ 𝜖 ⊗ id) (Ψ) = (id ⊗ id ⊗ 𝜖) (Ψ) = 1.

A multiplier quasi-bialgebra (U (𝐺)�ℎ�,Δℎ ,Φ) defines a tensor category ((Rep𝐺)�ℎ�, ⊗ℎ ,Φ),
where the tensor product ⊗ℎ on (Rep𝐺)�ℎ� is defined using Δℎ and the associativity isomor-
phism is given by the action of Φ. A quasi-coaction as above defines then the structure of a
right ((Rep𝐺)�ℎ�, ⊗ℎ ,Φ)-module category on (Rep 𝐻)�ℎ�. Namely, the functor �𝛼 : (Rep 𝐻)�ℎ� ×
(Rep𝐺)�ℎ� → (Rep 𝐻)�ℎ� defining the module category structure is induced by 𝛼, while the asso-
ciativity morphisms are defined by the action of Ψ. See [DCNTY19, Section 1] for more details, but
note that in [DCNTY19] we worked in the analytic setting, meaning that 𝑞 = 𝑒ℎ was a real number and
Φ ∈ U (𝐺3), Ψ ∈ U (𝐻 × 𝐺2).

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.11


10 K. De Commer et al.

Next, let R ∈ U (𝐺2)�ℎ� be an R-matrix (with R(0) = 1) for (U (𝐺)�ℎ�,Δℎ ,Φ), that is, RΔℎ (·) =
Δop
ℎ (·)R and R satisfies the hexagon relations. Let 𝛽 be an automorphism of the quasi-triangular

multiplier quasi-bialgebra (U (𝐺)�ℎ�,Δℎ ,Φ,R). A ribbon 𝛽-braid is given by an invertible element
E ∈ U (𝐻 × 𝐺)�ℎ� satisfying

E (id ⊗ 𝛽)𝛼(𝑇) = 𝛼(𝑇)E (𝑇 ∈ U (𝐻)�ℎ�), (1.4)

(𝛼 ⊗ id) (E) = Ψ−1R21Ψ021E02 (id ⊗ id ⊗ 𝛽) (Ψ−1
021R12Ψ), (1.5)

(id ⊗ Δℎ) (E) = R21Ψ021E02 (id ⊗ id ⊗ 𝛽) (Ψ−1
021R12Ψ)E01(id ⊗ 𝛽 ⊗ 𝛽) (Ψ−1). (1.6)

When 𝛽 is the identity map, we just say ‘ribbon braid’ instead of ‘ribbon id-braid’. We want to stress
that, as opposed to Φ, Ψ and R, we do not require E (0) = 1. A quadruple (U (𝐻)�ℎ�, 𝛼,Ψ, E) satisfying
equations (1.4) and (1.5) is a version of a quasi-reflection algebra [Enr07]. In categorical terms, the action
of E on 𝑀 �𝛼 𝑁 defines the structure of a ribbon 𝛽-braided module category on ((Rep 𝐻)�ℎ�, �𝛼,Ψ).
See again [DCNTY19, Section 1] for more details.

1.5. Twisting

We can transform a quasi-coaction (U (𝐻)�ℎ�, 𝛼,Ψ) of (U (𝐺)�ℎ�,Δℎ ,Φ) into a new one as follows.
Suppose that we are given elements F ∈ U (𝐺2)�ℎ� and G ∈ U (𝐻×𝐺)�ℎ� such that F (0) = 1, G (0) = 1
and

(𝜖 ⊗ id) (F) = (id ⊗ 𝜖) (F) = 1, (id ⊗ 𝜖) (G) = 1.

Then the twisting of the quasi-coaction by (F ,G) is the quasi-coaction (U (𝐻)�ℎ�, 𝛼G ,ΨF ,G) of the
multiplier quasi-bialgebra (U (𝐺)�ℎ�,Δℎ,F ,ΦF ), where

Δℎ,F = FΔℎ (·)F−1, ΦF = (1 ⊗ F) (id ⊗ Δℎ) (F)Φ(Δℎ ⊗ id) (F−1) (F−1 ⊗ 1),
𝛼G = G𝛼(·)G−1, ΨF ,G = (1 ⊗ F) (id ⊗ Δℎ) (G)Ψ(𝛼 ⊗ id) (G−1) (G−1 ⊗ 1).

Twisting defines an equivalence relation on the quasi-coactions. In categorical terms, it means that
we pass from ((Rep𝐺)�ℎ�, ⊗ℎ ,Φ) to the equivalent tensor category ((Rep𝐺)�ℎ�, ⊗ℎ,F ,ΦF ), with the
tensor product defined by Δℎ,F , and, up to this equivalence, the ((Rep𝐺)�ℎ�, ⊗ℎ ,Φ)-module category
((Rep 𝐻)�ℎ�, �𝛼,Ψ) is equivalent to the ((Rep𝐺)�ℎ�, ⊗ℎ,F ,ΦF )-module category

((Rep 𝐻)�ℎ�, �𝛼G ,ΨF ,G).

As the following result shows, twisting often allows one to push all the information on a quasi-
coaction into the associators.

Lemma 1.1. Assume H is a reductive algebraic subgroup of G and (U (𝐻)�ℎ�, 𝛼,Ψ) is a quasi-coaction
of (U (𝐺)�ℎ�,Δℎ ,Φ) such that both 𝛼 and Δℎ equal Δ modulo h. Then this quasi-coaction is a twisting
of a quasi-coaction (U (𝐻)�ℎ�,Δ ,Ψ′) of (U (𝐺)�ℎ�,Δ ,Φ′) for some Ψ′ and Φ′.

Proof. Take irreducible representations 𝜋1 and 𝜋2 of G. Consider the homomorphisms 𝑓 = (𝜋1 ⊗ 𝜋2)Δ
and 𝑓ℎ = (𝜋1 ⊗ 𝜋2)Δℎ from U (𝐺)�ℎ� into End(𝑉𝜋1 ⊗ 𝑉𝜋2)�ℎ�. The assumption of nondegeneracy for
Δℎ implies that there exists a finite set 𝐹 ⊂ Irr𝐺 such that 𝑓ℎ factors through

⊕
𝜋∈𝐹 End(𝑉𝜋)�ℎ�. By

taking F large enough, we may assume that the same is true for f. Since the algebra
⊕

𝜋∈𝐹 End(𝑉𝜋)
is semisimple, there are no nontrivial deformations of any given homomorphism

⊕
𝜋∈𝐹 End(𝑉𝜋) →

End(𝑉𝜋1 ⊗ 𝑉𝜋2). Hence, there exists F𝜋1 , 𝜋2 ∈ End(𝑉𝜋1 ⊗ 𝑉𝜋2)�ℎ� such that F (0)
𝜋1 , 𝜋2 = 1 and 𝑓ℎ =

(AdF𝜋1 , 𝜋2 ) 𝑓 . Then F = (F𝜋1 , 𝜋2)𝜋1 , 𝜋2∈Irr𝐺 ∈ U (𝐺2)�ℎ� satisfies F (0) = 1 and Δℎ = FΔ (·)F−1.

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.11


Forum of Mathematics, Pi 11

Furthermore, since the counit of (U (𝐺)�ℎ�,Δℎ ,Φ) is 𝜖 , we could take F𝜋1 , 𝜋2 = 1 if either 𝜋1 or 𝜋2
were trivial representations. In this case, F would additionally satisfy (𝜖 ⊗ id) (F) = (id ⊗ 𝜖) (F) = 1.

In a similar way, we can find G ∈ U (𝐻×𝐺)�ℎ� such that G (0) = 1, (𝜄⊗ 𝜖) (G) = 1 and 𝛼 = GΔ (·)G−1.
Then the twisting by (F−1,G−1) gives the required quasi-coaction. �

Next, given a quasi-coaction (U (𝐻)�ℎ�, 𝛼,Ψ) of (U (𝐺)�ℎ�,Δℎ ,Φ), assume in addition we have an
automorphism 𝛽 of (U (𝐺)�ℎ�,Δℎ ,Φ). If F satisfies (𝛽⊗ 𝛽) (F) = F , then 𝛽 remains an automorphism
of (U (𝐺)�ℎ�,Δℎ,F ,ΦF ). Assume also that R ∈ U (𝐺2)�ℎ� is an R-matrix for (U (𝐺)�ℎ�,Δℎ ,Φ) that
is fixed under 𝛽. Then RF = F21RF−1 is an R-matrix for (U (𝐺)�ℎ�,Δℎ,F ,ΦF ), again fixed by 𝛽.
Given a ribbon 𝛽-braid E for the original quasi-coaction we get a ribbon 𝛽-braid EG for the twisted
quasi-coaction (U (𝐻)�ℎ�, 𝛼G ,ΨF ,G) of (U (𝐺)�ℎ�,Δℎ,F ,ΦF ,RF ) defined by

EG = GE (id ⊗ 𝛽) (G)−1. (1.7)

The condition (𝛽 ⊗ 𝛽) (F) = F can be relaxed; we will return to this in Section 5.1.

1.6. Symmetric pairs

Let 𝔨 be a proper Lie subalgebra of 𝔲. We say that 𝔨 < 𝔲 is a symmetric pair, or more precisely, an
irreducible symmetric pair of type I, if there is a (necessarily unique) involutive automorphism 𝜎 of 𝔲
such that 𝔨 = 𝔲𝜎 . Whenever convenient, we extend 𝜎 to U (𝐺), in particular, to 𝔤. Let 𝐾 = 𝑈𝜎 . The
compact group K is connected by [Hel01, Theorem VII.8.2]. Using the Cartan decomposition of G, we
can also conclude that 𝐺𝜎 is connected.

Given such a symmetric pair, put

𝔪 = {𝑋 ∈ 𝔲 | 𝜎(𝑋) = −𝑋},

which is the orthogonal complement of 𝔨 in 𝔲 with respect to the invariant inner product. We also write
𝔪C = 𝔪 ⊗R C for its complexification.

We say that a symmetric pair 𝔨 < 𝔲 is Hermitian, if𝑈/𝐾 is a Hermitian symmetric space. Such sym-
metric pairs are equivalently characterized by either of the following conditions; see [Bor98, Proposition
VI.1.3]:
• The center 𝔷(𝔨) is nontrivial (and 1-dimensional);
• The space 𝔪 has a (unique up to a sign) 𝔨-invariant complex structure.

The following closely related characterization will be crucial for us.
Lemma 1.2. For any symmetric pair 𝔨 < 𝔲, we have dim(

∧2 𝔪)𝔨 = 1 if 𝔨 < 𝔲 is Hermitian, and
dim(

∧2 𝔪)𝔨 = 0 otherwise. We always have 𝔪𝔨 = 0.

Proof. Since U is simple by assumption, 𝑈/𝐾 is an irreducible symmetric space, so K acts irreducibly
on 𝔪 = 𝑇[𝑒] (𝑈/𝐾). As𝑈/𝐾 is not one-dimensional, this cannot be the trivial action, and we get 𝔪𝔨 = 0.

Next, since 𝔪 has a 𝔨-invariant inner product, the space (
∧2 𝔪)𝔨 is isomorphic to the space of 𝔨-

invariant skew-adjoint operators on𝔪. Assume we are given such a nonzero operator A. Then 𝐴2 = −𝐴∗𝐴
is self-adjoint, with negative eigenvalues. Hence, 𝐴2 is diagonalizable, and by irreducibility of the action
of 𝔨 on 𝔪 we conclude that 𝐴2 must be a strictly negative scalar. Therefore, by rescaling A we get a
𝔨-invariant complex structure on 𝔪. Since there is a unique such structure up to a sign in the Hermitian
case and no such structure in the non-Hermitian case, we get the result. �

Remark 1.3. In the non-Hermitian case, the centralizer 𝑍𝑈 (𝐾) of K in U is a finite group that either
agrees with the center 𝑍 (𝑈) of U or contains it as a subgroup of index 2. Indeed, we have 𝔷𝔲 (𝔨) = 0
from the above lemma, which implies the finiteness of 𝑍𝑈 (𝐾). To see that the index of 𝑍 (𝑈) in 𝑍𝑈 (𝐾)
is at most 2, observe that any K-intertwiner on 𝔪 has to be a (real) scalar by the vanishing of (

∧2 𝔪)𝔨 .
Then, given 𝑔 ∈ 𝑍𝑈 (𝐾), the restriction of the finite-order K-intertwiner Ad 𝑔 to 𝔪 should be ±1, which
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implies that either 𝑔 ∈ 𝑍 (𝑈) or Ad 𝑔 = 𝜎. If the inclusion 𝔨 < 𝔲 is of equal rank, there are elements
g satisfying Ad 𝑔 = 𝜎, hence we obtain [𝑍𝑈 (𝐾) : 𝑍 (𝑈)] = 2. Otherwise there is no such g, hence we
obtain 𝑍𝑈 (𝐾) = 𝑍 (𝑈).

An irreducible symmetric pair of type II is an inclusion that is isomorphic to the diagonal inclusion of
𝔲 into 𝔲⊕𝔲 (with a simple compact Lie algebra 𝔲). This corresponds to the involution 𝜎(𝑋,𝑌 ) = (𝑌, 𝑋)
on 𝔲 ⊕ 𝔲. For such a pair, we can put 𝔪 = {(𝑋,−𝑋) | 𝑋 ∈ 𝔲}. Since both 𝔪𝔲 and (

∧2𝔪)𝔲 are trivial,
such pairs behave in many respects similarly to the non-Hermitian type I pairs. We will therefore mostly
focus on the type I case and only make a few remarks on the type II case.

Back to type I symmetric pairs, in the Hermitian case, it is known that an invariant complex structure
on 𝔪 is defined by an element of 𝔷(𝔨). The correct normalization is given by the following.

Lemma 1.4. Assuming that 𝔨 < 𝔲 is a Hermitian symmetric pair, let 𝑍 ∈ 𝔷(𝔨) be a vector such that
(𝑍, 𝑍)𝔤 = −1. Then on 𝔪 we have (ad 𝑍)2 = −𝑎2

𝜎id, where

𝑎𝜎 =

√
2ℎ∨𝑐

dim𝔪
,

𝑐 ∈ {1, 2, 3} is the ratio of the square lengths of long and short roots of 𝔤 and ℎ∨ is the dual Coxeter
number of 𝔤.

Proof. As (ad 𝑍) |𝔪 is 𝔨-invariant and skew-adjoint, by the proof of the previous lemma, we have
(ad 𝑍)2 = −𝑎2 on 𝔪 for some scalar 𝑎 ≥ 0. Hence, for the Killing form 𝐵Kill on 𝔤 we have 𝐵Kill(𝑍, 𝑍) =
Tr((ad 𝑍)2) = −𝑎2 dim𝔪. The Killing form and the normalized bilinear form (·, ·)𝔤 are related by
𝐵Kill = 2ℎ∨𝑐(·, ·)𝔤; see [Kac90, Chapter 6, Exercise 2]. Combining this with (𝑍, 𝑍)𝔤 = −1, we get that
𝑎 = 𝑎𝜎 . �

Corollary 1.5. The 𝔨-invariant complex structures on 𝔪 are given by ± 1
𝑎𝜎

(ad 𝑍) |𝔪. For the involutive
automorphism 𝜎 such that 𝔨 = 𝔲𝜎 , we have

𝜎 = exp
(
𝜋

𝑎𝜎
ad 𝑍

)
.

In particular, we see that K is the stabilizer of Z in U with respect to the adjoint action. As the
adjoint and coadjoint representations are equivalent, this leads to yet another known characterization of
the Hermitian symmetric pairs: A symmetric pair 𝔨 < 𝔲 is Hermitian if and only if the homogeneous
U-space 𝑈/𝐾 is isomorphic to a coadjoint orbit of U.

2. Classification of quasi-coactions and ribbon braids

Throughout this section, 𝔨 = 𝔲𝜎 < 𝔲 denotes a symmetric pair. Our goal is to classify using the co-
Hochschild cohomology a class of quasi-coactions of (U (𝐺)�ℎ�,Δℎ ,Φ) on U (𝐺𝜎)�ℎ�.

2.1. Co-Hochschild cohomology for multiplier algebras

The co-Hochschild cochains will play a central role in this paper. Let H be a reductive algebraic subgroup
of G. Put �̃�𝑛𝐺,𝐻 = U (𝐻 × 𝐺𝑛) for 0 ≤ 𝑛 < ∞, and define a differential �̃�𝑛𝐺,𝐻 → �̃�𝑛+1

𝐺,𝐻 by

𝑑cH(𝑇) = 𝑇01,2,...,𝑛+1 − 𝑇0,12,...,𝑛+1 + · · · + (−1)𝑛𝑇0,1,...,𝑛(𝑛+1) + (−1)𝑛+1𝑇0,1,...,𝑛, (2.1)

where 𝑇0,..., 𝑗 𝑗+1,...,𝑛+1 = (idU (𝐻×𝐺 𝑗−1) ⊗ Δ ⊗ idU (𝐺𝑛− 𝑗 ) ) (𝑇) and 𝑇0,1,...,𝑛 = 𝑇 ⊗ 1. The group H acts
diagonally by conjugation on U (𝐻 ×𝐺𝑛), the differential 𝑑cH is equivariant with respect to this action.
We put

𝐵𝑛𝐺,𝐻 = (�̃�𝑛𝐺,𝐻 )
𝐻 .
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Proposition 2.1. The cohomology of �̃�𝐺,𝐻 is isomorphic to the exterior algebra
∧
𝔤/𝔥 as a graded

H-module.

Proof. The complex �̃�𝐺,𝐻 is the algebraic linear dual of �̃�′
𝐺,𝐻 = (O(𝐻) ⊗ O(𝐺)⊗𝑛)∞𝑛=0 with the

differential 𝑑 : O(𝐻) ⊗ O(𝐺)⊗𝑛 → O(𝐻) ⊗ O(𝐺)⊗𝑛−1 given by

𝑑 ( 𝑓0 ⊗ 𝑓1 ⊗ · · · ⊗ 𝑓𝑛) =
𝑛−1∑
𝑖=0

(−1)𝑖 𝑓0 ⊗ · · · ⊗ 𝑓𝑖 𝑓𝑖+1 ⊗ · · · ⊗ 𝑓𝑛 + (−1)𝑛 𝑓𝑛 (𝑒) 𝑓0 ⊗ · · · ⊗ 𝑓𝑛−1,

where 𝑓0 𝑓1 is the product of 𝑓0 and the restriction of 𝑓1 to H. Thus, the cohomology of �̃�𝐺,𝐻 is the
linear dual of the homology of �̃�′

𝐺,𝐻 as an H-module.
The complex �̃�′

𝐺,𝐻 is the standard complex computing the Hochschild homology

HH∗(O(𝐺), resO(𝐻)𝜖 ) = TorO (𝐺) ⊗O (𝐺)
∗ (O(𝐺), resO(𝐻)𝜖 ),

where the bimodule resO(𝐻)𝜖 has the underlying space O(𝐻) with the bimodule structure 𝑓 .𝑎. 𝑓 ′ =
𝑓 ′(𝑒) 𝑓 𝑎 for 𝑓 , 𝑓 ′ ∈ O(𝐺) and 𝑎 ∈ O(𝐻). In other words, we are computing

TorO (𝐺×𝐺)
∗ (O(Δ),O(𝐻 × {𝑒})),

where Δ ⊂ 𝐺 × 𝐺 is the diagonal. By [BGI71, Proposition VII.2.5], this is the exterior algebra on
TorO (𝐺×𝐺)

1 (O(Δ),O(𝐻 × {𝑒})), and the latter is the conormal space of 𝐻 ⊂ 𝐺 at the point e. Since
this conormal space is the dual of 𝔤/𝔥, we obtain the assertion. �

Remark 2.2. Proposition 2.1 and its proof are valid for any linear algebraic group G over C and any
algebraic subgroup H, if we define U (𝐻 × 𝐺𝑛) as the dual of O(𝐻) ⊗ O(𝐺)⊗𝑛.

Corollary 2.3. For any reductive algebraic subgroup 𝐻 < 𝐺, the cohomology of 𝐵𝐺,𝐻 is isomorphic
to (

∧
𝔤/𝔥)𝐻 .

Proof. As the factors End(𝑉𝜋) ⊗ End(𝑉𝜋1 ) ⊗ · · · ⊗ End(𝑉𝜋𝑛 ) of �̃�𝑛𝐺,𝐻 decompose into direct sums of
isotypical components, taking the H-invariant part commutes with taking cohomology. �

We will mainly need the following particular case.

Corollary 2.4. The cohomology of 𝐵𝐺,𝐺𝜎 is isomorphic to (
∧

𝔪C)𝔨 .

Proof. This follows from the previous corollary since 𝐺𝜎 is connected and 𝔤𝜎 = 𝔨C. �

Remark 2.5. Instead of the multiplier algebras we could use the universal enveloping algebras and
define complexes �̃�𝔤,𝔥 and 𝐵𝔤,𝔥; see Appendix A. The canonical maps 𝑈 (𝔤) → U (𝐺) and 𝑈 (𝔥) →
U (𝐻) are injective homomorphisms compatible with the coproduct maps U (𝐺) → U (𝐺 × 𝐺) and
U (𝐻) → U (𝐻 × 𝐻). Thus, we get an inclusion �̃�𝔤,𝔥 → �̃�𝐺,𝐻 , and if H is connected, we also get an
inclusion 𝐵𝔤,𝔥 → 𝐵𝐺,𝐻 . Corollary A.5 shows that these maps are quasi-isomorphisms.

2.2. Classification of associators and ribbon braids: non-Hermitian case

Assume the symmetric pair 𝔨 < 𝔲 is non-Hermitian.
Consider a multiplier quasi-bialgebra (U (𝐺)�ℎ�,Δℎ ,Φ) such that Δℎ = Δ modulo h. We claim that

up to twisting by (1,G) it has at most one quasi-coaction (U (𝐺𝜎)�ℎ�, 𝛼,Ψ) such that 𝛼 = Δ modulo h.
Since by Lemma 1.1, we may assume that both Δℎ and 𝛼 equal Δ , the following is an equivalent
statement.

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.11


14 K. De Commer et al.

Theorem 2.6. Let 𝔨 = 𝔲𝜎 < 𝔲 be a non-Hermitian symmetric pair, and Ψ,Ψ′ ∈ U (𝐺𝜎 × 𝐺2)�ℎ�
be two associators defining quasi-coactions of (U (𝐺)�ℎ�,Δ ,Φ), with the coaction homomorphisms
𝛼 = 𝛼′ = Δ . Then there is an element H ∈ 1 + ℎU (𝐺𝜎 × 𝐺)𝔨�ℎ� such that (id ⊗ 𝜖) (H) = 1 and
Ψ = H0,12Ψ′H−1

01,2H−1
0,1.

Proof. Suppose that Ψ (𝑘) = Ψ′(𝑘) for 𝑘 < 𝑛. We claim that there is 𝑇 ∈ U (𝐺𝜎 × 𝐺)𝔨 such that
(id ⊗ 𝜖) (𝑇) = 0 and Ψ and H0,12Ψ′H−1

01,2H−1
0,1 have the same terms up to (and including) order n for

H = 1 − ℎ𝑛𝑇 . The lemma is then proved by inductively applying this claim and taking the product of
the elements 1 − ℎ𝑛𝑇 we thus get. Note only that by 𝔨-invariance the elements 𝑇0,1 and 𝑇01,2 obtained at
different steps commute with each other.

Take the difference of identities (1.3) for Ψ and Ψ′ and consider the terms of order n. Since Ψ and
Ψ′ have the same terms up to order 𝑛 − 1, we get

(Ψ (𝑛) − Ψ′(𝑛) )0,12,3 + (Ψ (𝑛) − Ψ′(𝑛) )0,1,2 = (Ψ (𝑛) − Ψ′(𝑛) )0,1,23 + (Ψ (𝑛) − Ψ′(𝑛) )01,2,3.

Since Ψ and Ψ′ are 𝔨-invariant by equation (1.2), it follows that Ψ (𝑛) −Ψ′(𝑛) is a cocycle in 𝐵2
𝐺,𝐺𝜎 . As

we are in the non-Hermitian case, by Corollary 2.4 and Lemma 1.2, we have Ψ (𝑛) −Ψ′(𝑛) = 𝑑cH(𝑇) for
some 𝑇 ∈ U (𝐺𝜎 ×𝐺)𝔨 . As (id ⊗ 𝜖 ⊗ id) (Ψ (𝑛) −Ψ′(𝑛) ) = 0, we have (id ⊗ 𝜖) (𝑇) = 0. Thus, T satisfies
our claim. �

Remark 2.7. Analogous results are true at the level of the universal enveloping algebras instead of
the multiplier algebras. More precisely, given a quasi-bialgebra (𝑈 (𝔤)�ℎ�,Δℎ ,Φ) such that Δℎ = Δ
modulo h, up to twisting by (1, G) there is at most one quasi-coaction (𝑈 (𝔤𝜎)�ℎ�, 𝛼,Ψ) of this quasi-
bialgebra such that 𝛼 = Δ modulo h. This is proved along the same lines as Lemma 1.1 and Theorem
2.6, but now relying on Whitehead’s lemma for the semisimple Lie algebras 𝔤 and 𝔤𝜎 to show that there
are no nontrivial deformations of Δ : 𝑈 (𝔤) → 𝑈 (𝔤) ⊗𝑈 (𝔤) and Δ : 𝑈 (𝔤𝜎) → 𝑈 (𝔤𝜎) ⊗𝑈 (𝔤), and using
Corollary A.5 instead of Corollary 2.4.

Next, let us fix a 𝜎-invariant R-matrix R ∈ U (𝐺2)�ℎ� for (Δ ,Φ) and look at compatible ribbon
𝜎-braids. Note that the left-hand side of equation (1.4) becomes EΔ (𝑇) in the present case.

Theorem 2.8. Let 𝔨 = 𝔲𝜎 < 𝔲 be a non-Hermitian symmetric pair, and let Φ ∈ U (𝐺3)𝐺�ℎ� and
R ∈ U (𝐺2)𝐺�ℎ� be 𝜎-invariant elements defining the structure of a quasi-triangular multiplier
quasi-bialgebra (U (𝐺)�ℎ�,Δ ,Φ,R). Assume further that we are given a quasi-coaction of the form
(U (𝐺𝜎)�ℎ�,Δ ,Ψ) by this quasi-bialgebra and that E ∈ U (𝐺𝜎 × 𝐺)�ℎ� is a ribbon 𝜎-braid for R.
Then E (0) = 1 ⊗ 𝑔 for an element g in the centralizer 𝑍𝑈 (𝐾), and any other ribbon 𝜎-braid, for the
same Φ, Ψ and R, and with the same order 0 term, coincides with E . Furthermore, if R(1) +R(1)

21 ≠ 0,
then 𝑔 ∈ 𝑍 (𝑈).

The group 𝑍𝑈 (𝐾) is finite as remarked in Remark 1.3, so we have at most finitely many ribbon
𝜎-braids.

Proof. From equation (1.5), we get that (Δ ⊗ id) (E (0) ) = E (0)
02 . This implies that E (0) = 1 ⊗ 𝑔, with

𝑔 = (𝜖 ⊗ id) (E (0) ) ∈ U (𝐺). From equation (1.6) we then get Δ (𝑔) = 𝑔 ⊗ 𝑔, hence 𝑔 ∈ 𝐺. But then
equation (1.4) shows that 𝑔 ∈ 𝑍𝐺 (𝐺𝜎). Finally, as 𝔷𝔤 (𝔨) = 𝔷𝔲 (𝔨)C = 0, using the Cartan decomposition
of G we see that 𝑍𝐺 (𝐾) = 𝑍𝑈 (𝐾), hence 𝑔 ∈ 𝑍𝑈 (𝐾).

Assume now that E ′ is another ribbon 𝜎-braid with E ′ (0) = 1 ⊗ 𝑔. We want to show that E ′ = E . It
will be convenient to first get rid of g. By multiplying both elements by 1 ⊗ 𝑔−1 on the right, we get new
ribbon �̃�-braids Ẽ and Ẽ ′ in U (𝐺𝜎 × 𝐺)�ℎ� with the order zero terms 1, where �̃� = (Ad 𝑔) ◦ 𝜎.

We argue by induction on n that Ẽ (𝑛) = Ẽ ′(𝑛) . Suppose that we already know that Ẽ (𝑘) = Ẽ ′(𝑘) for
𝑘 < 𝑛. Comparing the terms of degree n in equations (1.5) and (1.6), we obtain

𝑋01,2 = 𝑋0,2, 𝑋0,12 = 𝑋0,2 + 𝑋0,1

for 𝑋 = Ẽ (𝑛) − Ẽ ′(𝑛) .
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The first equality says that 𝑋 = 1 ⊗ 𝑌 for 𝑌 = (𝜖 ⊗ id) (𝑋) ∈ U (𝐺). Then the second equality says
Δ (𝑌 ) = 𝑌1 + 𝑌2, that is, Y is primitive, and we obtain 𝑌 ∈ 𝔤.

Comparing the terms of degree n in equation (1.4), we see next that Y has to centralize 𝔨. Hence
𝑌 = 0 and Ẽ ′(𝑛) = Ẽ (𝑛) .

It remains to prove the last statement of the theorem. So assume R(1) +R(1)
21 ≠ 0. Let us write �̃�𝐺 ,

𝐵𝔤, etc., instead of �̃�𝐺, {𝑒}, 𝐵𝔤,0.
By an analogue of [Dri89b, Proposition 3.1] for the multiplier algebras, by twisting Φ we may

assume that Φ = 1 modulo ℎ2. Such an analogue is proved in the same way as in [Dri89b] using that
the embedding map �̃�𝔤 → �̃�𝐺 is a quasi-isomorphism by Corollary A.5.

Namely, consider the normalized skew-symmetrization map Alt : �̃�3
𝐺 → �̃�3

𝐺 . This map kills the
coboundaries and transforms the cocycles of the form 𝑋1 ⊗ 𝑋2 ⊗ 𝑋3, 𝑋𝑖 ∈ 𝔤, into cohomologous ones
by Remark A.4. But the classes of such cocycles span the entire space H3 (�̃�𝐺) by the same remark and
Corollary A.5. Therefore, if 𝑇 ∈ �̃�3

𝐺 is a cocycle killed by Alt, then it is a coboundary. The hexagon
relations imply that Alt(Φ(1) ) = 0, so Φ(1) = 𝑑cH(𝑇) for some 𝑇 ∈ �̃�2

𝐺 . We may assume that T is
G- and 𝜎-invariant since Φ(1) has these invariance properties. Then the twisting by F = 1 − ℎ𝑇 proves
our claim.

Note that twisting does not change the element R(1) +R(1)
21 . The hexagon relations imply then that

R(1) ∈ 𝔤 ⊗ 𝔤 (see the proof of [Dri89b, Proposition 3.1]), and since R commutes with the image of
Δ , we get R(1) ∈ (𝔤 ⊗ 𝔤)𝔤. Hence, R(1) = −𝜆𝑡𝔲 for some 𝜆 ≠ 0, where 𝑡𝔲 is the normalized invariant
2-tensor defined by equation (1.1).

Next, identity (1.3) implies that Ψ (1) is a 2-cocycle in 𝐵𝐺,𝐺𝜎 ; hence, by twisting we may assume
that Ψ = 1 modulo ℎ2. We remind also that under twisting the ribbon twist-braids transform via
formula (1.7).

Now, by looking at the first order terms in equation (1.5) for a �̃�-braid Ẽ , with Ẽ (0) = 1, we get

Ẽ (1)
01,2 = −𝜆𝑡𝔲2,1 + Ẽ (1)

0,2 − (id ⊗ id ⊗ �̃�) (𝜆𝑡𝔲1,2).

The tensor 𝑡𝔲 lies in 𝔨 ⊗ 𝔨 +𝔪 ⊗𝔪. Denote the components of 𝑡𝔲 in 𝔨 ⊗ 𝔨 and 𝔪 ⊗𝔪 by 𝑡𝔨 and 𝑡𝔪, resp.
Then the above identity can be written as

Ẽ (1)
01,2 = −2𝜆𝑡𝔨1,2 + Ẽ (1)

0,2 + (id ⊗ id ⊗ Ad 𝑔) (𝜆𝑡𝔪1,2) − 𝜆𝑡𝔪1,2.

Applying 𝜖 to the 0th leg and letting 𝑇 = (𝜖 ⊗ id) (Ẽ (1) ), we obtain

Ẽ (1) = −2𝜆𝑡𝔨 + 1 ⊗ 𝑇 + (id ⊗ Ad 𝑔) (𝜆𝑡𝔪) − 𝜆𝑡𝔪 . (2.2)

But we must have Ẽ (1) ∈ U (𝐺𝜎 × 𝐺). Since 𝑡𝔪 =
∑
𝑗 𝑌 𝑗 ⊗ 𝑌 𝑗 for a basis (𝑌 𝑗 ) 𝑗 in 𝔪 and the dual basis

(𝑌 𝑗 ) 𝑗 , this is possible only when Ad 𝑔 acts trivially on 𝔪. Hence, 𝑔 ∈ 𝑍 (𝑈). �

Remark 2.9. Theorems 2.6 and 2.8 also hold for the type II symmetric pairs with appropriate modifi-
cations. Namely, consider �̃� = 𝐺 × 𝐺 and its diagonal subgroup Δ (𝐺) < �̃�, which is the fixed point
subgroup of the involution 𝜎(𝑔, ℎ) = (ℎ, 𝑔) on �̃�. Then for the quasi-coactions of (U (�̃�)�ℎ�,Δ ,Φ)
on the multiplier algebra U (𝐺)�ℎ�, with the coaction map extending 𝐺 � 𝑔 ↦→ (𝑔, 𝑔, 𝑔) ∈ 𝐺 × �̃�, and
with associators Ψ ∈ U (𝐺 × �̃�2)�ℎ� and ribbon 𝜎-braids E ∈ U (𝐺 × �̃�)�ℎ�, one can easily prove ana-
logues of these theorems. First, the proof of Theorem 2.6 carries over almost without a change. Indeed,
its proof relies on Lemma 1.2 and Corollary 2.4, both of which have analogues for 𝐺 � Δ (𝐺) < �̃�.
As for Theorem 2.8, we have 𝔷�̃� (𝔤) = 0 for the diagonal inclusion 𝔤 < �̃�, and 𝑍�̃� (𝐺) = 𝑍 (𝑈) × 𝑍 (𝑈),
which is enough to adapt the first half of the proof.
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2.3. Associators from cyclotomic KZ equations

We want to extend the results of the previous subsection to the Hermitian case. Since H2 (𝐵𝐺,𝐺𝜎 ) is now
one-dimensional by Lemma 1.2, we should expect a one-parameter family of nonequivalent associators.
In this subsection, we define a candidate for such a family arising from the cyclotomic KZ-equations.

Thus, assume 𝔨 < 𝔲 is a Hermitian symmetric pair. We have an element 𝑍 ∈ 𝔷(𝔨), unique up to a
sign, such that

(𝑍, 𝑍)𝔤 = −𝑎−2
𝜎 .

This normalization is equivalent to (ad 𝑍)2 = −1 on 𝔪 by Lemma 1.4. We fix such Z for the rest of
this section. The operator ad 𝑍 has eigenvalues ±𝑖 on 𝔪C. Denote by 𝔪± ⊂ 𝔪C the corresponding
eigenspaces.

We remind that we denote the components of the normalized invariant 2-tensor 𝑡𝔲 in 𝔨 ⊗ 𝔨 and 𝔪 ⊗𝔪
by 𝑡𝔨 and 𝑡𝔪, resp. The tensor 𝑡𝔪 lies in 𝔪+ ⊗ 𝔪− + 𝔪− ⊗ 𝔪+. We denote the components of 𝑡𝔪 in
𝔪± ⊗ 𝔪∓ by 𝑡𝔪± . We thus have

𝑡𝔪 = 𝑡𝔪+ + 𝑡𝔪− , (ad 𝑍 ⊗ id) (𝑡𝔪±) = ±𝑖𝑡𝔪± , (id ⊗ ad 𝑍) (𝑡𝔪±) = ∓𝑖𝑡𝔪± . (2.3)

Given 𝑠 ∈ C, consider the following elements of U (𝐺𝜎 × 𝐺2)�ℎ�:

𝐴−1 = ℏ(𝑡𝔨12 − 𝑡𝔪12), 𝐴1 = ℏ𝑡𝔲12, 𝐴0 = ℏ(2𝑡𝔨01 + 𝐶𝔨
1) + 𝑠𝑍1, (2.4)

where 𝐶𝔨 is the Casimir element of 𝔨, the image of 𝑡𝔨 under the product map 𝑈 (𝔨) ⊗ 𝑈 (𝔨) → 𝑈 (𝔨).
These lead to the shifted modified 2-cyclotomic KZ2-equation [EE05, DCNTY19]

𝐺 ′(𝑤) =
(
𝐴−1
𝑤 + 1

+ 𝐴1
𝑤 − 1

+ 𝐴0
𝑤

)
𝐺 (𝑤). (2.5)

Remark 2.10. Consider a C[ℎ−1, ℎ�-valued character 𝜈 on 𝑈 (𝔨) such that 𝜈(𝑍) = −(2ℏ𝑎2
𝜎)−1𝑠. Then

the slicing map 𝜍𝜈 = (𝜈 ⊗ id)Δ is an algebra homomorphism 𝑈 (𝔨) → 𝑈 (𝔨) [ℎ−1, ℎ� satisfying

(𝜍𝜈 ⊗ id) (2𝑡𝔨) = 2𝑡𝔨 + ℏ−1 (1 ⊗ 𝑠𝑍)

and commuting with the right coaction Δ by 𝑈 (𝔤). In particular, at least formally speaking, equation
(2.5) is obtained from the case 𝑠 = 0 by slicing. But since 𝜈 cannot be extended to 𝑈 (𝔨)�ℎ�, one should
be careful with this construction.

The normalized monodromy ΨKZ,𝑠 ∈ U (𝐺𝜎 × 𝐺2)�ℎ� of equation (2.5) from 𝑤 = 0 to 𝑤 = 1 is
well-defined as long as the operator ad(𝑠𝑍) on U (𝐺) does not have positive integers in its spectrum, cf.
[NT11, Proposition 3.1]. Since each matrix block End(𝑉𝜋) in U (𝐺) is generated by the image of 𝔤, the
eigenvalues of ad 𝑍 are 𝑖𝑛 for 𝑛 ∈ Z by Lemma 1.4 and our choice of normalization. Therefore, ΨKZ,𝑠 is
well defined for all 𝑠 ∉ 𝑖Q×. The element ΨKZ,𝑠 together with the coproduct Δ : U (𝐺𝜎) → U (𝐺𝜎 ×𝐺)
gives a quasi-coaction of (U (𝐺)�ℎ�,Δ ,ΦKZ) on U (𝐺𝜎)�ℎ�, where ΦKZ = Φ(ℏ𝑡𝔲12, ℏ𝑡

𝔲
23) ∈ U (𝐺3)�ℎ�

is Drinfeld’s KZ-associator for G.
In more detail, ΨKZ,𝑠 is defined as follows. Under our restrictions on s, a standard argument (see, e.g.,

[NT11, Proposition 3.1]) shows that there is a unique U (𝐺𝜎 ×𝐺2)�ℎ�-valued solution 𝐺0 of equation
(2.5) on (0, 1) such that 𝐺0 (𝑤)𝑤−𝐴0 extends to an analytic function in the unit disc with value 1 at
𝑤 = 0. Similarly, there is a unique solution 𝐺1 of equation (2.5) such that 𝐺1(1−𝑤)𝑤−𝐴1 extends to an
analytic function in the unit disc with value 1 at 𝑤 = 0. Then

ΨKZ,𝑠 = 𝐺1 (𝑤)−1𝐺0(𝑤)
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for any 0 < 𝑤 < 1. We can also write this as

ΨKZ,𝑠 = lim
𝑤→1

(1 − 𝑤)−𝐴1𝐺0(𝑤) = lim
𝑤→1

(1 − 𝑤)−𝐴1𝐺0 (𝑤)𝑤−𝐴0 . (2.6)

The case 𝑠 = 0 is special: In this case, it can be shown, using for example iterated integrals [Kas95,
Chapter XIX][Enr07], that ΨKZ,0 lives in the algebra 𝑈 (𝔤𝜎 ⊗ 𝔤⊗2)�ℎ� rather than in its completion
U (𝐺𝜎 × 𝐺2)�ℎ�. Note also that this associator is well defined in the non-Hermitian case as well. We
will denote it by ΨKZ.

Observe also that if 𝑠 ∈ R, then 𝐺0 is unitary; hence, ΨKZ,𝑠 is unitary as well. Indeed, in this case
(𝐺0 (𝑤)∗)−1 has the defining properties of 𝐺0(𝑤), hence coincides with it.

Proposition 2.11 (cf. [EE05, Proposition 4.7]). For every 𝑠 ∉ 𝑖Q×, we have

ΨKZ,𝑠 = 1 + ℎ

𝜋𝑖

(
(log 2)𝑡𝔲12 + 𝛾𝑡𝔪12 + 𝜓

(1
2
− 𝑖𝑠

2

)
𝑡𝔪+
12 + 𝜓

(1
2
+ 𝑖𝑠

2

)
𝑡𝔪−
12

)
+𝑂 (ℎ2),

where 𝛾 is Euler’s constant and 𝜓 =
Γ′

Γ
is the digamma function.

Proof. If we restrict to a finite-dimensional block of U (𝐺𝜎 ×𝐺2), then ad(𝑠𝑍1) has a finite number of
eigenvalues there, so the corresponding component of ΨKZ,𝑠 is well defined for all 𝑠 ∉ 𝑖𝑁−1Z× for some
N. As it is analytic in s in this domain, it therefore suffices to consider real s.

Put 𝐻0 (𝑤) = 𝐺0(𝑤)𝑤−𝐴0 . Then 𝐻0 satisfies the differential equation

𝐻 ′
0(𝑤) =

(
𝐴−1
𝑤 + 1

+ 𝐴1
𝑤 − 1

)
𝐻0 (𝑤) +

[
𝐴0
𝑤

, 𝐻0(𝑤)
]

and the initial condition 𝐻0 (0) = 1, and by equation (2.6) we have

ΨKZ,𝑠 = lim
𝑤→1

(1 − 𝑤)−𝐴1𝐻0 (𝑤).

Consider the expansion in h. For the order zero terms, we immediately get Ψ (0)
KZ,𝑠 = 𝐻 (0)

0 = 1. Next,
consider the order one terms. Let us write H for 𝜋𝑖𝐻 (1)

0 , so that 𝐻0 = 1 + ℏ𝐻 +𝑂 (ℎ2). Then

𝐻 ′(𝑤) =
(
𝑡𝔨12 − 𝑡𝔪12
𝑤 + 1

+
𝑡𝔲12

𝑤 − 1

)
+
[
𝑠𝑍1
𝑤

, 𝐻 (𝑤)
]

and 𝐻 (0) = 0, while

𝜋𝑖Ψ (1)
KZ,𝑠 = lim

𝑤→1
(𝐻 (𝑤) − log(1 − 𝑤) 𝑡𝔲12).

By equation (2.3), we have

𝐻 (𝑤) =
∫ 𝑤

0

(𝑤
𝑢

)ad(𝑠𝑍1)
(
𝑡𝔨12 − 𝑡𝔪12
𝑢 + 1

+
𝑡𝔲12

𝑢 − 1

)
𝑑𝑢

=
∫ 𝑤

0

(
𝑡𝔨12

( 1
𝑢 + 1

+ 1
𝑢 − 1

)
+
( (𝑤

𝑢

) 𝑖𝑠
𝑡𝔪+
12 +

(𝑤
𝑢

)−𝑖𝑠
𝑡𝔪−
12

) ( −1
𝑢 + 1

+ 1
𝑢 − 1

))
𝑑𝑢.

Note that this integral is well defined for 0 ≤ 𝑤 < 1 as s is assumed to be real. We then get

𝜋𝑖Ψ (1)
KZ,𝑠 = 𝑏𝑡𝔨12 + 𝑐(𝑠)𝑡𝔪+

12 + 𝑐(−𝑠)𝑡𝔪−
12 ,
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where

𝑏 = lim
𝑤→1

(∫ 𝑤

0

(
1

𝑢 + 1
+ 1
𝑢 − 1

)
𝑑𝑢 − log(1 − 𝑤)

)
= log 2,

𝑐(𝑠) = lim
𝑤→1

(∫ 𝑤

0

(𝑤
𝑢

) 𝑖𝑠 ( 1
𝑢 − 1

− 1
𝑢 + 1

)
𝑑𝑢 − log(1 − 𝑤)

)
.

To compute 𝑐(𝑠), we write (𝑢2 − 1)−1 as a power series, integrate and get

𝑐(𝑠) = lim
𝑤→1

(
−

∞∑
𝑛=0

𝑤2𝑛+1

𝑛 + 1
2 − 𝑖𝑠

2
− log(1 − 𝑤)

)
.

Together with the Taylor expansion of 𝑤−1 log(1 − 𝑤2) and the standard formula

𝜓(𝑧) + 𝛾 =
∞∑
𝑛=0

(
1

𝑛 + 1
− 1
𝑛 + 𝑧

)
,

this gives

𝑐(𝑠) = 𝜓
(1
2
− 𝑖𝑠

2

)
+ 𝛾 + lim

𝑤→1
(𝑤−1 log(1 − 𝑤2) − log(1 − 𝑤)) = 𝜓

(1
2
− 𝑖𝑠

2

)
+ 𝛾 + log 2,

which completes the proof of the proposition. �

Using the formula 𝜓(1 − 𝑧) − 𝜓(𝑧) = 𝜋 cot(𝜋𝑧), it will be convenient to rewrite the result as

ΨKZ,𝑠 = 1 + ℎ

𝜋𝑖

(
(log 2)𝑡𝔲12 +

(
𝛾 +

𝜓
(

1
2 − 𝑖𝑠

2

)
+ 𝜓

(
1
2 + 𝑖𝑠

2

)
2

)
𝑡𝔪12

− 𝜋𝑖

2
tanh

( 𝜋𝑠
2

) (
𝑡𝔪+
12 − 𝑡𝔪−

12

))
+𝑂 (ℎ2). (2.7)

Now, take 𝜇 ∈ ℎC�ℎ�. Replacing 𝑠 ∉ 𝑖Q× by 𝑠 + 𝜇 in equation (2.4), we can construct yet another
associator, which we denote by ΨKZ,𝑠;𝜇. If 𝑠 ∈ R and 𝜇 ∈ ℎR�ℎ�, then ΨKZ,𝑠;𝜇 is unitary for the same
reason as for ΨKZ,𝑠 .

Remark 2.12. Similarly to Remark 2.10, ΨKZ,𝑠;𝜇 could be obtained from ΨKZ,𝑠 by slicing by a character
𝜈 of 𝑈 (𝔨) satisfying 𝜈(𝑍) = −(2ℏ𝑎2

𝜎)−1𝜇. Since such a character does not always extend to U (𝐺𝜎),
to make sense of this we should have allowed in the construction of ΨKZ,𝑠 arbitrary finite-dimensional
representations of 𝔤𝜎 instead of those in Rep𝐺𝜎 . Alternatively, with 𝑠 ∉ 𝑖R fixed, both ΨKZ,𝑠;𝜇 and
ΨKZ,𝑠+𝑧 for small z are specializations of an associator in U (𝐺𝜎 × 𝐺2)�ℎ, 𝜇� constructed by treating
𝜇 as a second formal parameter. But this implies that ΨKZ,𝑠;𝜇 is obtained from the Taylor expansion of
ΨKZ,𝑠+𝑧 at 𝑧 = 0 by simply taking 𝜇 as the argument:

ΨKZ,𝑠;𝜇 =
∞∑
𝑘=0

𝜇𝑘

𝑘!
𝑑𝑘ΨKZ,𝑠

𝑑𝑠𝑘
=

∞∑
𝑛,𝑘=0

ℎ𝑛𝜇𝑘

𝑘!
𝑑𝑘Ψ (𝑛)

KZ,𝑠

𝑑𝑠𝑘
. (2.8)

This also works for 𝑠 ∈ 𝑖(R \ Q×) if we consider only the components of ΨKZ,𝑠;𝜇 in finite-dimensional
blocks of U (𝐺𝜎 × 𝐺2), which are well defined and analytic in a neighborhood of s.
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Corollary 2.13. For all 𝑠 ∉ 𝑖Q× and 𝜇, 𝜈 ∈ ℎC�ℎ�, we have

ΨKZ,𝑠;𝜇+𝜈 − ΨKZ,𝑠;𝜇 = ℎ1+ord(𝜈)𝜈 (ord(𝜈))
(

1
4𝜋

(
𝜓 ′

(1
2
+ 𝑖𝑠

2

)
− 𝜓 ′

(1
2
− 𝑖𝑠

2

))
𝑡𝔪12

− 𝜋

4
sech2

( 𝜋𝑠
2

) (
𝑡𝔪+
12 − 𝑡𝔪−

12

))
+𝑂 (ℎ2+ord(𝜈) ).

Proof. By equation (2.8), we have

ΨKZ,𝑠;𝜇+𝜈 − ΨKZ,𝑠;𝜇 = ℎ1+ord(𝜈)𝜈 (ord(𝜈)) 𝑑Ψ
(1)
KZ,𝑠

𝑑𝑠
+𝑂 (ℎ2+ord(𝜈) ).

Hence, the result follows from equation (2.7). �

2.4. Detecting co-Hochschild classes

To see that the associators ΨKZ,𝑠;𝜇 are not all equivalent, we need to see that a perturbation of the
parameter 𝜇 gives rise to a nontrivial 2-cocycle in 𝐵𝐺,𝐺𝜎 . We can actually see that this is the case from
results in Appendix A, but let us present a concrete cycle to detect this.

Consider the tensor

Ω = [𝑡𝔲12, 𝑡
𝔲
13] =

∑
𝑖, 𝑗

[𝑋𝑖 , 𝑋 𝑗 ] ⊗ 𝑋 𝑖 ⊗ 𝑋 𝑗 ∈
(∧3𝔲

)𝔲
(2.9)

with (𝑋𝑖)𝑖 and (𝑋 𝑖)𝑖 as in equation (1.1). Every element 𝑋 ∈ 𝔤 defines a function on G such that
𝑔 ↦→ (𝑋, (Ad 𝑔) (𝑍))𝔤. This way Ω defines an element of O(𝐺𝜎) ⊗ O(𝐺) ⊗ O(𝐺), which by slightly
abusing notation we continue to denote by Ω. Thus, for (𝑔, ℎ, 𝑘) ∈ 𝐺𝜎 × 𝐺 × 𝐺,

Ω(𝑔, ℎ, 𝑘) =
(
[(Ad ℎ) (𝑍), (Ad 𝑘) (𝑍)], (Ad 𝑔) (𝑍)

)
𝔤
=

(
[(Ad ℎ) (𝑍), (Ad 𝑘) (𝑍)], 𝑍

)
𝔤

since 𝐺𝜎 stabilizes Z. This is a 2-cycle in the complex �̃�′
𝐺,𝐺𝜎 from the proof of Proposition 2.1, as

Ω(𝑔, 𝑔, ℎ) −Ω(𝑔, ℎ, ℎ) +Ω(𝑔, ℎ, 𝑒) = 0

for all (𝑔, ℎ) ∈ 𝐺𝜎 ×𝐺. Hence, the map 〈Ω, ·〉 : U (𝐺𝜎 ×𝐺2) → C defined by pairing with Ω passes to
H2 (𝐵𝐺,𝐺𝜎 ). Explicitly, for 𝑇 ∈ U (𝐺𝜎 × 𝐺2), we have

〈Ω, 𝑇〉 = 𝜖 (𝑇0)
(
[(ad𝑇1) (𝑍), (ad𝑇2) (𝑍)], 𝑍

)
𝔤
, (2.10)

where ad denotes the extension of the adjoint representation of 𝔤 to U (𝐺).

Proposition 2.14. The elements 𝑡𝔨12, 𝑡𝔪±
12 are 2-cocycles in 𝐵𝐺,𝐺𝜎 . Furthermore, 𝑡𝔨12 and 𝑡𝔪12 = 𝑡𝔪+

12 + 𝑡𝔪−
12

are coboundaries, while

〈Ω, 𝑡𝔪±
12 〉 = ± 𝑖

2
dim𝔪.

In particular, 𝑡𝔪+
12 and −𝑡𝔪−

12 represent the same nontrivial class in H2 (𝐵𝐺,𝐺𝜎 ).

Proof. It is easy to check that 𝑑cH(1 ⊗ 𝑋 ⊗ 𝑌 ) = 0 for all 𝑋,𝑌 ∈ 𝔤. As 𝑡𝔨12 and 𝑡𝔪±
12 are 𝔨-invariant, they

are therefore 2-cocycles in 𝐵𝐺,𝐺𝜎 .
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We have

𝑑cH(𝐶𝔨
1) = 𝐶𝔨

2 − Δ (𝐶𝔨)12 + 𝐶𝔨
1 = −2𝑡𝔨12,

so 𝑡𝔨12 is a coboundary. Similarly, 𝑑cH(𝐶𝔲
1 ) = −2𝑡𝔲12 so that 𝑡𝔲12 is also a coboundary, and hence 𝑡𝔪12 =

𝑡𝔲12 − 𝑡𝔨12 is a coboundary as well.
Next, take a basis (𝑌 𝑗 ) 𝑗 in 𝔪+ and the dual basis (𝑌 𝑗 ) 𝑗 in 𝔪−. Using that ad 𝑍 acts by the scalar ±𝑖

on 𝔪±, we then compute:

〈Ω, 𝑡𝔪+
12 〉 =

∑
𝑗

(
[(ad𝑌 𝑗 ) (𝑍), (ad𝑌 𝑗 ) (𝑍)], 𝑍

)
𝔤
=
∑
𝑗

([𝑌 𝑗 , 𝑌 𝑗 ], 𝑍)𝔤 =
∑
𝑗

(𝑌 𝑗 , [𝑍,𝑌 𝑗 ])𝔤

= 𝑖
∑
𝑗

(𝑌 𝑗 , 𝑌 𝑗 )𝔤 = 𝑖 dimC𝔪+ =
𝑖

2
dimR𝔪.

The value 〈Ω, 𝑡𝔪−
12 〉 is obtained similarly, but it also follows from the above, as 𝑡𝔪−

12 = 𝑡𝔪12 − 𝑡𝔪+
12 and 𝑡𝔪12

is a coboundary. �

Remark 2.15. Let us give a different perspective on the above pairing and its nontriviality.
We can view the tensor (2.9) also as a function on (𝑈/𝐾)3 in the same way as above. Let us call

this function 𝜔. Then it is again easy to check that 𝜔 is a 2-cycle in the Hochschild chain complex
(𝐶𝑛 (𝐴, 𝐴) = 𝐴⊗(𝑛+1) , 𝑏) for 𝐴 = O(𝑈)𝔨 ⊂ 𝐶 (𝑈/𝐾). Under the Hochschild–Kostant–Rosenberg map,
this cycle corresponds to the differential 2-form associated with the Kostant–Kirillov–Souriau bracket
on the coadjoint orbit of (·, 𝑍)𝔤, which in turn defines a nonzero class in H2(𝑈/𝐾;C) � C.

We have a left U (𝐺)-module structure on O(𝑈) given by right translations: 𝑇.𝑎 = 𝑎 (0) 〈𝑎 (1) , 𝑇〉.
Given𝑇 ∈ 𝐵𝑛𝐺,𝐺𝜎 , we can then define an n-cocycle 𝐷𝑇 in the Hochschild cochain complex (𝐶𝑛 (𝐴, 𝐴) =
Hom(𝐴⊗𝑛, 𝐴), 𝛿) by

𝐷𝑇 (𝑎1, . . . , 𝑎𝑛) = 𝜖 (𝑇0) (𝑇1.𝑎1) · · · (𝑇𝑛.𝑎𝑛).

The Hochschild cochains act on the chains by contractions: Given 𝐷 ∈ 𝐶𝑚(𝐴, 𝐴), we have

𝑖𝐷 : 𝐶𝑛 (𝐴, 𝐴) → 𝐶𝑛−𝑚 (𝐴, 𝐴), 𝑎0 ⊗ · · · ⊗ 𝑎𝑛 ↦→ 𝑎0𝐷 (𝑎1, . . . , 𝑎𝑚) ⊗ 𝑎𝑚+1 ⊗ · · · ⊗ 𝑎𝑛,

with the convention 𝑖𝐷 = 0 if 𝑛 < 𝑚.
Now, if 𝑇 ∈ 𝐵𝑛𝐺,𝐺𝜎 and 𝑐 ∈ 𝐶𝑛 (𝐴, 𝐴) is U-invariant (with respect to left translations), then 𝑖𝐷𝑇 𝑐 ∈ 𝐴

is U-invariant, hence a scalar. It can be checked that if 𝑏𝑐 = 0, then this scalar depends only on the
cohomology class of T. Taking 𝑐 = 𝜔, we recover pairing (2.10): 𝑖𝐷𝑇 𝜔 = 〈Ω, 𝑇〉.

2.5. Classification of associators: Hermitian case

We are now ready to establish, in the Hermitian case, a universality result for the associators ΨKZ,𝑠;𝜇 for
generic quasi-coactions (U (𝐺𝜎)�ℎ�, 𝛼,Ψ) of (U (𝐺)�ℎ�,Δ ,ΦKZ) such that 𝛼 = Δ modulo h. Similarly
to Section 2.2, it suffices to consider the case 𝛼 = Δ .

Theorem 2.16. Let 𝔨 = 𝔲𝜎 < 𝔲 be a Hermitian symmetric pair. Assume we are given a quasi-coaction
(U (𝐺𝜎)�ℎ�,Δ ,Ψ) of (U (𝐺)�ℎ�,Δ ,ΦKZ) such that the number 〈Ω,Ψ (1) 〉 defined by equation (2.10) is

neither ± 𝑖

2
dim𝔪, nor

𝑖(𝜁 − 1)
2(𝜁 + 1) dim𝔪

for a root of unity 𝜁 ≠ ±1. Then there exist 𝑠 ∉ 𝑖Q×, 𝜇 ∈ ℎC�ℎ� and H ∈ 1 + ℎU (𝐺𝜎 × 𝐺)𝔨�ℎ� such
that (id ⊗ 𝜖) (H) = 1 and ΨKZ,𝑠;𝜇 = H0,12ΨH−1

01,2H−1
0,1. Furthermore,
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(i) The number s is unique up to adding 2𝑖𝑘 (𝑘 ∈ Z), and once s is fixed, the element 𝜇 is uniquely
determined;

(ii) We can choose 𝑠 ∈ R if and only if 〈Ω,Ψ (1) 〉 is a purely imaginary number in the interval(
− 𝑖

2
dim𝔪,

𝑖

2
dim𝔪

)
;

(iii) If 𝑠 ∈ R and Ψ is unitary, then 𝜇 ∈ ℎR�ℎ� and H can be chosen to be unitary.

We will later (Remark 2.20) slightly improve this result by showing that for any Ψ the parameter 𝜇
is independent of the choice of s.

Proof. By Proposition 2.14 and our restrictions on Ψ, we can choose 𝑠 ∉ 𝑖Q× such that

−1
2

tanh
( 𝜋𝑠

2

)
〈Ω, 𝑡𝔪+

12 − 𝑡𝔪−
12 〉 = − 𝑖

2
tanh

( 𝜋𝑠
2

)
dim𝔪 = 〈Ω,Ψ (1) 〉. (2.11)

We then start with H = 1 and 𝜇 = 0 and modify them by induction on n to have ΨKZ,𝑠;𝜇 =
H0,12ΨH−1

01,2H−1
0,1 modulo ℎ𝑛+1.

Consider 𝑛 = 1. By the proof of Theorem 2.6, Ψ (1)
KZ,𝑠;𝜇−Ψ (1) is a 2-cocycle in 𝐵𝐺,𝐺𝜎 . By Lemma 1.2

and Corollary 2.4, we have dim H2 (𝐵𝐺,𝐺𝜎 ) = 1. Hence, our choice of s, identity (2.7) and Proposition
2.14 imply thatΨ (1)

KZ,𝑠;𝜇−Ψ
(1) is a coboundary so thatΨ (1) −Ψ (1)

KZ,𝑠;𝜇 = 𝑑cH(𝑇) for some𝑇 ∈ U (𝐺𝜎×𝐺)𝔨 .
Letting H(1) = 𝑇 , we then get ΨKZ,𝑠;𝜇 = H0,12ΨH−1

01,2H−1
0,1 modulo ℎ2.

For the induction step, assume we have ΨKZ,𝑠;𝜇 = H0,12ΨH−1
01,2H−1

0,1 modulo ℎ𝑛+1 for some 𝑛 ≥ 1.
Then, again by the proof of Theorem 2.6,

Ψ (𝑛+1)
KZ,𝑠;𝜇 − (H0,12ΨH−1

01,2H−1
0,1)

(𝑛+1)

is a 2-cocycle in 𝐵𝐺,𝐺𝜎 . On the other hand, by Corollary 2.13, for any 𝑎 ∈ C, we have

Ψ (𝑛+1)
KZ,𝑠;𝜇+ℎ𝑛𝑎 − Ψ (𝑛+1)

KZ,𝑠;𝜇 = −𝑎 𝜋
4

sech2
( 𝜋𝑠

2

) (
𝑡𝔪+
12 − 𝑡𝔪−

12

)
+ 𝑏𝑡𝔪12

for some 𝑏 ∈ C, and Ψ (𝑘)
KZ,𝑠;𝜇+ℎ𝑛𝑎 = Ψ (𝑘)

KZ,𝑠;𝜇 for 𝑘 ≤ 𝑛. As 𝑡𝔪+
12 − 𝑡𝔪−

12 represents a nontrivial cohomology
class, the value of sech is nonzero for our s and 𝑡𝔪12 is cohomologically trivial, we see that with different
choices of a the above difference can represent arbitrary classes in H2(𝐵𝐺,𝐺𝜎 ) � C. In particular, we
can find 𝑎 ∈ C such that

(H0,12ΨH−1
01,2H−1

0,1)
(𝑛+1) − Ψ (𝑛+1)

KZ,𝑠;𝜇+ℎ𝑛𝑎 = 𝑑cH(𝑇) (2.12)

for some 𝑇 ∈ U (𝐺𝜎 ×𝐺)𝔨 . Replacing H by (1 + ℎ𝑛+1𝑇)H and 𝜇 (𝑛) by 𝜇 (𝑛) + 𝑎, we then get ΨKZ,𝑠;𝜇 =
H0,12ΨH−1

01,2H−1
0,1 modulo ℎ𝑛+2, proving the induction step.

As at the step n of our induction process we only modify 𝜇 (𝑛−1) and H(𝑘) for 𝑘 ≥ 𝑛, in the limit we
get the required 𝜇 and H. It remains to prove (i)–(iii).

(iii): Assume 𝑠 ∈ R and that Ψ is unitary. In this case, we slightly modify the above inductive
procedure to make sure that at every step we have unitarity of H and that 𝜇 ∈ ℎR�ℎ�.

Consider 𝑛 = 1. We found H such that ΨKZ,𝑠;𝜇 = H0,12ΨH−1
01,2H−1

0,1 modulo ℎ2. The unitarity of
ΨKZ,𝑠;𝜇 and Ψ implies then that the same identity holds for the unitary H(H∗H)−1/2 instead of H, cf.
the proof of [NT11, Proposition 2.3].
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For the induction step, we assume that we have ΨKZ,𝑠;𝜇 = H0,12ΨH−1
01,2H−1

0,1 modulo ℎ𝑛+1 for some
𝑛 ≥ 1, 𝜇 ∈ ℎR�ℎ� and unitary H. Then we take the unique 𝑎 ∈ C such that

(H0,12ΨH−1
01,2H−1

0,1)
(𝑛+1) − Ψ (𝑛+1)

KZ,𝑠;𝜇 + 𝑎
𝜋

4
sech2

( 𝜋𝑠
2

) (
𝑡𝔪+
12 − 𝑡𝔪−

12

)
is a coboundary. By taking adjoints and using that (𝑡𝔪+ )∗ = 𝑡𝔪− , we also get that(

(H0,12ΨH−1
01,2H−1

0,1)
(𝑛+1) − Ψ (𝑛+1)

KZ,𝑠;𝜇

)∗
− �̄�

𝜋

4
sech2

( 𝜋𝑠
2

) (
𝑡𝔪+
12 − 𝑡𝔪−

12

)
is a coboundary. Hence, in order to conclude that 𝑎 ∈ R it suffices to show that if we have two unitaries
Ψ1 and Ψ2 in 1 + ℎU (𝐺𝜎 ×𝐺2)�ℎ� such that Ψ1 = Ψ2 modulo ℎ𝑛+1, then the element Ψ (𝑛+1)

1 −Ψ (𝑛+1)
2

is skew-adjoint. But this is clear from the identity

(Ψ1 − Ψ2)∗ = −Ψ∗
1 (Ψ1 − Ψ2)Ψ∗

2 .

Then we take T satisfying equation (2.12) and replace 𝜇 (𝑛) by 𝜇 (𝑛) + 𝑎 and H by

(1 + ℎ𝑛+1𝑇)
(
(1 + ℎ𝑛+1𝑇∗)(1 + ℎ𝑛+1𝑇)

)−1/2
H,

similarly to the step 𝑛 = 1.
(i), (ii): If ΨKZ,𝑠;𝜇 = H0,12ΨH−1

01,2H−1
0,1, then Ψ (1) − Ψ (1)

KZ,𝑠 = 𝑑cH(H(1) ). Hence, equation (2.11) is
not only sufficient but also necessary for the existence of H and 𝜇. Therefore, s is determined uniquely
up to adding 2𝑖𝑘 (𝑘 ∈ Z). This also makes (ii) obvious.

Next, assume ΨKZ,𝑠;𝜇 = H0,12ΨKZ,𝑠;𝜇′H−1
01,2H−1

0,1 for some 𝑠 ∉ 𝑖Q×, 𝜇, 𝜇′ ∈ ℎC�ℎ� and H ∈
1 + ℎU (𝐺𝜎 × 𝐺)𝔨�ℎ�. We have to show that 𝜇 = 𝜇′. Assume this is not the case.

Let 𝑛 ≥ 1 be the smallest order such that 𝜇 (𝑛) ≠ 𝜇′(𝑛) . By Corollary 2.13, we have ΨKZ,𝑠;𝜇 = ΨKZ,𝑠;𝜇′

modulo ℎ𝑛+1. We claim that we can modify H so that we still have ΨKZ,𝑠;𝜇 = H0,12ΨKZ,𝑠;𝜇′H−1
01,2H−1

0,1,
but H = 1 modulo ℎ𝑛+1.

We will modify H by induction on 𝑘 ≤ 𝑛 to get ΨKZ,𝑠;𝜇 = H0,12ΨKZ,𝑠;𝜇′H−1
01,2H−1

0,1 and H = 1
modulo ℎ𝑘+1. Assume we have these two properties for some 𝑘 < 𝑛. Then

𝑑cH(H(𝑘+1) ) = Ψ (𝑘+1)
KZ,𝑠;𝜇′ − Ψ (𝑘+1)

KZ,𝑠;𝜇 = 0.

As H1 (𝐵𝐺,𝐺𝜎 ) = 0 by Lemma 1.2 and Corollary 2.4, there exists a central element 𝑆 ∈ U (𝐺𝜎) such
that H(𝑘+1) = 𝑆01 − 𝑆0. Putting H′ = exp(−ℎ𝑘+1 (𝑆01 − 𝑆0)), we see that ΨKZ,𝑠;𝜇 commutes with
H′

0,12, hence we have H′
0,12ΨKZ,𝑠;𝜇H′−1

01,2H′−1
0,1 = ΨKZ,𝑠;𝜇. It follows that by replacing H by H′H we get

ΨKZ,𝑠;𝜇 = H0,12ΨKZ,𝑠;𝜇′H−1
01,2H−1

0,1 and H = 1 modulo ℎ𝑘+2. Thus, our claim is proved.
It follows now that Ψ (𝑛+1)

KZ,𝑠;𝜇′ − Ψ (𝑛+1)
KZ,𝑠;𝜇 = 𝑑cH(H(𝑛+1) ). Since 𝑡𝔪+

12 − 𝑡𝔪−
12 is not a coboundary, this

contradicts Corollary 2.13. Hence, 𝜇 = 𝜇′. �

Remark 2.17. In view of Corollary A.5, a similar result should in principle be true at the level of the
universal enveloping algebras as well. However, since we only know that ΨKZ,𝑠;𝜇 ∈ U (𝐺𝜎 × 𝐺)�ℎ�
(for 𝑠 ≠ 0), in the first place one has to show that ΨKZ,𝑠;𝜇 belongs to 𝑈 (𝔤𝜎) ⊗ 𝑈 (𝔤)⊗2�ℎ�, at least up
to some twist.

2.6. Classification of ribbon braids

We complement our classification of associators by describing compatible ribbon twist-braids, both in
the Hermitian and non-Hermitian cases.
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In the following, we always take the universal R-matrix

RKZ = exp(−ℎ𝑡𝔲) ∈ U (𝐺2)�ℎ�

for (U (𝐺)�ℎ�,Δ ,ΦKZ).

Theorem 2.18. If 𝔨 = 𝔲𝜎 < 𝔲 is a non-Hermitian symmetric pair, then the ribbon 𝜎-braids for the
quasi-coaction (U (𝐺𝜎)�ℎ�,Δ ,ΨKZ) of (U (𝐺)�ℎ�,Δ ,ΦKZ,RKZ) are the elements

EKZ𝑔1 = exp(−ℎ(2𝑡𝔨01 + 𝐶𝔨
1))𝑔1,

where 𝑔 ∈ 𝑍 (𝑈).

Proof. The fact that exp(−ℎ(2𝑡𝔨01 + 𝐶𝔨
1)) is a ribbon 𝜎-braid is essentially proved in [Enr07]; see

[DCNTY19, Theorem 3.8]. Hence, the elements exp(−ℎ(2𝑡𝔨01 +𝐶
𝔨
1))𝑔1 (𝑔 ∈ 𝑍 (𝑈)) are ribbon 𝜎-braids

as well. The claim that these are the only ribbon 𝜎-braids follows from Theorem 2.8. �

A similar result holds in the Hermitian case, but the proof is more involved.

Theorem 2.19. If 𝔨 = 𝔲𝜎 < 𝔲 is a Hermitian symmetric pair, 𝑠 ∉ 𝑖Q× and 𝜇 ∈ ℎC�ℎ�, then the ribbon
𝜎-braids for the quasi-coaction (U (𝐺𝜎)�ℎ�,Δ ,ΨKZ,𝑠;𝜇) of (U (𝐺)�ℎ�,Δ ,ΦKZ,RKZ) are the elements

EKZ,𝑠;𝜇𝑔1 = exp(−ℎ(2𝑡𝔨01 + 𝐶𝔨
1) − 𝜋𝑖(𝑠 + 𝜇)𝑍1)𝑔1,

where 𝑔 ∈ 𝑍 (𝑈).

Proof. The fact that the element E = EKZ,𝑠;𝜇 = exp(−ℎ(2𝑡𝔨01 + 𝐶𝔨
1) − 𝜋𝑖(𝑠 + 𝜇)𝑍1) is a ribbon 𝜎-braid,

and hence that the elements E (1 ⊗ 𝑔) (𝑔 ∈ 𝑍 (𝑈)) are ribbon 𝜎-braids as well, follows again from the
proof of [DCNTY19, Theorem 3.8].

Let E ′ be another ribbon 𝜎-braid. The same argument as in the proof of Theorem 2.8 shows that
E ′(0) = 1 ⊗ 𝑔 for an element 𝑔 ∈ 𝑍𝐺 (𝐺𝜎). We now use the same strategy as in the proof of the last
statement of that theorem to get more restrictions on g. Namely, we replace E ′ by E ′(1 ⊗ 𝑔−1) to get a
ribbon �̃�-braid, where �̃� = (Ad 𝑔) ◦𝜎, and then twist E ′ and ΨKZ,𝑠;𝜇 further by an element H to get rid
of the terms 𝑡𝔲 and 𝑡𝔪 in Ψ (1)

KZ,𝑠;𝜇; see equation (2.7) and recall that by Corollary 2.13 identity (2.7) is still
valid for ΨKZ,𝑠;𝜇. Note for a future use that by the proof of Proposition 2.14 we can take H of the form

H = 1 + ℎ(𝑎𝐶𝔲
1 + 𝑏𝐶𝔨

1) (2.13)

for appropriate constants a and b. Thus, our new associator Ψ = H0,12ΨKZ,𝑠;𝜇H−1
01,2H−1

0,1 satisfies

Ψ = 1 − ℎ

2
tanh

( 𝜋𝑠
2

)
(𝑡𝔪+

12 − 𝑡𝔪−
12 ) +𝑂 (ℎ2). (2.14)

Looking at the order one terms in equation (1.5) and applying 𝜖 to the 0th leg, instead of equation
(2.2), we now get

E ′(1) = −2𝑡𝔨 + 1 ⊗ 𝑇 + (id ⊗ Ad 𝑔) (𝑡𝔪) − 𝑡𝔪

+ tanh
( 𝜋𝑠

2

)
(𝑡𝔪+ − 𝑡𝔪−) + tanh

( 𝜋𝑠
2

)
(id ⊗ Ad 𝑔) (𝑡𝔪+ − 𝑡𝔪−),

where 𝑇 = (𝜖 ⊗ id) (E ′(1) ) and we used that 𝑡𝔪±
21 = 𝑡𝔪∓

12 . As E ′(1) ∈ U (𝐺𝜎 × 𝐺), this means that

Ad 𝑔 − id ∓ tanh
( 𝜋𝑠

2

)
id ∓ tanh

( 𝜋𝑠
2

)
Ad 𝑔 = 0 on 𝔪±. (2.15)

Hence, Ad 𝑔 = 𝑒±𝜋𝑠id on 𝔪±, which implies that 𝑔 = exp(−𝜋𝑖𝑠𝑍)𝑔′ for some 𝑔′ ∈ 𝑍 (𝐺) = 𝑍 (𝑈).
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Without loss of generality, we may assume that 𝑔′ = 𝑒, and then we want to prove that our original
E ′ coincides with E . It is more convenient to modify E in the same way as E ′, that is, by replacing it by

HE (1 ⊗ 𝑔−1) (id ⊗ �̃�) (H)−1 = exp(−ℎ(2𝑡𝔨01 + 𝐶𝔨
1) − 𝜋𝑖𝜇𝑍1),

where we used that H has the form (2.13).
Thus, our new setup is that we have two ribbon �̃�-braids E ′ and E , with �̃� = (Ad exp(−𝜋𝑖𝑠𝑍)) ◦ 𝜎,

with respect to an associator Ψ satisfying equation (2.14), E ′(0) = E (0) = 1,

E (1) = −(2𝑡𝔨01 + 𝐶𝔨
1 + 𝜋𝑖𝜇 (1)𝑍1), (2.16)

and the goal is to show that E ′ = E .
We will prove by induction on n that E ′(𝑛) = E (𝑛) . Consider the case 𝑛 = 1. Put

𝑝 = tanh
( 𝜋𝑠

2

)
and 𝑡 = 𝑡𝔪+ − 𝑡𝔪− .

By the argument in the proof of Theorem 2.8, we have E ′(1) = E (1) + 1 ⊗ 𝑌 for some 𝑌 ∈ 𝔷𝔤 (𝔨) = C𝑍 .
Put also 𝑇 = E ′(2) − E (2) .

Using equation (2.14), formula (1.5) for E , modulo ℎ3 and terms depending only on RKZ and Ψ,
becomes

(1 + ℎE (1) + ℎ2E (2) )01,2 = (1 + ℎ(𝑝𝑡1,2 − 𝑡𝔲1,2)) (1 + ℎE (1) + ℎ2E (2) )0,2
× (id ⊗ id ⊗ �̃�) (1 − ℎ(𝑝𝑡1,2 + 𝑡𝔲1,2)),

where we again used that 𝑡21 = −𝑡12. We have a similar formula for E ′. Taking the difference and
comparing the coefficients of ℎ2, we obtain

𝑇01,2 = 𝑇0,2 + (𝑝𝑡1,2 − 𝑡𝔲1,2)𝑌2 − 𝑌2 (id ⊗ id ⊗ �̃�) (𝑝𝑡1,2 + 𝑡𝔲1,2).

Using the identity

(𝑝𝑡 − 𝑡𝔪) − (id ⊗ �̃�) (𝑝𝑡 + 𝑡𝔪) = 0, (2.17)

which is an equivalent form of equation (2.15), we can write this as

𝑇01,2 = 𝑇0,2 − 2𝑡𝔨1,2𝑌2 + [𝑝𝑡1,2 − 𝑡𝔪1,2, 𝑌2] . (2.18)

Similarly, formula (1.6) for E , modulo ℎ3 and terms depending only on RKZ and Ψ, becomes

(1 + ℎE (1) + ℎ2E (2) )0,12 =
(
1 + ℎ

( 𝑝
2
𝑡1,2 − 𝑡𝔲1,2

))
(1 + ℎE (1) + ℎ2E (2) )0,2

× (id ⊗ id ⊗ �̃�) (1 − ℎ(𝑝𝑡1,2 + 𝑡𝔲1,2)) (1 + ℎE (1) + ℎ2E (2) )0,1(id ⊗ �̃� ⊗ �̃�)
(
1 + ℎ

𝑝

2
𝑡1,2

)
,

and we have a similar identity for E ′. Taking the difference and comparing the coefficients of ℎ2, we
obtain

𝑇0,12 = 𝑇0,2 + 𝑇0,1 +
( 𝑝

2
𝑡1,2 − 𝑡𝔲1,2

)
(𝑌1 + 𝑌2) − 𝑌2 (id ⊗ id ⊗ �̃�) (𝑝𝑡1,2 + 𝑡𝔲1,2)

− (id ⊗ id ⊗ �̃�) (𝑝𝑡1,2 + 𝑡𝔲1,2)𝑌1 + (𝑌1 + 𝑌2) (id ⊗ �̃� ⊗ �̃�)
( 𝑝

2
𝑡1,2

)
+ 𝑌2E (1)

0,1 + E (1)
0,2𝑌1 + 𝑌1𝑌2.

Using that �̃� ⊗ �̃� is the identity on 𝔪± ⊗ 𝔪∓ and that ad𝑌1 = − ad𝑌2 on 𝔪±, we can write this as

𝑇0,12 = 𝑇0,2 + 𝑇0,1 + (𝑝𝑡1,2 − 𝑡𝔲1,2) (𝑌1 + 𝑌2) − 𝑌2 (id ⊗ id ⊗ �̃�) (𝑝𝑡1,2 + 𝑡𝔲1,2)

− (id ⊗ id ⊗ �̃�) (𝑝𝑡1,2 + 𝑡𝔲1,2)𝑌1 + 𝑌2E (1)
0,1 + E (1)

0,2𝑌1 + 𝑌1𝑌2,
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and then, using again equation (2.17), we get

𝑇0,12 = 𝑇0,2 + 𝑇0,1 − 2𝑡𝔨1,2 (𝑌1 + 𝑌2) + [𝑝𝑡1,2 − 𝑡𝔪1,2, 𝑌2] + 𝑌2E (1)
0,1 + E (1)

0,2𝑌1 + 𝑌1𝑌2. (2.19)

Subtracting equation (2.19) from equation (2.18), we obtain

𝑑cH(𝑇) = 2𝑡𝔨12𝑌1 − E (1)
01 𝑌2 − E (1)

02 𝑌1 − 𝑌1𝑌2.

By equation (2.16), this means that

𝑑cH(𝑇) = (2𝑡𝔨12 + 2𝑡𝔨02 + 𝐶𝔨
2 + 𝜋𝑖𝜇 (1)𝑍2)𝑌1 + (2𝑡𝔨01 + 𝐶𝔨

1 + 𝜋𝑖𝜇 (1)𝑍1)𝑌2 − 𝑌1𝑌2.

As 𝑌 ∈ C𝑍 , we can also write this as

𝑑cH(𝑇) = (2𝑡𝔨12 + 2𝑡𝔨02 + 𝐶𝔨
2)𝑌1 + (2𝑡𝔨01 + 𝐶𝔨

1 + 2𝜋𝑖𝜇 (1)𝑍1)𝑌2 − 𝑌1𝑌2.

On the other hand, a straightforward computation shows that the right-hand side of the above identity
is the coboundary of

2𝑡𝔨01𝑌0 + 𝐶𝔨
1𝑌0 + 𝐶𝔨

0𝑌1 + 2𝜋𝑖𝜇 (1)𝑍0𝑌1 − 𝑌0𝑌1.

As H1 (𝐵𝐺,𝐺𝜎 ) = 0 by Lemma 1.2 and Corollary 2.4, it follows that there exists S in the center of
U (𝐺𝜎) such that

𝑇 = 𝑆01 − 𝑆0 + 2𝑡𝔨0,1𝑌0 + 𝐶𝔨
1𝑌0 + 𝐶𝔨

0𝑌1 + 2𝜋𝑖𝜇 (1)𝑍0𝑌1 − 𝑌0𝑌1.

The only consequence of the above identity that we need is that 𝑇 ∈ U (𝐺𝜎 × 𝐺𝜎). By looking at
equation (2.18), we see that this implies

[𝑝𝑡 − 𝑡𝔪, 1 ⊗ 𝑌 ] = (𝑝 − 1) [𝑡𝔪+ , 1 ⊗ 𝑌 ] − (𝑝 + 1) [𝑡𝔪− , 1 ⊗ 𝑌 ] ∈ U (𝐺𝜎 × 𝐺𝜎).

As Y is a scalar multiple of Z and ad 𝑍 acts by nonzero operators on 𝔪±, this is possible only if 𝑌 = 0.
This shows that E ′(1) = E (1) .

The induction step is similar. Assuming that E ′(𝑘) = E (𝑘) for 𝑘 < 𝑛 for some 𝑛 ≥ 2, we have
E ′(𝑛) = E (𝑛) + 1 ⊗ 𝑌 for an element 𝑌 ∈ 𝔷𝔤 (𝔨) = C𝑍 . Then, with 𝑇 = E ′(𝑛+1) − E (𝑛+1) , comparing the
coefficients of ℎ𝑛+1 in equation (1.5), we get the same identity (2.18). If we do the same for equation
(1.6), the only difference from equation (2.19) is that we do not get the term 𝑌1𝑌2 at the end. But this
has almost no effect on the rest of the argument; we just have to remove the terms 𝑌1𝑌2 and 𝑌0𝑌1 in the
subsequent identities. Thus, we get 𝑌 = 0. �

Remark 2.20. Theorem 2.19 implies that in the Hermitian case the ribbon twist-braids contain complete
information about the associators. Namely, assume that ΨKZ,𝑠′;𝜇′ = H0,12ΨKZ,𝑠;𝜇H−1

01,2H−1
0,1 for some

H ∈ 1 + ℎU (𝐺𝜎 × 𝐺)𝔨�ℎ�. By equation (1.7) and Theorem 2.19, it follows that

H exp(−ℎ(2𝑡𝔨01 + 𝐶𝔨
1) − 𝜋𝑖(𝑠 + 𝜇)𝑍1) (id ⊗ 𝜎) (H)−1 = exp(−ℎ(2𝑡𝔨01 + 𝐶𝔨

1) − 𝜋𝑖(𝑠′ + 𝜇′)𝑍1)𝑔1

for some 𝑔 ∈ 𝑍 (𝑈). Since (𝜖 ⊗ id) (H) is a 𝔨-invariant element of U (𝐺) and 𝜎 is an inner automorphism
defined by an element of K, we have 𝜎((𝜖 ⊗ id) (H)) = (𝜖 ⊗ id) (H), and then by applying 𝜖 to the 0th
leg we get

exp(−ℎ𝐶𝔨 − 𝜋𝑖(𝑠 + 𝜇)𝑍) = exp(−ℎ𝐶𝔨 − 𝜋𝑖(𝑠′ + 𝜇′)𝑍)𝑔.

This implies that 𝑠 = 𝑠′ + 2𝑖𝑘 for some 𝑘 ∈ Z, and 𝜇 = 𝜇′.
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3. Interpolated subgroups

In this section, we fix an involutive automorphism 𝜈 of 𝔲 such that 𝔲𝜈 < 𝔲 is an irreducible Hermitian
symmetric pair. We are going to fix a Cartan subalgebra in 𝔲𝜈 and then apply the results of the previous
section to particular conjugates of 𝜈 and true coactions of a quantization of (U (𝐺),Δ). Along the way,
we will study a distinguished family of coisotropic subgroups of U that are conjugates of 𝑈𝜈 . The main
result is Theorem 3.17, where we in particular relate the induced Poisson structures on the associated
homogeneous spaces to a Poisson pencil for the Kostant–Kirillov–Souriau bracket which appears from
the cyclotomic KZ-equations.

Throughout this section, we use the subscript 𝜈 for the Lie algebra constructions we had for 𝜎. Thus,
𝔪𝜈 = {𝑋 ∈ 𝔲 | 𝜈(𝑋) = −𝑋}, 𝑍𝜈 ∈ 𝔷(𝔤𝜈).

3.1. Root vectors and Poisson structure

Let us quickly review a standard Poisson–Lie group structure on U making 𝑈𝜈 a Poisson–Lie subgroup
(for Hermitian symmetric pairs).

Let 𝔱 be a Cartan subalgebra of 𝔲 containing 𝔷(𝔲𝜈). Then 𝔱 is contained in 𝔲𝜈 , and its complexification
𝔥 is a Cartan subalgebra of 𝔤.

Recall that a root 𝛼 is called compact if 𝔤𝛼 ⊂ 𝔤𝜈 , and noncompact otherwise. As 𝔤𝜈 is the centralizer
of 𝔷(𝔲𝜈), a root is compact if and only if it vanishes on 𝔷(𝔲𝜈).

As in Section 2.3, we fix 𝑍𝜈 ∈ 𝔷(𝔲𝜈) such that (𝑍𝜈 , 𝑍𝜈)𝔤 = −𝑎−2
𝜈 . Let us fix an ordered basis in 𝑖𝔱,

with −𝑖𝑍𝜈 being the first element of the basis and consider the corresponding lexicographic order on the
roots. Then, in this order, any noncompact positive root is bigger than any compact root. Furthermore, the
noncompact positive roots are totally positive in the sense of [HC55], meaning that if 𝛾 is a noncompact
positive root, 𝛼1, . . . , 𝛼𝑘 are compact roots and 𝑚1, . . . , 𝑚𝑘 are integers such that 𝛾′ = 𝛾 +

∑𝑘
𝑖=1 𝑚𝑖𝛼𝑖 is

a root, then 𝛾′ is positive.
We denote by Φ the set of all roots and by Φ+ that of positive roots. We further denote by Φ+

nc (resp.
Φ−

nc) the set of positive (resp. negative) noncompact roots. Let Π = {𝛼𝑖}𝑖∈𝐼 be the set of simple positive
roots. Recall that we denote by 𝔪𝜈± ⊂ 𝔪C𝜈 the eigenspaces of ad 𝑍𝜈 corresponding to the eigenvalues
±𝑖. It is clear from our choice of the ordering that

𝔪𝜈+ =
⊕
𝛼∈Φ+

nc

𝔤𝛼, 𝔪𝜈− =
⊕
𝛼∈Φ−

nc

𝔤𝛼 .

Since 2𝑖 is not an eigenvalue of ad 𝑍𝜈 , we have [𝔪𝜈+,𝔪𝜈+] = 0. It follows that 𝔭 = 𝔤𝜈 + 𝔪𝜈+ is a
parabolic subalgebra of 𝔤. As 𝔤𝜈 acts irreducibly on 𝔤/𝔭 � 𝔪𝜈−, this parabolic subalgebra is maximal.
Hence, it corresponds to a maximal proper subset of Π. This set must consist of compact roots, and
hence its complement consists of one noncompact root. We denote this unique noncompact simple
positive root by 𝛼𝑜. It corresponds to the black vertex in a standard Vogan diagram of 𝜈.

For every root 𝛼, let 𝐻𝛼 ∈ 𝔥 be the element dual to the coroot 𝛼∨ = 2
(𝛼,𝛼) 𝛼 so that we have

𝛼(𝐻𝛽) = (𝛼, 𝛽∨) (𝛼, 𝛽 ∈ Φ),

where (·, ·) is the scalar product dual to the restriction of (·, ·)𝔤 to 𝔥. For positive roots 𝛼, we choose
root vectors 𝑋𝛼 ∈ 𝔤𝛼 such that the antilinear involution for 𝔲 satisfies

(𝑋𝛼, 𝑋∗
𝛼)𝔤 =

2
(𝛼, 𝛼) .

Then [𝑋𝛼, 𝑋∗
𝛼] = 𝐻𝛼, and we put 𝑋−𝛼 = 𝑋∗

𝛼.
Let

𝑌𝛼 =
𝑖

2
(𝑋𝛼 + 𝑋−𝛼) ∈ 𝔲, 𝑍𝛼 =

1
2
(𝑋𝛼 − 𝑋−𝛼) ∈ 𝔲 (𝛼 ∈ Φ+),
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and consider the antisymmetric tensor

𝑟 =
∑
𝛼>0

(𝛼, 𝛼) (𝑌𝛼 ⊗ 𝑍𝛼 − 𝑍𝛼 ⊗ 𝑌𝛼) ∈ 𝔲⊗2.

Note that we can also write

𝑟 = 𝑖
∑
𝛼>0

(𝛼, 𝛼)
2

(𝑋−𝛼 ⊗ 𝑋𝛼 − 𝑋𝛼 ⊗ 𝑋−𝛼) ∈ 𝔤⊗2. (3.1)

Then 𝑖𝑟 ± 𝑡𝔲 (with 𝑡𝔲 defined by equation (1.1)) satisfies the classical Yang–Baxter equation, and 𝔲
becomes a Lie bialgebra with the cobracket

𝛿𝑟 (𝑋) = [𝑟,Δ (𝑋)] .

Thus, U becomes a Poisson–Lie group with the Sklyanin Poisson bracket

{ 𝑓1, 𝑓2}Sk = 𝑚(𝑟 (𝑙,𝑙) − 𝑟 (𝑟 ,𝑟 ) ) ( 𝑓1 ⊗ 𝑓2),

where m is the product map, and for 𝑋 ∈ 𝔲 and 𝑓 ∈ 𝐶∞(𝑈) we put

(𝑋 (𝑙) 𝑓 ) (𝑔) = 𝑑

𝑑𝑡
𝑓 (𝑒𝑡𝑋𝑔) |𝑡=0, (𝑋 (𝑟 ) 𝑓 ) (𝑔) = 𝑑

𝑑𝑡
𝑓 (𝑔𝑒𝑡𝑋 ) |𝑡=0.

Note that if we as usual view 𝔲 and U as sitting inside U (𝐺), then we can write the Sklyanin bracket as

{ 𝑓1, 𝑓2}Sk (𝑔) = 〈 𝑓1 ⊗ 𝑓2, [𝑟, 𝑔 ⊗ 𝑔]〉 (𝑔 ∈ 𝑈, 𝑓1, 𝑓2 ∈ O(𝑈)).

The Lie algebra 𝔲𝜈 is the intersection of 𝔲 with a parabolic subalgebra of 𝔤, namely, 𝔲𝜈 = 𝔲 ∩ 𝔭. It
is well known that this implies that 𝑈𝜈 is a Poisson–Lie subgroup of U.

3.2. Satake form

We will have to conjugate 𝑈𝜈 in order to go beyond the Poisson–Lie subgroups, making it closer to
the coisotropic subgroup associated with symmetric pairs [FL04]. In order to do so, let us review the
Satake form of involutions.

For 𝑋 ⊂ 𝐼, we denote by Π𝑋 the subset {𝛼 𝑗 | 𝑗 ∈ 𝑋} ⊂ Π. Assume 𝜃 is a nontrivial involution on
𝔲 such that its extension to 𝔤 leaves 𝔥 globally invariant. We write Θ ∈ End(𝔥∗) for the endomorphism
dual to 𝜃 |𝔥.

Definition 3.1. We say that 𝜃 is in maximally split form, or in Satake form, with respect to (𝔥, 𝔟+), or
that (𝔥, 𝔟+) is a split pair for 𝜃, if there exists 𝑋 ⊂ 𝐼 satisfying the following conditions:

1. Φ+ ∩ Θ(Φ+) = Φ+ ∩ ZΠ𝑋 ,
2. 𝜃 = id on 𝔤𝛼 for all 𝛼 ∈ Φ+ ∩ ZΠ𝑋 .

The above set X is then uniquely determined, representing the black vertices in the corresponding
Satake diagram. Then there exist unimodular 𝑤𝛼 ∈ C such that

𝜃 (𝑋𝛼) = 𝑤𝛼𝑋Θ(𝛼) (𝛼 ∈ Φ).

Moreover, there exists a unique Dynkin diagram involution 𝜏𝜃 such that

Θ(𝛼) = −𝑤𝑋𝜏𝜃 (𝛼) (𝛼 ∈ Φ), (3.2)
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with 𝑤𝑋 the longest element of the Weyl group associated to X. This involution leaves the set X globally
invariant. See [KW92] and [Kol14, Appendix A] for details.

Put

𝐼ns = {𝑖 ∈ 𝐼 \ 𝑋 | 𝜏𝜃 (𝑖) = 𝑖 and (𝛼𝑖 , 𝛼 𝑗 ) = 0 for all 𝑗 ∈ 𝑋},

which corresponds to the 𝜏𝜃 -stable white vertices not connected to any black vertices in the Satake
diagram. We then put

𝐼S = {𝑖 ∈ 𝐼ns | (𝛼∨
𝑗 , 𝛼𝑖) ∈ 2Z for all 𝑗 ∈ 𝐼ns}.

We also put

𝐼C = {𝑖 ∈ 𝐼 \ 𝑋 | 𝜏𝜃 (𝑖) ≠ 𝑖 and (𝛼𝑖 ,Θ(𝛼𝑖)) = 0}.

It can be shown that this is the set of white vertices not fixed by 𝜏𝜃 such that, if �̄�𝑖 is the corresponding
restricted root, then 2�̄�𝑖 is not a restricted root; see [Ara62][Hel01, p. 530].

We will use the following definition from [DCNTY19].

Definition 3.2. We say that a Hermitian symmetric pair 𝔲𝜃 < 𝔲 is

• of S-type, if 𝐼S ≠ ∅,
• of C-type, if there exists 𝑖 ∈ 𝐼 \ (𝑋 ∪ 𝐼C) such that 𝜏𝜃 (𝑖) ≠ 𝑖.

See [DCNTY19, Appendix C] for a concrete classification of the Hermitian symmetric pairs into
these types. Recall that the restricted root system is always of type C or BC in the Hermitian case
[Moo64, Theorem 2]. By a case-by-case analysis (see, e.g., [OV90, Reference Chapter, table 9][Hel01,
Chapter X, Table VI][Kna02, Appendix C]), one sees that we are in the S-type case exactly when the
restricted root system is of type C, while we are in the C-type case when the restricted root system is of
type BC.

Moreover, by [DCNTY19, Lemma C.2], in the C-type case there exists exactly one 𝜏𝜃 -orbit of the form
{𝑜 ≠ 𝑜′ = 𝜏𝜃 (𝑜)} in 𝐼\(𝑋∪𝐼C). We call the roots 𝛼𝑜 and 𝛼𝑜′ distinguished. By the same lemma, in the S-
type case the set 𝐼S consists of one root 𝛼𝑜, which we again call distinguished. Note that we use the same
label o for one of the distinguished roots as for a noncompact root in Section 3.1. This will be justified in
Proposition 3.5.

We now recall the construction of a cascade of orthogonal roots in the setting of Section 3.1. Let 𝛾1
be the largest in our lexicographic order (hence necessarily noncompact) root of 𝔤 (0) = 𝔤, and let 𝔤 (1)
be the centralizer of 𝐻𝛾1 . If 𝔤 (1) ⊄ 𝔤𝜈 , then let 𝛾2 be the largest root such that 𝑋𝛾2 ∈ 𝔤 (1) and let 𝔤 (2) be
the centralizer of {𝐻𝛾1 , 𝐻𝛾2 }. Continuing this until we have 𝔤 (𝑠) ⊂ 𝔤𝜈 , we obtain a strictly decreasing
sequence of Lie subalgebras (𝔤 (𝑖) )𝑠𝑖=1 and noncompact positive roots 𝛾1, . . . , 𝛾𝑠 . Furthermore, these
roots form a maximal family of mutually orthogonal noncompact roots, and they are mutually strongly
orthogonal, that is, 𝛾𝑖 ± 𝛾 𝑗 is never a root; see [Kna02, Lemma 7.143].

Let 𝔥+ ⊂ 𝔥 consist of all 𝐻 ∈ 𝔥 with 𝛾𝑖 (𝐻) = 0 for all i. Let 𝔥− be the complex linear span of
{𝐻𝛾𝑖 | 𝑖 = 1, . . . , 𝑠}. Then clearly 𝔥 = 𝔥+ ⊕𝔥−, and hence for the dual spaces we have 𝔥∗ = (𝔥+)∗ ⊕ (𝔥−)∗.
Using this decomposition, we will often think of the 𝛾𝑖 as elements of (𝔥−)∗.

On the other hand, let �̃�− be the complex linear span of {𝑋𝛾𝑖 − 𝑋−𝛾𝑖 | 𝑖 = 1, . . . , 𝑠}. Then also
𝔥+ ⊕ �̃�− is a Cartan subalgebra of 𝔤. This is a version of Harish-Chandra’s construction of maximally
split Cartan subalgebras.

To relate the two Cartan subalgebras, we consider the (partial, unitary) Cayley transform Ad 𝑔1, where

𝑔1 = exp
( 𝜋𝑖

4

𝑠∑
𝑖=1

(𝑋−𝛾𝑖 + 𝑋𝛾𝑖 )
)
∈ 𝑈,
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cf. [Kna02, Section VI.7]. Then (Ad 𝑔1) (𝑖𝐻𝛾𝑖 ) = 𝑋𝛾𝑖 − 𝑋−𝛾𝑖 (see Lemma 3.9 below), so (Ad 𝑔1) (𝔥−) =
�̃�−, while Ad 𝑔1 acts as the identity on 𝔥+. We then have the following concrete presentation of maximally
split involutions.
Proposition 3.3. The involution 𝜃 = (Ad 𝑔1)−1 ◦ 𝜈 ◦ (Ad 𝑔1) is in maximally split form with respect to
(𝔥, 𝔟+), with the associated set 𝑋 = {𝑖 ∈ 𝐼 | 𝐻𝛼𝑖 ∈ 𝔥+}.

In order to prove this, we will need some detailed information on the restricted roots. We will follow
closely the treatment of Harish-Chandra in [HC56].

For 𝜆, 𝜇 ∈ 𝔥∗, let us write 𝜆 ∼ 𝜇 when they restrict to the same functional on 𝔥−. For each i, let 𝐶𝑖
denote the set of compact positive roots 𝛼 such that 𝛼 ∼ 1

2𝛾𝑖 . Similarly, let 𝑃𝑖 be the set of noncompact
positive roots 𝛾 such that 𝛾 ∼ 1

2𝛾𝑖 .
Next, for 𝑖 < 𝑗 , let 𝐶𝑖 𝑗 denote the set of compact positive roots 𝛼 such that 𝛼 ∼ 1

2 (𝛾𝑖 − 𝛾 𝑗 ). Let 𝑃𝑖 𝑗
denote the set of noncompact positive roots 𝛾 such that 𝛾 ∼ 1

2 (𝛾𝑖 + 𝛾 𝑗 ).
Finally, let 𝑃0 = {𝛾1, . . . , 𝛾𝑠}, and 𝐶0 denote the set of positive roots 𝛼 such that 𝛼 ∼ 0, that

is, 𝐻𝛼 ∈ 𝔥+, or equivalently, 𝛼 is orthogonal to 𝛾1, . . . , 𝛾𝑠 . The set 𝐶0 consists of compact roots, as
{𝛾1, . . . , 𝛾𝑠} is a maximal family of mutually orthogonal noncompact positive roots.
Proposition 3.4. The set Φ+ is partitioned by the subsets 𝑃0, 𝐶0, (𝑃𝑖)𝑠𝑖=1, (𝐶𝑖)𝑠𝑖=1, (𝑃𝑖 𝑗 )1≤𝑖< 𝑗≤𝑠, and
(𝐶𝑖 𝑗 )1≤𝑖< 𝑗≤𝑠 . Moreover,

(i) If 𝛼 ∈ 𝐶0, then 𝛼 is strongly orthogonal to 𝛾𝑖 for all i;
(ii) For every 1 ≤ 𝑖 ≤ 𝑠, the map 𝛼 ↦→ 𝛾𝑖 − 𝛼 is a bijection from 𝐶𝑖 onto 𝑃𝑖;

(iii) For all 1 ≤ 𝑖 < 𝑗 ≤ 𝑠, the maps 𝛼 ↦→ 𝛾𝑖 − 𝛼 and 𝛼 ↦→ 𝛾 𝑗 + 𝛼 are bijections from 𝐶𝑖 𝑗 onto 𝑃𝑖 𝑗 .
The proof is practically identical to that of [HC56, Lemma 16], we therefore omit the details.

Proof of Proposition 3.3. First of all, observe that by construction 𝜃 = id on 𝔥+ and 𝜃 = −id on 𝔥−. This
already implies that

Φ+ ∩ ZΠ𝑋 ⊂ {𝛼 > 0 | Θ(𝛼) = 𝛼} ⊂ Φ+ ∩ Θ(Φ+).

Next, by Proposition 3.4, every positive root restricts to 0, 𝛾𝑖 , 1
2𝛾𝑖 or 1

2 (𝛾𝑖±𝛾 𝑗 ) for some i, j with 𝑖 < 𝑗 .
From this we see that the intersection of the restrictions of Φ+ and Θ(Φ+) is at most {0}. In particular,
if 𝛼 ∈ Φ+ ∩ Θ(Φ+), then 𝛼 restricts to 0. Decompose such an 𝛼 into a combination of the simple roots
and restrict to 𝔥−. Since no nontrivial sum with nonnegative integral coefficients of the vectors 𝛾𝑖 , 1

2𝛾𝑖
and 1

2 (𝛾𝑖 ± 𝛾 𝑗 ) (𝑖 < 𝑗) is zero, it follows that 𝛼 decomposes into a combination of the simple roots that
restrict to 0, that is, 𝛼 ∈ Φ+ ∩ ZΠ𝑋 . This proves property (1) in Definition 3.1.

To establish property (2), take 𝛼 ∈ Φ+ ∩ ZΠ𝑋 , that is, 𝛼 is a positive root restricting to 0. This root
must be compact, since {𝛾1, . . . , 𝛾𝑠} is a maximal family of mutually orthogonal noncompact roots, and
it is strongly orthogonal to 𝛾𝑖 by Proposition 3.4 (i). Therefore, 𝔤𝛼 ⊂ 𝔤𝜈 and 𝔤𝛼 centralizers 𝑋−𝛾𝑖 + 𝑋𝛾𝑖 .
Hence, 𝜃 acts trivially on 𝔤𝛼. �

Refining the observation after Definition 3.2, we have the following.
Proposition 3.5. With the above notation, the roots 𝛾1, . . . , 𝛾𝑠 are all of the same length. The restriction
map 𝛼 ↦→ 𝛼 |𝔥− defines a bijection between the 𝜏𝜃 -orbits in Π \ Π𝑋 and a basis of the restricted root
system. This basis and the distinguished roots are concretely described as follows.
• S-type : The restricted root system is of type C𝑠 , consisting of {± 1

2 (𝛾𝑖 ± 𝛾 𝑗 )}𝑖< 𝑗 ∪ {±𝛾𝑖}𝑖 , with the
basis { 1

2 (𝛾𝑖 −𝛾𝑖+1)}𝑠−1
𝑖=1 ∪{𝛾𝑠}. The unique noncompact root 𝛼𝑜 ∈ Π is distinguished, and it coincides

with 𝛾𝑠 .
• C-type : The restricted root system is of type BC𝑠 , consisting of {± 1

2 (𝛾𝑖 ±𝛾 𝑗 )}𝑖< 𝑗 ∪ {±𝛾𝑖}𝑖 ∪ {± 1
2𝛾𝑖}𝑖 ,

with the basis { 1
2 (𝛾𝑖 − 𝛾𝑖+1)}𝑠−1

𝑖=1 ∪ { 1
2𝛾𝑠}. The unique noncompact root 𝛼𝑜 ∈ Π is distinguished,

and its restriction to 𝔥− is 1
2𝛾𝑠 . The second distinguished root is the only other simple root 𝛼𝑜′ that

restricts to 1
2𝛾𝑠 .

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.11


30 K. De Commer et al.

Proof. Observe that since 𝛼 − 𝑤𝑋𝛼 ∈ ZΠ𝑋 for any root 𝛼, we have Θ(𝛼) + 𝜏𝜃 (𝛼) ∈ ZΠ𝑋 by equation
(3.2). It is well known and not difficult to see that this implies that the restriction map 𝛼 ↦→ 𝛼 |𝔥− defines
a bijection between the 𝜏𝜃 -orbits in Π \ Π𝑋 and a basis of the restricted root system.

Next, by a case-by-case analysis (see, e.g., [Kna02, Appendix C] again), we know that the restricted
root system is of type C𝑠 in the S-type case and of type BC𝑠 in the C-type case. By counting the number
of roots and Proposition 3.4, it follows that the restricted root system is {± 1

2 (𝛾𝑖 ± 𝛾 𝑗 )}𝑖< 𝑗 ∪ {±𝛾𝑖}𝑖
(S-type) or {± 1

2 (𝛾𝑖 ± 𝛾 𝑗 )}𝑖< 𝑗 ∪ {±𝛾𝑖}𝑖 ∪ {± 1
2𝛾𝑖}𝑖 (C-type). Now, on the one hand, the restriction of

Π \ Π𝑋 gives a basis of the restricted root system. On the other hand, the nonzero restrictions of the
positive roots is the set { 1

2 (𝛾𝑖 ± 𝛾 𝑗 )}𝑖< 𝑗 ∪ {𝛾𝑖}𝑖 (S-type) or { 1
2 (𝛾𝑖 ± 𝛾 𝑗 )}𝑖< 𝑗 ∪ {𝛾𝑖}𝑖 ∪ { 1

2𝛾𝑖}𝑖 (C-type).
From this we may conclude that the basis we get by restriction must be { 1

2 (𝛾𝑖 − 𝛾𝑖+1)}𝑠−1
𝑖=1 ∪ {𝛾𝑠} (S-

type) or { 1
2 (𝛾𝑖 − 𝛾𝑖+1)}𝑠−1

𝑖=1 ∪ { 1
2𝛾𝑠} (C-type). Since this is a basis of root systems of type C𝑠 or BC𝑠 , it

follows that the roots 𝛾1, . . . , 𝛾𝑠 are of the same length.
It remains to identify the distinguished roots. Consider the unique noncompact root 𝛼𝑜 ∈ Π. Its

image in the restricted root system must be either 𝛾𝑠 (S-type) or 1
2𝛾𝑠 (C-type). Indeed, a noncompact

positive root can only restrict to 𝛾𝑖 , 1
2𝛾𝑖 or 1

2 (𝛾𝑖 + 𝛾 𝑗 ) (𝑖 < 𝑗) by Proposition 3.4, and the claim follows
by taking the intersection with the image of the simple positive roots.

Consider the C-type case. By the remark after the definition of 𝐼C , in this case the distinguished roots
have the property that if 𝛽 is their common restriction, then 2𝛽 is still a restricted root. Since 𝛽 must be
an element of the basis { 1

2 (𝛾𝑖 − 𝛾𝑖+1)}𝑠−1
𝑖=1 ∪ { 1

2𝛾𝑠} of the restricted root system, we have 𝛽 = 1
2𝛾𝑠 . We

already know that 𝛼𝑜 restricts to 1
2𝛾𝑠 , so 𝛼𝑜 is one of the distinguished roots, and then the other is 𝜏𝜃 (𝛼𝑜).

Consider now the S-type case. Again, we already know that the restriction of 𝛼𝑜 is 𝛾𝑠 . By Proposition
3.4, the only positive root restricting to 𝛾𝑠 is 𝛾𝑠 itself. Hence, 𝛼𝑜 = 𝛾𝑠 and 𝜏𝜃 (𝛾𝑠) = 𝛾𝑠 . It remains to
check that 𝛼𝑜 is the unique element of 𝐼S . The equality 𝜏𝜃 (𝛾𝑠) = 𝛾𝑠 means that 𝛾𝑠 is not connected by
an arrow to any other vertex in the Satake diagram. It also needs to be separated from the black vertices,
as 𝛾𝑠 is orthogonal to Π𝑋 . Looking at the Satake diagrams, this is already enough to conclude that 𝛾𝑠 is
the distinguished vertex, except for the CI case 𝔲𝑠 ⊂ 𝔰𝔭𝑠 . But in this remaining case we have 𝔥+ = 0, and
the restricted roots are the same as the entire roots. Thus, 𝛾𝑠 represents the unique long simple positive
root, which is indeed the distinguished root. �

Corollary 3.6. In the S-type case, we have

𝑍𝜈 =
𝑖

2

𝑠∑
𝑗=1

𝐻𝛾 𝑗 ,

as well as 𝑎𝜈 = 2/
√
𝑠 for 𝔲𝑠 ⊂ 𝔰𝔭𝑠 and 𝑎𝜈 =

√
2/𝑠 in all other cases.

Proof. Since in the S-type case the compact positive roots restrict to 0 or 1
2 (𝛾𝑖 − 𝛾 𝑗 ) (𝑖 < 𝑗), such roots

vanish on
∑𝑠
𝑗=1 𝐻𝛾 𝑗 . Therefore,

∑𝑠
𝑗=1 𝐻𝛾 𝑗 ∈ 𝔷(𝔤𝜈). As we must have 𝛾 𝑗 (𝑍𝜈) = 𝑖 for any j, we get the

formula for 𝑍𝜈 in the formulation.
A case-by-case verification shows that 𝛾𝑠 = 𝛼𝑜 is a short root in all cases except for 𝔲𝑠 ⊂ 𝔰𝔭𝑠 , while

in the last case it is a long root of length 2. Since the roots 𝛾1, . . . , 𝛾𝑠 are all of the same length and
(𝑍𝜈 , 𝑍𝜈)𝔤 = −𝑎−2

𝜈 , we then get the formula for 𝑎𝜈 . �

3.3. A family of coisotropic subgroups

Now, we are ready to introduce a one-parameter family of involutive automorphisms interpolating
between 𝜈 and 𝜃 = (Ad 𝑔1)−1 ◦ 𝜈 ◦ (Ad 𝑔1), which define coisotropic subgroups of U.

For 𝜙 ∈ R, let

𝑔𝜙 = exp
( 𝜋𝑖𝜙

4

𝑠∑
𝑖=1

(𝑋−𝛾𝑖 + 𝑋𝛾𝑖 )
)
, 𝜃𝜙 = (Ad 𝑔𝜙) ◦ 𝜃 ◦ (Ad 𝑔𝜙)−1

so that 𝜃0 = 𝜃 and 𝜃1 = 𝜈.

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.11


Forum of Mathematics, Pi 31

Definition 3.7. We will write 𝐾𝜙 for 𝑈 𝜃𝜙 = 𝑔𝜙−1𝑈
𝜈𝑔1−𝜙 and denote its Lie algebra by 𝔨𝜙 .

Our first goal is to understand how the r-matrix (3.1) transforms under 𝑔𝜙 .

Proposition 3.8. For all 𝜙 ∈ R, we have

(Ad 𝑔𝜙)⊗2(𝑟) − cos
( 𝜋𝜙

2

)
𝑟 ∈ 𝔲𝜈 ⊗ 𝔲 + 𝔲 ⊗ 𝔲𝜈 .

For the proof, we need to introduce a more convenient basis for computations. We will write

𝑒𝛼 = −𝑖𝑋𝛼

to adapt to the conventions of [Bou07, Tit66]. Note that then

𝑒∗𝛼 = −𝑒−𝛼 and [𝑒𝛼, 𝑒−𝛼] = −𝐻𝛼 .

Let us write [𝑒𝛼, 𝑒𝛽] = 𝑁𝛼,𝛽𝑒𝛼+𝛽 when 𝛼, 𝛽, and 𝛼 + 𝛽 are roots. We then have �̄�𝛼,𝛽 = 𝑁−𝛼,−𝛽 and

𝑁𝛼,𝛽𝑁−𝛼,𝛼+𝛽 = −𝑝(𝑞 + 1),


𝑁𝛼,𝛽 

 = 𝑞 + 1, (3.3)

where p, resp. q, is the largest integer such that 𝛽 + 𝑝𝛼, resp. 𝛽− 𝑞𝛼, is a root [Bou07, Section VIII.2.4].
(In fact, if we were more careful in choosing root vectors, we could arrange 𝑁𝛼,𝛽 to be real, with the
sign of 𝑁𝛼,𝛽 described in [Tit66].)

Recall from Proposition 3.4 thatΦ+ is partitioned by the subsets 𝑃0,𝐶0, (𝑃𝑖)𝑠𝑖=1, (𝐶𝑖)𝑠𝑖=1, (𝑃𝑖 𝑗 )1≤𝑖< 𝑗≤𝑠,
and (𝐶𝑖 𝑗 )1≤𝑖< 𝑗≤𝑠 . We will consider these subsets one by one.

We start with 𝑃0. For each i, put

𝑥𝑖 = 𝑒𝛾𝑖 + 𝑒−𝛾𝑖 and 𝑦𝑖 = 𝑒𝛾𝑖 − 𝑒−𝛾𝑖 .

Lemma 3.9. The map Ad 𝑔𝜙 acts as follows:

𝑥𝑖 ↦→ 𝑥𝑖 , 𝑦𝑖 ↦→ cos
( 𝜋𝜙

2

)
𝑦𝑖 − sin

( 𝜋𝜙
2

)
𝐻𝛾𝑖 , 𝐻𝛾𝑖 ↦→ sin

( 𝜋𝜙
2

)
𝑦𝑖 + cos

( 𝜋𝜙
2

)
𝐻𝛾𝑖 .

Proof. Since 𝛾𝑖 is strongly orthogonal to 𝛾 𝑗 for 𝑗 ≠ 𝑖, we have⎡⎢⎢⎢⎢⎣
𝑠∑
𝑗=1

(𝑒−𝛾 𝑗 + 𝑒𝛾 𝑗 ), 𝑥𝑖
⎤⎥⎥⎥⎥⎦ = 0,

⎡⎢⎢⎢⎢⎣
𝑠∑
𝑗=1

(𝑒−𝛾 𝑗 + 𝑒𝛾 𝑗 ), 𝑦𝑖
⎤⎥⎥⎥⎥⎦ = 2𝐻𝛾𝑖 ,

⎡⎢⎢⎢⎢⎣
𝑠∑
𝑗=1

(𝑒−𝛾 𝑗 + 𝑒𝛾 𝑗 ), 𝐻𝛾𝑖
⎤⎥⎥⎥⎥⎦ = −2𝑦𝑖 .

Since

𝑔𝜙 = exp ���−𝜋𝜙

4

𝑠∑
𝑗=1

(𝑒−𝛾 𝑗 + 𝑒𝛾 𝑗 )
 !" , exp

(
0 −𝜆
𝜆 0

)
=

(
cos𝜆 − sin𝜆
sin𝜆 cos𝜆

)
, (3.4)

we get the result. �

As Ad 𝑔𝜙 acts trivially on the orthogonal complement of {𝐻𝛾1 , . . . , 𝐻𝛾𝑠 } in 𝔥, this lemma already
describes the action of Ad 𝑔𝜙 on the Cartan subalgebra.

Lemma 3.10. If 𝛼 ∈ 𝐶0, then Ad 𝑔𝜙 acts trivially on 𝑒±𝛼 and 𝐻𝛼.

Proof. This follows from Proposition 3.4 (i). �

Next, on the root vectors of 𝑃𝑖 and 𝐶𝑖 we have the following description of Ad 𝑔𝜙 .
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Lemma 3.11. Assume 1 ≤ 𝑖 ≤ 𝑠, and 𝛾 ∈ 𝑃𝑖 and 𝛼 ∈ 𝐶𝑖 are such that 𝛾 + 𝛼 = 𝛾𝑖 . Then Ad 𝑔𝜙 acts as
follows:

𝑒𝛾 ↦→ cos
( 𝜋𝜙

4

)
𝑒𝛾 − �̄�𝛾𝑖 ,−𝛾 sin

( 𝜋𝜙
4

)
𝑒−𝛼, 𝑒−𝛼 ↦→ 𝑁𝛾𝑖 ,−𝛾 sin

( 𝜋𝜙
4

)
𝑒𝛾 + cos

( 𝜋𝜙
4

)
𝑒−𝛼,

and we have |𝑁𝛾𝑖 ,−𝛾 | = 1.

Note that we also get formulas for the action on 𝑒−𝛾 and 𝑒𝛼 by taking adjoints.

Proof. From Proposition 3.4, we see that 𝛾 + 𝛾𝑖 , 𝛾 − 2𝛾𝑖 and 𝛾 ± 𝛾 𝑗 for 𝑗 ≠ 𝑖 are not roots. Hence,[ 𝑠∑
𝑗=1

(𝑒−𝛾 𝑗 + 𝑒𝛾 𝑗 ), 𝑒𝛾
]
= [𝑒−𝛾𝑖 , 𝑒𝛾] = 𝑁−𝛾𝑖 ,𝛾𝑒−𝛼 = �̄�𝛾𝑖 ,−𝛾𝑒−𝛼,

and 𝑁−𝛾𝑖 ,𝛾𝑁𝛾𝑖 ,−𝛼 = −1 and |𝑁−𝛾𝑖 ,𝛾 | = 1 by equation (3.3). Similarly, 𝛾𝑖 + 𝛼 and 𝛼 ± 𝛾 𝑗 for 𝑗 ≠ 𝑖 are
not roots, hence [ 𝑠∑

𝑗=1
(𝑒−𝛾 𝑗 + 𝑒𝛾 𝑗 ), �̄�𝛾𝑖 ,−𝛾𝑒−𝛼

]
= [𝑒𝛾𝑖 , �̄�𝛾𝑖 ,−𝛾𝑒−𝛼] = −𝑒𝛾 .

The lemma follows by again using equation (3.4). �

Consider now 𝛾 ∈ 𝑃𝑖 𝑗 , and put 𝛼 = 𝛾−𝛾 𝑗 ∈ 𝐶𝑖 𝑗 . By Proposition 3.4 (iii), we also have roots 𝛾′ ∈ 𝑃𝑖 𝑗
and 𝛼′ ∈ 𝐶𝑖 𝑗 such that

𝛾𝑖 − 𝛼 = 𝛾′ = 𝛾 𝑗 + 𝛼′.

Put 𝜀(𝛾) = 𝑁−𝛾𝑖 ,𝛾𝑁−𝛾 𝑗 ,𝛾′ , 𝜀(𝛼) = 𝑁−𝛾𝑖 ,𝛼𝑁𝛾 𝑗 ,𝛼′ , and take the elements

𝑥𝛾 = 𝑒𝛾 − 𝜀(𝛾)𝑒−𝛾′ , 𝑦𝛾 = 𝑒𝛾 + 𝜀(𝛾)𝑒−𝛾′ , 𝑥𝛼 = 𝑒𝛼 − 𝜀(𝛼)𝑒−𝛼′ , 𝑦𝛼 = 𝑒𝛼 + 𝜀(𝛼)𝑒−𝛼′ .

Lemma 3.12. If 𝛾 ∈ 𝑃𝑖 𝑗 and 𝛼 ∈ 𝐶𝑖 𝑗 are such that 𝛾 − 𝛼 = 𝛾 𝑗 , then the map Ad 𝑔𝜙 acts as follows:

𝑥𝛾 ↦→ 𝑥𝛾 , 𝑥𝛼 ↦→ 𝑥𝛼, 𝑦𝛾 ↦→ cos
( 𝜋𝜙

2

)
𝑦𝛾 − �̄�𝛾 𝑗 ,−𝛾 sin

( 𝜋𝜙
2

)
𝑦𝛼,

𝑦𝛼 ↦→ 𝑁𝛾 𝑗 ,−𝛾 sin
( 𝜋𝜙

2

)
𝑦𝛾 + cos

( 𝜋𝜙
2

)
𝑦𝛼,

and we have |𝜀(𝛾) | = |𝜀(𝛼) | = |𝑁𝛾 𝑗 ,−𝛾 | = 1.

Proof. First of all, observe that

𝛾𝑖 − 𝛾 = 𝛼′, 𝛾𝑖 − 𝛾′ = 𝛼, 𝛾 𝑗 − 𝛾 = −𝛼, 𝛾 𝑗 − 𝛾′ = −𝛼′. (3.5)

From Proposition 3.4, we see that −𝛾𝑖 − 𝛾 and 2𝛾𝑖 − 𝛾 are not roots, hence |𝑁𝛾𝑖 ,−𝛾 | = 1 by the second
identity in equation (3.3). For similar reasons, the numbers 𝑁𝛾𝑖 ,−𝛾′ , 𝑁𝛾 𝑗 ,−𝛾 and 𝑁𝛾 𝑗 ,−𝛾′ are of modulus
one, and by the first identity in equation (3.3) we have

𝑁𝛾𝑖 ,−𝛾𝑁−𝛾𝑖 ,𝛼′ = 𝑁𝛾𝑖 ,−𝛾′𝑁−𝛾𝑖 ,𝛼 = 𝑁𝛾 𝑗 ,−𝛾𝑁−𝛾 𝑗 ,−𝛼 = 𝑁𝛾 𝑗 ,−𝛾′𝑁−𝛾 𝑗 ,−𝛼′ = −1. (3.6)

We claim that also the following identity holds:

𝑁−𝛾 𝑗 ,−𝛼′𝑁−𝛾𝑖 ,𝛾 = 𝑁−𝛾𝑖 ,𝛼𝑁−𝛾 𝑗 ,𝛾 . (3.7)
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Indeed, the expressions on both sides are precisely the coefficients of 𝑒−𝛾′ in [𝑒−𝛾 𝑗 , [𝑒−𝛾𝑖 , 𝑒𝛾]] and
[𝑒−𝛾𝑖 , [𝑒−𝛾 𝑗 , 𝑒𝛾]]. By the Jacobi identity,

[𝑒−𝛾 𝑗 , [𝑒−𝛾𝑖 , 𝑒𝛾]] − [𝑒−𝛾𝑖 , [𝑒−𝛾 𝑗 , 𝑒𝛾]] = [𝑒𝛾 , [𝑒−𝛾𝑖 , 𝑒−𝛾 𝑗 ]] .

But we have [𝑒−𝛾𝑖 , 𝑒−𝛾 𝑗 ] = 0 by strong orthogonality. Thus, our claim is proved.
Now, a simple computation using equations (3.5)–(3.7) gives[ 𝑠∑

𝑘=1
(𝑒−𝛾𝑘 + 𝑒𝛾𝑘 ), 𝑥𝛾

]
=

[ 𝑠∑
𝑘=1

(𝑒−𝛾𝑘 + 𝑒𝛾𝑘 ), 𝑥𝛼
]
= 0,[ ∑𝑠

𝑘=1(𝑒−𝛾𝑘 + 𝑒𝛾𝑘 ), 𝑦𝛾
]
= 2�̄�𝛾 𝑗 ,−𝛾𝑦𝛼,

[ ∑𝑠
𝑘=1(𝑒−𝛾𝑘 + 𝑒𝛾𝑘 ), �̄�𝛾 𝑗 ,−𝛾𝑦𝛼

]
= −2𝑦𝛾 .

The lemma follows again from equation (3.4). �

Proof of Proposition 3.8. We have

𝑟 = −𝑖
∑
𝛼>0

(𝛼, 𝛼)
2

(𝑒−𝛼 ⊗ 𝑒𝛼 − 𝑒𝛼 ⊗ 𝑒−𝛼).

We will use the partition of Φ+ into the subsets 𝑃0, 𝐶0, (𝑃𝑖)𝑠𝑖=1, (𝐶𝑖)𝑠𝑖=1, (𝑃𝑖 𝑗 )1≤𝑖< 𝑗≤𝑠, (𝐶𝑖 𝑗 )1≤𝑖< 𝑗≤𝑠 and
check how the corresponding components of r transform under (Ad 𝑔𝜙)⊗2.

We start with 𝛾 = 𝛾𝑖 ∈ 𝑃0. Up to the factor −
√
−1 (𝛾𝑖 ,𝛾𝑖 )

4 , the corresponding component of r is
𝑥𝑖 ⊗ 𝑦𝑖 − 𝑦𝑖 ⊗ 𝑥𝑖 . By Lemma 3.9, its image under (Ad 𝑔𝜙)⊗2, modulo 𝔤𝜈 ⊗ 𝔤 + 𝔤 ⊗ 𝔤𝜈 , is

cos
( 𝜋𝜙

2

)
(𝑥𝑖 ⊗ 𝑦𝑖 − 𝑦𝑖 ⊗ 𝑥𝑖),

as needed.
Next, by Lemma 3.10, if 𝛼 ∈ 𝐶0, then the corresponding components of (Ad 𝑔𝜙)⊗2(𝑟) and r are

already in 𝔤𝜈 ⊗ 𝔤𝜈 .
Consider 1 ≤ 𝑖 ≤ 𝑠, and take roots 𝛾 ∈ 𝑃𝑖 and 𝛼 ∈ 𝐶𝑖 related by 𝛾 = 𝛾𝑖 − 𝛼. Since 𝛾 = −𝑠𝛾𝑖𝛼, these

roots have the same length. Therefore, up to a factor, the component of r corresponding to 𝛾 and 𝛼 is

𝑒−𝛾 ⊗ 𝑒𝛾 − 𝑒𝛾 ⊗ 𝑒−𝛾 + 𝑒−𝛼 ⊗ 𝑒𝛼 − 𝑒𝛼 ⊗ 𝑒−𝛼 .

By Lemma 3.11, its image under (Ad 𝑔𝜙)⊗2, modulo 𝔤𝜈 ⊗ 𝔤 + 𝔤 ⊗ 𝔤𝜈 , is(
cos2

( 𝜋𝜙
4

)
− sin2

( 𝜋𝜙
4

))
(𝑒−𝛾 ⊗ 𝑒𝛾 − 𝑒𝛾 ⊗ 𝑒−𝛾) = cos

( 𝜋𝜙
2

)
(𝑒−𝛾 ⊗ 𝑒𝛾 − 𝑒𝛾 ⊗ 𝑒−𝛾).

This is equal (up to the same factor as before) to the contribution of 𝛾 and 𝛼 to cos( 𝜋𝜙2 )𝑟 modulo
𝔤𝜈 ⊗ 𝔤 + 𝔤 ⊗ 𝔤𝜈 .

Consider now 𝛾 ∈ 𝑃𝑖 𝑗 . Let 𝛾′ = 𝛾𝑖 + 𝛾 𝑗 − 𝛾. Using equation (3.6), we get from equation (3.7) that
𝑁−𝛾𝑖 ,𝛾𝑁−𝛾 𝑗 ,𝛾′ = 𝑁−𝛾𝑖 ,𝛾′𝑁−𝛾 𝑗 ,𝛾 , that is, 𝜀(𝛾) = 𝜀(𝛾′). We then have

𝑥𝛾 ⊗ 𝑦𝛾′ − 𝑦𝛾′ ⊗ 𝑥𝛾 + 𝑥𝛾′ ⊗ 𝑦𝛾 − 𝑦𝛾 ⊗ 𝑥𝛾′ = 2𝜀(𝛾) (𝑒𝛾 ⊗ 𝑒−𝛾 − 𝑒−𝛾 ⊗ 𝑒𝛾 + 𝑒𝛾′ ⊗ 𝑒−𝛾′ − 𝑒−𝛾′ ⊗ 𝑒𝛾′ ).

The roots 𝛾 and 𝛾′ are of the same length since 𝛾′ = −𝑠𝛾𝑖 𝑠𝛾 𝑗𝛾. Therefore, up to a factor, the component
of r corresponding to 𝛾 and 𝛾′ is

𝑥𝛾 ⊗ 𝑦𝛾′ − 𝑦𝛾′ ⊗ 𝑥𝛾 + 𝑥𝛾′ ⊗ 𝑦𝛾 − 𝑦𝛾 ⊗ 𝑥𝛾′ .
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Note that it is possible that 𝛾 = 𝛾′, but this only changes the overall factor. By Lemma 3.12, the image
of the above expression under (Ad 𝑔𝜙)⊗2, modulo 𝔤𝜈 ⊗ 𝔤 + 𝔤 ⊗ 𝔤𝜈 , is

cos
( 𝜋𝜙

2

)
(𝑥𝛾 ⊗ 𝑦𝛾′ − 𝑦𝛾′ ⊗ 𝑥𝛾 + 𝑥𝛾′ ⊗ 𝑦𝛾 − 𝑦𝛾 ⊗ 𝑥𝛾′ ),

as we need.
Finally, take 𝛼 ∈ 𝐶𝑖 𝑗 . Let 𝛼′ = 𝛾𝑖 − 𝛾 𝑗 − 𝛼. Then, similarly to the previous case, the contribution of

𝛼 and 𝛼′ to r is, up to a factor,

𝑥𝛼 ⊗ 𝑦𝛼′ − 𝑦𝛼′ ⊗ 𝑥𝛼 + 𝑥𝛼′ ⊗ 𝑦𝛼 − 𝑦𝛼 ⊗ 𝑥𝛼′ .

By Lemma 3.12, this expression transforms under (Ad 𝑔𝜙)⊗2 into an element of 𝔤𝜈 ⊗ 𝔤 + 𝔤 ⊗ 𝔤𝜈 . �

Corollary 3.13. For every 𝜙 ∈ R, the subgroup 𝐾𝜙 of Definition 3.7 is a coisotropic subgroup of (𝑈, 𝑟),
that is,

𝛿𝑟 (𝔨𝜙) ⊂ 𝔨𝜙 ⊗ 𝔲 + 𝔲 ⊗ 𝔨𝜙 .

It is a Poisson–Lie subgroup if and only if 𝜙 is an odd integer.

Proof. By definition, we have 𝔨𝜙 = (Ad 𝑔𝜙−1) (𝔲𝜈). Since 𝑈𝜈 is a Poisson–Lie subgroup of (𝑈, 𝑟), 𝐾𝜙
is a Poisson–Lie subgroup of (𝑈, (Ad 𝑔𝜙−1)⊗2(𝑟)). As

𝑟 − cos
( 𝜋(1 − 𝜙)

2

)
(Ad 𝑔𝜙−1)⊗2(𝑟) ∈ 𝔨𝜙 ⊗ 𝔲 + 𝔲 ⊗ 𝔨𝜙,

this shows that 𝐾𝜙 is coisotropic in (𝑈, 𝑟).
Assume now that 𝐾𝜙 is a Poisson–Lie subgroup of (𝑈, 𝑟) for some 𝜙. Since 𝐾𝜙 has the same rank as

U, it follows that 𝔨𝜙 must contain the Cartan subalgebra 𝔱 (see, e.g., [Sto03, Proposition 2.1]). Therefore,
𝜃𝜙 = (Ad 𝑔𝜙−1) ◦ 𝜈 ◦ (Ad 𝑔𝜙−1)−1 acts trivially on 𝔥. From Lemma 3.9, we see that this is the case if
and only if sin( 𝜋 (1−𝜙)2 ) = 0, that is, 𝜙 is an odd integer.

Assume that indeed 𝜙 = 2𝑛+1 for some 𝑛 ∈ Z. In the S-type case, when the sets 𝑃𝑖 and 𝐶𝑖 are empty
for 1 ≤ 𝑖 ≤ 𝑠, we see from Lemmas 3.10 and 3.12 that 𝔨C𝜙 = 𝔤𝜈 , so 𝐾𝜙 = 𝑈𝜈 is a Poisson-Lie subgroup.

Consider the C-type case. If n is even so that cos( 𝜋 (𝜙−1)
2 ) = ±1, we see from Lemmas 3.10–3.12

that 𝔨C𝜙 = 𝔤𝜈 , so 𝐾𝜙 = 𝑈𝜈 is again a Poisson–Lie subgroup.
Assume now that n is odd. Then sin( 𝜋 (𝜙−1)

4 ) = ±1, and we see from Lemmas 3.10–3.12 that 𝔨C𝜙 is
spanned by 𝔥, 𝑋±𝛼 (𝛼 ∈ 𝐶0), 𝑋±𝛾 (𝛾 ∈ 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑠) and 𝑋±𝛼 (𝛼 ∈ 𝐶𝑖 𝑗 ). Moreover, by Proposition 3.5,
the nondistinguished simple roots in Π \ Π𝑋 lie in the sets 𝐶𝑖,𝑖+1, while the distinguished roots satisfy
𝛼𝑜 ∈ 𝑃𝑠 and 𝛼𝑜′ ∈ 𝐶𝑠 . We conclude that we have 𝑋±𝛼 ∈ 𝔨C𝜙 for the nondistinguished simple roots 𝛼,
𝑋±𝛼𝑜 ∈ 𝔨C𝜙 and 𝑋±𝛼𝑜′ ∉ 𝔨C𝜙 . It follows that if 𝔮 ⊂ 𝔤 is the parabolic subalgebra defined by the subset
Π \ {𝛼𝑜′ } of simple roots, then 𝔮∩𝔲 ⊂ 𝔨𝜙. We have a Dynkin diagram involution 𝜏𝜃 mapping Π \ {𝛼𝑜′ }
onto Π \ {𝛼𝑜}. Then the corresponding automorphism of 𝔤 maps 𝔮 onto 𝔭 = 𝔤𝜈 +𝔪𝜈+. Since 𝔲𝜈 = 𝔭∩𝔲
is a maximal proper Lie subalgebra of 𝔲, it follows that 𝔮 ∩ 𝔲 is a maximal proper Lie subalgebra of 𝔲.
Hence, 𝔮 ∩ 𝔲 = 𝔨𝜙 , and therefore 𝐾𝜙 is a Poisson–Lie subgroup of (𝑈, 𝑟). �

Remark 3.14. We see from the above argument or directly from Lemmas 3.9–3.12, that (Ad 𝑔𝜙) (𝔲𝜈) =
𝔲𝜈 if and only if 𝜙 ∈ 2Z in the S-type case and 𝜙 ∈ 4Z in the C-type case.

We finish this subsection by exhibiting generators of 𝔨C𝜙 .

Proposition 3.15. If 𝜙 ∈ R \ (1 + 2Z), then the Lie algebra 𝔨C𝜙 is generated by the following elements:
𝐻 ∈ 𝔥𝜃 , 𝑋±𝛼 for 𝛼 ∈ Π𝑋 , 𝑋𝛼 + 𝜃 (𝑋𝛼) for the nondistinguished roots 𝛼 ∈ Π \ Π𝑋 , plus the following
elements:
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• S-type : 𝑋𝛼𝑜 + 𝜃 (𝑋𝛼𝑜 ) − 𝑠𝑜𝐻𝛼𝑜 , where 𝑠𝑜 = 𝑖 tan( 𝜋𝜙2 );
• C-type : 𝑋𝛼𝑜 + 𝑐𝑜𝜃 (𝑋𝛼𝑜 ) and 𝑋𝛼𝑜′ + 𝑐−1

𝑜 𝜃 (𝑋𝛼𝑜′ ), where 𝑐𝑜 = − cot( 𝜋4 (𝜙 − 1)).

Proof. We denote by 𝔤𝜙 the Lie algebra generated by the elements in the formulation. For 𝜙 = 0,
the generators of 𝔤0 are the adjoints of the generators of 𝔤𝜃 from [Kol14, Lemma 2.8]. Since 𝔤𝜃 is
∗-invariant, we therefore get 𝔤0 = 𝔤𝜃 , that is, the proposition is true for 𝜙 = 0. In order to prove it for all
𝜙 ∈ R \ {1 + 2Z} it suffices to show that 𝔤𝜙 = (Ad 𝑔𝜙) (𝔤0).

We will check how Ad 𝑔𝜙 acts on the generators of 𝔤0. By definition, Ad 𝑔𝜙 is the identity map on
𝔥𝜃 = 𝔥+. By Lemma 3.10, it is also the identity map on 𝑋±𝛼 for 𝛼 ∈ Π𝑋 ⊂ 𝐶0.

Next, consider a nondistinguished root 𝛼 ∈ Π \ Π𝑋 . Then 𝛼 ∈ 𝐶𝑖,𝑖+1 for some 1 ≤ 𝑖 ≤ 𝑠 − 1. As
𝜃 = (Ad 𝑔−1) ◦ 𝜈 ◦ (Ad 𝑔1), from Lemma 3.12 we see that 𝜃 (𝑥𝛼) = 𝑥𝛼 and 𝜃 (𝑦𝛼) = −𝑦𝛼. It follows that
𝜃 (𝑒𝛼) = −𝜀(𝛼)𝑒−𝛼′ , and therefore,

𝑋𝛼 + 𝜃 (𝑋𝛼) = 𝑖𝑒𝛼 + 𝑖𝜃 (𝑒𝛼) = 𝑖𝑥𝛼 .

By Lemma 3.12, Ad 𝑔𝜙 acts trivially on this element.
It remains to understand what happens with the generators corresponding to the distinguished roots.

Consider the S-type case. Then the distinguished root is 𝛼𝑜 = 𝛾𝑠 . By Lemma 3.9, we have 𝜃 (𝑥𝑠) = −𝑥𝑠
and 𝜃 (𝑦𝑠) = 𝑦𝑠 , hence 𝜃 (𝑒𝛾𝑠 ) = −𝑒−𝛾𝑠 . Therefore,

𝑋𝛼𝑜 + 𝜃 (𝑋𝛼𝑜 ) = 𝑖𝑦𝑠 .

By Lemma 3.9 we then get

(Ad 𝑔𝜙) (𝑋𝛼𝑜 + 𝜃 (𝑋𝛼𝑜 )) = cos
( 𝜋𝜙

2

)
(𝑋𝛼𝑜 + 𝜃 (𝑋𝛼𝑜 )) − 𝑖 sin

( 𝜋𝜙
2

)
𝐻𝛾𝑠 ,

which is exactly the remaining generator of 𝔤𝜙 multiplied by cos( 𝜋𝜙2 ).
Consider now the C-type case. In this case, the distinguished roots are 𝛼𝑜 ∈ 𝑃𝑠 and 𝛼𝑜′ ∈ 𝐶𝑠 .

Generally, if 𝛾 ∈ 𝑃𝑠 and 𝛼 ∈ 𝐶𝑠 are such that 𝛾 + 𝛼 = 𝛾𝑠 , then by Lemma 3.11 we have 𝜃 (𝑒𝛾) =
−�̄�𝛾𝑠 ,−𝛾𝑒−𝛼. Applying the same lemma again, we get

(Ad 𝑔𝜙) (𝑋𝛾 + 𝜃 (𝑋𝛾)) =
(

cos
( 𝜋𝜙

4

)
− sin

( 𝜋𝜙
4

))
𝑋𝛾 +

(
cos

( 𝜋𝜙
4

)
+ sin

( 𝜋𝜙
4

))
𝜃 (𝑋𝛾).

For 𝛾 = 𝛼𝑜, the right-hand side is, up to the factor cos( 𝜋𝜙4 ) − sin( 𝜋𝜙4 ) = −
√

2 sin( 𝜋 (𝜙−1)
4 ), the generator

of 𝔤𝜙 corresponding to 𝛼𝑜. We similarly get

(Ad 𝑔𝜙) (𝑋𝛼 + 𝜃 (𝑋𝛼)) =
√

2 cos
( 𝜋(𝜙 − 1)

4

)
𝑋𝛼 −

√
2 sin

( 𝜋(𝜙 − 1)
4

)
𝜃 (𝑋𝛼),

so again we see that for 𝛼 = 𝛼𝑜′ the right-hand side is, up to a factor, the corresponding generator of 𝔤𝜙 .
Thus, the identity 𝔤𝜙 = (Ad 𝑔𝜙) (𝔤0) is proved. �

Definition 3.16. Denote by 𝐺𝜙 the subgroup 𝐺 𝜃𝜙 = (Ad 𝑔𝜙−1) (𝐺𝜈) of G.

3.4. Coactions of quantized multiplier algebras

Let us relate the computation of the previous subsection to the associators from Section 2.3.
Given a reductive algebraic subgroup H (which will be 𝐺𝜙) of G, consider a coaction (U (𝐻)�ℎ�, 𝛼)

of a multiplier Hopf algebra (U (𝐺)�ℎ�,Δℎ). By Lemma 1.1, if Δℎ and 𝛼 both equal Δ modulo h,
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they can be twisted to Δ . We will assume that this can be done by elements satisfying extra properties.
Specifically, assume there exist F ∈ U (𝐺 × 𝐺)�ℎ� and G ∈ U (𝐻 × 𝐺)�ℎ� such that

G (0) = 1, (id ⊗ 𝜖) (G) = 1, 𝛼 = GΔ (·)G−1, (3.8)

F (0) = 1, (𝜖 ⊗ id) (F) = (id ⊗ 𝜖) (F) = 1, Δℎ = FΔ (·)F−1, (3.9)

F = 1 + ℎ
𝑖𝑟

2
+𝑂 (ℎ2), (3.10)

(id ⊗ Δ) (F−1) (1 ⊗ F−1) (F ⊗ 1) (Δ ⊗ id) (F) = ΦKZ. (3.11)

We remind that ΦKZ = Φ(ℏ𝑡𝔲12, ℏ𝑡
𝔲
23) ∈ 𝑈 (𝔤)⊗3�ℎ� is Drinfeld’s KZ-associator for G. Then by twisting

by (F−1,G−1) we get a quasi-coaction (U (𝐻)�ℎ�,Δ ,Ψ) of (U (𝐺)�ℎ�,Δ ,ΦKZ) and we can try to apply
the results of Section 2.

Theorem 3.17. Let 𝔲𝜈 < 𝔲 be a Hermitian symmetric pair, and let 𝐺𝜙 be as in Definition 3.16 for some
𝜙 ∈ R \ (1 + 2Z). Assume we are given a coaction 𝛼 : U (𝐺𝜙)�ℎ� → U (𝐺𝜙 × 𝐺)�ℎ� of a multiplier
Hopf algebra (U (𝐺)�ℎ�,Δℎ). Assume also that there exist F ∈ U (𝐺 ×𝐺)�ℎ� and G ∈ U (𝐺𝜙 ×𝐺)�ℎ�
satisfying conditions (3.8)–(3.11). Then there exist unique 𝑠𝜙 ∈ R and 𝜇 ∈ ℎC�ℎ� such that the
coaction is obtained by twisting the quasi-coaction (U (𝐺𝜙)�ℎ�,Δ ,ΨKZ,𝑠𝜙 ;𝜇) of (U (𝐺)�ℎ�,Δ ,ΦKZ).
The parameter 𝑠𝜙 is determined by

sin
( 𝜋𝜙

2

)
= tanh

( 𝜋𝑠𝜙
2

)
. (3.12)

If, in addition, F and G are chosen to be unitary, then 𝜇 ∈ ℎR�ℎ�.

Here, ΨKZ,𝑠𝜙 ;𝜇 is defined for the Hermitian symmetric pair 𝔨𝜙 < 𝔲 as in Section 2.3, using the
element 𝑍𝜙 = (Ad 𝑔𝜙−1) (𝑍𝜈) of 𝔷(𝔨𝜙). We will give examples of coactions satisfying the assumptions
of the theorem in Section 4.

We will need the following lemma for the uniqueness part.

Lemma 3.18 (cf. [Dri90, Proposition 3.2]). Assume we are given a homomorphism Δℎ : U (𝐺)�ℎ� →
U (𝐺 × 𝐺)�ℎ� and two elements F ,F ′ ∈ U (𝐺 × 𝐺)�ℎ� satisfying equation (3.9) and the identity

(id ⊗ Δ) (F−1) (1 ⊗ F−1) (F ⊗ 1) (Δ ⊗ id) (F) = (id ⊗ Δ) (F ′−1) (1 ⊗ F ′−1) (F ′ ⊗ 1) (Δ ⊗ id) (F ′),
(3.13)

defining a G-invariant element of U (𝐺3)�ℎ�. Then there exists a unique central element 𝑢 ∈ U (𝐺)�ℎ�
such that 𝑢 = 1 modulo h and

F ′ = F (𝑢 ⊗ 𝑢)Δ (𝑢)−1.

If, in addition, F and F ′ are unitary, then u is also unitary.

Proof. To be able to use an inductive construction for u, it suffices to show that if F = F ′ modulo ℎ𝑛+1,
then there exists a central element 𝑇 ∈ U (𝐺) such that

F ′(𝑛+1) = F (𝑛+1) + 𝑇 ⊗ 1 + 1 ⊗ 𝑇 − Δ (𝑇).

By considering the order 𝑛 + 1 terms in equation (3.13), we get that the element 𝑆 = F ′(𝑛+1) − F (𝑛+1)

satisfies

(id ⊗ Δ) (𝑆) + 1 ⊗ 𝑆 − 𝑆 ⊗ 1 − (Δ ⊗ id) (𝑆) = 0.
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This means that S is a 2-cocycle in the complex �̃�𝐺 = �̃�𝐺,𝑒 from Section 2.1. Furthermore, F−1F ′

commutes with the image of Δ , hence S also commutes with the image of Δ . Therefore, S is a 2-cocycle
in the complex 𝐵𝐺 = �̃�𝐺𝐺 . By Proposition 2.1, the cohomology of �̃�𝐺 is

∧
𝔤, and then the cohomology

of 𝐵𝐺 is (
∧
𝔤)𝔤. In particular, H2 (𝐵𝐺) = 0, which implies the existence of T.

Assume now that we have two central elements u and 𝑢′ with the required properties. Consider the
central element 𝑣 = 𝑢′𝑢−1 ∈ U (𝐺). Then 𝑣 = 1 modulo h and Δ (𝑣) = 𝑣 ⊗ 𝑣. Assume 𝑣 ≠ 1 and take
the smallest 𝑛 ≥ 1 such that 𝑣 (𝑛) ≠ 0. Then Δ (𝑣 (𝑛) ) = 𝑣 (𝑛) ⊗ 1 + 1 ⊗ 𝑣 (𝑛) , hence 𝑣 (𝑛) ∈ 𝔤. But as v is
central, we must have 𝑣 (𝑛) ∈ 𝔷(𝔤) = 0, which is a contradiction.

Finally, if F and F ′ are unitary, then (𝑢−1)∗ has the defining properties of u, hence (𝑢−1)∗ = 𝑢. �

Proof of Theorem 3.17. Taking 𝑠𝜙 ∈ R defined by equation (3.12), let us first prove the existence
of 𝜇. By twisting the coaction 𝛼 by (F−1,G−1), we obtain a quasi-coaction (U (𝐺𝜙)�ℎ�,Δ ,Ψ) of
(U (𝐺)�ℎ�,Δ ,ΦKZ), where

Ψ = (id ⊗ Δ) (G−1) (1 ⊗ F−1) (𝛼 ⊗ id) (G) (G ⊗ 1) = (id ⊗ Δ) (G−1) (1 ⊗ F−1) (G ⊗ 1) (Δ ⊗ id) (G),

and hence

Ψ (1) = − 𝑖𝑟12
2

+ 𝑑cH(G (1) ). (3.14)

Let us use the subscript 𝜙 for the constructions we had in Section 2 applied to the pair 𝔨𝜙 < 𝔲. By
Theorem 2.16, in order to prove the existence of 𝜇, it suffices to compute 〈Ω𝜙 ,Ψ (1) 〉.

Since Ω𝜙 is a cycle in the chain complex �̃�′
𝐺,𝐺𝜙

, the term 𝑑cH(G (1) ) in equation (3.14) does not
contribute to the pairing. By Proposition 3.8, we have

𝑟 − cos
( 𝜋

2
(1 − 𝜙)

)
(Ad 𝑔𝜙−1)⊗2(𝑟) ∈ 𝔤𝜙 ⊗ 𝔤 + 𝔤 ⊗ 𝔤𝜙 .

We also have 𝑖𝑟 = 𝑡𝔪𝜈+ − 𝑡𝔪𝜈− modulo 𝔤𝜈 ⊗ 𝔤𝜈 , hence (Ad 𝑔𝜙−1)⊗2(𝑖𝑟) = 𝑡𝔪𝜙+ − 𝑡𝔪𝜙− modulo 𝔤𝜙 ⊗ 𝔤𝜙 .
Therefore,

𝑖𝑟 − sin
( 𝜋𝜙

2

)
(𝑡𝔪𝜙+ − 𝑡𝔪𝜙−) ∈ 𝔤𝜙 ⊗ 𝔤 + 𝔤 ⊗ 𝔤𝜙 .

As 𝔤𝜙 centralizes 𝑍𝜙 , any cochain in 1 ⊗ 𝔤𝜙 ⊗ 𝔤 + 1 ⊗ 𝔤 ⊗ 𝔤𝜙 pairs trivially with Ω𝜙 . Hence,

〈Ω𝜙,Ψ (1) 〉 = −1
2

sin
( 𝜋𝜙

2

)
〈Ω𝜙, 𝑡

𝔪𝜙+
12 − 𝑡

𝔪𝜙−
12 〉.

By Theorem 2.16 and identity (2.11), it follows that (U (𝐺𝜙)�ℎ�,Δ ,Ψ) is obtained by twisting the
quasi-coaction (U (𝐺𝜙)�ℎ�,Δ ,ΨKZ,𝑠𝜙 ;𝜇) for some 𝜇 ∈ ℎC�ℎ�, and if, in addition, F and G are unitary,
we can choose 𝜇 ∈ ℎR�ℎ�.

Assume now that the coaction 𝛼 : U (𝐺𝜙)�ℎ� → U (𝐺𝜙 × 𝐺)�ℎ� is obtained by twisting the quasi-
coaction (U (𝐺𝜙)�ℎ�,Δ ,ΨKZ,𝑠′;𝜇′ ) of (U (𝐺)�ℎ�,Δ ,ΦKZ) for some other 𝑠′ ∈ R and 𝜇′ ∈ ℎC�ℎ�. Let
(F ′,G ′) be a pair defining this twisting. By Lemma 3.18, we have F ′ = F (𝑢 ⊗ 𝑢)Δ (𝑢)−1 for a central
element 𝑢 ∈ U (𝐺)�ℎ� such that 𝑢 = 1 modulo h. But then the pairs (F ′,G ′) and (F , (1⊗𝑢−1)G ′) define
the same twistings. In other words, without loss of generality we may assume that F ′ = F . Then the
quasi-coaction (U (𝐺𝜙)�ℎ�,Δ ,ΨKZ,𝑠′;𝜇′ ) is obtained from (U (𝐺𝜙)�ℎ�,Δ ,ΨKZ,𝑠𝜙 ;𝜇) by twisting with
(1, G ′−1G). By Theorem 2.16, this implies that 𝑠′ = 𝑠𝜙 and 𝜇′ = 𝜇. �

Remark 3.19. Using isomorphisms and twistings that are not trivial modulo h, we can pass from
𝐺𝜙 to its conjugate by an element 𝑔 ∈ 𝑈. Namely, the conjugation by Ad 𝑔 in the 0th leg
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transforms the quasi-coaction (U (𝐺𝜙)�ℎ�,Δ ,ΨKZ,𝑠𝜙 ;𝜇) of (U (𝐺)�ℎ�,Δ ,ΦKZ) into the isomorphic
quasi-coaction

(U (𝑔𝐺𝜙𝑔−1)�ℎ�, (Ad 𝑔)0 ◦ Δ ◦ (Ad 𝑔)−1, (Ad 𝑔)0(ΨKZ,𝑠𝜙 ;𝜇))

of (U (𝐺)�ℎ�,Δ ,ΦKZ), and then the twisting by 1 ⊗ 𝑔 ∈ U (𝑔𝐺𝜙𝑔−1 ×𝐺)�ℎ� gives the quasi-coaction
(U (𝑔𝐺𝜙𝑔−1)�ℎ�,Δ ,ΨKZ,𝑠𝜙 ;𝜇) of (U (𝐺)�ℎ�,Δ ,ΦKZ), where ΨKZ,𝑠𝜙 ;𝜇 now denotes the associator
defined by the symmetric pair (Ad 𝑔) (𝔨𝜙) < 𝔲.

Before moving on to the next part, let us explain some geometric structures motivating the above
computations.

Starting from the KZ-equations, after fixing a twist F satisfying equations (3.9)–(3.11), an associator
Ψ ∈ U (𝐺𝜈 × 𝐺2)�ℎ� defines an associative product ∗Ψℎ on O(𝑈/𝑈𝜈)�ℎ� = O(𝑈)𝑈 𝜈�ℎ�; see [EE05,
Section 6]. Moreover, the algebra (O(𝑈/𝑈𝜈)�ℎ�, ∗Ψℎ ) becomes a comodule algebra over the quantized
function algebra Oℎ (𝑈), the restricted dual Hopf algebra of (U (𝐺)�ℎ�,Δℎ). This structure corresponds
to the module category ((Rep𝐺𝜈)�ℎ�,Ψ) under the Tannaka–Krein type duality for module categories
and coactions.

To be more precise, given an element Ψ ∈ U (𝐺𝜈 × 𝐺2)𝐺𝜈�ℎ� such that (U (𝐺𝜈)�ℎ�,Δ ,Ψ) is a
quasi-coaction of (U (𝐺)�ℎ�,Δ ,ΦKZ), we define 𝑓1 ∗Ψℎ 𝑓2 by

〈 𝑓1 ∗Ψℎ 𝑓2, 𝑇〉 = 〈 𝑓1 ⊗ 𝑓2,FΔ (𝑇) (𝜖 ⊗ id) (Ψ)〉 (𝑇 ∈ U (𝐺)).

As we have F (1) − F (1)
21 = 𝑖𝑟 , the corresponding Poisson bracket

{ 𝑓1, 𝑓2}Ψ = lim
ℎ→0

1
𝑖ℎ

( 𝑓1 ∗Ψℎ 𝑓2 − 𝑓2 ∗Ψℎ 𝑓1)

is characterized by

〈{ 𝑓1, 𝑓2}Ψ, 𝑇〉 =
〈
𝑓1 ⊗ 𝑓2, 𝑟Δ (𝑇) − 𝑖Δ (𝑇) (𝜖 ⊗ id) (Ψ (1) − Ψ (1)

0,2,1)
〉
.

If we have Ψ′ = H0,12ΨH−1
01,2H−1

0,1 with H ∈ 1 + ℎU (𝐺𝜈 ×𝐺)𝔨�ℎ�, the invertible transformation 𝜌H
of O(𝑈/𝑈𝜈)�ℎ� characterized by

〈𝜌H ( 𝑓 ), 𝑇〉 = 〈 𝑓 , 𝑇 (𝜖 ⊗ id) (H)〉

satisfies 𝜌H ( 𝑓1 ∗Ψℎ 𝑓2) = 𝜌H ( 𝑓1) ∗Ψ
′

ℎ 𝜌H ( 𝑓2), that is, we get isomorphic deformation quantizations from
twist equivalent associators. From this we obtain { 𝑓1, 𝑓2}Ψ′ = { 𝑓1, 𝑓2}Ψ for such Ψ and Ψ′.

Combined with the identification of H2(𝐵𝐺,𝐺𝜈 ), we obtain a decomposition

{ 𝑓1, 𝑓2}Ψ = { 𝑓1, 𝑓2}𝛼 + 𝑥{ 𝑓1, 𝑓2}𝛽 , (3.15)

for some complex number x (which is real for unitary Ψ), with

{ 𝑓1, 𝑓2}𝛼 = 𝑚𝑟 (𝑙,𝑙) ( 𝑓1 ⊗ 𝑓2), { 𝑓1, 𝑓2}𝛽 = 𝑖𝑚(𝑡𝔪𝜈+
12 − 𝑡𝔪𝜈−

12 ) (𝑟 ,𝑟 ) ( 𝑓1 ⊗ 𝑓2).

Note that { 𝑓1, 𝑓2}𝛽 is invariant for the left translation action of U, while { 𝑓1, 𝑓2}𝛼 is equivariant for the
Sklyanin bracket on U. The left invariance of { 𝑓1, 𝑓2}𝛽 implies that the associated Poisson bivectors
commute with respect to the Schouten–Nijenhuis bracket. Note also that we can write { 𝑓1, 𝑓2}𝛽 =
𝑚𝑟 (𝑟 ,𝑟 ) ( 𝑓1 ⊗ 𝑓2), and in fact it is the Kostant–Kirillov–Souriau bracket if we identify 𝑈/𝑈𝜈 with a
coadjoint orbit as in Remark 2.15; see [DG95]. The Poisson bracket associated with ΨKZ,𝑠;𝜇 is given by
𝑥 = tanh( 𝜋𝑠2 ).
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Turning to the side of coisotropic subgroups, by Corollary 3.13, 𝑈/𝐾𝜙 admits a Poisson bracket
which is just the restriction of the Sklyanin bracket: { 𝑓1, 𝑓2}𝜙 = { 𝑓1, 𝑓2}Sk for 𝑓𝑖 ∈ O(𝑈/𝐾𝜙) ⊂ O(𝑈).
This gives the structure of a Poisson homogeneous space on 𝑈/𝐾𝜙 � 𝑈/𝑈𝜈 over (𝑈, 𝑟).

In fact, any Poisson homogeneous structure of 𝑈/𝑈𝜈 over (𝑈, 𝑟) is of the form (3.15) (this seems to
be folklore, but the idea can be traced back to [She91, Appendix]). We thus obtain a correspondence
between the parameters 𝜙 and s through the comparison of the factor x.

Remark 3.20. The bracket (3.15) defines a Poisson action of (𝑈, 𝑟) on 𝑈/𝑈𝜈 for any x, but there is
a distinguished range which naturally shows up in our considerations: −1 < 𝑥 < 1. Starting from
the KZ-equations the value of tanh( 𝜋𝑠2 ) is confined in this range when 𝑠 ∈ R and we have a unitary
associator. On the side of the Cayley transform, this corresponds to the case that 𝐾𝜙 is coisotropic but
not a Poisson–Lie subgroup of (𝑈, 𝑟). In this case, the Poisson bivector vanishes on a nondiscrete subset
of 𝑈/𝑈𝜈 , while in the limit case 𝑥 = ±1 it only vanishes at one point; see the next subsection. When
|𝑥 | > 1, we get a symplectic structure.

3.5. Regularity of ribbon braids

We finish this section with a technical result, which we will need later, showing that in the non-Poisson
subgroup case a ribbon braid in the algebra of formal Laurent series must lie in the algebra of formal
power series. More precisely, we will prove the following.

Theorem 3.21. Let 𝔲𝜎 < 𝔲 be a Hermitian symmetric pair, and r be an r-matrix of the form (3.1) for
some Cartan subalgebra 𝔱 < 𝔲 and a choice of positive roots. Assume we are given a coaction

𝛼 : U (𝐺𝜎)�ℎ� → U (𝐺𝜎 × 𝐺)�ℎ�

of a multiplier Hopf algebra (U (𝐺)�ℎ�,Δℎ) such that there exist F ∈ U (𝐺 × 𝐺)�ℎ� and G ∈
U (𝐺𝜎 × 𝐺)�ℎ� satisfying conditions (3.8)–(3.11). Assume also that there exists a ribbon braid

E ∈
∏

𝜌∈Irr𝐺𝜎 ,
𝜋∈Irr𝐺

(
End(𝑉𝜌) ⊗ End(𝑉𝜋) [ℎ−1, ℎ�

)
for this coaction with respect to the R-matrix R = F21 exp(−ℎ𝑡𝔲)F−1 of (U (𝐺)�ℎ�,Δℎ). Then, unless
𝑈𝜎 is a Poisson–Lie subgroup of (𝑈, 𝑟), we must have E ∈ U (𝐺𝜎 × 𝐺)�ℎ�.

Consider the K-matrix K = (𝜖 ⊗ id) (E), and put 𝑢 = (𝜖 ⊗ id) (G). Then from identity (1.5) for our
ribbon braid we get

(𝑢 ⊗ 1)E (𝑢−1 ⊗ 1) = R21(1 ⊗ K)R.

Therefore, in order to prove the theorem it suffices to show that K ∈ U (𝐺)�ℎ� unless 𝑈𝜎 is a Poisson–
Lie subgroup of (𝑈, 𝑟).

Identities (1.4) and (1.6) imply

K(Ad 𝑢) (𝑇) = (Ad 𝑢) (𝑇)K for all 𝑇 ∈ U (𝐺𝜎)�ℎ�, (3.16)

Δℎ (K) = R21(1 ⊗ K)R(K ⊗ 1). (3.17)

A key step now is to prove the following.

Proposition 3.22. With 𝜎, Δℎ and R as in Theorem 3.21, assume we are given an invertible element

K ∈
∏
𝜋∈Irr𝐺

(
End(𝑉𝜋) [ℎ−1, ℎ�

)
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satisfying conditions (3.16) and (3.17) for some 𝑢 ∈ U (𝐺)�ℎ�, 𝑢 = 1 modulo h. Assume also that
Kad = ad(K) ∈ End(𝔤) [ℎ−1, ℎ� has a negative order term. Then 𝑈𝜎 is a Poisson–Lie subgroup of
(𝑈, 𝑟).

We will prove this by analyzing certain Poisson structures on 𝑈/𝑈𝜎 .
Take a Cartan subalgebra 𝔱 and a system Π̃ of simple roots as in Section 3.1, but for the Hermitian

symmetric pair 𝔲𝜎 < 𝔲. Then there exists 𝑔 ∈ 𝑈 such that Ad 𝑔 maps 𝔱 onto 𝔱, while the dual map maps Π̃
onto Π. Now, the Cartan subalgebra 𝔱 is as in Section 3.1 for the automorphism 𝜈 = (Ad 𝑔)−1◦𝜎◦ (Ad 𝑔)
of 𝔲 and some 𝑍𝜈 ∈ 𝔷(𝔲𝜈).

As we remarked in Section 3.4, on the compact symmetric space 𝑈/𝑈𝜈 , both the left and the right
actions of the r-matrix r define (real) Poisson bivector fields, denoted by 𝑟 (𝑙,𝑙) and 𝑟 (𝑟 ,𝑟 ) . (As part of
the claim, the bivector field 𝑟 (𝑟 ,𝑟 ) on U preserves the right 𝑈𝜈-invariant functions.) Thus, the linear
combinations of these commuting bivector fields define Poisson brackets on𝑈/𝑈𝜈 as in equation (3.15).

Lemma 3.23. The bivector field 𝑟 (𝑙,𝑙) − 𝑟 (𝑟 ,𝑟 ) on𝑈/𝑈𝜈 vanishes only at [𝑒]. Similarly, the bivector field
𝑟 (𝑙,𝑙) +𝑟 (𝑟 ,𝑟 ) vanishes only at [�̃�0], where �̃�0 ∈ 𝑈 is any lift of the longest element 𝑤0 of the Weyl group.

Proof. As 𝑈𝜈 is a Poisson–Lie subgroup of (𝑈, 𝑟), the first statement follows from the well-known
description of the Poisson leaves of the reduction 𝑟 (𝑙,𝑙) − 𝑟 (𝑟 ,𝑟 ) of the Sklyanin bracket [LW90].

As for the bivector field 𝑟 (𝑙,𝑙) + 𝑟 (𝑟 ,𝑟 ) , first note that (Ad �̃�0)⊗2(𝑟) = −𝑟 . This means that the
Poisson bivector 𝑟 (𝑙,𝑙) + 𝑟 (𝑟 ,𝑟 ) on 𝑈/𝑈𝜈 vanishes at the point [�̃�−1

0 ] = [�̃�0]. Thus, the U-equivariant
diffeomorphism

𝑈/𝑈𝜈 → 𝑈/(Ad �̃�0) (𝑈𝜈), [𝑔] ↦→ [𝑔�̃�−1
0 ]

transforms the Poisson bivector 𝑟 (𝑙,𝑙) + 𝑟 (𝑟 ,𝑟 ) on 𝑈/𝑈𝜈 into a Poisson bivector Π′ on 𝑈/(Ad �̃�0) (𝑈𝜈)
which vanishes at the basepoint.

On the other hand, (Ad �̃�0) (𝑈𝜈) is again a Poisson–Lie subgroup of U. Hence, Π′ has to agree
with the reduction of the Sklyanin bracket, which vanishes only at [𝑒] ∈ 𝑈/(Ad �̃�0) (𝑈𝜈). As a result
𝑟 (𝑙,𝑙) + 𝑟 (𝑟 ,𝑟 ) vanishes only at [�̃�0] ∈ 𝑈/𝑈𝜈 . �

Identity (3.17) implies that K satisfies the reflection equation

(K ⊗ 1)R21(1 ⊗ K)R = R21 (1 ⊗ K)R(K ⊗ 1).

Using this, we are going to introduce another Poisson structure on 𝑈/𝑈𝜈 following [DM03a][DM03b].
Let us write t for 𝑡𝔲 . Consider a finite-dimensional representation 𝜋 of G. Put 𝑡 𝜋 = (𝜋 ⊗ 𝜋) (𝑡), and

consider the set

M𝜋 = {𝐴 ∈ End(𝑉𝜋) | (𝐴 ⊗ 𝐴)𝑡 𝜋 = 𝑡 𝜋 (𝐴 ⊗ 𝐴)}.

We have three actions of 𝑔 ∈ 𝑈 on End(𝑉𝜋) given by multiplication by 𝜋(𝑔) on the left, on the right and
by conjugation by 𝜋(𝑔). For 𝑋 ∈ 𝔤, we will denote by 𝑋 (𝑙) , 𝑋 (𝑟 ) and 𝑋 (ad) the corresponding vector
fields on End(𝑉𝜋). Thus, 𝑋 (ad) = 𝑋 (𝑙) − 𝑋 (𝑟 ) . The RE bracket on M𝜋 is defined by

{ 𝑓1, 𝑓2}RE = 𝑚
(
𝑟 (ad,ad) + 𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) )

)
( 𝑓1 ⊗ 𝑓2).

More precisely, since M𝜋 is not a smooth manifold in general, this defines a Poisson bracket on the
algebra of polynomial functions on M𝜋 . But in any case what is going to matter to us is only that
𝑟 (ad,ad) + 𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) ) is a well-defined bivector field on End(𝑉𝜋).

The following observation is from [DM03b].
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Lemma 3.24. Put R𝜋 = (𝜋⊗ 𝜋) (R), and assume that 𝐴ℎ ∈ End(𝑉𝜋)�ℎ� has constant term 𝐴 = 𝐴(0)
ℎ ∈

M𝜋 and satisfies the reflection equation

(𝐴ℎ ⊗ 1)R𝜋
21(1 ⊗ 𝐴ℎ)R𝜋 = R𝜋

21 (1 ⊗ 𝐴ℎ)R𝜋 (𝐴ℎ ⊗ 1).

Then the RE bracket vanishes at A.

Proof. Letting 𝑟 𝜋 = (𝜋 ⊗ 𝜋) (𝑟), the bivector field 𝑟 (ad,ad) + 𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) ) at the point 𝐴 ∈ End(𝑉𝜋) is

𝑟 𝜋 (𝐴 ⊗ 𝐴) + (𝐴 ⊗ 𝐴)𝑟 𝜋 − (1 ⊗ 𝐴)𝑟 𝜋 (𝐴 ⊗ 1) − (𝐴 ⊗ 1)𝑟 𝜋 (1 ⊗ 𝐴)
+ (1 ⊗ 𝐴)𝑖𝑡 𝜋 (𝐴 ⊗ 1) − (𝐴 ⊗ 1)𝑖𝑡 𝜋 (1 ⊗ 𝐴).

By looking at the order one terms in the reflection equation and using that R = 1 − ℎ(𝑡 + 𝑖𝑟) + 𝑂 (ℎ2),
R21 = 1 − ℎ(𝑡 − 𝑖𝑟) +𝑂 (ℎ2) and (𝐴 ⊗ 𝐴)𝑡 𝜋 = 𝑡 𝜋 (𝐴 ⊗ 𝐴), we see that this bivector is zero. �

We want to apply this to the element ℎ𝑘Kad for 𝑘 = − ord(Kad) so that ℎ𝑘Kad starts with an order
zero term. Denote the orthogonal (with respect to the U-invariant Hermitian form) projection 𝔤 → 𝔪𝜈±
by 𝑃±, and put 𝑃𝑔± = (Ad 𝑔) (𝑃±), so 𝑃

𝑔
± is the projection onto 𝔪𝜎±.

Lemma 3.25. Under the assumptions of Proposition 3.22, the lowest order nonzero coefficient of Kad

is, up to a scalar factor, either 𝑃𝑔+ or 𝑃𝑔−.

Proof. Let us more generally consider the elements K𝜋 = 𝜋(K) for finite-dimensional representations
𝜋 of G. Denote by 𝑘 𝜋 the order of the lowest nonzero term of K𝜋 .

Applying the counit to equation (3.17) we get 𝜖 (K) = 1. Consider the contragredient representation
�̄� of G. The antipode 𝑆ℎ for (U (𝐺)�ℎ�,Δℎ) has the form 𝑣𝑆(·)𝑣−1 for some 𝑣 ∈ U (𝐺)�ℎ�, 𝑣 = 1
modulo h. Applying 𝑚(id ⊗ 𝑆ℎ) to equation (3.17) we then get

1 = ℎ𝑘𝜋+𝑘 �̄�K𝜋, (𝑘𝜋 )𝑆(K �̄�, (𝑘 �̄� ) ) +𝑂 (ℎ𝑘𝜋+𝑘 �̄�+1) in End(𝑉𝜋) [ℎ−1, ℎ�.

Hence, 𝑘 𝜋 + 𝑘 �̄� ≤ 0, and if 𝑘 𝜋 + 𝑘 �̄� = 0, then K𝜋, (𝑘𝜋 )𝑆(K �̄�, (𝑘 �̄� ) ) = 1, while if 𝑘 𝜋 + 𝑘 �̄� < 0, then
K𝜋, (𝑘𝜋 )𝑆(K �̄�, (𝑘 �̄� ) ) = 0.

Consider now the adjoint representation ad. Since it is self-conjugate and by assumption 𝑘ad < 0, we
get Kad, (𝑘ad)𝑆(Kad, (𝑘ad) ) = 0. By equation (3.16), we know also that Kad, (𝑘ad) is an intertwiner for 𝑈𝜎 .
As a representation of 𝔤𝜎 , we have the decomposition

𝔤 = 𝔷(𝔤𝜎) ⊕ [𝔤𝜎 , 𝔤𝜎] ⊕ 𝔪𝜎+ ⊕ 𝔪𝜎−,

where the derived Lie algebra [𝔤𝜎 , 𝔤𝜎] is either zero, simple or the sum of two simple ideals. As these
components are mutually nonequivalent, Kad, (𝑘ad) is a linear combination of up to 5 projections.

The antipode S restricted to the block End(𝔤) of U (𝐺) is the adjoint map with respect to the invariant
form (·, ·)𝔤, that is,

(𝑇𝑋,𝑌 )𝔤 = (𝑋, 𝑆(𝑇)𝑌 )𝔤 for 𝑇 ∈ End(𝔤) (𝑋,𝑌 ∈ 𝔤).

Since the invariant form is nondegenerate on the irreducible components of 𝔤𝜎 = 𝔷(𝔤𝜎) ⊕ [𝔤𝜎 , 𝔤𝜎],
we conclude that the corresponding projections are S-invariant. We can also conclude that 𝑆(𝑃𝑔+) = 𝑃𝑔−.
Therefore, the identity Kad, (𝑘ad)𝑆(Kad, (𝑘ad) ) = 0 can be true only if Kad, (𝑘ad) is a scalar multiple of either
𝑃
𝑔
+ or 𝑃𝑔−. �

Lemma 3.26. We have 𝑃± ∈ Mad.

Proof. Since 𝑡∗ = 𝑡, in order to prove that 𝑡ad commutes with 𝑃+ ⊗ 𝑃+ it suffices to check that

𝑡ad(𝔪𝜈+ ⊗ 𝔪𝜈+) ⊂ 𝔪𝜈+ ⊗ 𝔪𝜈+. (3.18)
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Recall that 𝑡 = 𝑡𝔨 + 𝑡𝔪𝜈+ + 𝑡𝔪𝜈− , where 𝔨 = 𝔲𝜈 , and 𝑡𝔪𝜈± ∈ 𝔪𝜈± ⊗ 𝔪𝜈∓. As [𝔪𝜈+,𝔪𝜈+] = 0, we see that

𝑡ad = (ad ⊗ ad) (𝑡𝔨) on 𝔪𝜈+ ⊗ 𝔪𝜈+,

which obviously implies equation (3.18). The proof for 𝑃− is similar. �

Consider now the (Ad𝑈)-orbit 𝑂± of 𝑃±. By the previous lemma, it is contained in Mad. Since
𝑈𝜈 stabilizes 𝑃± and 𝔲𝜈 is a maximal proper Lie subalgebra of 𝔲, it follows that 𝑈𝜈 is the connected
component of the stabilizer of 𝑃±. Hence 𝑝± : 𝑈/𝑈𝜈 → 𝑂±, [𝑔′] ↦→ (Ad 𝑔′) (𝑃±), is a covering map.

Lemma 3.27. The RE bracket on Mad restricts to 𝑂±. Being lifted to 𝑈/𝑈𝜈 via 𝑝±, this restriction
coincides with the bracket defined by 𝑟 (𝑙,𝑙) ∓ 𝑟 (𝑟 ,𝑟 ) .

Proof. The covering map 𝑝± : 𝑈/𝑈𝜈 → 𝑂± intertwines the action by left translations with the adjoint
action. From this it is clear that the bivector field 𝑟 (ad,ad) at the points of 𝑂± ⊂ Mad indeed defines a
bivector field on 𝑂±, and, being lifted to 𝑈/𝑈𝜈 , this gives the bivector field 𝑟 (𝑙,𝑙) .

We next want to compare 𝑟 (𝑟 ,𝑟 ) with −𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) ). We claim that

(𝑑 [𝑒] 𝑝+ ⊗ 𝑑 [𝑒] 𝑝+)
(
𝑟 (𝑟 ,𝑟 ) ( [𝑒])

)
= −𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) ) (𝑃+).

Since the bivector fields 𝑟 (𝑙,𝑙) and 𝑟 (𝑟 ,𝑟 ) on𝑈/𝑈𝜈 coincide at [𝑒] and the pushforward of 𝑟 (𝑙,𝑙) is 𝑟 (ad,ad) ,
this is equivalent to

𝑟 (ad,ad) (𝑃+) = −𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) ) (𝑃+).

Using again that [𝔪𝜈+,𝔪𝜈+] = 0, we get (ad 𝑋𝛼)𝑃+ = 0 and 𝑃+(ad 𝑋−𝛼) = 0 for all 𝛼 ∈ Φ+
nc. A

simple computation using these properties, together with the fact that 𝑈𝜈 stabilizes 𝑃+, gives

𝑟 (ad,ad) (𝑃+) = 𝑖
∑
𝛼∈Φ+

nc

(𝛼, 𝛼)
2

(
𝑃+(ad 𝑋𝛼) ⊗ (ad 𝑋−𝛼)𝑃+ − (ad 𝑋−𝛼)𝑃+ ⊗ 𝑃+(ad 𝑋𝛼)

)
,

and a similar computation for −𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) ) (𝑃+) gives the same answer. Thus our claim is proved.
Since 𝑟 (𝑟 ,𝑟 ) is left U-invariant and −𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) ) is (Ad𝑈)-invariant, we then get

(𝑑 [𝑔′ ] 𝑝+ ⊗ 𝑑 [𝑔′ ] 𝑝+)
(
𝑟 (𝑟 ,𝑟 ) ( [𝑔′])

)
= −𝑖(𝑡 (𝑙,𝑟 ) − 𝑡 (𝑟 ,𝑙) ) (𝑝+([𝑔′])) (𝑔′ ∈ 𝑈).

This finishes the proof of the lemma for 𝑂+. The proof for 𝑂− is similar. �

Proof of Proposition 3.22. By Lemmas 3.24, 3.25 and 3.26, the RE bracket vanishes either at 𝑃𝑔+ ∈ 𝑂+
or at 𝑃𝑔− ∈ 𝑂−. By Lemma 3.27 this means that either 𝑟 (𝑙,𝑙)−𝑟 (𝑟 ,𝑟 ) or 𝑟 (𝑙,𝑙)+𝑟 (𝑟 ,𝑟 ) vanishes at [𝑔] ∈ 𝑈/𝑈𝜈 .
But then by Lemma 3.23 we have either 𝑔 ∈ 𝑈𝜈 or 𝑔 ∈ �̃�0𝑈

𝜈 , and therefore 𝑈𝜎 = (Ad 𝑔) (𝑈𝜈) is either
𝑈𝜈 or (Ad �̃�0) (𝑈𝜈). �

Remark 3.28. As 𝑟 (𝑙,𝑙) − 𝑟 (𝑟 ,𝑟 ) has to vanish on 𝑝−1
+ (𝑃+), we can also conclude that 𝑝+ is injective, that

is, 𝑈𝜈 is exactly the stabilizer of 𝑃+. Similarly, or by symmetry, 𝑈𝜈 is the stabilizer of 𝑃−.

Proof of Theorem 3.21. Assume 𝐺𝜎 is not a Poisson–Lie subgroup. To prove the theorem it suffices to
show that K𝜋 ∈ End(𝑉𝜋)�ℎ� for all finite-dimensional representations 𝜋 of G. By Proposition 3.22 and
identity (3.17), this is already the case if 𝜋 belongs to the tensor subcategory generated by ad, that is, 𝜋
factors through the adjoint group 𝐺ad = Ad𝐺. For arbitrary 𝜋, if K𝜋 contains a term of negative degree,
then, using that R = 1 modulo h, we see from equation (3.17) that K𝜋⊗𝑛 contains a term of negative
degree for all 𝑛 ≥ 1. But when 𝜋 is irreducible, we have 𝜋⊗𝑛 ∈ Rep𝐺ad for some 𝑛 ≥ 1, so this cannot
happen. �
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4. Letzter–Kolb coideals

Our next goal is to put the Letzter–Kolb coideals in the framework of multiplier algebras. This is again
easy in the non-Hermitian case. In the Hermitian case, we will relate the classical limits of the coideals
to the coisotropic subgroups of the previous section. Combined with a rigidity result for the fusion rules,
this will allow us to define multiplier algebra models of the coideals. We will also cast the Balagović–
Kolb universal K-matrix in our setting.

Throughout this section, we fix a nontrivial involutive automorphism 𝜃 of 𝔲, a Cartan subalgebra 𝔱 of
𝔲 and a system Φ+ of positive roots such that 𝜃 is in Satake form with respect to (𝔥, 𝔟+), where 𝔥 = 𝔱C.

4.1. Quantized universal enveloping algebra and Letzter–Kolb coideal subalgebras

Let I be the label set for the simple roots, so Π = {𝛼𝑖}𝑖∈𝐼 . As in Section 3.1, for every positive root 𝛼
we fix an element 𝑋𝛼 ∈ 𝔤𝛼 normalized so that [𝑋𝛼, 𝑋∗

𝛼] = 𝐻𝛼, and put 𝑋−𝛼 = 𝑋∗
𝛼.

The quantized universal enveloping algebra 𝑈ℎ (𝔤) is topologically generated over C�ℎ� by a copy
of 𝑈 (𝔥) and elements 𝐸𝑖 , 𝐹𝑖 (𝑖 ∈ 𝐼) satisfying the following standard relations:

[𝐻, 𝐸𝑖] = 𝛼𝑖 (𝐻)𝐸𝑖 , [𝐻, 𝐹𝑖] = −𝛼𝑖 (𝐻)𝐹𝑖 , [𝐸𝑖 , 𝐹𝑗 ] = 𝛿𝑖 𝑗
𝑒ℎ𝑑𝑖𝐻𝑖 − 𝑒−ℎ𝑑𝑖𝐻𝑖

𝑒ℎ𝑑𝑖 − 𝑒−ℎ𝑑𝑖
,

1−𝑎𝑖 𝑗∑
𝑛=0

(−1)𝑛
[
1 − 𝑎𝑖 𝑗

𝑛

]
𝑞𝑖

𝐸
1−𝑎𝑖 𝑗−𝑛
𝑖 𝐸 𝑗𝐸

𝑛
𝑖 = 0 =

1−𝑎𝑖 𝑗∑
𝑛=0

(−1)𝑛
[
1 − 𝑎𝑖 𝑗

𝑛

]
𝑞𝑖

𝐹
1−𝑎𝑖 𝑗−𝑛
𝑖 𝐹𝑗𝐹

𝑛
𝑖 , (𝑖 ≠ 𝑗),

where 𝐻 ∈ 𝔥, 𝐻𝑖 = 𝐻𝛼𝑖 , 𝑞𝑖 = 𝑞𝑑𝑖 = 𝑒ℎ𝑑𝑖 , 𝑑𝑖 = 1
2 (𝛼𝑖 , 𝛼𝑖), (𝑎𝑖 𝑗 )𝑖, 𝑗 is the Cartan matrix, so 𝑎𝑖 𝑗 = (𝛼∨

𝑖 , 𝛼 𝑗 ),
and [

𝑚

𝑛

]
𝑞𝑖

=
[𝑚]𝑞𝑖 !

[𝑛]𝑞𝑖 ![𝑚 − 𝑛]𝑞𝑖 !
, [𝑚]𝑞𝑖 ! =

𝑚∏
𝑘=1

[𝑘]𝑞𝑖 , [𝑘]𝑞𝑖 =
𝑞𝑘𝑖 − 𝑞−𝑘𝑖
𝑞𝑖 − 𝑞−1

𝑖

.

We will write 𝑈ℎ (𝔥) for the copy of 𝑈 (𝔥)�ℎ� inside 𝑈ℎ (𝔤).
Put 𝐾𝑖 = 𝑒ℎ𝑑𝑖𝐻𝑖 . More generally, for 𝜔 ∈ 𝔥∗, let ℎ𝜔 ∈ 𝔥 be such that 𝛼(ℎ𝜔) = (𝛼, 𝜔). Define

𝐾𝜔 = 𝑒ℎℎ𝜔 . Then 𝐾𝑖 = 𝐾𝛼𝑖 .
The coproduct Δ : 𝑈ℎ (𝔤) → 𝑈ℎ (𝔤) ⊗̂ 𝑈ℎ (𝔤) is defined by

Δ (𝐻) = 𝐻 ⊗ 1 + 1 ⊗ 𝐻 (𝐻 ∈ 𝔥), Δ (𝐸𝑖) = 𝐸𝑖 ⊗ 1 + 𝐾𝑖 ⊗ 𝐸𝑖 ,

Δ (𝐹𝑖) = 𝐹𝑖 ⊗ 𝐾−1
𝑖 + 1 ⊗ 𝐹𝑖 .

Finally, the ∗-structure is defined by

𝐻∗
𝑖 = 𝐻𝑖 , 𝐸∗

𝑖 = 𝐹𝑖𝐾𝑖 , 𝐹∗
𝑖 = 𝐾−1

𝑖 𝐸𝑖 .

By assumption, the involutive automorphism 𝜃 of 𝔤 is in Satake form with respect to (𝔥, 𝔟+) (recall
Definition 3.1). Then 𝜃 has the following form:

𝜃 = (Ad 𝑧𝑚𝑋𝑚0) ◦ 𝜏𝜃 ◦ 𝜏0 = (Ad 𝑧𝑚𝑋 ) ◦ 𝜏𝜃 ◦ 𝜔, (4.1)

where𝑚0 and𝑚𝑋 are the canonical lifts of𝑤0 ∈ 𝑊 and𝑤𝑋 ∈ 𝑊𝑋 to U,𝜔 is the Chevalley automorphism,
𝜏0 is the diagram automorphism satisfying 𝜔 = (Ad𝑚0) ◦ 𝜏0, and z is an element of the maximal torus
exp(𝔱). The element z is determined up to a factor in 𝑍 (𝑈). It automatically satisfies the following
conditions:

𝑧𝑖 = 1 (𝑖 ∈ 𝑋), 𝑧𝑖𝑧𝜏𝜃 (𝑖) = (−1)2(𝛼𝑖 ,𝜌∨𝑋 ) (𝑖 ∈ 𝐼 \ 𝑋), (4.2)
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where 𝑧𝑖 = 𝑧(𝛼𝑖) and 𝜌∨𝑋 is half the sum of the positive coroots of the root system generated by X. See,
for example, [DCNTY19, Section 2.1] for details.

Consider the following parameter sets:

C = {c = (𝑐𝑖)𝑖∈𝐼\𝑋 | 𝑐𝑖 ∈ C�ℎ�∗, 𝑐𝑖 = 𝑐𝜏𝜃 (𝑖) for 𝑖 ∈ 𝐼C},
S = {s = (𝑠𝑖)𝑖∈𝐼\𝑋 | 𝑠𝑖 ∈ C�ℎ�, 𝑠𝑖 = 0 for 𝑖 ∉ 𝐼S },

where C�ℎ�∗ denotes the units of C�ℎ�, that is, the series with nonzero constant terms. We write
t = (c, s) for an element of T = C × S .

Fix t ∈ T . For each 𝑖 ∈ 𝐼 \ 𝑋 , we define

𝐵𝑖 = 𝐹𝑖 − 𝑐𝑖𝑧𝜏𝜃 (𝑖)𝑇𝑤𝑋 (𝐸𝜏𝜃 (𝑖) )𝐾−1
𝑖 + 𝑠𝑖𝜅𝑖

𝐾−1
𝑖 − 1

𝑒−𝑑𝑖ℎ − 1
, (4.3)

where 𝜅𝑖 = exp(𝜋
√
−1𝜓𝑖) is the square root of 𝑧𝑖 with 0 ≤ 𝜓𝑖 < 1, and 𝑇𝑤𝑋 is the Lusztig automorphism

associated to the longest element 𝑤𝑋 ∈ 𝑊𝑋 . It will also be convenient to put

𝐵𝑖 = 𝐹𝑖 (𝑖 ∈ 𝑋).

Denote by 𝑈ℎ (𝔤𝑋 ) ⊂ 𝑈ℎ (𝔤) the closure in the h-adic topology of the C�ℎ�-subalgebra generated by
the elements 𝐻𝑖 , 𝐸𝑖 and 𝐹𝑖 for 𝑖 ∈ 𝑋 .

Definition 4.1. We define𝑈t
ℎ (𝔤

𝜃 ) ⊂ 𝑈ℎ (𝔤) as the closure in the h-adic topology of theC�ℎ�-subalgebra
generated by 𝑈ℎ (𝔥𝜃 ), 𝑈ℎ (𝔤𝑋 ) and the elements 𝐵𝑖 for 𝑖 ∈ 𝐼 \ 𝑋 .

Remark 4.2. In [BK19][DCNTY19], the element z in equation (4.1) is assumed to have the property
𝑧𝑖 = 1 for all 𝑖 ∈ 𝐼 \ 𝑋 such that 𝜏𝜃 (𝑖) = 𝑖, which imposes extra conditions on 𝜃. Although the relevant
proofs work in the generality presented here, it is also possible to reduce the situation to this normalized
form as follows. Starting from our convention, choose 𝑧′ ∈ exp(𝔱) such that 𝑧′𝑖 = 𝜅𝑖 for i as above and
𝑧′𝑖 = 1 for all other 𝑖 ∈ 𝐼. Then 𝜃 ′ = (Ad 𝑧′)−1◦𝜃◦(Ad 𝑧′) satisfies the normalization condition. Moreover,
Ad 𝑧′ lifts to a Hopf ∗-algebra automorphism of 𝑈ℎ (𝔤), and we have (Ad 𝑧′) (𝑈t

ℎ (𝔤
𝜃′ )) = 𝑈t

ℎ (𝔤
𝜃 ).

Remark 4.3. The above choice of 𝜅𝑖 is, of course, a matter of convention. If we replace 𝜅𝑖 by −𝜅𝑖 in
equation (4.3), the corresponding subalgebra will be conjugate to 𝑈t

ℎ (𝔤
𝜃 ) by an inner automorphism of

𝑈ℎ (𝔤) defined by an element of the torus.

It follows from [Let99][Kol14] that 𝑈t
ℎ (𝔤

𝜃 ) is a right coideal of 𝑈ℎ (𝔤):

Δ (𝑈t
ℎ (𝔤

𝜃 )) ⊂ 𝑈t
ℎ (𝔤

𝜃 ) ⊗̂ 𝑈ℎ (𝔤).

We will only be interested in the coideals 𝑈t
ℎ (𝔤

𝜃 ) defined by smaller parameter sets

T ∗ = C∗ × S∗ ⊂ T ∗
C = C∗

C × S∗
C ⊂ T .

In the non-Hermitian case both T ∗ and T ∗
C

consist of just one point defined by

𝑐𝑖 = 𝑒−ℎ (𝛼
−
𝑖 ,𝛼

−
𝑖 ) , 𝑠𝑖 = 0 (4.4)

for all 𝑖 ∈ 𝐼 \ 𝑋 , where 𝛼−
𝑖 = 1

2 (𝛼𝑖 − Θ(𝛼𝑖)).
In the Hermitian case, recall from our discussion in Section 3.2 that there are one or two distinguished

roots in 𝐼 \ 𝑋 . Then we define T ∗ (resp. T ∗
C

) by allowing the following exceptions from equation (4.4):

• S-type: if 𝛼𝑜 is the unique distinguished root, then we require 𝑠𝑜 ∈ 𝑖R�ℎ� (resp. 𝑠𝑜 ∈ C�ℎ� and
𝑠 (0)𝑜 ≠ ±1);
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• C-type: if 𝛼𝑜 is a distinguished root, then we require 𝑐𝑜 ∈ R�ℎ� and 𝑐 (0)𝑜 > 0 (resp. 𝑐𝑜 ∈ C�ℎ� and
𝑐 (0)𝑜 ≠ ±𝑖), and, for both T ∗ and T ∗

C
,

𝑐𝑜𝑐𝜏𝜃 (𝑜) = 𝑒−2ℎ (𝛼−
𝑜 ,𝛼

−
𝑜) .

By the proof of [DCNTY19, Theorem 3.11] (see also Remark 4.2), the coideals 𝑈t
ℎ (𝔤

𝜃 ) are ∗-invariant
for t ∈ T ∗.

We will mainly work with T ∗ and then explain how our results extend to generic points of T ∗
C

. The
point of T ∗ defined by equation (4.4) for all 𝑖 ∈ 𝐼 \ 𝑋 is denoted by 0, and the corresponding coideal
subalgebra is denoted by 𝑈 𝜃ℎ (𝔤). We will also refer to this as the standard or no-parameter case. Thus,
in the non-Hermitian case, 𝑈 𝜃ℎ (𝔤) is the only coideal subalgebra we will be working with.

The classical limit of 𝑈t
ℎ (𝔤

𝜃 ) is given by the following:

Definition 4.4. For t ∈ T , we define 𝔤𝜃t to be the Lie subalgebra of 𝔤 generated by 𝔥𝜃 , 𝔤𝑋 and the
elements

𝑋−𝛼𝑖 + 𝑐 (0)𝑖 𝜃 (𝑋−𝛼𝑖 ) + 𝑠 (0)𝑖 𝜅𝑖𝐻𝑖 (𝑖 ∈ 𝐼 \ 𝑋).

The image of 𝑈t
ℎ (𝔤

𝜃 ) under the isomorphism 𝑈ℎ (𝔤)/ℎ𝑈ℎ (𝔤) � 𝑈 (𝔤) (mapping 𝐸𝑖 into 𝑋𝛼𝑖 and 𝐹𝑖

into 𝑋−𝛼𝑖 ) is 𝑈 (𝔤𝜃t ). In the standard case, we have 𝑐 (0)𝑖 = 1 and 𝑠 (0)𝑖 = 0 for all 𝑖 ∈ 𝐼 \ 𝑋 , and the
corresponding Lie subalgebra 𝔤𝜃0 is exactly 𝔤𝜃 by [Kol14, Lemma 2.8]; see also Proposition 3.15.

4.2. Untwisting by Drinfeld twist

Let us quickly review how to relate the quantized universal enveloping algebra to the classical one; see,
for example, [Dri89a] for the details. First, by 𝐻2(𝔤,𝑈 (𝔤)) = 0 there is a C�ℎ�-algebra isomorphism
𝜋 : 𝑈ℎ (𝔤) → 𝑈 (𝔤)�ℎ� such that

𝜋(𝐻𝑖) = 𝐻𝑖 , 𝜋(𝐸𝑖) = 𝑋𝛼𝑖 , 𝜋(𝐹𝑖) = 𝑋−𝛼𝑖 (mod ℎ). (4.5)

Moreover, if �̃� is another such isomorphism, then �̃� = (Ad 𝑢)𝜋 for an element 𝑢 ∈ 1 + ℎ𝑈 (𝔤)�ℎ� by
𝐻1 (𝔤,𝑈 (𝔤)) = 0. In a similar way, for any twoC�ℎ�-algebra homomorphisms �̃�, 𝜋 : 𝑈ℎ (𝔤) → U (𝐺)�ℎ�
satisfying equation (4.5) there is 𝑢 ∈ 1+ ℎU (𝐺)�ℎ� such that �̃� = (Ad 𝑢)𝜋. In what follows, we fix such
a homomorphism 𝜋.

While a particular choice of 𝜋 is not going to matter for our results, in some arguments it is convenient
to have extra properties.

Lemma 4.5. There is a ∗-preserving C�ℎ�-algebra isomorphism 𝜋 : 𝑈ℎ (𝔤) → 𝑈 (𝔤)�ℎ� such that

𝜋(𝐻𝑖) = 𝐻𝑖 , 𝜋(𝐾−1/2
𝑖 𝐸𝑖) = 𝑋𝛼𝑖 , 𝜋(𝐹𝑖𝐾1/2

𝑖 ) = 𝑋−𝛼𝑖 (mod ℎ2). (4.6)

Proof. We have a homomorphism 𝜌 : 𝑈 (𝔤) → 𝑈ℎ (𝔤)/ℎ2𝑈ℎ (𝔤) such that

𝜌(𝐻𝑖) = 𝐻𝑖 , 𝜌(𝑋𝛼𝑖 ) = 𝐾−1/2
𝑖 𝐸𝑖 , 𝜌(𝑋−𝛼𝑖 ) = 𝐹𝑖𝐾

1/2
𝑖 ,

the key point being that since [𝑛]𝑒ℎ = 𝑛 + 𝑂 (ℎ2), the coefficients of the quantum Serre rela-
tions reduce to the classical ones modulo ℎ2. Taking now an arbitrary C�ℎ�-algebra isomorphism
𝜋 : 𝑈ℎ (𝔤) → 𝑈 (𝔤)�ℎ� satisfying equation (4.5), we must have that the homomorphism 𝜋 ◦ 𝜌 : 𝑈 (𝔤) →
𝑈 (𝔤)�ℎ�/ℎ2𝑈 (𝔤)�ℎ� is of the form

(𝜋 ◦ 𝜌) (𝑇) = 𝑇 + ℎ𝛿(𝑇) (𝑇 ∈ 𝑈 (𝔤))
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for a derivation 𝛿 : 𝑈 (𝔤) → 𝑈 (𝔤). Replacing 𝜋 by 𝑒−ℎ𝛿 ◦ 𝜋, we get an isomorphism 𝑈ℎ (𝔤) → 𝑈 (𝔤)�ℎ�
satisfying equation (4.6).

Next, the homomorphism 𝑈ℎ (𝔤) → 𝑈 (𝔤)�ℎ�, 𝑇 ↦→ 𝜋(𝑇∗)∗, also satisfies equation (4.6). It follows
that there exists 𝑢 ∈ 1 + ℎ2𝑈 (𝔤)�ℎ� such that 𝜋(𝑇∗)∗ = 𝑢𝜋(𝑇)𝑢−1. By taking the adjoints and replacing
T by 𝑇∗, we also get 𝜋(𝑇∗)∗ = 𝑢∗𝜋(𝑇) (𝑢∗)−1. Hence, 𝑢∗ = 𝑢𝑣 for a central element 𝑣 ∈ 𝑈 (𝔤)�ℎ� such
that 𝑣 = 1 modulo ℎ2. This element must be unitary, hence 𝑣1/2 ∈ 1 + ℎ2𝑈 (𝔤)�ℎ� is unitary as well.
Replacing u by 𝑢𝑣1/2, we can therefore assume that 𝑢∗ = 𝑢. But then replacing 𝜋 by (Ad 𝑢1/2)𝜋, we get
a ∗-preserving isomorphism satisfying equation (4.6). �

Remark 4.6. We may further assume that the exact equality 𝜋(𝐻𝑖) = 𝐻𝑖 holds in the above lemma, as
follows. In equation (4.5), we can arrange so that 𝜋(𝐻𝑖) = 𝐻𝑖 holds exactly by [Dri89a, Proposition
4.3]. Then the construction in the proof of Lemma 4.5 preserves this property. Indeed, first we have
𝛿(𝐻𝑖) = 0 so that 𝑒−ℎ𝛿 ◦ 𝜋(𝐻𝑖) = 𝐻𝑖 holds. Then we have (Ad 𝑢)𝜋(𝐻𝑖) = 𝜋(𝐻∗

𝑖 )∗ = 𝐻𝑖 , hence we
obtain (Ad 𝑢1/2)𝜋(𝐻𝑖) = 𝐻𝑖 as well at the last step.

With 𝜋 : 𝑈ℎ (𝔤) → U (𝐺)�ℎ� fixed, there is a unique coproduct Δℎ : U (𝐺)�ℎ� → U (𝐺 × 𝐺)�ℎ�
such that

(𝜋 ⊗ 𝜋)Δ = Δℎ𝜋.

By a Drinfeld twist, we will mean any element F ∈ 1 + ℎU (𝐺 × 𝐺)�ℎ� such that

(𝜖 ⊗ id) (F) = (id ⊗ 𝜖) (F) = 1, Δℎ = FΔ (·)F−1,

(id ⊗ Δ) (F−1) (1 ⊗ F−1) (F ⊗ 1) (Δ ⊗ id) (F) = ΦKZ. (4.7)

Consider the r-matrix r defined by equation (3.1) and the corresponding cobracket 𝛿𝑟 (𝑋) = [𝑟,Δ (𝑋)]
on 𝔤.

Lemma 4.7. If 𝜋 is as in Lemma 4.5, then there is a unitary Drinfeld twist F ∈ 𝑈 (𝔤)⊗2�ℎ� such that

F = 1 + ℎ
𝑖𝑟

2
+𝑂 (ℎ2). (4.8)

Proof. We start with an arbitrary Drinfeld twist F ∈ 1 + ℎ𝑈 (𝔤)⊗2�ℎ�, which exists by [Dri90]. By our
choice of 𝜋, we have

Δℎ (𝑋) = Δ (𝑋) + ℎ
𝑖𝛿𝑟 (𝑋)

2
+𝑂 (ℎ2) for 𝑋 ∈ 𝔤.

It follows that the element 𝑆 = F (1) − 1
2 𝑖𝑟 ∈ 𝑈 (𝔤)⊗2 commutes with the image of Δ . Since ΦKZ = 1

modulo ℎ2, identity (4.7) implies (similarly to the proof of Lemma 3.18) that S satisfies the cocycle
identity

(id ⊗ Δ) (𝑆) + 1 ⊗ 𝑆 − 𝑆 ⊗ 1 − (Δ ⊗ id) (𝑆) = 0.

Hence, 𝑆 = 𝑇 ⊗ 1 + 1 ⊗ 𝑇 − Δ (𝑇) for a central element 𝑇 ∈ 𝑈 (𝔤). Replacing F by

F
(
(1 + ℎ𝑇)−1 ⊗ (1 + ℎ𝑇)−1

)
Δ (1 + ℎ𝑇)

we get a Drinfeld twist satisfying equation (4.8). Replacing further F by F (F∗F)−1/2, we also get
unitarity; see [NT11, Proposition 2.3]. Note that this does not destroy equation (4.8) since 𝑟∗ = 𝑟 . �
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Denote the universal R-matrix of 𝑈ℎ (𝔤) (or, the one for 𝑈𝑞 (𝔤) in the conventions of [DCNTY19])
by ℛ. Then any Drinfeld twist F satisfies

(𝜋 ⊗ 𝜋) (ℛ) = F21 exp(−ℎ𝑡𝔲)F−1. (4.9)

Indeed, this identity holds for a particular Drinfeld twist by [Dri90], but then it must hold for any
Drinfeld twist by Lemma 3.18 and the invariance of exp(−ℎ𝑡𝔲). We put Rℎ = (𝜋 ⊗ 𝜋) (ℛ), which is a
universal R-matrix for (U (𝐺)�ℎ�,Δℎ).

4.3. Parameter case and Cayley transform

Suppose that 𝔲𝜃 < 𝔲 is a Hermitian symmetric pair. Let us relate the Lie algebras 𝔤𝜃t to the Cayley
transform we considered in Section 3.2.

Choose 𝑍𝜃 ∈ 𝔷(𝔲𝜃 ) normalized as (𝑍𝜃 , 𝑍𝜃 )𝔤 = −𝑎−2
𝜃 . Let us choose a Cartan subalgebra 𝔱 of 𝔲

containing 𝔷(𝔲𝜃 ), and choose positive roots as in Section 3.1, but now for the pair (𝜃, 𝑍𝜃 ) instead of
(𝜈, 𝑍𝜈). We denote the corresponding Borel subalgebra by �̃�+.

Take 𝑔 ∈ 𝑈 such that (Ad 𝑔) (𝔱) = 𝔱 and (Ad 𝑔) (�̃�+) = 𝔟+. Put 𝜈 = (Ad 𝑔) ◦ 𝜃 ◦ (Ad 𝑔)−1 and
𝑍𝜈 = (Ad 𝑔) (𝑍𝜃 ). Then 𝔱 and our fixed positive roots are defined as in Section 3.1 for our new pair
(𝜈, 𝑍𝜈).

Let 𝑔1 be the Cayley transform for 𝜈 with respect to (𝑋𝛼)𝛼.

Lemma 4.8. There exist an element 𝑧𝜃 ∈ exp(𝔱) such that (Ad 𝑧𝜃 ) ◦ 𝜃 ◦ (Ad 𝑧𝜃 )−1 coincides with the
automorphism 𝜃 ′ = (Ad 𝑔1)−1 ◦ 𝜈 ◦ (Ad 𝑔1) and 𝑍𝜃 = (Ad 𝑔1𝑧𝜃 )−1(𝑍𝜈).

Proof. First, note that 𝜃 ′ is in Satake form with respect to (𝔥, 𝔟+).
We have 𝜃 = (Ad 𝑔−1𝑔1) ◦ 𝜃 ′ ◦ (Ad 𝑔−1𝑔1)−1. It follows that 𝜃 is in Satake form both with respect to

(𝔥, 𝔟+) and ((Ad 𝑔−1𝑔1) (𝔥), (Ad 𝑔−1𝑔1) (𝔟+)). By [KW92, Corollary 5.32], we can find 𝑔′ ∈ 𝐺 𝜃 such
that (Ad 𝑔′𝑔−1𝑔1) (𝔥) = 𝔥 and (Ad 𝑔′𝑔−1𝑔1) (𝔟+) = 𝔟+. Then 𝑔′𝑔−1𝑔1 ∈ exp(𝔥). Moreover, we still have

𝜃 = (Ad 𝑔′𝑔−1𝑔1) ◦ 𝜃 ′ ◦ (Ad 𝑔′𝑔−1𝑔1)−1.

Consider the Cartan decomposition 𝑔′𝑔−1𝑔1 = 𝑧−1
𝜃 𝑎, so 𝑧𝜃 ∈ exp(𝔱) and 𝑎 ∈ exp(𝑖𝔱). As 𝜃, 𝜃 ′ are

∗-preserving and 𝜃 ◦ (Ad 𝑧−1
𝜃 𝑎) = (Ad 𝑧−1

𝜃 𝑎) ◦ 𝜃 ′, we also have 𝜃 ′ ◦ (Ad 𝑎𝑧𝜃 ) = (Ad 𝑎𝑧𝜃 ) ◦ 𝜃. It follows
that Ad 𝑎2 commutes with 𝜃 ′. This means that 𝜃 ′(𝑎2) ∈ 𝑍 (𝐺)𝑎2 = 𝑍 (𝑈)𝑎2, hence 𝜃 ′(𝑎2) = 𝑎2, and
then 𝜃 ′(𝑎) = 𝑎. Therefore,

𝜃 = (Ad 𝑧𝜃 )−1 ◦ 𝜃 ′ ◦ (Ad 𝑧𝜃 ) = (Ad 𝑔1𝑧𝜃 )−1 ◦ 𝜈 ◦ (Ad 𝑔1𝑧𝜃 ).

We also have

(Ad 𝑔1𝑧𝜃 )−1(𝑍𝜈) = (Ad 𝑧−1
𝜃 𝑎𝑔−1

1 ) (𝑍𝜈) = (Ad 𝑔′𝑔−1) (𝑍𝜈) = (Ad 𝑔′) (𝑍𝜃 ) = 𝑍𝜃 ,

where we used that (Ad 𝑔−1
1 ) (𝑍𝜈) ∈ 𝔷(𝔲𝜃′ ) is invariant under 𝑎 ∈ 𝐺 𝜃

′ . �

We can now talk about compact/noncompact positive roots for (𝔥, 𝔟+) with respect to 𝜈, as in
Section 3. Recall that by Proposition 3.5, in the S-type case the unique noncompact simple root 𝛼𝑜 is
exactly the distinguished root. We have the following characterization for the C-type case.

Lemma 4.9. In the C-type case, the unique noncompact simple root 𝛼𝑜 is determined among the
distinguished roots {𝛼𝑜, 𝛼𝑜′ } by the inequality

−𝑖𝛼𝑜 (�̃�𝜃 ) > −𝑖𝛼𝑜′ (�̃�𝜃 ),

where �̃�𝜃 is the component of 𝑍𝜃 ∈ 𝔤 = 𝔥 ⊕
⊕

𝛼∈Φ 𝔤𝛼 lying in 𝔥.
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Proof. By the definition of the order structure in Section 3.1, we have 𝛼𝑜 (−𝑖𝑍𝜈) > 0 = 𝛼𝑜′ (−𝑖𝑍𝜈).
By Proposition 3.5, 𝛼𝑜 and 𝛼𝑜′ have the same restriction to 𝔥− = {𝐻 | 𝜃 (𝐻) = −𝐻}. It follows that if
𝑍𝜈 = 𝑍+

𝜈 + 𝑍−
𝜈 is the decomposition of 𝑍𝜈 with respect to 𝔥 = 𝔥𝜃 ⊕ 𝔥−, then

−𝑖𝛼𝑜 (𝑍+
𝜈 ) > −𝑖𝛼𝑜′ (𝑍+

𝜈 ).

On the other hand, the inverse (Ad 𝑔1)−1 of the Cayley transform acts trivially on 𝔥𝜃 and maps 𝔥−
onto the linear span of the vectors 𝑋𝛾𝑖 − 𝑋−𝛾𝑖 (Lemma 3.9). As 𝑍𝜃 = (Ad 𝑔1𝑧𝜃 )−1(𝑍𝜈), it follows that
�̃�𝜃 = 𝑍+

𝜈 , proving the lemma. �

Thus, in both S-type and C-type cases, once 𝑍𝜃 is fixed (between the two possibilities), 𝜈 is uniquely
and explicitly determined: 𝜈 acts trivially on 𝔥 and the root vectors 𝑋±𝛼𝑖 for 𝑖 ∈ 𝐼 \ {𝑜}, while
𝜈(𝑋±𝛼𝑜 ) = −𝑋±𝛼𝑜 . Since 𝛼𝑜 is a noncompact positive root, 𝛼𝑜 (−𝑖𝑍𝜈) is a positive number. This,
together with the normalization (𝑍𝜈 , 𝑍𝜈)𝔤 = −𝑎−2

𝜈 , determines 𝑍𝜈 . In the S-type case, the pair (𝜈, 𝑍𝜈) is
therefore independent of the choice of 𝑍𝜃 . In the C-type case, changing the sign of 𝑍𝜃 swaps the notions
of compactness/noncompactness for the distinguished roots. Note also that by looking at the basis of
the restricted root system obtained by restricting Π \Π𝑋 to 𝔥−, we can recover the roots 𝛾1, . . . , 𝛾𝑠 and
then the element 𝑔1.

The element 𝑧𝜃 is not easily determined, but the following lemma will be enough for our purposes.
Recall the factorization of 𝜃 given by equation (4.1).

Lemma 4.10. In the S-type case, 𝑧𝜃 (𝛼𝑜) is a square root of 𝑧−1
𝑜 .

Proof. Since o is fixed by 𝜏𝜃 , we have 𝜃 (𝑋−𝛼𝑜 ) = −𝑧𝑜𝑋𝛼𝑜 . As we already observed in the proof of
Proposition 3.15, Lemma 3.9 implies that

(
(Ad 𝑔1)−1 ◦ 𝜈 ◦ (Ad 𝑔1)

)
(𝑋𝛼𝑜 ) = −𝑋−𝛼𝑜 . It follows that

𝜃 (𝑋𝛼𝑜 ) = −𝑧𝜃 (𝛼𝑜)2𝑋−𝛼𝑜 , and comparing this with the above formula we get 𝑧𝜃 (𝛼𝑜)2 = 𝑧−1
𝑜 . �

Consider now the subgroups 𝐺𝜙 (𝜙 ∈ R) from Definition 3.16. (Note that we have to use 𝜃 ′ from
Lemma 4.8 as 𝜃 in Section 3.3.) It is convenient now to allow also 𝜙 ∈ C. Then 𝐺𝜙 = (Ad 𝑔𝜙) (𝐺 𝜃

′ )
are still well-defined subgroups of G.

Lemma 4.11. If 𝔲𝜃 < 𝔲 is Hermitian and t ∈ T ∗
C

, then 𝔤𝜃t = (Ad 𝑧𝜃 )−1(𝔤𝜙), where 𝜙 ∈ C is any number
satisfying the following identity:

𝑧𝜃 (𝛼𝑜)𝑠 (0)𝑜 𝜅𝑜 = 𝑖 tan
( 𝜋𝜙

2

)
(S − type) or 𝑐 (0)𝑜 = − cot

( 𝜋
4
(𝜙 − 1)

)
(C − type).

In particular, the Lie algebras 𝔤𝜃t are all conjugate to 𝔤𝜃 in 𝔤.

Proof. This follows from Proposition 3.15 (and its obvious extension to complex 𝜙) and the definition
of 𝔤𝜃t , combined with Lemma 4.8. �

For t ∈ T ∗
C

, let 𝐺 𝜃t = (Ad 𝑧𝜃 )−1(𝐺𝜙) ⊂ 𝐺 be the (connected) algebraic subgroup integrating 𝔤𝜃t ,
with 𝜙 as in the lemma above. Then 𝐾t = (Ad 𝑧−1

𝜃 𝑔𝜙−1) (𝑈𝜈) is its compact form. Note that if t ∈ T ∗,
then we can take 𝜙 ∈ R so that 𝑔𝜙 ∈ 𝑈 and hence 𝔨t = 𝔤𝜃t ∩ 𝔲.

Remark 4.12. In the C-type case we get an element

𝑍 t
𝜃 = (Ad 𝑧−1

𝜃 𝑔𝜙−1) (𝑍𝜈) = (Ad 𝑧−1
𝜃 𝑔𝜙𝑧𝜃 ) (𝑍𝜃 ) ∈ 𝔷(𝔤𝜃t ),

which by Lemma 3.9 does not depend on the choice of 𝜙 (such that 𝑐 (0)𝑜 = − cot( 𝜋4 (𝜙 − 1))). Using
Lemma 4.9, we can quickly recover 𝜈 from 𝑍 t

𝜃 . Namely, let �̃� t
𝜃 be the component of 𝑍 t

𝜃 in 𝔥. Then,
again by Lemma 3.9, �̃� t

𝜃 and �̃�𝜃 differ only by an element of 𝔥−. Hence, 𝛼𝑜 is determined among the
distinguished roots {𝛼𝑜, 𝛼𝑜′ } by the inequality

−𝑖𝛼𝑜 (�̃� t
𝜃 ) + 𝑖𝛼𝑜′ (�̃� t

𝜃 ) > 0.
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In the S-type case, the element (Ad 𝑧−1
𝜃 𝑔𝜙−1) (𝑍𝜈) ∈ 𝔷(𝔤𝜃t ) does depend on the choice of 𝜙. Here, we

can take any 𝑍 t
𝜃 ∈ 𝔷(𝔤𝜃t ) such that (𝑍 t

𝜃 , 𝑍
t
𝜃 )𝔤 = −𝑎−2

𝜃 and then make the identity 𝑍 t
𝜃 = (Ad 𝑧−1

𝜃 𝑔𝜙−1) (𝑍𝜈)
an extra condition on 𝜙. This works because by Corollary 3.6 and Lemma 3.9 we have (Ad 𝑔2) (𝑍𝜈) =
−𝑍𝜈 . We can formulate this in a more intrinsic way with respect to 𝔤𝜃t as follows. Recall that we have
𝑍𝜈 = 𝑖

2
∑
𝑗 𝐻𝛾 𝑗 by Corollary 3.6. Then Lemma 3.9 implies

(Ad 𝑧−1
𝜃 𝑔𝜙−1) (𝑍𝜈) =

1
2

cos
( 𝜋𝜙

2

) ∑
𝑗

(Ad 𝑧−1
𝜃 ) (𝑋−𝛾 𝑗 − 𝑋𝛾 𝑗 ) +

𝑖

2
sin

( 𝜋𝜙
2

) ∑
𝑗

𝐻𝛾 𝑗

for all 𝜙. It follows that if 𝑍 t
𝜃 = (Ad 𝑧−1

𝜃 𝑔𝜙−1) (𝑍𝜈), then

(𝑍 t
𝜃 , 𝑋𝛼𝑜 )𝔤

𝑧𝜃 (𝛼𝑜) cos( 𝜋𝜙2 )
=

(𝑋−𝛼𝑜 , 𝑋𝛼𝑜 )𝔤
2

=
1

(𝛼, 𝛼) > 0.

4.4. Multiplier algebra model of Letzter–Kolb coideals

Back to the general 𝜃, let us next explain how to cast the Letzter–Kolb coideals in the setting of
multiplier algebras. Let P be the weight lattice. Denote by 𝑉𝜆 an irreducible 𝔤-module with highest
weight 𝜆 ∈ 𝑃+. We denote by 𝜋𝜆 : 𝑈 (𝔤) → End(𝑉𝜆) the corresponding homomorphism and use the
same symbol for the extension of 𝜋𝜆 to a homomorphism 𝑈 (𝔤)�ℎ� → End(𝑉𝜆)�ℎ�. We also put
𝜋𝜆,ℎ = 𝜋𝜆𝜋 : 𝑈ℎ (𝔤) → End(𝑉𝜆)�ℎ�.

Lemma 4.13. For every t ∈ T ∗, there exist elements 𝑢𝜆 ∈ End(𝑉𝜆)�ℎ�, 𝜆 ∈ 𝑃+, such that

𝑢 (0)
𝜆 = 1,

(⊕
𝜆∈𝐹

(Ad 𝑢𝜆)𝜋𝜆,ℎ
) (
𝑈t
ℎ (𝔤

𝜃 )
)
=

(⊕
𝜆∈𝐹

𝜋𝜆

) (
𝑈 (𝔤𝜃t )�ℎ�

)
(4.10)

for any finite subset 𝐹 ⊂ 𝑃+. If 𝜋 is ∗-preserving, then 𝑢𝜆 can in addition be chosen to be unitary.

Proof. Let us first fix a finite subset 𝐹 ⊂ 𝑃+ and show that there exist elements 𝑢𝜆, 𝜆 ∈ 𝐹, satisfying
equation (4.10).

Denote by 𝑉𝐹 the 𝔤-module
⊕

𝜆∈𝐹 𝑉𝜆 and by 𝜋𝐹 the representation
⊕

𝜆∈𝐹 𝜋𝜆. Write 𝜋𝐹,ℎ for 𝜋𝐹𝜋.
Let 𝐴ℎ be the commutant of 𝜋𝐹,ℎ

(
𝑈t
ℎ (𝔤

𝜃 )
)

in End(𝑉𝐹 )�ℎ�. It is clear that 𝐴ℎ is a closed C�ℎ�-
subalgebra of End(𝑉𝐹 )�ℎ� and 𝐴ℎ ∩ ℎ End(𝑉𝐹 )�ℎ� = ℎ𝐴ℎ . It follows that 𝐴ℎ is a free C�ℎ�-module
and 𝐴ℎ/ℎ𝐴ℎ can be considered as a subalgebra of End(𝑉𝐹 ) so that 𝐴ℎ is a deformation of this subalgebra.
We claim that

𝐴ℎ/ℎ𝐴ℎ = End𝔤𝜃t (𝑉𝐹 ).

The inclusion ⊂ is clear since the image of 𝑈t
ℎ (𝔤

𝜃 ) in 𝑈ℎ (𝔤)/ℎ𝑈ℎ (𝔤) � 𝑈 (𝔤) is 𝑈 (𝔤𝜃t ). For the
opposite inclusion, using the Frobenius isomorphism

End𝔤𝜃t (𝑉𝐹 ) � Hom𝔤𝜃t
(𝑉0, 𝑉𝐹 ⊗ �̄�𝐹 ),

defined by duality morphisms for 𝔤-modules, and a decomposition of 𝑉𝐹 ⊗ �̄�𝐹 into simple 𝔤-modules
𝑉𝜇, we see that the problem reduces to the question whether every 𝔤𝜃t -invariant vector in 𝑉𝜇 can be
lifted to a 𝑈t

ℎ (𝔤
𝜃 )-invariant vector in 𝑉𝜇�ℎ�. This is indeed possible by a result of Letzter [Let00]; see

Appendix B for more details.
Since the algebra End𝔤𝜃t (𝑉𝐹 ) is semisimple, it has no nontrivial deformations, so there is a C�ℎ�-

algebra isomorphism 𝐴ℎ � End𝔤𝜃t (𝑉𝐹 )�ℎ� that is the identity modulo h. Furthermore, there are
no nontrivial deformations of the identity homomorphism End𝔤𝜃t (𝑉𝐹 ) → End(𝑉𝐹 ), that is, all such
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deformations are given by conjugating by elements of 1 + ℎ End(𝑉𝐹 )�ℎ�. It follows that there is
𝑤 ∈ 1 + ℎ End(𝑉𝐹 )�ℎ� such that 𝑤𝐴ℎ𝑤

−1 = End𝔤𝜃t (𝑉𝐹 )�ℎ�.
Next, consider the subalgebra 𝐵 ⊂ End𝔤𝜃t (𝑉𝐹 ) spanned by the projections 𝑒𝜆 : 𝑉𝐹 → 𝑉𝜆. Since 𝐵 ⊂

𝐴ℎ , we have (Ad𝑤) (𝐵) ⊂ End𝔤𝜃t (𝑉𝐹 )�ℎ�. As B is also semisimple, the inclusion map 𝐵 → End𝔤𝜃t (𝑉𝐹 )
cannot be nontrivially deformed, that is, there is 𝑣 ∈ 1 + ℎ End𝔤𝜃t (𝑉𝐹 )�ℎ� such that Ad𝑤 = Ad 𝑣 on B.
It follows that the element 𝑢 = 𝑣−1𝑤 still has the property

𝑢𝐴ℎ𝑢
−1 = End𝔤𝜃t (𝑉𝐹 )�ℎ�, (4.11)

but in addition it commutes with the projections 𝑒𝜆, 𝜆 ∈ 𝑃. Hence 𝑢 = (𝑢𝜆)𝜆∈𝐹 for some 𝑢𝜆 ∈
1 + ℎ End𝔤𝜃t (𝑉𝜆)�ℎ�.

By taking the commutants, we get from equation (4.11) that

𝑢𝜋𝐹,ℎ

(
𝑈t
ℎ (𝔤

𝜃 )
)
𝑢−1 ⊂ 𝜋𝐹

(
𝑈 (𝔤𝜃t )

)
�ℎ�,

where we used that the 𝔤𝜃t -module 𝑉𝐹 is completely reducible and hence 𝜋𝐹

(
𝑈 (𝔤𝜃t )

)
is the commutant

of End𝔤𝜃t (𝑉𝐹 ). The above inclusion becomes an equality modulo h. Since 𝑈t
ℎ (𝔤

𝜃 ) is complete in the
h-adic topology, we then easily deduce that the inclusion is in fact an equality. This finishes the proof
of the lemma for a fixed finite set F, apart from the last statement about unitarity.

Now, consider an increasing sequence of finite subsets 𝐹𝑛 ⊂ 𝑃+ with union 𝑃+. For every n, choose
elements 𝑢 (𝑛) = (𝑢 (𝑛)

𝜆 )𝜆∈𝐹𝑛 , satisfying equation (4.10) for 𝐹 = 𝐹𝑛. To finish the proof, it suffices to
show that we can inductively modify 𝑢 (𝑛+1) in such a way that we get 𝑢 (𝑛+1)

𝜆 = 𝑢 (𝑛)
𝜆 for 𝜆 ∈ 𝐹𝑛.

For this, consider the element 𝑤 = (𝑢 (𝑛)
𝜆 (𝑢 (𝑛+1)

𝜆 )−1)𝜆∈𝐹𝑛 ∈ End(𝑉𝐹𝑛 )�ℎ�. We have

𝑤 (0) = 1, (Ad𝑤)
(
𝜋𝐹𝑛

(
𝑈 (𝔤𝜃t )

)
�ℎ�

)
= 𝜋𝐹𝑛

(
𝑈 (𝔤𝜃t )

)
�ℎ�.

Since 𝜋𝐹𝑛

(
𝑈 (𝔤𝜃t )

)
is semisimple, it follows that there is an element 𝑣 ∈ 1 + ℎ𝜋𝐹𝑛

(
𝑈 (𝔤𝜃t )

)
�ℎ� such

that Ad𝑤 = Ad 𝑣 on 𝜋𝐹𝑛

(
𝑈 (𝔤𝜃t )

)
. Lift v to an element 𝑢 ∈ 1 + ℎ𝑈 (𝔤𝜃t )�ℎ�. We then modify 𝑢 (𝑛+1) by

replacing 𝑢 (𝑛+1)
𝜆 by 𝑢 (𝑛)

𝜆 for 𝜆 ∈ 𝐹𝑛 and by 𝜋𝜆 (𝑢)𝑢 (𝑛+1)
𝜆 for 𝜆 ∈ 𝐹𝑛+1 \ 𝐹𝑛.

Finally, assume in addition that 𝜋 is ∗-preserving. In this case, it suffices to show that at every stage
of the above construction of 𝑢𝜆 we can get unitary elements with the required properties. Specifically,
we claim that if 𝑢𝜋𝐹,ℎ

(
𝑈t
ℎ (𝔤

𝜃 )
)
𝑢−1 = 𝜋𝐹

(
𝑈 (𝔤𝜃t )

)
�ℎ� for a finite set F and an element u, 𝑢 (0) = 1, then

the same identity holds for the unitary (𝑢𝑢∗)−1/2𝑢. Indeed, taking the adjoints we get 𝜋𝐹,ℎ
(
𝑈t
ℎ (𝔤

𝜃 )
)
=

𝑢∗𝜋𝐹
(
𝑈 (𝔤𝜃t )

)
�ℎ�(𝑢∗)−1. It follows that Ad(𝑢𝑢∗) defines an automorphism 𝛽 of 𝜋𝐹

(
𝑈 (𝔤𝜃t )

)
�ℎ�. As

𝛽 = id modulo h, this automorphism has a unique square root 𝛽1/2 such that 𝛽1/2 = id modulo h. Then
Ad(𝑢𝑢∗)−1/2 = 𝛽−1/2 on 𝜋𝐹

(
𝑈 (𝔤𝜃t )

)
�ℎ�, and our claim is proved. �

We continue to assume that 𝑡 ∈ T ∗. In the Hermitian case, recall the subgroups 𝐺 𝜃t < 𝐺 from the
previous subsection. In the non-Hermitian case, let us put 𝐺 𝜃t = 𝐺 𝜃 . The collection (𝑢𝜆)𝜆∈𝑃+ defines
an element 𝑢 = 𝑢t ∈ U (𝐺)�ℎ� such that

𝑢 (0) = 1, 𝑢𝜋(𝑈t
ℎ (𝔤

𝜃 ))𝑢−1 ⊂ U (𝐺 𝜃t )�ℎ�. (4.12)

Furthermore, the last inclusion is dense in the sense that the images of both algebras in End(𝑉)�ℎ�
coincide for any finite-dimensional 𝔤-module V.
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Consider the homomorphism 𝛼ℎ : U (𝐺 𝜃t )�ℎ� → U (𝐺 × 𝐺)�ℎ� defined by

𝛼ℎ (𝑥) = (𝑢 ⊗ 1)Δℎ (𝑢−1𝑥𝑢) (𝑢−1 ⊗ 1).

If 𝑥 = 𝑢𝜋(𝑦)𝑢−1 for some 𝑦 ∈ 𝑈t
ℎ (𝔤

𝜃 ), we have

𝛼ℎ (𝑥) = 𝛼ℎ (𝑢𝜋(𝑦)𝑢−1) =
(
(Ad 𝑢)𝜋 ⊗ 𝜋

)
Δ (𝑦).

By the density of 𝑢𝜋(𝑈t
ℎ (𝔤

𝜃 ))𝑢−1 in U (𝐺 𝜃t )�ℎ�, we conclude that 𝛼ℎ (U (𝐺 𝜃t )�ℎ�) ⊂ U (𝐺 𝜃t ×𝐺)�ℎ�,
and the strict coassociativity (𝛼ℎ⊗id)𝛼ℎ = (id⊗Δℎ)𝛼ℎ holds. Thus, we get a coaction of (U (𝐺)�ℎ�,Δℎ)
on U (𝐺 𝜃t )�ℎ� making the following diagram commutative:

𝑈t
ℎ (𝔤

𝜃 ) 𝑈t
ℎ (𝔤

𝜃 ) ⊗̂ 𝑈ℎ (𝔤)

U (𝐺 𝜃t )�ℎ� U (𝐺 𝜃t × 𝐺)�ℎ�

Δ

(Ad𝑢t) 𝜋 (Ad𝑢t) 𝜋⊗𝜋

𝛼ℎ

Definition 4.14. For t ∈ T ∗, we call the coaction (U (𝐺 𝜃t )�ℎ�, 𝛼ℎ) of (U (𝐺)�ℎ�,Δℎ) the multiplier
algebra model of the Letzter–Kolb coideal 𝑈t

ℎ (𝔤
𝜃 ).

It is not difficult to see that up to twisting this model does not depend on the choice of 𝜋 and u.
Let us record an immediate consequence of the construction of 𝛼ℎ , which we will use later.

Proposition 4.15. For every t ∈ T ∗, there is an element G ∈ U (𝐺 𝜃t × 𝐺)�ℎ� such that

G (0) = 1, (id ⊗ 𝜖) (G) = 1, 𝛼ℎ = GΔ (·)G−1.

If 𝛼ℎ is ∗-preserving, then G can in addition be chosen to be unitary.

Proof. Since 𝛼ℎ = Δ mod ℎ, Lemma 1.1 implies the existence of such an element G. If 𝛼ℎ is in addition
∗-preserving, then we can replace G by the unitary G (G∗G)−1/2. �

Remark 4.16. By the above arguments and Remark B.8, the multiplier algebra model can also be
defined for all t ∈ T ∗

C
excluding a countable set of values of 𝑠 (0)𝑜 (S-type) or 𝑐 (0)𝑜 (C-type).

Remark 4.17. By Proposition C.1, for every t ∈ T ∗
C

, the algebra 𝑈t
ℎ (𝔤

𝜃 ) is a deformation of 𝑈 (𝔤𝜃t ).
In the non-Hermitian case, 𝔤𝜃t = 𝔤𝜃 is semisimple and standard arguments show that if 𝜋 has image
𝑈 (𝔤)�ℎ�, then there exists 𝑢 ∈ 1 + ℎ𝑈 (𝔤)�ℎ� such that 𝑢𝜋(𝑈 𝜃ℎ (𝔤))𝑢

−1 = 𝑈 (𝔤𝜃 )�ℎ�. There also exists
G ∈ 1 + ℎ𝑈 (𝔤𝜃 ) ⊗ 𝑈 (𝔤)�ℎ� satisfying the conditions in Proposition 4.15, analogously to Remark 2.7.
(Moreover, by the remark following Proposition C.3 we can go beyond the standard case and consider
any t = (c, s) ∈ T such that 𝑐 (0)𝑖 = 1 for all 𝑖 ∈ 𝐼 \ 𝑋 .) In other words, in the non-Hermitian case the
multiplier algebra model does not have any particular advantages over the coideal picture.

In the Hermitian case, it is still true that 𝑈t
ℎ (𝔤

𝜃 ) is a trivial algebra deformation of 𝑈 (𝔤𝜃t ); see
Proposition C.3. But since in this case the first cohomology of 𝔤𝜃t with coefficients in a finite-dimensional
module is not always zero, it is not clear whether u and G exist at the level of the universal enveloping
algebras.

Remark 4.18. Type II symmetric pairs can be dealt with analogously to the non-Hermitian case. The
relevant involution on 𝔲 ⊕ 𝔲 in the Satake form is given by 𝜃 (𝑋,𝑌 ) = (𝜔(𝑌 ), 𝜔(𝑋)) for the Chevalley
involution 𝜔. The corresponding Satake diagram is the disjoint union of two copies of the Dynkin
diagram of 𝔤, with the corresponding vertices joined by arrows. Cohomological considerations as above,
both for multiplier algebras and universal enveloping algebras, carry over.
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4.5. K-matrix of Balagović–Kolb

Next, let us recall the construction of universal K-matrices for the coideals 𝑈t
ℎ (𝔤

𝜃 ) according to
[BK19][Kol20][DCNTY19]. (Strictly speaking, these papers have an extra normalization condition on
𝜃 as in Remark 4.2. We can either adapt their construction to our setting, or we can first put this extra
condition and then use Ad 𝑧′ as in Remark 4.2 to remove it later.)

Denote by 𝑈𝑞 (𝔤) the C(𝑞1/𝑑)-subalgebra of 𝑈ℎ (𝔤) ⊗C�ℎ� C[ℎ−1, ℎ� generated by 𝐾𝜔 (𝜔 ∈ 𝑃), 𝐸𝑖
and 𝐹𝑖 , where 𝑞 = 𝑒ℎ and 𝑑 = 4 det((𝑎𝑖 𝑗 )𝑖, 𝑗 ). (We use the same notation in Appendix B for the algebra
defined over K = C[ℎ−1, ℎ�, but since we are not going to use that algebra here, this should not lead
to confusion.) As usual, we denote by 𝑥 ↦→ 𝑥 the bar involution, the C-linear automorphism of 𝑈𝑞 (𝔤)
characterized by

𝑞1/𝑑 = 𝑞−1/𝑑 , 𝐾𝜔 = 𝐾−𝜔 , 𝐸𝑖 = 𝐸𝑖 , 𝐹𝑖 = 𝐹𝑖 .

In a similar way, as before we define coideals 𝑈t
𝑞 (𝔤𝜃 ) ⊂ 𝑈𝑞 (𝔤) for t = (c, s) such that 𝑐𝑖 , 𝑠𝑖 ∈ C(𝑞1/𝑑).

We will first construct, following [BK19], the K-matrix for a particular parameter t′ ∈ T defined by

𝑐′𝑖 = 𝑞
1
2 (𝛼𝑖 ,Θ(𝛼𝑖 )−2𝜌𝑋 ) , 𝑠′𝑖 = 0,

where 𝜌𝑋 is half the sum of the positive roots of the root system generated by X. The parameter
t′ = (c′, s′) satisfies the assumptions in [BK19, Section 5.4].

A key ingredient of the construction in [BK19] is a quasi- K-matrix 𝔛. Denote by 𝑈+ ⊂ 𝑈𝑞 (𝔤) the
C(𝑞1/𝑑)-subalgebra generated by the elements 𝐸𝑖 , and by 𝑈+

𝜇 ⊂ 𝑈+ the subspace of vectors of weight
𝜇 ∈ 𝑄+, where Q is the root lattice. Then

𝔛 =
∑
𝜇∈𝑄+

𝔛𝜇 (𝔛𝜇 ∈ 𝑈+
𝜇),

where the sum is considered in a completion of 𝑈𝑞 (𝔤) defined similarly to our multiplier algebra U (𝐺),
but over the field C(𝑞1/𝑑). The elements 𝔛𝜇 are uniquely determined by 𝔛0 = 1 and the following
recursive relations:

[𝐹𝑖 ,𝔛𝜇] = 𝔛𝜇−𝛼𝑖+Θ(𝛼𝑖 )𝑐
′
𝑖𝑋𝑖𝐾𝑖 − 𝑞−(𝛼𝑖 ,Θ(𝛼𝑖))𝐾−1

𝑖 𝑐′𝑖𝑋𝑖𝔛𝜇−𝛼𝑖+Θ(𝛼𝑖 ) (𝑖 ∈ 𝐼), (4.13)

with the convention that 𝔛𝜇−𝛼𝑖+Θ(𝛼𝑖) = 0 if 𝜇 − 𝛼𝑖 + Θ(𝛼𝑖) ∉ 𝑄+. Here, we put

𝑋𝑖 = 0 (𝑖 ∈ 𝑋), 𝑋𝑖 = −𝑧𝜏𝜃 (𝑖)𝑇𝑤𝑋 (𝐸𝜏𝜃 (𝑖) ) (𝑖 ∈ 𝐼 \ 𝑋).

To use𝔛 in our setting, we need the following integrality property. Let 𝑅 ⊂ C(𝑞1/𝑑) be the localization
of the ring C[𝑞1/𝑑] at 𝑞1/𝑑 = 1. Denote by 𝑈+,int the R-subalgebra of 𝑈+ generated by the elements 𝐸𝑖 ,
and put 𝑈+,int

𝜇 = 𝑈+
𝜇 ∩𝑈+,int.

Next, let 𝐼∗ ⊂ 𝐼 \ 𝑋 be a set of representatives of the 𝜏𝜃 -orbits in 𝐼 \ 𝑋 . As we already used in Section
3.2 (although only in the Hermitian setting), the elements 𝛼−

𝑖 = 1
2 (𝛼𝑖 − Θ(𝛼𝑖)) for 𝑖 ∈ 𝐼∗ form a basis

of the restricted root system, and we have 𝛼−
𝜏𝜃 (𝑖) = 𝛼−

𝑖 for all i.

Proposition 4.19. Take 𝜇 ∈ 𝑄+, 𝜇 ≠ 0. If 𝜇 has the form

𝜇 =
∑
𝑖∈𝐼 ∗

𝑘𝑖𝛼
−
𝑖

for some 𝑘𝑖 ∈ 2Z+, then 𝔛𝜇 ∈ (𝑞1/𝑑 − 1)𝑈+,int
𝜇 . Otherwise 𝔛𝜇 = 0.
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Proof. Let us start with the second statement, that is, 𝔛𝜇 = 0 if either Θ(𝜇) ≠ −𝜇, or Θ(𝜇) = −𝜇 but in
the decomposition 𝜇 =

∑
𝑖∈𝐼 ∗ 𝑘𝑖𝛼

−
𝑖 some integers 𝑘𝑖 ≥ 0 are odd. This is a refinement of a condition in

[BK19, Section 6.1], and the proof is basically the same.
To be precise, consider the height of 𝜇 defined by ht(𝜇) =

∑
𝑖∈𝐼 𝑚𝑖 if 𝜇 =

∑
𝑖∈𝐼 𝑚𝑖𝛼𝑖 . We verify

the condition by induction on ht(𝜇). Since 𝜇 − 𝛼𝑖 + Θ(𝛼𝑖) = 𝜇 − 2𝛼−
𝑖 for 𝑖 ∈ 𝐼 \ 𝑋 is either not in 𝑄+

or it satisfies the same assumptions as 𝜇, by the inductive hypothesis we get from equation (4.13) that
[𝐹𝑖 ,𝔛𝜇] = 0 for all 𝑖 ∈ 𝐼. This means that Lusztig’s skew-derivatives 𝑖𝑟 (𝔛𝜇) and 𝑟𝑖 (𝔛𝜇) are zero, which
is possible only if 𝔛𝜇 = 0; see [Lus10, Proposition 3.1.6 and Lemma 1.2.15].

Turning to the first statement, assume 𝜇 =
∑
𝑖∈𝐼 ∗ 𝑘𝑖𝛼

−
𝑖 with 𝑘𝑖 ∈ 2Z+. Put ht∗(𝜇) = 1

2
∑
𝑖∈𝐼 ∗ 𝑘𝑖 . We

will prove the statement by induction on ht∗(𝜇).
Consider the case ht∗(𝜇) = 1. Then 𝜇 = 2𝛼−

𝑗 = 𝛼 𝑗 − Θ(𝛼 𝑗 ) for some 𝑗 ∈ 𝐼∗. From equation (4.13),
we then get

[𝐹𝑖 ,𝔛𝜇] = 0 (𝑖 ∈ 𝐼 \ { 𝑗 , 𝜏𝜃 ( 𝑗)}), [𝐹𝑖 ,𝔛𝜇] = 𝑐′𝑖𝑋𝑖𝐾𝑖 − 𝑞−(𝛼𝑖 ,Θ(𝛼𝑖 ))𝐾−1
𝑖 𝑐′𝑖𝑋𝑖 (𝑖 = 𝑗 , 𝜏𝜃 ( 𝑗)).

(4.14)

Denote by 𝑈int the R-subalgebra of 𝑈𝑞 (𝔤) generated by the elements 𝐾±1
𝑖 , 𝐾𝑖−1

𝑞−1 , 𝐸𝑖 and 𝐹𝑖 . Then we
have an isomorphism 𝑈int/(𝑞1/𝑑 − 1)𝑈int → 𝑈 (𝔤) such that

𝐾±1
𝑖 ↦→ 1,

𝐾𝑖 − 1
𝑞 − 1

↦→ 𝑑𝑖𝐻𝑖 , 𝐸𝑖 ↦→ 𝑋𝛼𝑖 , 𝐹𝑖 ↦→ 𝑋−𝛼𝑖 .

Since 𝑋𝑖 ∈ 𝑈int, by equation (4.14) we conclude that [𝐹𝑖 ,𝔛𝜇] ∈ (𝑞1/𝑑−1)𝑈int for all 𝑖 ∈ 𝐼. We claim that
this implies that𝔛𝜇 ∈ (𝑞1/𝑑−1)𝑈int, hence𝔛𝜇 ∈ (𝑞1/𝑑−1)𝑈+,int

𝜇 , as (𝑞1/𝑑−1)𝑈int∩𝑈+ = (𝑞1/𝑑−1)𝑈int,+

by the triangular decomposition of 𝑈int.
Indeed, assuming 𝔛𝜇 ≠ 0, let 𝑘 ∈ Z be the smallest number such that (𝑞1/𝑑 − 1)𝑘𝔛𝜇 ∈ 𝑈int. If 𝑘 ≥ 0,

then, on the one hand, the image of (𝑞1/𝑑 − 1)𝑘𝔛𝜇 in 𝑈 (𝔤) is a nonzero element of 𝑈 (𝔫+)𝜇, and on the
other hand this image commutes with 𝑋−𝛼𝑖 for all i. But this is impossible, hence 𝑘 ≤ −1.

The inductive step is similar. Using equation (4.13) and the inductive hypothesis, we get [𝐹𝑖 ,𝔛𝜇] ∈
(𝑞1/𝑑 − 1)𝑈int for all 𝑖 ∈ 𝐼. Hence, 𝔛𝜇 ∈ (𝑞1/𝑑 − 1)𝑈+,int

𝜇 . �

Recall that 𝜋 : 𝑈ℎ (𝔤) → U (𝐺)�ℎ� denotes a fixed homomorphism satisfying equation (4.5). When
it is convenient, we extend it to 𝑈ℎ (𝔤) ⊗C�ℎ� C[ℎ−1, ℎ� and the completion of 𝑈𝑞 (𝔤) from [BK19], but
then the target algebra should be U (𝐺) [ℎ−1, ℎ� and

∏
𝜋∈Irr𝐺

(
End(𝑉𝜋) [ℎ−1, ℎ�

)
, respectively.

Corollary 4.20. We have 𝜋(𝔛) ∈ 1 + ℎU (𝐺)�ℎ�.

Following [BK19], consider a homomorphism 𝛾 : 𝑃 → C(𝑞1/𝑑)× such that

𝛾(𝛼𝑖) = 𝑐′𝑖𝑧𝜏𝜃 (𝑖) (𝑖 ∈ 𝐼 \ 𝑋), 𝛾(𝛼𝑖) = 1 (𝑖 ∈ 𝑋), (4.15)

and put

𝜉 (𝜔) = 𝛾(𝜔)𝑞−(𝜔+ ,𝜔+)+
∑

𝑖∈𝐼 (𝛼−
𝑖 ,𝛼

−
𝑖 )𝜔 (𝜛∨

𝑖 ) ,

where 𝜔+ = 1
2 (𝜔+Θ(𝜔)) and (𝜛∨

𝑖 )𝑖∈𝐼 is the dual basis (fundamental coweights) of (𝛼𝑖)𝑖∈𝐼 ; see [BK19,
(8.1)]. It satisfies the relation

𝜉 (𝜔 + 𝛼𝑖) = 𝛾(𝛼𝑖)𝑞−(𝛼𝑖 ,Θ(𝛼𝑖 ))−(𝜔,𝛼𝑖+Θ(𝛼𝑖 ))𝜉 (𝜔)

for 𝜔 ∈ 𝑃 and 𝑖 ∈ 𝐼, which is enough for most of the purposes. We can view 𝜉 as an element of a
completion of 𝑈𝑞 (𝔥) ⊂ 𝑈𝑞 (𝔤). Then one takes

𝒦 ′ = 𝔛𝜉𝑇−1
𝑤𝑋

𝑇−1
𝑤0 ,
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where 𝑇𝑤𝑋 and 𝑇𝑤0 now denote the canonical elements implementing the Lusztig automorphisms. This
gives a universal K-matrix for 𝑈t′

𝑞 (𝔤𝜃 ) in the conventions of [BK19].
To pass to our setting, consider the element 𝜔0 of 𝔥∗ characterized by

(𝜔0, 𝛼𝑖) = 0 (𝑖 ∈ 𝑋), (𝜔0, 𝛼𝑖) =
1
4
(Θ(𝛼𝜏𝜃 (𝑖) ) − 𝛼𝜏𝜃 (𝑖) − Θ(𝛼𝑖) + 2𝜌𝑋 , 𝛼𝑖) (𝑖 ∈ 𝐼 \ 𝑋),

and use the isomorphism Ad𝐾𝜔0 of 𝑈t′
𝑞 (𝔤𝜃 ) onto 𝑈 𝜃𝑞 (𝔤). Namely, define

𝒦 = 𝜏𝜃𝜏0

(
(Ad𝐾𝜔0) (𝒦 ′)

)
= (Ad𝐾𝜔0)

(
𝜏𝜃𝜏0(𝒦 ′)

)
, (4.16)

where 𝜏𝜃𝜏0 is the automorphism of the Hopf algebra 𝑈𝑞 (𝔤) induced by the automorphism 𝜏𝜃𝜏0 of the
Dynkin diagram. Finally, using the universal R-matrix of 𝑈𝑞 (𝔤), we put

ℰ = ℛ21(1 ⊗ 𝒦) (id ⊗ 𝜏𝜃𝜏0) (ℛ). (4.17)

This is a ribbon 𝜏𝜃𝜏0-braid for 𝑈 𝜃𝑞 (𝔤), hence also for 𝑈 𝜃ℎ (𝔤); see [DCNTY19, Section 3.3]. Then

Eℎ = ((Ad 𝑢)𝜋 ⊗ 𝜋) (ℰ) ∈ U (𝐺 𝜃 × 𝐺)�ℎ�

is a well-defined ribbon (𝜏𝜃𝜏0)ℎ-braid for the multiplier algebra model of𝑈 𝜃ℎ (𝔤), where u is the element
(4.12) (for t = 0) and (𝜏𝜃𝜏0)ℎ denotes the unique automorphism of U (𝐺)�ℎ� such that

𝜋 ◦ 𝜏𝜃𝜏0 = (𝜏𝜃𝜏0)ℎ ◦ 𝜋. (4.18)

We callℰ (and also Eℎ) a Balagović–Kolb ribbon (𝜏𝜃𝜏0)ℎ-braid. Note that this element depends on the
choice of 𝛾, and the set of these twist-braids forms a torsor over 𝑍 (𝑈).

Remark 4.21. It is not difficult to see that Corollary 4.20 and identities (4.2) imply that Eℎ = 1⊗𝑔𝑧𝑚𝑋𝑚0
modulo h for some 𝑔 ∈ 𝑍 (𝑈). This is consistent with Theorems 5.5 and 5.10 below.

This finishes our discussion of the ribbon twist-braids in the standard case. Assume now that 𝔲𝜃 < 𝔲
is Hermitian, and take t ∈ T ∗

C
. Note that 𝜏𝜃𝜏0 = id now, since 𝜃 is an inner automorphism. The coideal

𝑈t
ℎ (𝔤

𝜃 ) can be obtained from 𝑈 𝜃𝑞 (𝔤) by twisting and h-adic completion similarly to [DCNTY19,
Theorem C.7]. Namely, define a character 𝜒t : 𝑈 𝜃𝑞 (𝔤) → C[ℎ−1, ℎ� as follows:

• S-type: 𝜒t(𝐾𝜔) = 1 for 𝜔 ∈ 𝑃Θ, 𝜒t = 𝜖 on 𝑈𝑞 (𝔤𝑋 ), 𝜒t(𝐵𝑖) = 0 for the nondistinguished vertices i,

𝜒t(𝐵𝑜) =
𝑠𝑜𝜅𝑜

𝑒−𝑑𝑜ℎ − 1
;

• C-type: 𝜒t = 𝜖 on 𝑈𝑞 (𝔤𝑋 ), 𝜒t(𝐵𝑖) = 0 for all i, 𝜒t(𝐾𝜔) = 𝜆(𝜔) for 𝜔 ∈ 𝑃Θ, where 𝜆 : 𝑃 →
C[ℎ−1, ℎ�× is any homomorphism such that 𝜆(𝛼𝑖) = 1 for all 𝑖 ∈ 𝐼 \ {𝑜} and

𝜆(𝛼𝑜) = 𝑐−1
𝑜 𝑒−ℎ (𝛼

−
𝑜 ,𝛼

−
𝑜) .

Then (𝜒t ⊗ id)Δ maps the generators of 𝑈 𝜃𝑞 (𝔤) into those of 𝑈t
ℎ (𝔤

𝜃 ), except that in the type S case 𝐵𝑜
is mapped into

𝐹𝑜 − 𝑐𝑜𝑧𝜏𝜃 (𝑜)𝑇𝑤𝑋 (𝐸𝜏𝜃 (𝑜) )𝐾−1
𝑜 + 𝑠𝑜𝜅𝑜

𝐾−1
𝑜

𝑒−𝑑𝑜ℎ − 1
,
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but this differs only by an additive constant (which may, however, lie in ℎ−1C�ℎ� rather than in C�ℎ�)
from the corresponding generator of 𝑈t

ℎ (𝔤
𝜃 ). By applying this map to the first leg of ℰ and using the

factorization of ℰ given in [Kol20], we get a ribbon braid ℰt for 𝑈t
ℎ (𝔤

𝜃 ). Then

E t
ℎ = ((Ad 𝑢t)𝜋 ⊗ 𝜋) (ℰt)

is a ribbon braid for the multiplier algebra model of 𝑈t
ℎ (𝔤

𝜃 ), whenever this model is well defined. We
call ℰt (and E t

ℎ) again a Balagović–Kolb ribbon braid.
One problem, however, is that in the S-type case the construction of ℰt guarantees only that

E t
ℎ ∈

∏
𝜌∈Irr𝐺𝜃

t ,
𝜋∈Irr𝐺

(
End(𝑉𝜌) ⊗ End(𝑉𝜋) [ℎ−1, ℎ�

)
.

Proposition 4.22. For all t ∈ T ∗
C

, we have (𝜋 ⊗ 𝜋) (ℰt) ∈ U (𝐺 × 𝐺)�ℎ�.

Proof. We need only to consider the Hermitian S-type case. Assume first that t ∈ T ∗, that is, 𝑠𝑜 ∈ 𝑖R�ℎ�.
Then E t

ℎ is a ribbon braid for the coaction (U (𝐺 𝜃t )�ℎ�, 𝛼ℎ) of (U (𝐺)�ℎ�,Δℎ ,Rℎ). Hence, the assertion
follows from Theorem 3.21, which is applicable by the results of Section 4.4 and Corollary 3.13. For
the general case, observe that by construction the coefficient of ℎ𝑘 of the component of (𝜋 ⊗ 𝜋) (ℰt) in
End(𝑉) ⊗ End(𝑊) [ℎ−1, ℎ� is a rational function in finitely many parameters 𝑠 (𝑛)𝑜 . Since for 𝑘 < 0 this
function vanishes for purely imaginary 𝑠 (𝑛)𝑜 , it must be zero. �

In particular, if the multiplier algebra model of𝑈t
ℎ (𝔤

𝜃 ) is well defined for some t ∈ T ∗
C

, then we have
E t
ℎ ∈ U (𝐺 𝜃t × 𝐺)�ℎ�. It would still be interesting to find a more explicit construction of ℰt similar to

that for ℰ and provide a more direct proof of the above proposition.

5. Comparison theorems

We will combine the results of the previous sections to compare the Letzter–Kolb coideals with the
quasi-coactions defined by the KZ-equations.

5.1. Twisting of ribbon twist-braids

Let us start by refining the twisting procedure from Section 1.5. Assume H is a reductive algebraic
subgroup of G and (U (𝐻)�ℎ�, 𝛼,Ψ) is a quasi-coaction of (U (𝐺)�ℎ�,Δℎ ,Φ). Then, given F ∈
U (𝐺2)�ℎ� and G ∈ U (𝐻 × 𝐺)�ℎ� such that F (0) = 1, G (0) = 1 and

(𝜖 ⊗ id) (F) = (id ⊗ 𝜖) (F) = 1, (id ⊗ 𝜖) (G) = 1,

we get a quasi-coaction (U (𝐻)�ℎ�, 𝛼,ΨF ,G) of (U (𝐺)�ℎ�,Δℎ,F ,ΦF ).
Now, assume in addition that 𝛽 is an involutive automorphism of (U (𝐺)�ℎ�,Δℎ ,Φ) and 𝑣 ∈

U (𝐺)�ℎ� is an element such that 𝑣 (0) = 1,

𝑣𝛽(𝑣) = 1, F = (𝑣 ⊗ 𝑣) (𝛽 ⊗ 𝛽) (F)Δℎ (𝑣)−1. (5.1)

Proposition 5.1. Under the above assumptions, 𝛽𝑣 = 𝑣𝛽(·)𝑣−1 is an involutive automor-
phism of (U (𝐺)�ℎ�,Δℎ,F ,ΦF ). Furthermore, suppose that R ∈ U (𝐺2)�ℎ� is an R-matrix for
(U (𝐺)�ℎ�,Δℎ ,Φ) fixed by 𝛽 and that E ∈ U (𝐻 × 𝐺)�ℎ� is a ribbon 𝛽-braid for R. Then
RF = F21RF−1 is an R-matrix for (U (𝐺)�ℎ�,Δℎ,F ,ΦF ) fixed by 𝛽𝑣 , and

EG,𝑣 = GE (id ⊗ 𝛽) (G)−1(1 ⊗ 𝑣−1) = GE (1 ⊗ 𝑣−1) (id ⊗ 𝛽𝑣 ) (G)−1 (5.2)

is a ribbon 𝛽𝑣 -braid for the quasi-coaction (U (𝐻)�ℎ�, 𝛼G ,ΨF ,G) of (U (𝐺)�ℎ�,Δℎ,F ,ΦF ,RF ).
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We call (U (𝐺)�ℎ�,Δℎ,F ,ΦF , 𝛽𝑣 ) the twisting of (U (𝐺)�ℎ�,Δℎ ,Φ, 𝛽) by (F , 𝑣).

Proof. The claims are not difficult to check by a direct computation, but let us explain a more conceptual
proof using crossed products (or smashed products), cf. [DCNTY19, Remark 1.13]. Namely, consider
the algebra

U (𝐺)�ℎ� �𝛽 Z/2Z = {𝑎 + 𝑎′𝜆𝛽 | 𝑎, 𝑎′ ∈ U (𝐺)�ℎ�, 𝜆2
𝛽 = 1, 𝜆𝛽𝑎 = 𝛽(𝑎)𝜆𝛽}.

We can extend in the usual way the coproduct Δℎ on U (𝐺)�ℎ� to a coproduct Δ̃ℎ on U (𝐺)�ℎ��𝛽 Z/2Z
by letting Δ̃ℎ (𝜆𝛽) = 𝜆𝛽 ⊗ 𝜆𝛽 . Then (U (𝐺)�ℎ� �𝛽 Z/2Z, Δ̃ℎ ,Φ) is a multiplier quasi-bialgebra.

Now, given (F , 𝑣) as above, we can twist (U (𝐺)�ℎ� �𝛽 Z/2Z, Δ̃ℎ ,Φ) by F to get a new
multiplier quasi-bialgebra (U (𝐺)�ℎ� �𝛽 Z/2Z, (Δ̃ℎ)F ,ΦF ). On the other hand, we can first twist
(U (𝐺)�ℎ�,Δℎ ,Φ) by F and then consider the crossed product by 𝛽𝑣 to get (U (𝐺)�ℎ� �𝛽𝑣
Z/2Z, (Δℎ,F )∼,ΦF ). The map

𝑓 : U (𝐺)�ℎ� �𝛽 Z/2Z→ U (𝐺)�ℎ� �𝛽𝑣 Z/2Z, 𝑎 ↦→ 𝑎, 𝜆𝛽 ↦→ 𝑣−1𝜆𝛽𝑣 ,

is an isomorphism of these two multiplier quasi-bialgebras. In particular,

(U (𝐺)�ℎ� �𝛽𝑣 Z/2Z, (Δℎ,F )∼,ΦF )

is indeed a multiplier quasi-bialgebra, and hence 𝛽𝑣 is an automorphism of (U (𝐺)�ℎ�,Δℎ,F ,ΦF ).
Let us turn to ribbon twist-braids. First note thatR is still an R-matrix for (U (𝐺)�ℎ��𝛽Z/2Z, Δ̃ℎ ,Φ)

by its 𝛽-invariance. Moreover, we can view (U (𝐻)�ℎ�, 𝛼,Ψ) as a quasi-coaction of this multiplier quasi-
bialgebra. Then an element E ∈ U (𝐻 × 𝐺)�ℎ� is a ribbon 𝛽-braid for the original quasi-coaction and
R if and only if E (1 ⊗ 𝜆𝛽) is a ribbon braid for the new one and R again.

Finally, the map f satisfies

(id ⊗ 𝑓 ) (GE (1 ⊗ 𝜆𝛽)G−1) = EG,𝑣 (1 ⊗ 𝜆𝛽𝑣 ),

showing that formula (5.2) is a consequence of equation (1.7) for the crossed products and trivial
automorphisms. �

Remark 5.2. Let us also mention a categorical perspective on conditions (5.1), which does not rely
on crossed products. The automorphism 𝛽 defines an autoequivalence 𝐹𝛽 of ((Rep𝐺)�ℎ�, ⊗ℎ ,Φ). The
twisting by F produces an equivalent category ((Rep𝐺)�ℎ�, ⊗ℎ,F ,ΦF ). The functor 𝐹𝛽 gives rise
to an autoequivalence of this new category, which, however, is not defined by any automorphism in
general. Conditions (5.1) ensure that this autoequivalence is naturally monoidally isomorphic to an
autoequivalence defined by an automorphism, namely, to 𝐹𝛽𝑣 .

We now return to the setup of Section 4.2. Let 𝜋 : 𝑈ℎ (𝔤) → U (𝐺)�ℎ� be a homomorphism satisfying
equation (4.5). Assume 𝛽 is an involutive automorphism of the Dynkin diagram of 𝔤. We denote by
the same symbol the corresponding automorphisms of (𝑈ℎ (𝔤),Δ) and (U (𝐺)�ℎ�,Δ); it will always
be clear from the context which one we are using. These are automorphisms of the quasi-triangular
(multiplier quasi-)bialgebras (𝑈ℎ (𝔤),Δ ,ℛ) and (U (𝐺)�ℎ�,Δ ,ΦKZ,RKZ). We also note that, similarly
to equation (4.18), there is a unique automorphism 𝛽ℎ of (U (𝐺)�ℎ�,Δℎ) such that

𝜋 ◦ 𝛽 = 𝛽ℎ ◦ 𝜋.

Lemma 5.3. Let F be a Drinfeld twist for 𝜋 (in the sense of Section 4.2). Then there exists a unique
element 𝑣 ∈ 1 + ℎU (𝐺)�ℎ� such that

𝛽ℎ = 𝑣𝛽(·)𝑣−1, F = (𝑣 ⊗ 𝑣) (𝛽 ⊗ 𝛽) (F)Δ (𝑣)−1. (5.3)

We also have 𝑣𝛽(𝑣) = 1. If, in addition, 𝜋 is ∗-preserving and F is unitary, then v is unitary.
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In other words, once F is fixed, 𝛽ℎ is a twisting of the automorphism 𝛽 of (U (𝐺)�ℎ�,Δ) in a unique
way.

Proof. Since the homomorphisms 𝜋 ◦ 𝛽 and 𝛽 ◦ 𝜋 are equal modulo h, there exists 𝑤 ∈ 1 + ℎU (𝐺)�ℎ�
such that 𝜋 ◦ 𝛽 = (Ad𝑤) ◦ 𝛽 ◦ 𝜋. Then 𝛽ℎ = (Ad𝑤) ◦ 𝛽.

We claim that (𝑤 ⊗ 𝑤) (𝛽 ⊗ 𝛽) (F)Δ (𝑤)−1 is again a Drinfeld twist (for the same 𝜋). Since ΦKZ is
invariant under 𝛽, condition (4.7) is satisfied for (𝛽⊗ 𝛽) (F), hence also for (𝑤 ⊗𝑤) (𝛽⊗ 𝛽) (F)Δ (𝑤)−1.
It remains to check that

Δℎ = (𝑤 ⊗ 𝑤) (𝛽 ⊗ 𝛽) (F)Δ (𝑤)−1Δ (·)Δ (𝑤) (𝛽 ⊗ 𝛽) (F−1) (𝑤−1 ⊗ 𝑤−1),

or equivalently,

Δℎ
(
𝛽ℎ (·)

)
= (𝑤 ⊗ 𝑤) (𝛽 ⊗ 𝛽) (F)Δ (𝑤)−1Δ

(
𝛽ℎ (·)

)
Δ (𝑤) (𝛽 ⊗ 𝛽) (F−1) (𝑤−1 ⊗ 𝑤−1).

But this is true, as the right-hand side of the above identity is easily seen to be equal to (𝛽ℎ ⊗ 𝛽ℎ)Δℎ .
By Lemma 3.18, it follows that by multiplying w by a central element we get an element 𝑣 ∈

1 + ℎU (𝐺)�ℎ� satisfying equation (5.3). Assume 𝑣′ is another element with the same properties. Then
𝑣−1𝑣′ is a central element, hence it also equals 𝑣′𝑣−1 and

F = (𝑣′𝑣−1 ⊗ 𝑣′𝑣−1)FΔ (𝑣′𝑣−1)−1.

By the uniqueness part of Lemma 3.18, we conclude that 𝑣′𝑣−1 = 1.
Next, since 𝛽ℎ and 𝛽 are both involutive, the element 𝛽(𝑣)−1 has the same properties as v, hence

𝛽(𝑣)−1 = 𝑣. Similarly, if 𝜋 is ∗-preserving and F is unitary, then 𝛽ℎ is ∗-preserving as well, and the
element (𝑣∗)−1 has the same properties as v, hence (𝑣∗)−1 = 𝑣. �

5.2. Comparison theorem: non-Hermitian case

We are now ready to prove our main results relating the multiplier algebra models of the Letzter–Kolb
coideals to cyclotomic KZ-equations. Let us first consider the non-Hermitian case.

Theorem 5.4. Assume 𝔨 = 𝔲𝜃 < 𝔲 is a non-Hermitian symmetric pair, with 𝜃 in Satake form (4.1). Then
the multiplier algebra model of the Letzter–Kolb coideal𝑈 𝜃ℎ (𝔤), which is a coaction (U (𝐺 𝜃 )�ℎ�, 𝛼ℎ) of
(U (𝐺)�ℎ�,Δℎ), is obtained by twisting from the quasi-coaction (U (𝐺 𝜃 )�ℎ�,Δ ,ΨKZ) of the multiplier
quasi-bialgebra (U (𝐺)�ℎ�,Δ ,ΦKZ). Any such twisting extends to a twisting between the automorphism
𝜏𝜃𝜏0 of (U (𝐺)�ℎ�,Δ ,ΦKZ) and the automorphism (𝜏𝜃𝜏0)ℎ of (U (𝐺)�ℎ�,Δℎ).
Proof. Using a Drinfeld twistF and an elementG provided by Proposition 4.15, we can twist the coaction
(U (𝐺 𝜃 )�ℎ�, 𝛼ℎ) of (U (𝐺)�ℎ�,Δℎ) to a quasi-coaction (U (𝐺 𝜃 )�ℎ�,Δ ,Ψ) of (U (𝐺)�ℎ�,Δ ,ΦKZ) for
some Ψ. The first statement of the theorem follows then from Theorem 2.6. The second statement, on
twisting 𝜏𝜃𝜏0 to (𝜏𝜃𝜏0)ℎ , follows from Lemma 5.3. �

Theorem 5.5. The twisting provided by Theorem 5.4 establishes a one-to-one correspondence between
the following data:

• the ribbon 𝜏𝜃𝜏0-braids for the quasi-coaction (U (𝐺 𝜃 )�ℎ�,Δ ,ΨKZ) of the quasi-triangular multiplier
quasi-bialgebra (U (𝐺)�ℎ�,Δ ,ΦKZ,RKZ), given by

E ′
KZ𝑔1 = exp(−ℎ(2𝑡𝔨01 + 𝐶𝔨

1)) (𝑧𝑚𝑋𝑚0𝑔)1 (𝑔 ∈ 𝑍 (𝑈)); (5.4)

• the Balagović–Kolb ribbon (𝜏𝜃𝜏0)ℎ-braidsℰ (or their images Eℎ) for the coideal 𝑈 𝜃ℎ (𝔤) of the quasi-
triangular bialgebra (𝑈ℎ (𝔤),Δℎ ,ℛ), for different choices of 𝛾 satisfying equation (4.15).

Under this correspondence, we have E (0)
ℎ = 1 ⊗ 𝑧𝑚𝑋𝑚0𝑔.
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Proof. By Theorem 2.18, we have a complete classification of ribbon 𝜃-braids for the quasi-coaction
(U (𝐺 𝜃 )�ℎ�,Δ ,ΨKZ) of (U (𝐺)�ℎ�,Δ ,ΦKZ). Since 𝜃 = (Ad 𝑧𝑚𝑋𝑚0) ◦ 𝜏𝜃 ◦ 𝜏0, the multiplication by
1 ⊗ 𝑧𝑚𝑋𝑚0 on the right gives a one-to-one correspondence between the ribbon 𝜃-braids and the ribbon
𝜏𝜃𝜏0-braids, so the latter ones are given by equation (5.4). As any Drinfeld twist F satisfies equation
(4.9), formula (5.2) provides a correspondence between the ribbon 𝜏𝜃𝜏0-braids and the (𝜏𝜃𝜏0)ℎ-braids.
Since both the ribbon 𝜏𝜃𝜏0-braids and the Balagović–Kolb ribbon (𝜏𝜃𝜏0)ℎ-braids are torsors over the
finite group 𝑍 (𝑈), this gives a bijective correspondence stated in the theorem.

Finally, since by definition the elements F , G and v used in the twisting have constant terms 1, we
get the claim about E (0)

ℎ . �

Remark 5.6. As we pointed out throughout the paper (see Remarks 2.7 and 4.17), in the non-Hermitian
case there is no real need to consider the multiplier algebra model, so a similar result holds at the level
of the universal enveloping algebras, also beyond the standard case.

Let us formulate this more precisely. Let t = (c, s) ∈ T be such that 𝑐 (0)𝑖 = 1 for all 𝑖 ∈ 𝐼\𝑋 (recall also
that, by definition, we have 𝑠𝑖 = 0 for all 𝑖 ∈ 𝐼 \ 𝑋). If we fix algebra isomorphisms 𝑈ℎ (𝔤) � 𝑈 (𝔤)�ℎ�
and 𝑈t

ℎ (𝔤
𝜃 ) � 𝑈 (𝔤𝜃 )�ℎ� that are identity modulo h (that is, they are given by equation (4.5) and

Proposition C.3), then the coproduct Δ : 𝑈ℎ (𝔤) → 𝑈ℎ (𝔤) ⊗̂𝑈ℎ (𝔤) defines a coproduct Δℎ on 𝑈 (𝔤)�ℎ�
and a coaction 𝛼ℎ : 𝑈 (𝔤𝜃 )�ℎ� → 𝑈 (𝔤𝜃 ) ⊗ 𝑈 (𝔤)�ℎ� of (𝑈 (𝔤)�ℎ�,Δℎ).

The claim then is that this coaction is obtained by twisting from the quasi-coaction
(𝑈 (𝔤𝜃 )�ℎ�,Δ ,ΨKZ) of (𝑈 (𝔤)�ℎ�,Δ ,ΦKZ). Any such twisting extends to a twisting between the auto-
morphisms 𝜏𝜃𝜏0 of (𝑈 (𝔤)�ℎ�,Δ ,ΦKZ) and (𝑈 (𝔤)�ℎ�,Δℎ) and, in the standard case t = 0, provides a
one-to-one correspondence between the ribbon 𝜏𝜃𝜏0-braids as in Theorem 5.5.

Remark 5.7. The type II symmetric pairs admit analogues of Theorems 5.4 and 5.5 and Remark 5.6,
with essentially the same proofs. Indeed, as we have explained along the way, the intermediate results
used in the proofs, such as Theorems 2.6 and 2.18 and Proposition 4.15, all have analogues for the type
II case.

5.3. Comparison theorem: Hermitian case

In the Hermitian case, we do need to consider the multiplier algebra model in our approach.

Theorem 5.8. Assume 𝔲𝜃 < 𝔲 is a Hermitian symmetric pair, with 𝜃 in Satake form equation (4.1).
Take t ∈ T ∗, and choose 𝑍 t

𝜃 ∈ 𝔷(𝔤𝜃t ) such that (𝑍 t
𝜃 , 𝑍

t
𝜃 )𝔤 = −𝑎−2

𝜃 . Then the coaction (U (𝐺 𝜃t )�ℎ�, 𝛼ℎ)
of (U (𝐺)�ℎ�,Δℎ) is obtained by twisting from the quasi-coaction (U (𝐺 𝜃t )�ℎ�,Δ ,ΨKZ,𝑠;𝜇) of
(U (𝐺)�ℎ�,Δ ,ΦKZ) for uniquely defined 𝑠 ∈ R and 𝜇 ∈ ℎR�ℎ�, where ΨKZ,𝑠;𝜇 is defined using 𝑍 t

𝜃 .
The parameter 𝑠 ∈ R is determined as follows:

• S-type : If 𝛼𝑜 is the unique distinguished root and 𝑐 = −𝑖𝑠 (0)𝑜 , then

𝑠 = ± 2
𝜋

log
(
(1 + 𝑐2)1/2 + 𝑐

)
,

where ± is the sign of 𝜅𝑜 (𝑍 t
𝜃 , 𝑋𝛼𝑜 )𝔤;

• C-type : If 𝛼𝑜 is the unique distinguished root such that −𝑖𝛼𝑜 (�̃� t
𝜃 ) + 𝑖𝛼𝜏𝜃 (𝑜) (�̃� t

𝜃 ) > 0, where �̃� t
𝜃 is

the component of 𝑍 t
𝜃 in 𝔥, and 𝑐 = 𝑐 (0)𝑜 , then

𝑠 =
2
𝜋

log 𝑐.

Proof. Choose 𝑍𝜃 ∈ 𝔷(𝔲𝜃 ) such that (𝑍𝜃 , 𝑍𝜃 )𝔤 = −𝑎−2
𝜃 . In the C-type case, we require also that if 𝛼𝑜

is the distinguished root as in the formulation of the theorem, then −𝑖𝛼𝑜 (𝑍𝜃 ) + 𝑖𝛼𝜏𝜃 (𝑜) (𝑍𝜃 ) > 0, which
determines 𝑍𝜃 uniquely. By Lemma 4.8 and the discussion following it, we then get a pair (𝜈, 𝑍𝜈) as in
Section 3.
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By twisting the coaction, we may assume that 𝜋 : 𝑈ℎ (𝔤) → U (𝐺)�ℎ� defining the multiplier algebra
model is as in Lemma 4.5. Then by Lemma 4.7, there is a unitary Drinfeld twist such that

F = 1 + ℎ
𝑖𝑟

2
+𝑂 (ℎ2).

By Lemma 4.13, we could also choose u satisfying equation (4.12) to be unitary, which means that by
twisting 𝛼ℎ we may assume 𝛼ℎ to be ∗-preserving. Hence, by Proposition 4.15, 𝛼ℎ is a twisting of Δ by
a unitary element G.

By Lemma 4.11, we have 𝔤𝜃t = (Ad 𝑧𝜃 )−1(𝔤𝜙) and 𝑍 t
𝜃 = (Ad 𝑧−1

𝜃 𝑔𝜙−1) (𝑍𝜈), where 𝜙 is determined
as follows (see also Remark 4.12):

• S-type : 𝑧𝜃 (𝛼𝑜)𝑠 (0)𝑜 𝜅𝑜 = 𝑖 tan( 𝜋𝜙2 ) and
(𝑍 t
𝜃 , 𝑋𝛼𝑜 )𝔤

𝑧𝜃 (𝛼𝑜) cos( 𝜋𝜙2 )
> 0;

• C-type : 𝑐 (0)𝑜 = − cot( 𝜋4 (𝜙 − 1)).
The map Ad 𝑧𝜃 defines isomorphisms U (𝐺 𝜃t ) → U (𝐺𝜙) and U (𝐺) → U (𝐺) and transforms the

coaction (U (𝐺 𝜃t )�ℎ�, 𝛼ℎ) of (U (𝐺)�ℎ�,Δℎ) into a coaction (U (𝐺𝜙)�ℎ�, �̃�ℎ) of (U (𝐺)�ℎ�, Δ̃ℎ). As
[𝑧𝜃 ⊗ 𝑧𝜃 , 𝑟] = 0, the latter coaction satisfies the assumptions of Theorem 3.17. Hence, this coaction is a
twisting of the quasi-coaction (U (𝐺𝜙)�ℎ�,Δ ,ΨKZ,𝑠;𝜇) of (U (𝐺)�ℎ�,Δ ,ΦKZ) for uniquely determined
𝑠 ∈ R and 𝜇 ∈ ℎR�ℎ�, with s determined by

sin
( 𝜋𝜙

2

)
= tanh

( 𝜋𝑠
2

)
.

Applying (Ad 𝑧𝜃 )−1, we conclude that our original coaction is obtained by twisting from the quasi-
coaction (U (𝐺 𝜃t )�ℎ�,Δ ,ΨKZ,𝑠;𝜇) of (U (𝐺)�ℎ�,Δ ,ΦKZ), and the pair (𝑠, 𝜇) is the only one with this
property.

It remains to verify the formulas for s in the formulation of the theorem.
In the S-type case, using 𝑠 (0)𝑜 = 𝑖𝑐 we can write 𝑧𝜃 (𝛼𝑜)𝜅𝑜𝑐 = tan( 𝜋𝜙2 ). We also have 𝑧𝜃 (𝛼𝑜)𝜅𝑜 = ±1

by Lemma 4.10. We thus obtain sin( 𝜋𝜙2 ) = ±𝑐(1 + 𝑐2)−1/2, or equivalently

𝜋𝑠

2
= ±1

2
log

(
1 + 𝑐(1 + 𝑐2)−1/2

1 − 𝑐(1 + 𝑐2)−1/2

)
= ± log

(
(1 + 𝑐2)1/2 + 𝑐

)
,

with the ± being equal to the sign of 𝑐−1 sin( 𝜋𝜙2 ) = 𝑧𝜃 (𝛼𝑜)𝜅𝑜 cos( 𝜋𝜙2 ). This is equal to the sign of
𝜅𝑜 (𝑍 t

𝜃 , 𝑋𝛼𝑜 )𝔤 because (𝑧𝜃 (𝛼𝑜) cos( 𝜋𝜙2 ))−1(𝑍 t
𝜃 , 𝑋𝛼𝑜 )𝔤 > 0.

In the C-type case, writing 𝑐 (0)𝑜 = 𝑐 > 0, we have

sin
( 𝜋𝜙

2

)
=
𝑐2 − 1
𝑐2 + 1

=
𝑐 − 𝑐−1

𝑐 + 𝑐−1 ,

hence 𝜋𝑠
2 = log 𝑐. �

Remark 5.9. Throughout the paper we made a number of statements about unitarity. We used them in
the proof of Theorem 5.8 to make sure that for t ∈ T ∗ we get 𝑠 ∈ R and 𝜇 ∈ ℎR�ℎ�. It follows that
ΨKZ,𝑠;𝜇 is unitary, and once we know this, a standard argument based on polar decomposition shows that
if 𝜋 : 𝑈ℎ (𝔤) → U (𝐺)�ℎ� and 𝛼ℎ are ∗-preserving, then the twisting can be done by unitary elements.
The same is true for Theorem 5.4.

The parameter 𝜇 can in principle be determined by comparing the K-matrices using the next theorem.
We will do this in detail in the type AIII case in Section 5.5.
Theorem 5.10. The twisting provided by Theorem 5.4 establishes a one-to-one correspondence between
the following data:
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• the ribbon braids for the quasi-coaction (U (𝐺 𝜃t )�ℎ�,Δ ,ΨKZ,𝑠;𝜇) of the quasi-triangular multiplier
quasi-bialgebra (U (𝐺)�ℎ�,Δ ,ΦKZ,RKZ), given by

E ′′
KZ,𝑠;𝜇𝑔1 = exp

(
− ℎ(2𝑡𝔨t01 + 𝐶𝔨t

1 ) + 𝜋(1 − 𝑖𝑠 − 𝑖𝜇) (𝑍 t
𝜃 )1

)
𝑔1 (𝑔 ∈ 𝑍 (𝑈)), (5.5)

• the Balagović–Kolb ribbon braids ℰt (or their images E t
ℎ) for the coideal 𝑈t

ℎ (𝔤
𝜃 ) of the quasi-

triangular bialgebra (𝑈ℎ (𝔤),Δ ,ℛ), for different choices of 𝛾 satisfying equation (4.15).

Under this correspondence, we have E t
ℎ = 1 ⊗ exp(𝜋(1 − 𝑖𝑠)𝑍 t

𝜃 )𝑔 mod ℎ.

Proof. This is proved similarly to Theorem 5.5, but now using the classification result from Theorem
2.19, applied to 𝜎 = exp(𝜋 ad 𝑍 t

𝜃 ) and the fact that the multiplication by 1 ⊗ exp(𝜋𝑍 t
𝜃 ) on the right

gives a one-to-one correspondence between the ribbon 𝜎-braids and the ribbon braids. �

Analogous results hold for generic t ∈ T ∗
C

. More precisely, we have to exclude a countable set of
values of 𝑠 (0)𝑜 (S-type) and 𝑐 (0)𝑜 (C-type) for the distinguished roots to be sure that a multiplier algebra
model for 𝑈t

ℎ (𝔤
𝜃 ) exists; see Remark 4.16. We also have to make sure that ΨKZ,𝑠;𝜇 is well defined,

which means that s should be outside a set A satisfying 𝑖(1 + 2Z) ⊂ 𝐴 ⊂ 𝑖Q×.

Proposition 5.11. In the S-type case, for generic t ∈ T ∗
C

, the coaction (U (𝐺 𝜃t )�ℎ�, 𝛼ℎ)
of (U (𝐺)�ℎ�,Δℎ) is obtained by twisting from the quasi-coaction (U (𝐺 𝜃t )�ℎ�,Δ ,ΨKZ,𝑠;𝜇) of

(U (𝐺)�ℎ�,Δ ,ΦKZ) for 𝑠 ∈ C satisfying 𝑒𝜋𝑠 =
(
(1+ 𝑐2)1/2 + 𝑐

)2
, with 𝑐 = −𝑖𝑠 (0)𝑜 , and a uniquely deter-

mined 𝜇 ∈ ℎC�ℎ�, where the square root (1 + 𝑐2)1/2 is chosen such that (1 + 𝑐2)1/2𝜅𝑜 (𝑍 t
𝜃 , 𝑋𝛼𝑜 )𝔤 > 0.

In the C-type case, the same holds for s satisfying 𝑒𝜋𝑠 = 𝑐2, with 𝑐 = 𝑐 (0)𝑜 , where 𝛼𝑜 is the unique
distinguished root such that −𝑖𝛼𝑜 (�̃� t

𝜃 ) + 𝑖𝛼𝜏𝜃 (𝑜) (�̃� t
𝜃 ) > 0. Such a twisting establishes a one-to-one

correspondence between the ribbon braids (5.5) and the Balagović–Kolb ribbon braids.

Proof. The proof is essentially identical to that of Theorems 5.8 and 5.10. Let us only explain where
the condition (1 + 𝑐2)1/2𝜅𝑜 (𝑍 t

𝜃 , 𝑋𝛼𝑜 )𝔤 > 0 in the S-type case comes from.
Recall that (1 + 𝑐2)−1 = cos2( 𝜋𝜙2 ). We want to choose the square root (1 + 𝑐2)1/2 so that sin( 𝜋𝜙2 ) =

𝑐(1 + 𝑐2)−1/2 holds. Then we obtain

𝑒𝜋𝑠 − 1
𝑒𝜋𝑠 + 1

= tanh
( 𝜋𝑠

2

)
= 𝑐(1 + 𝑐2)−1/2 =

(
(1 + 𝑐2)1/2 + 𝑐

)2
− 1(

(1 + 𝑐2)1/2 + 𝑐
)2

+ 1
,

which gives the asserted formula for 𝑒𝜋𝑠 . From the proof of Theorem 5.8, we see that the desired choice
is given by

(1 + 𝑐2)1/2 =
1

𝑧𝜃 (𝛼𝑜)𝜅𝑜 cos( 𝜋𝜙2 )
.

Then we have

(1 + 𝑐2)1/2𝜅𝑜 (𝑍 t
𝜃 , 𝑋𝛼𝑜 )𝔤 =

(𝑍 t
𝜃 , 𝑋𝛼𝑜 )𝔤

𝑧𝜃 (𝛼𝑜) cos( 𝜋𝜙2 )
> 0,

hence the condition in the statement of the theorem. �

5.4. A Kohno–Drinfeld type theorem

The above results allow us to compare certain representations of type B braid groups.
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(a) 𝜌1 (b) 𝜎1 (c) 𝜎2

Figure 1. Generators of Γ3.

Recall that the braid group Γ𝑛 of type B𝑛 is generated by elements 𝜌1, 𝜎1, . . . , 𝜎𝑛−1 subject to the
following relations (see Figure 1):

𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖 (|𝑖 − 𝑗 | > 1), 𝜎𝑖𝜎𝑗𝜎𝑖 = 𝜎𝑗𝜎𝑖𝜎𝑗 (|𝑖 − 𝑗 | = 1),
𝜌1𝜎𝑖 = 𝜎𝑖𝜌1 (𝑖 > 1), 𝜌1𝜎1𝜌1𝜎1 = 𝜎1𝜌1𝜎1𝜌1.

This is the subgroup of the usual (type A𝑛) braid group on 𝑛 + 1 strands consisting of the braids with
the first strand fixed.

Assume we have a quasi-coaction (𝐵, 𝛼,Ψ) of a quasi-bialgebra (𝐴,Δ ,Φ), and a ribbon braid
E ∈ 𝐵 ⊗ 𝐴 with respect to an R-matrix R ∈ 𝐴 ⊗ 𝐴. (As before, we will actually use the corresponding
variants for multiplier algebras.) Consider a (left) B-module V and an A-module W. Then we get a
representation of Γ𝑛 on𝑉 ⊗𝑊 ⊗𝑛, with 𝜌1 acting by E on the zeroth and first factors and 𝜎𝑖 acting by the
braiding ΣR on the i-th and (𝑖 + 1)-st factors, where Σ denotes the flip. More precisely, we have to fix a
parenthesization on 𝑉 ⊗𝑊 ⊗𝑛 and take into account the associativity morphisms, but different choices
lead to equivalent representations by the standard coherence argument. For example, for 𝑛 = 3 we can
take

((𝑉 ⊗𝑊) ⊗𝑊) ⊗𝑊,

and then the representation is defined by

𝜌1 ↦→ E0,1, 𝜎1 ↦→ Ψ−1
0,1,2(ΣR)1,2Ψ0,1,2, 𝜎2 ↦→ Ψ−1

01,2,3(ΣR)2,3Ψ01,2,3.

Let us first consider the non-Hermitian case. Since the involutive automorphisms of quasi-bialgebras
are nontrivial, we first need to pass to crossed products, as in the proof of Proposition 5.1.

On the side of q-deformations, we take the Hopf algebra 𝑈ℎ (𝔤) �𝜏𝜃 𝜏0 Z/2Z and consider the ribbon
braidℰ(1⊗ 𝜆𝜏𝜃 𝜏0) for a Balagović–Kolb ribbon twist-braidℰ (defined by 𝛾 satisfying equation (4.15)).

Take any𝑈 𝜃ℎ (𝔤)-module V and (𝑈ℎ (𝔤) �𝜏𝜃 𝜏0 Z/2Z)-module W that are finitely generated and free as
C�ℎ�-modules. Note that a (𝑈ℎ (𝔤) �𝜏𝜃 𝜏0 Z/2Z)-module is the same as a 𝑈ℎ (𝔤)-module plus a C�ℎ�-
linear isomorphism 𝑢 : 𝑊 → 𝑊 such that 𝑢2 = 1 and 𝑢𝑎 = (𝜏𝜃𝜏0) (𝑎)𝑢 for all 𝑎 ∈ 𝑈ℎ (𝔤). We then get a
representation of Γ𝑛 as described above from ℰ and ℛ.

On the side of cyclotomic KZ-equations, we can start with finite-dimensional representations of
𝑈 (𝔤𝜃 ) and 𝑈 (𝔤) �𝜏𝜃 𝜏0 Z/2Z on �̃� and �̃� . The quasi-coaction (𝑈 (𝔤𝜃 )�ℎ�,Δ ,ΨKZ) of (𝑈 (𝔤)�ℎ� �𝜏𝜃 𝜏0

Z/2Z,Δ ,ΦKZ) together with RKZ = 𝑒−ℎ𝑡 and a ribbon 𝜏𝜃𝜏0-braid E ′
KZ𝑔1 (5.4) define a representation

of Γ𝑛 on (�̃� ⊗ �̃� ⊗𝑛)�ℎ�.
Then Theorems 5.4 and 5.5 and Remark 5.6 imply the following.

Theorem 5.12. Let 𝔲𝜃 < 𝔲 be a non-Hermitian symmetric pair, with 𝜃 in Satake form. Let V be a
𝑈 𝜃ℎ (𝔤)-module, and W be a (𝑈ℎ (𝔤) �𝜏𝜃 𝜏0 Z/2Z)-module, that are finitely generated and free as C�ℎ�-
modules. Then the representation of Γ𝑛 on 𝑉 ⊗C�ℎ� 𝑊 ⊗𝑛 defined by ℰ and Σℛ is equivalent to the
one on ((𝑉/ℎ𝑉) ⊗ (𝑊/ℎ𝑊)⊗𝑛)�ℎ� defined by (E ′

KZ𝑔1,ΨKZ, ΣRKZ,ΦKZ) for the choice of g satisfying
1 ⊗ (𝑧𝑚𝑋𝑚0𝑔) =ℰ mod ℎ.

In the Hermitian case, we can do similar constructions with the following modifications. First, as
𝜏𝜃𝜏0 = id, we don’t have to take crossed products. Thus, given t ∈ T ∗, a Balagović–Kolb ribbon braidℰt

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.11


62 K. De Commer et al.

for𝑈t
ℎ (𝔤

𝜃 ) and ΣR defines a representation of Γ𝑛 on𝑉 ⊗C�ℎ�𝑊 ⊗𝑛. On the side of KZ-equations, by our
construction of ΨKZ,𝑠;𝜇, we can only consider𝑈 (𝔤𝜃t )-modules �̃� that can be integrated to representations
of 𝐺 𝜃t or, equivalently, that are direct summands of finite-dimensional𝑈 (𝔤)-modules. We use the ribbon
braid E ′′

KZ,𝑠;𝜇 from equation (5.5).
As a consequence of Theorems 5.8 and 5.10, we get the following result.

Theorem 5.13. Let 𝔲𝜃 < 𝔲 be a Hermitian symmetric pair, with 𝜃 in Satake form, and t ∈ T ∗.
Let V be a 𝑈t

ℎ (𝔤
𝜃 )-module and W be a 𝑈ℎ (𝔤)-module that are finitely generated and free as C�ℎ�-

modules, and assume also that V is a direct summand of a 𝑈ℎ (𝔤)-module with the same property. Then
the representation of Γ𝑛 on 𝑉 ⊗C�ℎ� 𝑊 ⊗𝑛 defined by ℰt and ℛ is equivalent to the representation on
((𝑉/ℎ𝑉) ⊗ (𝑊/ℎ𝑊)⊗𝑛)�ℎ� defined by (E ′′

KZ,𝑠;𝜇𝑔1,ΨKZ,𝑠;𝜇,ΣRKZ,ΦKZ), for the subgroup 𝐺 𝜃t < 𝐺 and
parameters (𝑠, 𝜇) from Theorem 5.8, for the choice of 𝑔 ∈ 𝑍 (𝑈) satisfying 1 ⊗ (exp(𝜋𝑖(1 − 𝑖𝑠)𝑍 t

𝜃 )𝑔) =
ℰt mod ℎ.
Remark 5.14. Since the subgroups 𝐺 𝜃t are conjugate to 𝐺 𝜃 , we could equally well consider the KZ-
equations only for 𝐺 𝜃 < 𝐺. We do not do this as the extra choice of conjugator will affect the
correspondence ℰt = EKZ mod ℎ.

As a corollary, we can also get a version of Theorem 5.12 in the analytic setting. We will prove one
such result and then discuss how it can be generalized.

We can define the algebras 𝑈𝑞 (𝔤) and 𝑈 𝜃𝑞 (𝔤) for 𝑞 ∈ C× not a nontrivial root of unity. Furthermore,
as has been noted in [DCNTY19][DCM20], the constructions of a Balagović–Kolb ribbon twist-braid
ℰ, the associators ΨKZ,𝑠 and so on make sense in this setting. We can therefore consider two types of
finite-dimensional representations of Γ𝑛, defined by ℰ and monodromy of KZ-equations. To compare
such representations we need a way to associate a representation of𝑈 𝜃𝑞 (𝔤) to a representation of𝑈 (𝔤𝜃 ).
To simplify matters, let us consider only representations obtained by restriction from representations of
𝑈𝑞 (𝔤) and 𝑈 (𝔤). The representation theories of 𝑈𝑞 (𝔤) and 𝑈 (𝔤) are well understood, so for any finite-
dimensional 𝑈 (𝔤)-module V we have its quantum analogue 𝑉𝑞 . This correspondence extends also to
representations of the crossed products 𝑈 (𝔤) �𝜏𝜃 𝜏0 Z/2Z and 𝑈𝑞 (𝔤) �𝜏𝜃 𝜏0 Z/2Z.
Corollary 5.15. Take 𝑞 > 0, and assume that 𝔲𝜃 < 𝔲 is a non-Hermitian symmetric pair. Consider a
finite-dimensional 𝑈 (𝔤)-module V and a finite-dimensional (𝑈 (𝔤) �𝜏𝜃 𝜏0 Z/2Z)-module W, and view V
as a 𝑈 (𝔤𝜃 )-module. Then the representation of Γ𝑛 on 𝑉𝑞 ⊗𝑊 ⊗𝑛

𝑞 defined by a Balagović–Kolb ribbon
𝜏𝜃𝜏0-braid for𝑈 𝜃𝑞 (𝔤) and the universal R-matrix ℛ for𝑈𝑞 (𝔤), corresponding to ℎ = log 𝑞, is equivalent
to the representation on 𝑉 ⊗ 𝑊 ⊗𝑛 defined by (E ′

KZ𝑔1,ΨKZ,ΣRKZ,ΦKZ) given by monodromy of the
cyclotomic KZ-equations for the subgroup 𝐺 𝜃 < 𝐺 and some choice of 𝑔 ∈ 𝑍 (𝑈 𝜃 ).
Proof. We may assume that V and W are equipped with Hermitian scalar products such that they give
rise to unitary representations of U. In a similar way, the assumption 𝑞 > 0 implies that 𝑈𝑞 (𝔤) is a
∗-algebra and its representations on 𝑉𝑞 and 𝑊𝑞 can be turned into ∗-representations.

Theorem 5.5 gives us a bijection between the Balagović–Kolb ribbon 𝜏𝜃𝜏0-braids for 𝑈 𝜃ℎ (𝔤) and the
ribbon 𝜏𝜃𝜏0-braids (5.4). By specialization this gives us a bijection also in the analytic setting, but a
priori it is not given by any formula similar to equation (5.2), as it is not clear when G can be specialized.

Now, using this bijection, it is convenient to extend the representations of Γ𝑛 to Γ𝑛×𝑍 (𝑈), with 𝑍 (𝑈)
acting on the first factors 𝑊𝑞 and W of𝑉𝑞 ⊗𝑊 ⊗𝑛

𝑞 and𝑉 ⊗𝑊 ⊗𝑛, and prove a formally stronger statement
that these representations of Γ𝑛 × 𝑍 (𝑈) are equivalent. The representations have the same character
since they are obtained by specialization from the formal case and in that case the representations are
equivalent. Therefore, it suffices to prove that the representations are completely reducible. For this, in
turn, it suffices to show that in both cases the operators of the representations span ∗-algebras.

Observe in general that in the presence of a ∗-involution, if we have a quasi-coaction (𝐵, 𝛼,Ψ) of a
quasi-bialgebra (𝐴,Δ ,Φ) and a ribbon braid E with respect to an R-matrix R, with unitary Ψ and Φ
and the R-matrix satisfying R∗ = R21, then E∗ is also a ribbon braid. Indeed, analogues of identities
(1.4) and (1.5) for E∗ are obtained immediately by taking the adjoints. For equation (1.6), we in addition
have to conjugate by R12 and then flip the last two tensor factors.
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Since in the formal setting we have a complete classification of ribbon twist-braids, we conclude that
every Balagović–Kolb ribbon 𝜏𝜃𝜏0-braid for 𝑈 𝜃ℎ (𝔤) and every ribbon 𝜏𝜃𝜏0-braid (5.4), being multiplied
by 1⊗𝜆𝜏𝜃 𝜏0 on the right, has the property that it coincides with its adjoint up to a factor 1⊗𝑔 (𝑔 ∈ 𝑍 (𝑈)).
(For the twist-braids (5.4) this is also not difficult to see by definition, and for the Balagović–Kolb’s
ones this can be checked by an explicit computation as well [DCM20].) Hence, the same is true in the
analytic setting, which implies the desired property of the representations. �

Remark 5.16. Corollary 5.15 remains true for generic 𝑞 ∈ C. Briefly, this can be proved by viewing
both representations as defined over a field of meromorphic functions in q. These representations have
the same character by Theorem 5.12. They can also be shown to be completely reducible, essentially
because everything is determined by restriction to 𝑞 > 0, and for every such q the representations are
completely reducible. Hence, they are equivalent, and then by specialization we get an equivalence for
generic values of q.

Remark 5.17. In the Hermitian case, for 𝑞 > 0, we can define an analogue of the parameter set T ∗ for
which 𝑈t

𝑞 (𝔤𝜃 ) are ∗-coideals; see [DCNTY19]. Then the proof of the above corollary still works for
such t, but with a caveat. Assume t is obtained by specialization from a parameter in our set T ∗. Then to
be able to use Theorem 5.13 or even formulate the result in the analytic setting, we need 𝜇 provided by
Theorem 5.8 to be specializable. Assuming we have an explicit formula for 𝜇 as a function of t that can
be specialized, this can be further generalized to generic 𝑞 ∈ C. In the type AIII case analyzed below,
we see that this is indeed the case, and it is natural to expect that the same it true in all other cases.

5.5. Example: AIII case

In this section, we look in detail at the AIII symmetric pairs, that is, the pairs 𝔰(𝔲𝑝 ⊕ 𝔲𝑁−𝑝) < 𝔰𝔲𝑁 for
0 < 𝑝 ≤ 𝑁/2 and 𝑁 ≥ 2 (see Figure 2).

Thus, 𝔲 = 𝔰𝔲𝑁 , 𝔤 = 𝔰𝔩𝑁 (C). The normalized invariant form is (𝑋,𝑌 )𝔤 = Tr(𝑋𝑌 ). As the Cartan
subalgebra 𝔥, we take the diagonal matrices with trace zero. Let 𝑒𝑖 𝑗 be the matrix units of 𝑀𝑁 (C).
Define 𝐿𝑖 ∈ 𝔥∗ by 𝐿𝑖 (

∑
𝑗 𝑎 𝑗𝑒 𝑗 𝑗 ) = 𝑎𝑖 . As a system of simple roots and generators of 𝔤, we take

Π = {𝛼𝑖 = 𝐿𝑖 − 𝐿𝑖+1}1≤𝑖≤𝑁−1, 𝐻𝑖 = 𝑒𝑖𝑖 − 𝑒𝑖+1,𝑖+1, 𝑋𝛼𝑖 = 𝑒𝑖,𝑖+1, 𝑋−𝛼𝑖 = 𝑒𝑖+1,𝑖 .

Note that

(𝐿𝑖 , 𝐿𝑖) = 1 − 1
𝑁
, (𝐿𝑖 , 𝐿 𝑗 ) = − 1

𝑁
(𝑖 ≠ 𝑗). (5.6)

Define

𝑍𝜈 = 𝑖 diag
(

1 − 𝑝

𝑁
, . . . , 1 − 𝑝

𝑁︸�����������������︷︷�����������������︸
𝑝

,− 𝑝

𝑁
, . . . ,− 𝑝

𝑁︸�����������︷︷�����������︸
𝑁−𝑝

)
, 𝜈 = Ad exp(𝜋𝑍𝜈).

Then 𝔲𝜈 = 𝔰(𝔲𝑝 ⊕ 𝔲𝑁−𝑝) and the pair (𝜈, 𝑍𝜈) is as in Section 3.1. We will write 𝔨 for 𝔲𝜈 . The unique
noncompact simple root is 𝛼𝑝 .

The S-type case corresponds to 𝑁 = 2𝑝. Then the distinguished simple root is 𝛼𝑝 , 𝑋 = ∅, and as an
involution 𝜃 in Satake form we take

𝜃 = Ad𝑚0, 𝑚0 = 𝐴𝑁 =

������
1

−1

. .
.

(−1)𝑁−1

 !!!!"
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1

𝑁 − 1

𝑝

(a) S-type

1 𝑝

𝑁 − 𝑝𝑁 − 1

(b) C-type

Figure 2. Satake diagrams for AIII symmetric pairs.

so that 𝑧 = 1 in equation (4.1). It is clear that (𝜈, 𝑍𝜈) is associated with 𝜃 as described after Lemma
4.9. For every t ∈ T ∗, we fix a normalized element 𝑍 t

𝜃 ∈ 𝔷(𝔤𝜃t ) by requiring (𝑍 t
𝜃 , 𝑋𝛼𝑝 )𝔤 > 0. For the

standard case t = 0, we write 𝑍𝜃 = 𝑍0
𝜃 ∈ 𝔷(𝔤𝜃 ).

The C-type case corresponds to 0 < 𝑝 < 𝑁/2. In this case, the distinguished simple roots are 𝛼𝑝 and
𝛼𝑁−𝑝 , 𝑋 = {𝛼𝑝+1, . . . , 𝛼𝑁−𝑝−1}. As an involution 𝜃 in Satake form, we take

𝜃 = Ad 𝑧𝑚0𝑚𝑋 , 𝑧 = 𝑒𝜋𝑖𝑝/𝑁 diag((−1) 𝑝 , . . . , (−1) 𝑝︸�����������������︷︷�����������������︸
𝑝

,−(−1)𝑁−𝑝 , . . . ,−(−1)𝑁−𝑝).

Note that

𝑚0𝑚𝑋 =
���

𝐴𝑝
−(−1)𝑁−𝑝 𝐼𝑁−2𝑝

(−1)𝑁−𝑝𝐴𝑝

 !" , 𝑧𝑚0𝑚𝑋 = 𝑒𝜋𝑖𝑝/𝑁
���

−𝐴𝑡𝑝
𝐼𝑁−2𝑝

−𝐴𝑝

 !" .
Again, (𝜈, 𝑍𝜈) is the unique pair associated with 𝜃 for which 𝛼𝑝 is a noncompact root. For every t ∈ T ∗,
we fix a normalized element 𝑍 t

𝜃 ∈ 𝔷(𝔤𝜃t ) by requiring −𝑖𝛼𝑝 (�̃� t
𝜃 ) + 𝑖𝛼𝑁−𝑝 (�̃� t

𝜃 ) > 0. Again, for the
standard case we write 𝑍𝜃 = 𝑍0

𝜃 ∈ 𝔷(𝔤𝜃 ).

Theorem 5.18. With the above choices, the parameters 𝑠 ∈ R and 𝜇 ∈ ℎR�ℎ� associated with t ∈ T ∗

according to Theorem 5.8 are determined as follows (with 𝑞 = 𝑒ℎ):

• S-type : 𝑠 + 𝜇 =
2
𝜋

log
((

1 − 𝑞(𝑞 + 1)2

4
𝑠2
𝑝

)1/2
− 𝑞1/2 (𝑞 + 1)

2
𝑖𝑠𝑝

)
;

• C-type : 𝑠 + 𝜇 =
2
𝜋

log 𝑐𝑝 +
ℎ

𝜋
.

In particular, the standard case t = 0 corresponds to 𝑠 + 𝜇 = 0.

We will prove the theorem by comparing the eigenvalues of K-matrices. In the AIII case, this is
facilitated by the knowledge of solutions of the reflection equation [Mud02].

As in Section 4.5, we will work over the field C(𝑞1/𝑑) and then pass to C[ℎ−1, ℎ�. The fundamental
representation of 𝑈𝑞 (𝔤) on 𝑉 = C(𝑞1/𝑑)𝑁 is given by

𝜋𝑉 (𝐸𝑖) = 𝑞1/2𝑒𝑖,𝑖+1, 𝜋𝑉 (𝐹𝑖) = 𝑞−1/2𝑒𝑖+1,𝑖 , 𝜋𝑉 (𝐾𝑖) = 𝑞𝑒𝑖𝑖 + 𝑞−1𝑒𝑖+1,𝑖+1.

Writing 𝑅 = 𝑞−1/𝑁 (𝜋𝑉 ⊗ 𝜋𝑉 ) (ℛ) for the universal R-matrix ℛ, we have

𝑅 =
∑
𝑖, 𝑗

𝑞−𝛿𝑖 𝑗 𝑒𝑖𝑖 ⊗ 𝑒 𝑗 𝑗 + (𝑞−1 − 𝑞)
∑
𝑖< 𝑗

𝑒𝑖 𝑗 ⊗ 𝑒 𝑗𝑖 .
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Consider the K-matrix 𝒦t = (𝜖 ⊗ id) (ℰt) of a Balagović–Kolb ribbon braid ℰt for t ∈ T ∗. Then
𝐾 t = 𝜋𝑉 (𝒦t) satisfies the reflection equation

𝐾 t
1 �̂�12𝐾

t
1 �̂�12 = �̂�12𝐾

t
1 �̂�12𝐾

t
1,

where �̂� = Σ𝑅. The invertible solutions of this equation are classified in [Mud02] as

������������������

𝜆 + 𝜇 𝑦1
. . . . .

.

𝜆 + 𝜇 𝑦𝑟
𝜆

. . .

𝜆
𝑦𝑁−𝑟+1

. .
.

𝑦𝑁

 !!!!!!!!!!!!!!!!"

, (5.7)

where we have the general requirement 𝑦𝑖𝑦𝑁−𝑖+1 = −𝜆𝜇 ≠ 0. (This takes into account that the conven-
tions in [Mud02] are different. Our matrix R corresponds to 𝑅21 of [Mud02], with q replaced by 𝑞−1.
Note also that the ground field in [Mud02] is C, but the arguments there are purely combinatorial and
work for any field of characteristic zero.) We are interested only in the nonconstant solutions, since by
Theorem 5.10 the matrix 𝐾 t is conjugate (by some element 𝑇 ∈ 𝑀𝑁 (C)�ℎ� such that 𝑇 (0) = 𝐼𝑁 ) to the
image of

exp
(
− ℎ𝐶𝔨t + 𝜋(1 − 𝑖𝑠 − 𝑖𝜇)𝑍 t

𝜃

)
𝑔 (5.8)

in the fundamental representation of 𝔰𝔲𝑁 for some 𝑔 ∈ 𝑍 (𝑈), which is clearly nonconstant.
Next, let us make a choice of a Balagović–Kolb ribbon braid. Recall that in the standard case the

K-matrix 𝒦 and the ribbon braid ℰ are given by equations (4.16) and (4.17). In our present Hermitian
case 𝜏𝜃𝜏0 = id, and 𝒦 can be written as

𝒦 = �̃�𝜉 ′𝑇−1
𝑤𝑋

𝑇−1
𝑤0 , (5.9)

where �̃� = (Ad𝐾𝜔0) (𝔛) and 𝜉 ′ = 𝜉𝐾2𝜔0 ; see [DCM20, Section 4]. Furthermore, by [DCM20, Lemma
4.24], the function 𝛾 defining 𝜉 can be chosen so that 𝜉 ′ = 𝜏𝜃 (𝑧)𝐶Θ, where 𝐶Θ acts on every vector of
weight 𝜔 by 𝑞−(𝜔

+ ,𝜔+) , with 𝜔+ = 1
2 (𝜔 + Θ(𝜔)). Therefore,

𝜋𝑉 (𝜉 ′)𝑒𝑖 = 𝜏𝜃 (𝑧) (𝐿𝑖)𝑞−(𝐿
+
𝑖 ,𝐿

+
𝑖 )𝑒𝑖 = 𝑧(Θ(𝐿𝑖))𝑞−(𝐿

+
𝑖 ,𝐿

+
𝑖 )𝑒𝑖 , (5.10)

where we used equation (3.2) and that 𝑧(𝛼𝑖) = 1 for 𝑖 ∈ 𝑋 . We will assume from now on that 𝒦 is
defined using this particular 𝜉 ′.

The following formula, which will allow us to compute some matrix coefficients of𝐾 = 𝐾0 = 𝜋𝑉 (𝒦),
is probably well known to experts.

Lemma 5.19. We have

𝜋𝑉 (𝑇𝑤0 ) = 𝑞
𝑁−1

2 𝐴𝑁 .

Proof. By definition (see, e.g., [Jan96, Section 8.6]), we have

𝑇𝑤0 = 𝑇[1]𝑇[2] · · ·𝑇[𝑁−1] , 𝑇[𝑘 ] = 𝑇𝑘𝑇𝑘−1 · · ·𝑇1,
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and the operators 𝜋𝑉 (𝑇𝑖) are given by

𝜋𝑉 (𝑇𝑖)𝑒 𝑗 = 𝑒 𝑗 ( 𝑗 ≠ 𝑖, 𝑖 + 1), 𝜋𝑉 (𝑇𝑖)𝑒𝑖 = −𝑞1/2𝑒𝑖+1, 𝜋𝑉 (𝑇𝑖)𝑒𝑖+1 = 𝑞1/2𝑒𝑖 .

This gives the result. �

In the nonstandard case, we have

𝒦t = (𝜒t ⊗ id) (ℛ21(1 ⊗ 𝒦)ℛ)

for an appropriate character 𝜒t : 𝑈 𝜃𝑞 (𝔤) → C[ℎ−1, ℎ�, as described in Section 4.5.
Write 𝑇 = (id ⊗ 𝜋𝑉 ) (ℛ21) ∈ 𝑈𝑞 (𝔤) ⊗ 𝑀𝑁 (C(𝑞1/𝑑)). Then T is an upper triangular matrix with

coefficients in 𝑈𝑞 (𝔟−), and

𝐾 t = (𝜒t ⊗ id) (𝑇 (1 ⊗ 𝐾)𝑇∗),

where we remind that ℎ∗ = ℎ.

Lemma 5.20. We have

𝐾 t
𝑁 1 = 𝜒t

(
𝐾

2−𝑁
𝑁

1 𝐾
4−𝑁
𝑁

2 · · ·𝐾
𝑁−2
𝑁

𝑁−1

)
𝐾𝑁 1.

Proof. By definition, we have

𝐾 t
𝑁 1 = 𝜒t

(∑
𝑖, 𝑗

𝑇𝑁𝑖𝑇
∗
1 𝑗

)
𝐾𝑖 𝑗 .

Since T is upper triangular, the contribution of 𝑖 ≠ 𝑁 is zero. The form of equation (5.7) and the fact
that K is not scalar further tell us that 𝐾𝑁 𝑗 = 0 for 𝑗 ≠ 1. Therefore,

𝐾 t
𝑁 1 = 𝜒t (𝑇𝑁𝑁𝑇∗

11)𝐾𝑁 1.

Since 𝑇𝑁𝑁𝑇
∗
11 = 𝑇𝑁𝑁𝑇11 = 𝐾

2−𝑁
𝑁

1 𝐾
4−𝑁
𝑁

2 · · ·𝐾
𝑁−2
𝑁

𝑁−1 by the usual factorization of ℛ (see, e.g., [Kas95,
Section XVII.2]), this proves the lemma. �

To get further information on the K-matrices, we will use that 𝐾 t must commute with 𝜋𝑉 (𝑈t
ℎ (𝔤)).

We will treat the S-type and C-type cases separately.
In the S-type case, Θ(𝐿𝑖) = 𝐿𝑁−𝑖+1. The coideal 𝑈t

ℎ (𝔤
𝜃 ) is generated by 𝑈ℎ (𝔥𝜃 ), the elements

𝐵𝑖 = 𝐹𝑖 − 𝑞−1𝐸𝑁−𝑖𝐾
−1
𝑖 (𝑖 < 𝑝), 𝐵𝑝 = 𝐹𝑝 − 𝑞−2𝐸𝑝𝐾

−1
𝑝 +

𝑠𝑝 (𝐾−1
𝑝 − 1)

𝑞−1 − 1
,

and their adjoints.

Proposition 5.21. In the S-type case, for every t ∈ T ∗, we have

𝐾 t = (−1) 𝑝−1𝑞
1

2𝑝−𝑝
(
𝑞1/2(𝑞 + 1)𝑠𝑝 𝐼𝑝 −𝐴𝑡𝑝

𝐴𝑝 0

)
. (5.11)

Proof. It is easily seen that the nonconstant matrices (5.7) commuting with the generators of 𝑈t
ℎ (𝔤

𝜃 )
are precisely of the form

𝑦

(
𝑞1/2(𝑞 + 1)𝑠𝑝 𝐼𝑝 −𝐴𝑡𝑝

𝐴𝑝 0

)
for 𝑦 ∈ C[ℎ−1, ℎ�×. (Note that these solutions were also described in [KS09, Section 5].)
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To determine y, we look at the matrix coefficient 𝐾 t
𝑁 1. By Lemma 5.20, it is independent of t, since

𝜒t is trivial on the Cartan part in the S-type case. In the standard case, we compute 𝐾𝑁 1 using definition
(5.9).

By equations (5.10) and (5.6), we have 𝜋𝑉 (𝜉 ′) = 𝑞
1

2𝑝 −
1
2 , while Lemma 5.19 describes the action of

𝑇𝑤0 . Since 𝔛 lies in a completion of 𝑈𝑞 (𝔫+) and has the weight zero component 1, we conclude that

𝐾 t
𝑁 1 = 𝐾𝑁 1 = 𝑞

1
2𝑝−𝑝 .

Hence 𝑦 = (−1) 𝑝−1𝑞
1

2𝑝 −𝑝 . �

Proof of Theorem 5.18: S-type case. Note that the matrix 𝐾 t given by equation (5.11) leaves the two-
dimensional spaces spanned by 𝑒𝑖 and 𝑒2𝑝−𝑖+1 invariant. From this we see that it has eigenvalues

𝑥± = (−1) 𝑝−1𝑞
1

2𝑝 −𝑝
( 𝑞1/2 (𝑞 + 1)

2
𝑠𝑝 ± 𝑖

(
1 − 𝑞(𝑞 + 1)2

4
𝑠2
𝑝

)1/2)
,

each of multiplicity p. (Recall that we are assuming 𝑠𝑝 ∈ 𝑖ℎR�ℎ�, so
(
1− 𝑞 (𝑞+1)2

4 𝑠2
𝑝

)1/2
is well-defined

as an element of R�ℎ�.)
On the other hand, consider a K-matrix as in equation (5.8) but using (𝔨, 𝑍𝜈) instead of (𝔲𝜃t , 𝑍 t

𝜃 ),
and denote its image under the fundamental representation of 𝔰𝔲𝑁 by M. (For the moment, we leave the
choice of 𝑔 ∈ 𝑍 (𝑈) free.) Then 𝐾 t is conjugate to M by a formal matrix. Let us compute the eigenvalues
of M.

The Casimir operator 𝐶𝔨 equals 𝐶𝔰𝔲𝑝⊕𝔰𝔲𝑝 − Tr(𝑍2
𝜈)−1𝑍2

𝜈 . Since the Casimir operator of 𝔰𝔲𝑝 acts as
the scalar 𝑝

2−1
𝑝 in the fundamental representation of 𝔰𝔲𝑝 , it follows that 𝐶𝔨 acts as 𝑝2−1

𝑝 + 1
2𝑝 = 𝑝 − 1

2𝑝 .
Hence, the eigenvalues of M are

𝑦± = ±𝑞
1

2𝑝−𝑝𝑖𝑒±
𝜋
2 (𝑠+𝜇)𝑒

2𝜋𝑖𝑘
2𝑝 ,

each of multiplicity p, for some 0 ≤ 𝑘 ≤ 2𝑝 − 1.
It follows that 𝑦+ coincides with 𝑥+ or 𝑥−. Since s is real, by looking at the order zero terms we can

conclude that this is possible only if 𝑒
𝜋𝑖𝑘
𝑝 = ±1 and

𝑒
𝜋
2 (𝑠+𝜇) =

(
1 − 𝑞(𝑞 + 1)2

4
𝑠2
𝑝

)1/2
± 𝑞1/2(𝑞 + 1)

2
𝑖𝑠𝑝 .

Furthermore, since we already know the formula for s by Theorem 5.8, we see that for 𝑠 (0)𝑝 ≠ 0 the sign
must be − and 𝑔 ∈ 𝑍 (𝑆𝑈 (𝑁)) is the scalar matrix 𝑒

𝜋𝑖𝑘
𝑝 = (−1) 𝑝−1.

It remains to handle the case 𝑠 (0)𝑝 = 0 so that 𝔤𝜃t = 𝔤𝜃 . Then Theorem 5.8 implies that 𝑠 = 0. We first
claim that

𝑍𝜃 =
(−1) 𝑝

2
𝐴𝑁 .

Since 𝜃 = Ad 𝐴𝑁 , we have 𝐴𝑁 ∈ 𝔷(𝔲𝜃 ), hence this formula must be true up to a sign. Then the
requirement (𝑍𝜃 , 𝑋𝑝)𝔤 > 0 forces this choice.

Now, write 𝑀 ′ for the image of equation (5.8) under the fundamental representation of 𝔰𝔲𝑁 . From
the above formula for 𝑍𝜃 , we see that 𝑀 ′ preserves the span of 𝑒𝑖 and 𝑒2𝑝−𝑖+1 for each i, analogously to
the situation for 𝐾 t observed above. Restricting to the span of 𝑒1 and 𝑒𝑁 , we find

𝑀 ′(𝑒1 + 𝑖𝑒𝑁 ) = (−1) 𝑝𝑖𝑞
1

2𝑝 −𝑝𝑒 (−1) 𝑝 𝜋𝜇
2 𝑒

𝜋𝑖𝑘
𝑝 (𝑒1 + 𝑖𝑒𝑁 ),

where 𝑒
𝜋𝑖𝑘
𝑝 is the effect of 𝑔 ∈ 𝑍 (𝑈), and a similar formula for 𝑒1 − 𝑖𝑒𝑁 (which we do not use).
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Now, we also know that 𝑀 ′ and 𝜋𝑉 (𝐾 t) are conjugate by a formal matrix with constant term 𝐼𝑁 . In
particular, 𝐾 t has eigenvectors which are deformations of 𝑒1 ± 𝑖𝑒𝑁 , with the same eigenvalues.

From equation (5.11), the restriction of 𝐾 t to the span of 𝑒1 and 𝑒𝑁 gives

𝐾 t𝜂 = −𝑞
1

2𝑝 −𝑝
(
𝑖
(
1 − 𝑡 ′2

4

)
+ 𝑡 ′

2

)
𝜂, with 𝜂 =

((
− 𝑡 ′

2
− 𝑖

(
1 − 𝑡 ′2

4

))
𝑒1 + 𝑒𝑁

)
,

where 𝑡 ′ = (−1) 𝑝𝑞 1
2 (𝑞 + 1)𝑠𝑝 ∈ 𝑖ℎR�ℎ�. This eigenvector 𝜂 is a deformation of −𝑖(𝑒1 + 𝑖𝑒𝑁 ), hence

we obtain the equality of eigenvalues

(−1) 𝑝𝑖𝑞
1

2𝑝−𝑝𝑒 (−1) 𝑝 𝜋𝜇
2 𝑒

𝜋𝑖𝑘
𝑝 = −𝑞

1
2𝑝 −𝑝

(
𝑖
(
1 − 𝑡 ′2

4

)
+ 𝑡 ′

2

)
,

or equivalently,

𝑒 (−1) 𝑝 𝜋𝜇
2 𝑒

𝜋𝑖𝑘
𝑝 = (−1) 𝑝−1

((
1 − 𝑡 ′2

4

)
− 𝑖

𝑡 ′

2

)
.

When p is even, this implies 𝑒
𝜋𝑖𝑘
𝑝 = −1 and the formula for 𝜇 follows by taking the logarithm. When

p is odd, we first obtain 𝑒
𝜋𝑖𝑘
𝑝 = 1, and then the formula for 𝜇 follows by taking the logarithm of inverses

(note that (
√

1 + 𝑥2 + 𝑥) (
√

1 + 𝑥2 − 𝑥) = 1). �

Next, let us consider the C-type case. Then Θ(𝐿𝑖) = 𝐿𝑖 for 𝑝 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑝, and Θ(𝐿𝑖) = 𝐿𝑁−𝑖+1
for all other i. The coideal 𝑈t

ℎ (𝔤
𝜃 ) is generated by 𝑈ℎ (𝔥𝜃 ), 𝑈𝑞 (𝔤𝑋 ), the elements

𝐵𝑖 = 𝐹𝑖 − 𝑞−1𝑇𝑤𝑋 (𝐸𝑁−𝑖)𝐾−1
𝑖 (𝑖 < 𝑝), 𝐵𝑝 = 𝐹𝑝 − 𝑐𝑝𝑇𝑤𝑋 (𝐸𝑁−𝑝)𝐾−1

𝑝

and their adjoints. Similarly to Lemma 5.19, we have

𝜋𝑉 (𝑇𝑤𝑋 ) =
���
𝐼𝑝

𝑞
𝑁−1

2 −𝑝𝐴𝑁−2𝑝
𝐼𝑝

 !" . (5.12)

It follows that

𝜋𝑉 (𝐵𝑖) = 𝑞−1/2𝑒𝑖+1,𝑖 − 𝑞−1/2𝑒𝑁−𝑖,𝑁−𝑖+1 (𝑖 < 𝑝),

𝜋𝑉 (𝐵𝑝) = 𝑞−1/2𝑒𝑝+1, 𝑝 − 𝑞
𝑁
2 −𝑝𝑐𝑝𝑒𝑝+1,𝑁−𝑝+1.

In the next proposition, we assume that the character 𝜒t is defined using the unique homomorphism
𝑃 → R�ℎ�∗ with values in the power series with positive constant terms such that 𝛼𝑝 ↦→ 𝑐−1

𝑝 𝑞−
1
2 and

𝛼𝑖 ↦→ 1 for 𝑖 ≠ 𝑝.

Proposition 5.22. In the C-type case, for every t ∈ T ∗, we have

𝐾 t =
����

(𝜆 + 𝜇)𝐼𝑝 −𝑞 𝑁+1
2 −𝑝𝑐𝑝𝜆𝐴

𝑡
𝑝

𝜆𝐼𝑁−2𝑝

𝑞−
𝑁+1

2 +𝑝𝑐−1
𝑝 𝜇𝐴𝑝

 !!" , (5.13)

where 𝜆 = 𝑒−𝜋𝑖
𝑝
𝑁 𝑞

1
𝑁 −(𝑁−𝑝)− 𝑝

𝑁 𝑐
− 2𝑝

𝑁
𝑝 and 𝜇 = 𝑒𝜋𝑖

𝑁−𝑝
𝑁 𝑞

1
𝑁 −𝑝+ 𝑁−𝑝

𝑁 𝑐
2(𝑁−𝑝)

𝑁
𝑝 .

Proof. Again, some elementary computations show that a nonconstant solution (5.7) commutes with
the generators of 𝜋𝑉 (𝑈t

ℎ (𝔤
𝜃 )) if and only if it has the form (5.13), with no restrictions on 𝜆 and 𝜇.
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Consider first the standard case. Then 𝑐𝑝 = 𝑞−(𝛼
−
𝑝 ,𝛼

−
𝑝) = 𝑞−1/2. By equations (5.10) and (5.6), we have

𝜋𝑉 (𝜉 ′)𝑒𝑁 = (−1) 𝑝𝑒−𝜋𝑖
𝑝
𝑁 𝑞

1
𝑁 − 1

2 𝑒𝑁 ,

from which we deduce, similarly to the proof of Proposition 5.21, that

𝐾𝑁 1 = (−1) 𝑝𝑒−𝜋𝑖
𝑝
𝑁 𝑞

1
𝑁 − 𝑁

2 .

It follows that 𝜇 = −𝑒−𝜋𝑖
𝑝
𝑁 𝑞

1
𝑁 −𝑝 . In a similar way, using equation (5.12), we compute

𝜆 = 𝐾𝑝+1, 𝑝+1 = 𝑒−𝜋𝑖
𝑝
𝑁 𝑞

1
𝑁 −(𝑁−𝑝) .

For general t ∈ T ∗, by Lemma 5.20 we have

𝐾 t
𝑁 1 = 𝑐

1− 2𝑝
𝑁

𝑝 𝑞
1
2−

𝑝
𝑁 𝐾𝑁 1 = (−1) 𝑝𝑒−𝜋𝑖

𝑝
𝑁 𝑞

1
2−

𝑝
𝑁 + 1

𝑁 − 𝑁
2 𝑐

1− 2𝑝
𝑁

𝑝 ,

which gives the asserted formula for 𝜇. Similarly to the proof of Lemma 5.20, we also have

𝜆 = 𝐾 t
𝑝+1, 𝑝+1 = 𝜒t

( 𝑁−𝑝∑
𝑖=𝑝+1

𝑇𝑝+1,𝑖𝑇
∗
𝑝+1,𝑖

)
𝐾𝑖𝑖 = 𝜒t

( 𝑁−𝑝∑
𝑖=𝑝+1

𝑇𝑝+1,𝑖𝑇
∗
𝑝+1,𝑖

)
𝐾𝑝+1, 𝑝+1.

Using again the usual factorization of the R-matrix, we see that 𝑇𝑝+1,𝑖 for 𝑝 + 1 < 𝑖 ≤ 𝑁 − 𝑝 is an
element of 𝑈𝑞 (𝔥)𝑈𝑞 (𝔫−

𝑋 ) of weight 𝐿𝑖 − 𝐿𝑝+1, while

𝑇𝑝+1, 𝑝+1 = 𝐾
1
𝑁

1 · · ·𝐾
𝑝
𝑁
𝑝 𝐾

𝑝+1
𝑁 −1
𝑝+1 · · ·𝐾

𝑁−1
𝑁 −1
𝑁−1 .

By definition of 𝜒t, we conclude that 𝜆 differs from the standard case by the factor

𝜒t(𝑇2
𝑝+1, 𝑝+1) = 𝑞

− 𝑝
𝑁 𝑐

− 2𝑝
𝑁
𝑝 .

This gives the required formula for 𝜆. �

Proof of Theorem 5.18: C-type case. Similarly to the S-type case, the matrix 𝐾 t given by equation
(5.13) has eigenvalues

−𝑒−𝜋𝑖
𝑝
𝑁 𝑞

1
𝑁 −𝑝+ 𝑁−𝑝

𝑁 𝑐
2(𝑁−𝑝)

𝑁
𝑝 , 𝑒−𝜋𝑖

𝑝
𝑁 𝑞

1
𝑁 −(𝑁−𝑝)− 𝑝

𝑁 𝑐
− 2𝑝

𝑁
𝑝

of multiplicities p and 𝑁 − 𝑝, resp., while the image of equation (5.8) in the fundamental representation
of 𝔰𝔲𝑁 has eigenvalues

−𝑒
2𝜋𝑖𝑘
𝑁 𝑒−𝜋𝑖

𝑝
𝑁 𝑞

1
𝑁 −𝑝𝑒

𝑁−𝑝
𝑁 𝜋 (𝑠+𝜇) , 𝑒

2𝜋𝑖𝑘
𝑁 𝑒−𝜋𝑖

𝑝
𝑁 𝑞

1
𝑁 −(𝑁−𝑝)𝑒−

𝑝
𝑁 𝜋 (𝑠+𝜇)

of multiplicities p and 𝑁 − 𝑝, resp., for some 0 ≤ 𝑘 ≤ 𝑁 − 1. By looking at the order zero terms, we
conclude that 𝑘 = 0 and

𝑞−
𝑝
𝑁 𝑐

− 2𝑝
𝑁
𝑝 = 𝑒−

𝑝
𝑁 𝜋 (𝑠+𝜇) ,

giving the formula for 𝑠 + 𝜇 in the statement of the theorem. �
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A. Co-Hochschild cohomology

Our goal is to prove an analogue of Corollary 2.4 for universal enveloping algebras. The result essentially
follows from computations in [Cal06], but since we formally claim slightly more than what is stated
there, we give a self-contained argument.

Let V be a finite-dimensional vector space over C (we could consider any field of characteristic
zero), and 𝑊 ⊂ 𝑉 be a subspace. Viewing V as an abelian Lie algebra, consider its universal enveloping
algebra (𝑈 (𝑉),Δ). As an algebra, it is the symmetric algebra Sym(𝑉). But we will mostly need only
the coalgebra structure, in which case we write Sym𝑐 (𝑉). Consider the tensor algebra 𝑇 (Sym𝑐 (𝑉)) of
the vector space Sym𝑐 (𝑉). We then make Sym𝑐 (𝑊) ⊗𝑇 (Sym𝑐 (𝑉)) into a cochain complex by defining

𝑑 : Sym𝑐 (𝑊) ⊗ Sym𝑐 (𝑉)⊗𝑛 → Sym𝑐 (𝑊) ⊗ Sym𝑐 (𝑉)⊗(𝑛+1)

by formula (2.1), so

𝑑𝑇 = 𝑇01,2,...,𝑛+1 − 𝑇0,12,...,𝑛+1 + · · · + (−1)𝑛𝑇0,1,...,𝑛(𝑛+1) + (−1)𝑛+1𝑇0,1,...,𝑛.

Consider the linear map 𝑝𝑉 /𝑊 : Sym𝑐 (𝑉) → 𝑉/𝑊 obtained by composing the projection Sym𝑐 (𝑉) →
Sym1(𝑉) = 𝑉 with the quotient map 𝑉 → 𝑉/𝑊 . It extends to an algebra homomorphism

𝑇 (Sym𝑐 (𝑉)) →
∧
𝑉/𝑊,

which we continue to denote by 𝑝𝑉 /𝑊 . Consider also the counit 𝜖 : Sym𝑐 (𝑊) → C.

Proposition A.1. The map 𝜖 ⊗ 𝑝𝑉 /𝑊 defines a quasi-isomorphism

(Sym𝑐 (𝑊) ⊗ 𝑇 (Sym𝑐 (𝑉)), 𝑑) → (
∧

𝑉/𝑊, 0).

The result is well known for 𝑊 = 0; see, for example, [Kas95, Theorem XVIII.7.1]. We will deduce
the proposition from this particular case using the formalism of twisting morphisms.

Let (𝐴, 𝑚𝐴, 𝑑𝐴) be a differential graded algebra with product 𝑚𝐴 and cohomological differential
𝑑𝐴 : 𝐴𝑛 → 𝐴𝑛+1. Let (𝐶,Δ𝐶 ) be a coalgebra (concentrated in degree 0). A twisting morphism is a
linear map 𝛼 : 𝐶 → 𝐴1 satisfying

𝑑𝐴𝛼 + 𝛼 ★ 𝛼 = 0,

where 𝛼 ★ 𝛼 = 𝑚𝐴(𝛼 ⊗ 𝛼)Δ𝐶 . Then the degree 1 map id ⊗ 𝑑𝐴 + 𝑑𝛼, with

𝑑𝛼 = (id ⊗ 𝑚𝐴) (id ⊗ 𝛼 ⊗ id) (Δ𝐶 ⊗ id),

defines the structure of a cochain complex on the graded vector space 𝐶 ⊗ 𝐴. We denote this complex
by 𝐶 ⊗𝛼 𝐴.

We further assume that

• 𝐴𝑛 and C have auxiliary gradings, called the weight gradings; we write 𝐴𝑤 :𝑚,𝑐ℎ:𝑛 for the weight m
part of 𝐴𝑛 and 𝐶𝑤 :𝑚 for the weight m part of C;

• 𝑚𝐴, 𝑑𝐴, Δ𝐶 and 𝛼 have degree 0 for the weight grading;
• C and A are nonnegatively graded with respect to both the weight degree and the cohomological

degree.

In our application 𝐴 = 𝑇 (Sym𝑐 (𝑉)),𝐶 = Sym𝑐 (𝑊) and the weight gradings are defined by declaring
the elements of Sym𝑛 (𝑉) and Sym𝑛 (𝑊) to be of weight n.

Lemma A.2 (cf. [LV12, Lemma 2.1.5]). Let A and B be weight graded differential graded algebras
as above and 𝑓 : 𝐴 → 𝐵 be a quasi-isomorphism (i.e., a weight degree preserving homomorphism of
dg algebras inducing an isomorphism in cohomology). Then for any weight graded coalgebra C and
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any twisting morphism 𝛼 : 𝐶 → 𝐴1 such that 𝛼(𝐶𝑤 :0) = 0, the map id ⊗ 𝑓 : 𝐶 ⊗𝛼 𝐴 → 𝐶 ⊗𝛽 𝐵 is a
quasi-isomorphism, where 𝛽 = 𝑓 𝛼.

Proof. The assumption 𝛼(𝐶𝑤 :0) = 0 implies that 𝑑𝛼 ‘carries’ weight from C to A. This can be used to
build a spectral sequence.

Specifically, define a decreasing filtration 𝐹𝑠 of 𝐶 ⊗𝛼 𝐴 by setting

𝐹𝑠 =
⊕
𝑚≥𝑠

𝐶 ⊗ 𝐴𝑤 :𝑚.

We clearly have (id ⊗ 𝑑𝐴) (𝐹𝑠) ⊂ 𝐹𝑠 . Since (id ⊗ 𝛼)Δ𝐶 (𝐶𝑤 :𝑛) belongs to
⊕

𝑘≥1 𝐶
𝑤 :𝑛−𝑘 ⊗ 𝐴𝑤 :𝑘 by

the assumption 𝛼(𝐶𝑤 :0) = 0, we have 𝑑𝛼 (𝐹𝑠) ⊂ 𝐹𝑠+1. Note also that, for each weight n, we have
𝐹𝑤 :𝑛

0 = (𝐶 ⊗𝛼 𝐴)𝑤 :𝑛 and 𝐹𝑤 :𝑛
𝑠 = 0 for 𝑠 > 𝑛. Hence, the associated spectral sequence starting with

𝐸 𝑠,𝑡0 = 𝐹𝑐ℎ:𝑠+𝑡
𝑠 /𝐹𝑐ℎ:𝑠+𝑡

𝑠+1 = 𝐶 ⊗ 𝐴𝑤 :𝑠,𝑐ℎ:𝑠+𝑡

is convergent at each weight, and the 𝐸0-differential 𝑑0 : 𝐸 𝑠,𝑡0 → 𝐸 𝑠,𝑡+1
0 is just id ⊗ 𝑑𝐴. Therefore

𝐸 𝑠,𝑡1 = 𝐶 ⊗ H𝑠+𝑡 (𝐴𝑤 :𝑠).

We can do the same construction for B. Then id⊗ 𝑓 induces an isomorphism at the 𝐸1-page. Combined
with the convergence of the spectral sequences, we obtain the assertion. �

Proof of Proposition A.1. Denote the complex we get for 𝑊 = 0 by (𝐴, 𝑑𝐴) so that 𝐴 = 𝑇 (Sym𝑐 (𝑉)).
For general W, let 𝐶 = Sym𝑐 (𝑊) and define a linear map 𝛼 : 𝐶 = Sym𝑐 (𝑊) → 𝐴1 = Sym𝑐 (𝑉)
as the zero map on C = Sym0(𝑊) and the inclusion map Sym𝑛 (𝑊) → Sym𝑛 (𝑉) for 𝑛 ≥ 1. Then
(𝛼 ★ 𝛼) (1) = 0 and

(𝛼 ★ 𝛼) (𝑥) = Δ (𝑥) − 1 ⊗ 𝑥 − 𝑥 ⊗ 1 (𝑥 ∈ Sym𝑛 (𝑊), 𝑛 ≥ 1).

It follows that 𝛼 is a twisting morphism. We also have

𝑑𝛼 (𝑥 ⊗ 𝑦) = Δ (𝑥) ⊗ 𝑦 − 𝑥 ⊗ 1 ⊗ 𝑦 (𝑥 ∈ Sym𝑐 (𝑊), 𝑦 ∈ 𝑇𝑚 (Sym𝑐 (𝑉))).

Therefore, the complex 𝐶 ⊗𝛼 𝐴 is exactly (Sym𝑐 (𝑊) ⊗ 𝑇 (Sym𝑐 (𝑉)), 𝑑).
Since the proposition is true for 𝑊 = 0, by Lemma A.2 we conclude that the map id ⊗ 𝑝𝑉 defines a

quasi-isomorphism of (Sym𝑐 (𝑊)⊗𝑇 (Sym𝑐 (𝑉)), 𝑑) onto (Sym(𝑊)⊗
∧
𝑉, 𝑑), where the new differential

𝑑 = 𝑑𝑝𝑉 𝛼 is given by 𝑑 (1 ⊗ 𝑦) = 0 and

𝑑 (𝑥1 · · · 𝑥𝑚 ⊗ 𝑦) =
∑
𝑖

𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑚 ⊗ 𝑥𝑖 ∧ 𝑦 (𝑥1, . . . , 𝑥𝑚 ∈ 𝑊, 𝑦 ∈
∧
𝑉).

It remains to show that the homomorphism of graded algebras Sym(𝑊) ⊗
∧
𝑉 →

∧
𝑉/𝑊 defined by

𝜖 and the quotient map 𝑉 → 𝑉/𝑊 gives a quasi-isomorphism of (Sym(𝑊) ⊗
∧
𝑉, 𝑑) onto (

∧
𝑉/𝑊, 0).

This is well known in the case when 𝑉 = 𝑊 , that is, Sym(𝑊) ⊗
∧
𝑊 is quasi-isomorphic to C

concentrated in degree 0. The general case follows from this and the standard isomorphism of graded
algebras

∧
𝑉 �

∧
𝑊 ⊗̂

∧
𝑉/𝑊 . �

Let 𝔞 be a finite-dimensional complex Lie algebra and 𝔟 < 𝔞 a Lie subalgebra. For 𝑛 = 0, 1, . . . , put

�̃�𝑛𝔞,𝔟 = 𝑈 (𝔟) ⊗ 𝑈 (𝔞)⊗𝑛.

These spaces form a cochain complex by the same formula as in equation (2.1). The differential
𝑑cH is equivariant with respect to the diagonal adjoint action of 𝔟, so we also obtain a subcomplex
𝐵𝔞,𝔟 = (�̃�𝔞,𝔟)𝔟.
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It is well known that the symmetrization map defines an 𝔞-equivariant coalgebra isomorphism of
Sym𝑐 (𝔞) onto 𝑈 (𝔞); see [Kas95, Theorem V.2.5]. Since the definition of 𝑑cH uses only the coalgebra
structures, it follows that the complexes (Sym𝑐 (𝔟) ⊗ 𝑇 (Sym𝑐 (𝔞)), 𝑑) and (�̃�𝔞,𝔟, 𝑑cH) are isomorphic.
Therefore, Proposition A.1 implies the following.

Proposition A.3. For any finite-dimensional complex Lie algebra 𝔞 and a Lie subalgebra 𝔟, there is a
𝔟-equivariant quasi-isomorphism of (�̃�𝔞,𝔟, 𝑑cH) onto (

∧
𝔞/𝔟, 0).

Remark A.4. For any 𝑋1, . . . , 𝑋𝑛 ∈ 𝔞, the element 1 ⊗ 𝑋1 ⊗ · · · ⊗ 𝑋𝑛 ∈ �̃�𝑛𝔞,𝔟 is a cocycle. By the
definition of 𝜖 ⊗ 𝑝𝔞/𝔟 and the symmetrization map, the image of this cocycle in

∧𝑛 𝔞/𝔟 is �̃�1 ∧ · · · ∧ �̃�𝑛,
where �̃�𝑖 is the image of 𝑋𝑖 in 𝔞/𝔟.

Consider now a reductive algebraic subgroup 𝐻 < 𝐺 as in Section 2.1.

Corollary A.5. The cohomology (�̃�𝔤,𝔥, 𝑑cH) is isomorphic to
∧
𝔤/𝔥 and the cohomology of (𝐵𝔤,𝔥, 𝑑cH)

is isomorphic to (
∧
𝔤/𝔥)𝔥. Furthermore, the embedding �̃�𝔤,𝔥 → �̃�𝐺,𝐻 is a quasi-isomorphism and if

H is connected, then 𝐵𝔤,𝔥 → 𝐵𝐺,𝐻 is a quasi-isomorphism as well.

Proof. The first statement follows immediately from Proposition A.3 and the fact that computing the
cohomology commutes with taking the 𝔥-invariants in the reductive case.

Consider now the embedding �̃�𝔤,𝔥 → �̃�𝐺,𝐻 . This induces a pairing between cochains in �̃�𝔤,𝔥 and
chains 𝑓0 ⊗ · · · ⊗ 𝑓𝑛 in �̃�′𝑛

𝐺,𝐻 = O(𝐻) ⊗ O(𝐺)⊗𝑛 from the proof of Proposition 2.1. Unpacking the
definitions, for the cocycle 1 ⊗ 𝑋1 ⊗ · · · ⊗ 𝑋𝑛 ∈ �̃�𝑛𝔤,𝔥 from Remark A.4, we have

〈 𝑓0 ⊗ · · · ⊗ 𝑓𝑛, 1 ⊗ 𝑋1 ⊗ · · · ⊗ 𝑋𝑛〉 = 𝑓0 (𝑒)
𝑛∏
𝑖=1

𝑑𝑒 𝑓𝑖 (𝑋𝑖).

Restricting to cycles of �̃�′
𝐺,𝐻 , this reduces to the canonical duality pairing between

∧
𝔤/𝔥 � H(�̃�𝔤,𝔥)

and (
∧
𝔤/𝔥)′ � H(�̃�′

𝐺,𝐻 ); see the identification of [BGI71, Proposition VII.2.5].
Let us be more concrete. Choose a basis 𝑋1, . . . , 𝑋𝑚 in a complement of 𝔥 in 𝔤. By Remark A.4, the

cohomology classes of 𝑐𝑖1...𝑖𝑛 = 1 ⊗ 𝑋𝑖1 ⊗ · · · ⊗ 𝑋𝑖𝑛 ∈ �̃�𝑛𝔤,𝔥, 𝑖1 < · · · < 𝑖𝑛, form a basis in H𝑛 (�̃�𝔤,𝔥).
Choose right H-invariant functions 𝑓1, . . . , 𝑓𝑚 ∈ O(𝐺) such that 𝑑𝑒 𝑓𝑖 (𝑋 𝑗 ) = 𝛿𝑖 𝑗 . Define functions
𝑎𝑖1...𝑖𝑛 on 𝐻 × 𝐺𝑛 by

𝑎𝑖1...𝑖𝑛 (𝑔0, 𝑔1, . . . , 𝑔𝑛) =
∑
𝜎∈𝑆𝑛

sgn(𝜎) 𝑓𝑖1 (𝑔𝜎 (1) ) . . . 𝑓𝑖𝑛 (𝑔𝜎 (𝑛) )

so that we have 〈𝑎𝑖1...𝑖𝑛 , 𝑐 𝑗1... 𝑗𝑛〉 = 𝛿𝑖1 𝑗1 . . . 𝛿𝑖𝑛 𝑗𝑛 for all 𝑖1 < · · · < 𝑖𝑛 and 𝑗1 < · · · < 𝑗𝑛. Moreover,
using that 𝑓𝑖 (𝑔) = 𝑓𝑖 (𝑒) for 𝑔 ∈ 𝐻, one can check that the 𝑎𝑖1...𝑖𝑛 are cycles in �̃�′

𝐺,𝐻 . We thus obtain a
nondegenerate pairing between H𝑛 (�̃�𝔤,𝔥) and H𝑛 (�̃�′

𝐺,𝐻 ) which factors through H𝑛 (�̃�𝔤,𝔥) → H𝑛 (�̃�𝐺,𝐻 ).
Hence, the last map is an isomorphism.

Finally, by considering the 𝔥-invariants we conclude that if H is connected, then 𝐵𝔤,𝔥 → 𝐵𝐺,𝐻 is a
quasi-isomorphism as well. �

B. Spherical vectors

The goal of this appendix is to prove the following result essentially due to Letzter [Let00]. Since
her setting and assumptions are slightly different, we will give a complete argument for the reader’s
convenience.

Theorem B.1. In the notation of Section 4.4, assume t ∈ T ∗ and 𝜆 ∈ 𝑃+ are such that the highest weight
𝔤-module 𝑉𝜆 has a nonzero 𝔤𝜃t -invariant vector. Then this vector can be lifted to a 𝑈t

ℎ (𝔤
𝜃 )-invariant

vector in 𝑉𝜆�ℎ�.
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In the non-Hermitian case, we have 𝔤𝜃t = 𝔤𝜃0 = 𝔤𝜃 . In the Hermitian case, by Lemma 4.11, the Lie
subalgebra 𝔤𝜃t < 𝔤 is conjugate to 𝔤𝜃 . Hence, in both cases, by [Kna02, Theorem 8.49] and its proof,
necessary (and, as we will see shortly, sufficient) conditions for the existence of a nonzero 𝔤𝜃t -invariant
vector in 𝑉𝜆 are the following:

the weight 𝜆 ∈ 𝑃+ vanishes on 𝔥Θ, (B.1)

(𝜆, 𝛼∨
𝑖 ) ∈ 2Z for all 𝑖 ∈ 𝐼 such that Θ(𝛼𝑖) = −𝛼𝑖 . (B.2)

Lemma B.2. Given 𝑖 ∈ 𝐼, we have Θ(𝛼𝑖) = −𝛼 𝑗 for some j if and only if 𝑖 ∈ 𝐼 \ 𝑋 and 𝛼𝑖 is orthogonal
to 𝛼𝑘 for all 𝑘 ∈ 𝑋 , in which case we also have 𝑗 = 𝜏𝜃 (𝑖).

Proof. Assume Θ(𝛼𝑖) = −𝛼 𝑗 . Since Θ(𝛼𝑘 ) = 𝛼𝑘 for all 𝑘 ∈ 𝑋 , we must have 𝑖 ∈ 𝐼 \ 𝑋 , and since
Θ(𝛼𝑖)+𝛼𝜏𝜃 (𝑖) ∈ Z𝑋 and the set 𝐼\𝑋 is 𝜏𝜃 -invariant, it follows also that 𝑗 = 𝜏𝜃 (𝑖). AsΘ(𝛼𝑖) = −𝑤𝑋𝛼𝜏𝜃 (𝑖) ,
we have

0 ≥ (𝛼 𝑗 , 𝛼𝑘 ) = −(Θ(𝛼𝑖), 𝛼𝑘 ) = (𝑤𝑋𝛼𝜏𝜃 (𝑖) , 𝛼𝑘 ) = (𝛼𝜏𝜃 (𝑖) , 𝑤𝑋𝛼𝑘 ) ≥ 0,

for all 𝑘 ∈ 𝑋 , where the last inequality holds as 𝑤𝑋𝛼𝑘 ∈ Φ−
𝑋 . Therefore, 𝛼 𝑗 = 𝛼𝜏𝜃 (𝑖) is orthogonal to

𝛼𝑘 for all 𝑘 ∈ 𝑋 , hence the same is true for 𝛼𝑖 as well. This proves the lemma in one direction, the other
direction is obvious. �

It is well known that (𝑈,𝑈 𝜃 ), or equivalently (𝑈, 𝐾t), is a Gelfand pair. Since every𝑈t
ℎ (𝔤

𝜃 )-invariant
vector reduces modulo h to a 𝐾t-invariant vector, to prove Theorem B.1 it therefore suffices to show that
there is a nonzero 𝑈t

ℎ (𝔤
𝜃 )-invariant vector whenever conditions (B.1) and (B.2) are satisfied.

Denote by K the field C[ℎ−1, ℎ�. Instead of working with 𝑈ℎ (𝔤) and 𝑈t
ℎ (𝔤

𝜃 ), we extend the scalars
to K. Recall that we denote 𝑒ℎ by q. Consider the K-subalgebra 𝑈𝑞 (𝔤) of 𝑈ℎ (𝔤) ⊗C�ℎ� K generated by
𝐸𝑖 , 𝐹𝑖 and 𝐾𝜔 (𝜔 ∈ 𝑃). Consider also the K-subalgebra 𝑈t

𝑞 (𝔤𝜃 ) generated by 𝐾𝜔 (𝜔 ∈ 𝑃Θ), 𝐾±1
𝑖 , 𝐸𝑖 ,

𝐹𝑖 (𝑖 ∈ 𝑋) and 𝐵𝑖 (𝑖 ∈ 𝐼 \ 𝑋). Then 𝑉𝑞𝜆 = 𝑉𝜆�ℎ� ⊗C�ℎ� K = 𝑉𝜆 ⊗C K is the irreducible 𝑈𝑞 (𝔤)-module
with highest weight 𝜆. If we can show that it contains a nonzero 𝑈t

𝑞 (𝔤𝜃 )-invariant vector v, then ℎ𝑛𝑣

becomes a 𝑈t
ℎ (𝔤

𝜃 )-invariant vector in 𝑉𝜆�ℎ� for 𝑛 ∈ N large enough. To prove that such a vector v
exists it is enough, in turn, to show that if 𝜉𝜆 ∈ 𝑉𝑞𝜆 is the highest weight vector, then 𝜉𝜆 ∉ 𝑈t

𝑞 (𝔤𝜃 )+𝜉𝜆,
where 𝑈t

𝑞 (𝔤𝜃 )+ denotes the augmentation ideal of 𝑈t
𝑞 (𝔤𝜃 ). Indeed, since 𝑈t

𝑞 (𝔤𝜃 ) is ∗-invariant, the
𝑈t
𝑞 (𝔤𝜃 )-module 𝑉𝑞𝜆 is completely reducible by [Let00, Theorem 3.3]. Then the projection of 𝜉𝜆 onto a

complementary submodule to𝑈t
𝑞 (𝔤𝜃 )+𝜉𝜆 is a nonzero invariant vector. Therefore, it suffices to establish

the following result.

Theorem B.3 (cf. [Let00, Theorem 4.3]). Assume t ∈ T and 𝜆 ∈ 𝑃+ is a weight satisfying conditions
(B.1) and (B.2). Then for the highest weight vector 𝜉𝜆 ∈ 𝑉𝑞𝜆 we have 𝜉𝜆 ∉ 𝑈t

𝑞 (𝔤𝜃 )+𝜉𝜆.

Note that for this result we no longer need ∗-invariance, so we can take any parameter t ∈ T . The
proof also works for any field extension of Q(𝑞1/𝑑) in place of K (with parameters 𝑐𝑖 and 𝑠𝑖 taken from
this field), where d is the determinant of the Cartan matrix.

We start by analyzing the rank one case.

Lemma B.4. Consider 𝔤 = 𝔰𝔩2(C) and the element 𝐵 = 𝐹−𝑐𝐸𝐾−1+ 𝑠(𝐾−1−1) ∈ 𝑈𝑞 (𝔰𝔩2), with 𝑐 ∈ K×

and 𝑠 ∈ K. Then, for every 𝑛 ∈ Z+, the highest weight module 𝑉𝑞𝑛 contains a nonzero vector killed by B.

Proof. For 𝑛 = 0, the lemma is obvious. For 𝑛 = 1, the 𝑈𝑞 (𝔰𝔩2)-module 𝑉𝑞1 has the basis 𝜉1, 𝐹𝜉1, 𝐹
2𝜉1

over K, and the actions of E and K on this basis are given by

𝐾𝐹𝑘𝜉1 = 𝑞2−2𝑘𝐹𝑘𝜉1, 𝐸𝐹𝑘𝜉1 = [2 − (𝑘 − 1)]𝑞 [𝑘]𝑞𝐹𝑘−1𝜉1.
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One can then easily check that the vector

𝑣 = 𝜉1 +
𝑠(1 − 𝑞2)
𝑐𝑞2 [2]𝑞

𝐹𝜉1 +
1

𝑐𝑞2 [2]𝑞
𝐹2𝜉1

lies in the kernel of B.
For 𝑛 ≥ 2, the vector 𝜉⊗𝑛1 ∈ (𝑉𝑞1 )

⊗𝑛 has weight n and generates a 𝑈𝑞 (𝔰𝔩2)-submodule isomorphic to
𝑉𝑞𝑛 . As Δ𝑞 (𝐵) = 𝐵 ⊗𝐾−1 + 1⊗ 𝐵, the vector 𝑣⊗𝑛 ∈ (𝑉𝑞1 )

⊗𝑛 is killed by B. Since its weight n component
is nonzero, the projection of this vector onto 𝑉𝑞𝑛 ⊂ (𝑉𝑞1 )

⊗𝑛 is a nonzero vector killed by B. �

To deal with the general case, let us introduce the following notation. For a multi-index 𝐽 =
( 𝑗1, . . . , 𝑗𝑛), define 𝐹𝐽 = 𝐹𝑗1 · · · 𝐹𝑗𝑛 and 𝐵𝐽 = 𝐵 𝑗1 · · · 𝐵 𝑗𝑛 . We also let wt(𝐽) = 𝛼 𝑗1 + · · · + 𝛼 𝑗𝑛 . Denote
by 𝑈− the unital K-subalgebra of 𝑈𝑞 (𝔤) generated by the elements 𝐹𝑗 , 𝑗 ∈ 𝐼, by M𝑋,+ the unital K-
subalgebra of 𝑈t

𝑞 (𝔤𝜃 ) generated by the elements 𝐸 𝑗 , 𝑗 ∈ 𝑋 , and by 𝑈Θ the K-algebra generated by the
elements 𝐾𝜔 , 𝜔 ∈ 𝑃Θ. Fix 𝜆 ∈ 𝑃+.

Lemma B.5. Choose a finite collection J of multi-indices such that 𝜉𝜆 and 𝐹𝐽 𝜉𝜆, 𝐽 ∈ J , form a basis
of 𝑉𝑞𝜆 over K. Then the vectors 𝜉𝜆 and 𝐵𝐽 𝜉𝜆, 𝐽 ∈ J , also form a basis of 𝑉𝑞𝜆 .

Proof. By the definition of 𝐵𝑖 , we have that 𝐵𝐽 𝜉𝜆 equals 𝐹𝐽 𝜉𝜆 plus a linear combination of vectors of
higher weights. A simple induction argument using this property gives the result. �

For each 𝑖 ∈ 𝑋 , put 𝑚𝑖 = (𝜆, 𝛼∨
𝑖 ) ∈ Z+.

Lemma B.6. There are collections 𝐽𝑖 , 𝑖 ∈ 𝐼, of multi-indices such that the elements 1, 𝐹𝐽 (𝐽 ∈ J , with
J as in the previous lemma) and 𝐹𝐽𝐹

𝑚𝑖+1
𝑖 (𝐽 ∈ J𝑖 , 𝑖 ∈ 𝐼) form a basis of 𝑈− over K. Moreover, the

elements 1, 𝐵𝐽 (𝐽 ∈ J ) and 𝐵𝐽𝐵
𝑚𝑖+1
𝑖 (𝐽 ∈ J𝑖 , 𝑖 ∈ 𝐼) form a basis of the right𝑈ΘM𝑋,+-module𝑈t

𝑞 (𝔤𝜃 ).
More generally, for any choice of degree 𝑚𝑖 + 1 polynomials 𝑝𝑖 ∈ K[𝑥], the elements 1, 𝐵𝐽 (𝐽 ∈ J )
and 𝐵𝐽 𝑝𝑖 (𝐵𝑖) (𝐽 ∈ J𝑖 , 𝑖 ∈ 𝐼) form a basis of the right 𝑈ΘM𝑋,+-module 𝑈t

𝑞 (𝔤𝜃 ).

Proof. Consider the Verma module 𝐿𝜆 with highest weight vector 𝑣𝜆 of weight 𝜆. The first part of the
lemma follows from the well-known facts that the map 𝑈− → 𝐿𝜆, 𝑎 ↦→ 𝑎𝑣𝜆, is a linear isomorphism
and the kernel of the quotient map 𝐿𝜆 → 𝑉𝜆 is

∑
𝑖𝑈−𝐹

𝑚𝑖+1
𝑖 𝑣𝜆.

The second part of the lemma follows then from [Kol14, Proposition 6.2]. To be more precise, some
of our generators 𝐵𝑖 differ from the ones used by Kolb by scalar summands. Let us denote Kolb’s
generators by �̃�𝑖 . Then every element 𝐵𝐽 equals �̃�𝐽 plus a linear combination of the elements �̃�𝐽 ′ with
wt(𝐽 ′) < wt(𝐽). Similarly to the previous lemma, we see that whenever {�̃�𝐽 }𝐽 ∈J̃ is a basis of the right
𝑈ΘM𝑋,+-module 𝑈t

𝑞 (𝔤𝜃 ), then {𝐵𝐽 }𝐽 ∈J̃ also forms a basis. For the same reason, we can add to every
𝐵𝐽 any linear combination of the elements 𝐵𝐽 ′ with wt(𝐽 ′) < wt(𝐽) and still get a basis. In particular,
we can replace every element of the form 𝐵𝐽𝐵

𝑚𝑖+1
𝑖 by 𝐵𝐽 𝑝𝑖 (𝐵𝑖). �

Lemma B.7. If 𝜆 ∈ 𝑃+ satisfies equation (B.2), we can find for all 𝑖 ∈ 𝐼, degree 𝑚𝑖 + 1 polynomials
𝑝𝑖 ∈ K[𝑥] such that 𝑝𝑖 (𝐵𝑖)𝜉𝜆 = 0 and 𝑝𝑖 (0) = 0.

Proof. Consider three cases. If 𝑖 ∈ 𝑋 , then 𝐵𝑖 = 𝐹𝑖 and we can take 𝑝𝑖 (𝑥) = 𝑥𝑚𝑖+1.
Next, assume 𝑖 ∈ 𝐼 \ 𝑋 but Θ(𝛼𝑖) ≠ −𝛼𝑖 . Then 𝑖 ∉ 𝐼ns, hence 𝑠𝑖 = 0 and

𝐵𝑖 = 𝐹𝑖 − 𝑐𝑖𝑧𝜏𝜃 (𝑖)𝑇𝑤𝑋 (𝐸𝜏𝜃 (𝑖) )𝐾−1
𝑖 .

As −Θ(𝛼𝑖) = 𝑤𝑋𝛼𝜏𝜃 (𝑖) ∈ Δ+ is different from 𝛼𝑖 , we have −𝑘Θ(𝛼𝑖) − (𝑛− 𝑘)𝛼𝑖 �≤ 0 for any 𝑛 ≥ 𝑘 ≥ 1.
Since any product of k elements 𝑇𝑤𝑋 (𝐸𝜏𝜃 (𝑖) ) and 𝑛 − 𝑘 elements 𝐹𝑖 has weight −𝑘Θ(𝛼𝑖) − (𝑛 − 𝑘)𝛼𝑖 ,
it must therefore kill 𝜉𝜆. It follows that 𝐵𝑛𝑖 𝜉𝜆 = 𝐹𝑛𝑖 𝜉𝜆 for any 𝑛 ≥ 1. In particular, we have 𝐵𝑚𝑖+1

𝑖 𝜉𝜆 = 0,
so in this case we can again take 𝑝𝑖 (𝑥) = 𝑥𝑚𝑖+1.
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Finally, assume i is such that Θ(𝛼𝑖) = −𝛼𝑖 . Then, by Lemma B.2, we have 𝑖 ∈ 𝐼ns, hence

𝐵𝑖 = 𝐹𝑖 − 𝑐𝑖𝑧𝑖𝐸𝑖𝐾
−1
𝑖 + 𝑠𝑖𝜅𝑖

𝐾−1
𝑖 − 1

𝑞−𝑑𝑖 − 1
.

The elements 𝐸𝑖 , 𝐹𝑖 , 𝐾±1
𝑖 generate a copy of 𝑈𝑞𝑑𝑖 (𝔰𝔩2) in 𝑈𝑞 (𝔤). By acting on 𝜉𝜆, we get a

spin 𝑚𝑖

2 𝑈𝑞𝑑𝑖 (𝔰𝔩2)-module with basis 𝜉𝜆, 𝐹𝑖𝜉𝜆, . . . , 𝐹
𝑚𝑖

𝑖 𝜉𝜆 over K. By Lemma B.5, the elements
𝜉𝜆, 𝐵𝑖𝜉𝜆, . . . , 𝐵

𝑚𝑖

𝑖 𝜉𝜆 also form a basis. As 𝑚𝑖

2 ∈ Z+ by assumption, we can apply Lemma B.4 and
conclude that there is a nonzero polynomial 𝑓 ∈ K[𝑥] of degree 𝑚 ≤ 𝑚𝑖 such that 𝐵𝑖 𝑓 (𝐵𝑖)𝜉𝜆 = 0.
Hence, we can take 𝑝𝑖 (𝑥) = 𝑥𝑚𝑖+1−𝑚 𝑓 (𝑥). �

Proof of Theorem B.3. Take 𝑎 ∈ 𝑈t
𝑞 (𝔤𝜃 )+. We want to show that 𝑎𝜉𝜆 ≠ 𝜉𝜆. By Lemma B.6, we can

write a as

𝑎0 +
∑
𝐽 ∈J

𝐵𝐽𝑎𝐽 +
∑
𝑖∈𝐼

∑
𝐽 ∈J𝑖

𝐵𝐽 𝑝𝑖 (𝐵𝑖)𝑏𝑖;𝐽 ,

where 𝑎0, 𝑎𝐽 and 𝑏𝑖;𝐽 are in 𝑈ΘM𝑋,+ and 𝑝𝑖 are the polynomials from Lemma B.7. Note that since
𝜖 (𝐵𝑖) = 0 and the polynomials 𝑝𝑖 have zero constant terms, we must have 𝜖 (𝑎0) = 0. By assumption
(B.1), we have 𝑦𝜉𝜆 = 𝜖 (𝑦)𝜉𝜆 for every 𝑦 ∈ 𝑈ΘM𝑋,+. Hence,

𝑎𝜉𝜆 =
∑
𝐽 ∈J

𝜖 (𝑎𝐽 )𝐵𝐽 𝜉𝜆,

which is different from 𝜉𝜆 by our choice of J . �

Remark B.8. Theorem B.1 remains true for t ∈ T ∗
C

if we exclude a finite set (depending on 𝜆) of values
of 𝑠 (0)𝑜 (S-type) or 𝑐 (0)𝑜 (C-type). Indeed, let us look for spherical vectors of the form 𝜉𝜆 +

∑
𝐽 ∈J 𝑐𝐽𝐹𝐽 𝜉𝜆,

𝑐𝐽 ∈ K, where J is as in Lemma B.5. The sphericity condition gives us a system of linear equations for
𝑐𝐽 with coefficients that are rational functions (with complex coefficients) in q, 𝑠𝑜 or 𝑐𝑜. A spherical
vector exists if and only if the rank of the matrix A of this system is the same as the rank of the augmented
matrix B. Take a submatrix of A of maximal size giving a nonzero minor for some t ∈ T ∗. Then the
lowest order nonzero term of the minor’s expansion in h is a rational function of 𝑠 (0)𝑜 or 𝑐 (0)𝑜 , so the
corresponding minor remains nonzero for all t ∈ T ∗

C
excluding a finite set of values of 𝑠 (0)𝑜 or 𝑐 (0)𝑜 . On

the other hand, if we take any larger minor of B and consider its expansion in h, then the coefficients will
be rational functions in the parameters 𝑠 (𝑛)𝑜 or 𝑐 (𝑛)𝑜 . These functions must vanish for all purely imaginary
(S-type) or real (C-type) values of the parameters, hence they are identically zero.

C. Coideals as deformations

For t ∈ T , recall 𝔤𝜃t < 𝔤 from Definition 4.4.

Proposition C.1. For every t ∈ T , the C�ℎ�-module 𝑈t
ℎ (𝔤

𝜃 ) is topologically free and the homomor-
phism 𝑈ℎ (𝔤) → 𝑈 (𝔤) induces an isomorphism 𝑈t

ℎ (𝔤
𝜃 )/ℎ𝑈t

ℎ (𝔤
𝜃 ) � 𝑈 (𝔤𝜃t ).

Proof. Since 𝑈ℎ (𝔤) is topologically free and 𝑈t
ℎ (𝔤

𝜃 ) ⊂ 𝑈ℎ (𝔤) is closed, to prove both statements it
suffices to show that

𝑈t
ℎ (𝔤

𝜃 ) ∩ ℎ𝑈ℎ (𝔤) = ℎ𝑈t
ℎ (𝔤

𝜃 ).

For this, in turn, it is enough to check that for all 𝑛 ≥ 2 we have

𝑈t
ℎ (𝔤

𝜃 ) ∩ ℎ𝑈ℎ (𝔤) ⊂ ℎ𝑈t
ℎ (𝔤

𝜃 ) + ℎ𝑛𝑈ℎ (𝔤). (C.1)

https://doi.org/10.1017/fmp.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.11


76 K. De Commer et al.

Let

J𝑋 = {𝐽 = (𝑖1, . . . , 𝑖𝑘 ) | 𝑖 𝑗 ∈ 𝑋} ⊂ ∪∞
𝑘=0𝑋

𝑘

be such that the elements 𝑋𝛼𝑖1 · · · 𝑋𝛼𝑖𝑘 with (𝑖1, . . . , 𝑖𝑘 ) ∈ 𝐽 form a basis of 𝑈 (𝔫+
𝑋 ) ⊂ 𝑈 (𝔤𝑋 ). Consider

also a larger set J ⊂ ∪∞
𝑘=0𝐼

𝑘 giving a basis of 𝑈 (𝔫+). For 𝐽 = (𝑖1, . . . , 𝑖𝑘 ) ∈ J , put

𝐸𝐽 = 𝐸𝑖1 · · · 𝐸𝑖𝑘 ∈ 𝑈ℎ (𝔤) and 𝐵𝐽 = 𝐵𝑖1 · · · 𝐵𝑖𝑘 ∈ 𝑈ℎ (𝔤).

Let 𝐻 ′
1, . . . , 𝐻

′
𝑙 be a basis of 𝔥. Then by the proof of [Kol14, Proposition 6.1], the image of the set

{𝐸𝐽 (𝐻 ′
1)
𝑘1 · · · (𝐻 ′

𝑙 )
𝑘𝑙𝐵𝐽 ′ | 𝐽 ∈ J , 𝑘𝑖 ≥ 0, 𝐽 ′ ∈ J }

in 𝑈 (𝔤) is a basis. This implies that this set is a basis of the free C�ℎ�/(ℎ𝑛)-module 𝑈ℎ (𝔤)/ℎ𝑛𝑈ℎ (𝔤).
On the other hand, the same argument as in the proof of [Kol14, Proposition 6.2] shows that

{𝐸𝐽 (𝐻 ′
1)
𝑘1 · · · (𝐻 ′

𝑙 )
𝑘𝑙𝐵𝐽 ′ | 𝐽 ∈ J𝑋 , 𝑘𝑖 ≥ 0, 𝐽 ′ ∈ J }

generates𝑈ℎ (𝔤𝜃t )/(𝑈ℎ (𝔤𝜃t )∩ℎ𝑛𝑈ℎ (𝔤)) as aC�ℎ�/(ℎ𝑛)-module. These two facts clearly imply equation
(C.1). �

The following lemma slightly generalizes the second Whitehead lemma.

Lemma C.2. Assume 𝔞 is a finite-dimensional Lie algebra over a field of characteristic zero such that
the derived Lie subalgebra [𝔞, 𝔞] is semisimple and has codimension 1. Then H2 (𝔞, 𝑉) = 0 for all
finite-dimensional 𝔞-modules V.

Proof. This follows from [Dix55, Proposition 1] and the usual second Whitehead lemma; see also
[Zus08]. �

Assume now that t ∈ T ∗
C

. In the non-Hermitian case, the set T ∗
C

consists of one point and we have
𝔤𝜃0 = 𝔤𝜃 . In the Hermitian case, by Lemma 4.11 we have 𝔤𝜃t � 𝔤𝜃 . Therefore, in both cases the above
lemma applies to 𝔤𝜃t . As𝑈t

ℎ (𝔤
𝜃 ) is a deformation of𝑈 (𝔤𝜃t ) by Proposition C.1, this leads to the following

result.

Proposition C.3. For all t ∈ T ∗
C

, the isomorphism 𝑈t
ℎ (𝔤

𝜃 )/ℎ𝑈t
ℎ (𝔤

𝜃 ) � 𝑈 (𝔤𝜃t ) lifts to an isomorphism
𝑈t
ℎ (𝔤

𝜃 ) � 𝑈 (𝔤𝜃t )�ℎ� of C�ℎ�-algebras.

Note that since 𝔤𝜃t for t = (c, s) ∈ T depends only t(0) , the same result holds for every t ∈ T such
that t(0) = t′(0) for some t′ ∈ T ∗

C
.
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