If the pupil is trained to think of the position of any digit of a number with reference to the units digit, he will have no difficulty in answering such questions as the following: "By what power of 10 must the number 0638 be multiplied so as to bring the first significant figure into the units place?" "By what power of 10 must we divide $738 \cdot 7$ so as to bring the first significant figure into the units place?"; or in understanding that "the characteristic of the logarithm of a number whose first significant figure is k places to the left (or right) of the units digit is k (or $-k$)." In establishing this rule, we simply assume that the logarithm of a number whose first significant figure is in the units place (and which therefore lies between 1 and 10) lies between 0 and 1.

Assume for example that

$$
7 \cdot 382=10^{\circ} 88882 ;
$$

then

$$
738 \cdot 2=10^{2.8882},
$$

because the 7 is two places to the left of the units digit, and in moving it (and the other digits) 2 places to the left, we have multiplied by 10^{2}, and

$$
\cdot 07382=10^{-2+8888},
$$

because the 7 is two places to the right of the units digit, and we have therefore divided $7 \cdot 382$ by 10^{2}.

W. A. Lindsay

The Possible Error in a Quotient.-Let the quotient be $\mathrm{A} \div \mathrm{B}$ where the possible errors in A and B respectively are a and b.

The correct value of the quotient lies between $\frac{\mathbf{A}+a}{\mathbf{B}-b}$ and $\frac{\mathrm{A}-a}{\mathrm{~B}+b}$.

$$
\text { Now } \begin{align*}
\frac{\mathbf{A}+a}{\mathrm{~B}-b} & =\frac{\mathbf{A}}{\mathbf{B}}\left(1+\frac{a}{\mathrm{~A}}\right)\left(\frac{1}{1-\frac{b}{\mathbf{B}}}\right) \\
& =\frac{\mathbf{A}}{\mathrm{B}}\left(1+\frac{a}{\mathrm{~A}}\right)\left\{1+\frac{b}{\mathrm{~B}}+\frac{b^{2}}{\mathrm{~B}^{2}}+\frac{\frac{b^{3}}{\mathrm{~B}^{3}}}{1-\frac{b}{\mathbf{B}}}\right\} \tag{1}
\end{align*}
$$

If we reject $\frac{a b}{\mathrm{AB}}, \frac{b^{2}}{\mathrm{~B}^{2}}$ and quantities of a higher degree of small ness, we get

$$
\begin{align*}
\frac{\mathrm{A}+a}{\mathrm{~B}-b} & =\frac{\mathrm{A}}{\mathrm{~B}}\left(1+\frac{a}{\mathrm{~A}}+\frac{b}{\mathrm{~B}}\right) \tag{2}\\
& =\frac{\mathrm{A}}{\mathbf{B}}+\frac{a \mathrm{~B}+b \mathrm{~A}}{\mathrm{~B}^{2}} .
\end{align*}
$$

Similarly

$$
\begin{equation*}
\frac{\mathrm{A}-a}{\mathrm{~B}+b}=\frac{\mathrm{A}}{\mathrm{~B}}-\frac{a \mathrm{~B}+b \mathrm{~A}}{\mathrm{~B}^{2}} . \tag{3}
\end{equation*}
$$

The possible error in $\frac{\mathrm{A}}{\mathrm{B}}$ is thus $\frac{a \mathrm{~B}+b \mathrm{~A}}{\mathrm{~B}^{2}}$, or $\left(\frac{a}{\mathrm{~A}}+\frac{b}{\mathrm{~B}}\right)$ of $\frac{\mathrm{A}}{\mathrm{B}}$.
It is easy to estimate the value of the terms rejected in (1) in any particular case.

Suppose, e.g. $\frac{a}{\mathbf{A}}=\cdot 01, \frac{b}{\mathrm{~B}}=\cdot 01$; in most cases $\frac{a}{\mathrm{~A}}$ and $\frac{b}{\mathrm{~B}}$ will be less than 01 .

$$
\text { Then } \begin{aligned}
\frac{\mathbf{A}+a}{\mathbf{B}-b} & =\frac{\mathbf{A}}{\mathbf{B}}\left\{1+\frac{a}{\mathbf{A}}+\frac{b}{\mathbf{B}}+\frac{b^{2}}{\mathbf{B}^{2}}+\frac{a b}{\mathbf{A B}}+\frac{a b^{2}}{\mathbf{A} \mathbf{B}^{2}}+\frac{\left(1+\frac{a}{\mathbf{A}}\right) \frac{b^{3}}{\mathrm{~B}^{3}}}{1-\frac{b}{\mathbf{B}}}\right\} \\
& =\frac{\mathbf{A}}{\mathbf{B}}\left\{1+\frac{a}{\mathbf{A}}+\frac{b}{\mathbf{B}}+01^{2}\left(1+1+\cdot 01+\frac{1 \cdot 01}{.99} \times \cdot 01\right)\right\} \\
& =\frac{\mathbf{A}}{\mathbf{B}}\left\{1+\frac{a}{\mathbf{A}}+\frac{b}{\mathbf{B}}+\cdot 01^{2}(2 \cdot 01+1 \cdot 0202 \ldots \times \cdot 01)\right\} \\
& =\frac{\mathbf{A}}{\mathbf{B}}\left\{1+\frac{a}{\mathbf{A}}+\frac{b}{\mathbf{B}}+\cdot 01^{2}(2 \cdot 020202 \ldots)\right\} \\
& =\frac{\mathbf{A}}{\mathbf{B}}\left\{1+\frac{a}{\mathbf{A}}+\frac{b}{\mathbf{B}}+k\right\}, \text { where } k<\cdot 0003 .
\end{aligned}
$$

There are two interesting cases.
(i) Let $b=0$, i.e. let there be no error in B ; the formula gives the possible error in $\frac{A}{B}$ as $\frac{a}{B}$, as we would expect.

If, for example, the possible error in A is 01 , and we are dividing \mathbf{A} by 10 , the possible error in the quotient is the 10 th part of $\cdot 01$.
(ii) Let $a=0$, i.e. let there be no error in A.

The possible error in $\frac{A}{B}$ is $\frac{b A}{B^{2}}$, i.e. $\frac{b}{B}$ of $\frac{A}{B}$.
This result too may easily be obtained independently.
Example 1. Evaluate $\frac{1}{\pi} . \quad(\mathrm{A}=1$.
(i) Take $\pi=3 \cdot 14$; the error is $\cdot 00159 \ldots$.

The possible error in $\frac{1}{\pi}$ is $\frac{.00159 \ldots \text {, }}{3 \cdot 14^{2}}$

$$
<\quad .00159 \ldots / 9
$$

$$
<\quad .0002
$$

We need not therefore evaluate $\frac{1}{3 \cdot 14}$ to more than four places of decimals; the 4 th figure cannot be correct.

$$
\frac{1}{3 \cdot 14}=\cdot 3184 \ldots
$$

This is $>\frac{1}{\pi}$, but the possible error is <0002.
Hence we may say $\frac{1}{\pi}=\cdot 3184$ to within 0002 , or, remembering that $\cdot 3184$ is $>\frac{1}{\pi}$, we may say $\frac{1}{\pi}=\cdot 318$ (correct to 3 places).
(ii) Taking $\pi=3 \cdot 1416$, the value obtained for $\frac{1}{\pi}$ will be too small by

$$
\begin{align*}
& <\frac{.00001}{9} \\
\text { i.e. } & <\frac{.0000011}{} \\
\text { i.e. } & <\frac{2}{10^{6}} . \\
& \frac{1}{\pi}=318309 \text { to within } \cdot 000002 \tag{50}
\end{align*}
$$

Hence
or

$$
\frac{1}{\pi}=31831 \quad \text { (correct to } 5 \text { places). }
$$

Example 2. The circumference of a circular disc is $23.93^{\prime \prime}$, the diameter is $7.62^{\prime \prime}$; find the ratio of the circumference to the diameter.

$$
23 \cdot 93 \div 7 \cdot 63=3 \cdot] 36 \ldots
$$

The possible error in this quotient is

$$
\frac{7 \cdot 63 \times \cdot 005+23 \cdot 93 \times \cdot 005}{7 \cdot 63^{2}}
$$

i.e.

$$
\frac{31.56 \times \cdot 005}{7 \cdot 63^{2}}
$$

$$
10 \sim
$$

i.e.

$$
\cdot 1578
$$

$$
\overline{7 \cdot 63^{2}}
$$

i.e.

$$
<\frac{\cdot 1578}{50}, \text { but }>\frac{\cdot 1578}{60},
$$

i.e.
$<\cdot 0031 \ldots$ but $>\cdot 0026$.
We are not therefore justified in assuming that the 4th figure in $3 \cdot 136$ can be correct, or even that we can say $3 \cdot 14$ (correct to 2 places). The correct result lies between $3 \cdot 139$ (say) and $3 \cdot 133$, so that the first two figures alone can be depended on.

Equation (4) can be stated thus:-
$\frac{\text { Possible error in } \frac{A}{B}}{\frac{A}{B}}=\frac{\text { Possible error in } A}{A}+\frac{\text { Possible error in B }}{B}$
i.e. percentage error in $\frac{A}{B}=$ percentage error in $A+$ percentage error in B.

Now if the percentage error in A is zero, or if it can be made as sruall as we please, then the percentage error in $\frac{A}{B}$ equals the percentage error in B; i.e. the percentage error in the quotient equals the percentage error in the divisor; which justifies the practice in contracted division of keeping only one significant figure more in the divisor than we wish in the quotient.

W. A. Lindsay

