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Abstract
Let S, T,..., T, be finite semigroups and ¢,;: § — T, be embeddings. When C[S]
is semisimple, we find necessary and sufficient conditions for the semigroup amalgam
(Ty, ..., T;; S) to be embeddable in a finite semigroup. As a consequence we show that

if S is a finite semigroup with C[S] semisimple, then S is an amalgamation base for the class
of finite semigroups if and only if the principal ideals of S are linearly ordered. Our proof uses
both the theory of representations by transformations and the theory of matrix representations
as developed by Clifford, Munn and Ponizovskii

1991 Mathematics subject classification (Amer. Math. Soc.) 20 M 10, 20 M 30, 20M 25.

1. Introduction

While the theory of matrix representations has played a critical role in finite
group theory, the same is not so far true in finite semigroup theory. In this
paper we give an application of linear representation theory to the study of
finite semigroup amalgams.

A basic open problem in finite semigroup theory is to determine when a
finite semigroup S is an amalgamation base for the class of finite semigroups.
It was shown by Hall and one of the authors [6] that a necessary condition is
that the _#-classes of S are linearly ordered. Then Hall [5] showed that any
finite inverse semigroup with linearly ordered .9 -classes is an amalgamtion
base for the class of finite inverse semigroups. Moreover, he conjectured
(private communication) that such a semigroup is also an amalgamation base
for the class of finite semigroups. For combinatorial inverse semigroups, this
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was established by Hall and the second named author in 1987 (unpublished).
At the same time the author was informed by Hall that he could also prove the
result for finite groups. In this paper we establish a much more general result,
namely that if S is any finite semigroup with linearly ordered 7 -classes and
the semigroup algebra C[S] semisimple, then S is an amalgamation base
for the class of finite semigroups. Combining this with an earlier result of
the authors [8], it follows that the multiplicative semigroup -l,,(qu) is an
amalgamation base for the class of finite semigroups.

A related open problem is to find necessary and sufficient conditions for
embedding a finite semigroup amalgam into a finite semigroup. Again we
solve the problem when C[S] is semisimple, where S is the core semigroup.
The conditions are in terms of the associated maps between the partially
ordered sets of regular 9 -classes.

2. Main results

Let S be a finite semigroup. If Y C S, then we let
E(Y)={ec X |e' =e}.

We let Z(S) denote the partially ordered set of regular 7 -classes of S.
If P, Q are partially ordered sets, then a map 6: P — Q is strict order
preserving if for all a,b € P, a < b implies 6(a) < 8(b). If S, T are
finite semigroups and ¢: S — T is an embedding, then the induced map
@: % (S) - Z(T) is strict order preserving.

If a finite semigroup S acts (on the left) on a finite set X, then as usual
we say that X is an S-system. Let X be a G-system where G is a finite
group with identity element e. Then Y = eX is a disjoint union of G-orbits
Y ,...,7Y,. Let

X,={xeX|exeY},i=1,...,¢
Then X is a disjoint union of X, ..., X,. We call X; a pseudo-orbit. Let
a€Y,,H={heG|ha=a}
Then Y, =2 G/H = {gH | g € G} as G-systems. We will say that X; and

i

Y, are of type H. Then the type is uniquely determined up to conjugacy. If

4

H = G, then we say that X, is a trivial pseudo-orbit.

1

LEMMA 1. Let S be a finite semigroup, e € E(S), G the #-class of
e. Suppose that G is also a subgroup of a finite group G. Then there is
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a finite semigroup T and embeddings ¢: S — T, ¢, G — T such that
¢, 6= 9, |G'

ProOOF. Let X be a finite set on which .S acts faithfully. For a subgroup
H of G,let Y, = G/H = {gH | g € G}. Then as a G-system, Y, has at
least one orbit of type H. Let Y denote the disjoint union of |X| copies of
Y, as H ranges through all the subgroups of G'. Then G acts faithfully on
Y, and hence on Y. Also a G-orbit of each type occurs at least |X]| times.
Let I ={a€cS|e ¢ SaS} and let V' be the Rees factor semigroup S/I.
Then S actson W = Ve. For a subgroup H of G, H # G, S acts on
Wy, ={aH |a € W}. As a G-system W, has at most two pseudo-orbits:
one of type H and possibly a trivial one. Thus by adding the needed copies
of W, ’sto X, we can assume that for each subgroup H of G, H # G,
the number of pseudo-orbits of type H of the G-system X is equal to the
number of orbits of type H of the G-system Y. Since we can obviously
add the needed number of trivial orbits to X or Y, we can assume that the
number of trivial pseudo-orbits of X is also equal to the number of trivial
orbits of Y. Then the G-systems eX and Y are isomorphic. So we can
assume that ¥ = eX. Then G acts faithfully on X as: gx = g(ex),
xXeX, ge G . We can then take T to be the full transformation semigroup
on X.

COROLLARY 2. Let S be a finite semigroup, e € E(S), G the #-class of
e. Let H,, H, be subgroups of G, a: H — H, an isomorphism. Then there
is a finite semigroup T containing S and an element x in the # -class of e
in T such that x"‘hx =a(h) forall he H.

ProoF. By [7, Section 18], there is a finite group G containing G such
that o is given by conjugation in G. The result now follows from Lemma
1.

REMARK 3. Let F be a finite field. Then T embeds into some £, (F).
So there exists y € GL(n, F) such that y_lhy =g(h) forall he H,.

LEMMA 4. Let T be a finite semigroup, o: Z(T) — Z a strict order-
preserving map,
a#(T)={r,<r,<---<rn}

such that if t = |T1|, then r, >t and r, > r;,_, 42" i=2,..., k. Then
for any field F , there is an embedding of T into some #,(F) such that each
J € Z(T) consists of matrices of rank o(J).
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ProoF. Let Z(T)={J,, ..., J,} with a(J;) <--- < a(J,,). The regular
representation of 7 yields an embedding y: T — .#,(F) where ¢ = |T1|.
Let a,, ..., a, be the ranks of the matrices in !//(Jl),_... , w(J,,), respec-

tively. We use the fact that the jth exterior power A’, j=1,...,¢ can
be treated as a semigroup homomorphism from .#,(F) into /( 3 (F), and
j

if 4 € .#,(F) is a matrix of rank r then A’ (4) has rank () if r>j and
0 otherwise. For i=1,..., m let

L={xeT|J ¢ T'xT'"}
and T; the Rees factor semigroup 7/I;. Let n;: T — T/I; denote the

1
natural homomorphism. Let ¢, = |T,.l|. Then the regular representation of

T, induces an embedding y;: T, — .4, (F). Let a,; denote the rank of the

1
matrices in y,(J,) and let ¢, = A% oy,om,. Let n, ..., n, be positive
integers. Consider the direct product of representations

P=yop'® DY, @

denoting the direct product of n copies of ¢,. This defines an embedding
T — #,(F) where

t ¢
n=t+n, (al >+-~-+nm (a'" )
11 mm

Then ¢(J;) consists of matrices of rank a; + 3" n,(4”) + n; where the sum
is taken over all j such that J, > J - Thus, we have to solve the system of
equations

a +Zn ( '1) m=s=al;), i=1,...,m

for n,,..., n, in the set of positive integers. Since by the hypothesis on
o, this is a triangular system with diagonal coefficients equal to 1, this can
be inductively solved provided that

a;; ,
s,>a ands;>a;+ )y n (al.{) fori=2,...,m.
1J
Let s,,...,8=r <s;,. Then J, ..., J; are not comparable, so the first
! equations look like

n=a+ni=1,..,1L

Since r; > ¢, we can choose n; = r; —a;. Assume that 5, < s , and
ny,....n, have been chosen so that the first ¢ equations are satisfied. Let

Spp1 = =8, and S, < Spu if p # m. Since JH,...,Jp are not
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comparable, we see that for i=¢+1, ..., p, n; does not appear in the jth
equation for g+ 1< j<p, j#i. Since n;<s; for j < g, we have

a;. a; t
ai+2nj(az_) <a+3 s 2% <t+ 35,2

t t
5sq-2 -mgsq~2 <8 =5

for i=g+1,...,p. The result follows.

Finally, we will need the following consequence of matrix representation
theory of finite semigroups.

ProposiTION 5. Let S be a finite semigroup such that the semigroup al-
gebra F[S] is semisimple for a finite field F . Assume that V , W are finite
dimensional left F[S}-modules of the same dimension such that, for every
e=e*€eS and the #-class H of e in S, eV and eW are isomorphic as
F{H}-modules. Then V , W are isomorphic F[S]-modules.

PROOF. Let the J -classes of S be listed as J;, ..., J, so that J, % J;

for i< j. Let ¢; = e,.2 € J;. Since F[S] is semisimple, V', W are direct
sums of irreducible submodules. It is known that every non-null irreducible
F[S}]-module Z comes from a J ~class J of S, cf, [2, Theorem 5.33].
Specifically, Z has the induced F [JO]-module structure and aZ # 0 only
if the F -class J, of a € S satisfies J > J. Let

V=X 0c0X,6X and W=Y &6---0Y,0Y

where
Xy =Va® oV, ad Y =W, & --0W,

are direct sums of non-null irreducible submodules determined by J, , and
X, Y are trivial submodules. By induction on k& we show that X e =Y.
Assume that X; ~ Y, for / < k. Then
ekXI @ e @ eka_l o~ ekYI @ cre @ ekYk_‘
as F[e, Se,]-modules, and so as F[H]-modules for the #-class H of e, in
S. Since
V=X o -0eX, and e¢W=¢Y o ---0eY,

are isomorphic F[H]-modules by the hypothesis, it follows that ¢, X, ~ ¢, Y,
as F[H]-modules. Then X, ~ Y, as F[S]-modules, cf., [2, Section 5.4 and
Theorem 5.33]. Since dimV = dim W, we also have X ~ Y, so that
VW,
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DEFINITION. Let Q, P, ..., P, be finite partially ordered sets, a;: @ —
P, be strict order preserving maps. Then ¢, ..., o, are compatible if there
is a finite partially ordered set P, and strict order preserving maps f8;: P, — P
such that B, oa, = ,Bj ca; forall i, j.

REMARK 6. (i) If a,, ..., oy are compatible, then P can be chosen to
be a finite linearly ordered set since any finite partially ordered set admits a
strict order preserving map into a finite linearly ordered set.

(i1) If Q is a linearly ordered set, then o, ..., o are always compatible.

(iii) If Q is not linearly ordered, then there exist P, P,, a,, o, which
are not compatible.

Let §,T,,..., T, be semigroups with ¢;: § — T, embeddings. Then
(Ty, ..., T,;S) is called an amalgam and S its core. The amalgam is
embeddable in a semigroup T if there exist embeddings y;: T; — T such
that y, 09, = Yoy, for all i, j. We now prove our main theorem.

THEOREM 7. Let S, T, ..., T, be finite semigroups with ¢;: S — T,
embeddings with induced maps ¢,;: Z(S) — #(T;). If C[S] is semisimple,
then the amalgam (T, ..., T, ;S) is embeddable in a finite semigroup if
and only if 9, ..., @, are compatible.

Proofr. The necessity being obvious, we prove sufficiency. So assume that
@,,.-., 9, are compatible. By [8, Proposition 2.11] there exists a finite
field F such that F[S] is semisimple. By Lemma 4 and Remark 6(i), we
can assume that T, = .#,(F), for all i and that for all e € E(S) and all
i,j,9pe) and (pj(e) are of the same rank. Let ¢ € E(S), H the #-class
of e in §. Fix i,j. There is x € GL(n, F) such that x_lq)j(e)x =
@;(e). Then o: ¢,(H) — x_l(oj(H)x given by o(9,(g)) = x_lq;j(g)x is an
isomorphism. So by Corollary 2 and Remark 3 we can replace #,(F) by
some le(F ) so that ¢ is given by conjugacy by an element of GL(p, F).

Repeating this argument we can assume without loss of generality that for all
e € E(S) and all i, j, there exists x € GL(n, F) such that

x_lwi(a)x =g¢;(a) foralla€cH,

where H, is the #-class of e. Hence by Proposition 5, the linear repre-
sentations ¢, , ..., ¢, are all equivalent. This completes the proof of the
theorem.

ReEMARK 8. Let S be a finite semigroup. Munn and Ponizovskii have
characterized the semisimplicity of C[S] in terms of the invertibility of the
sandwich matrices over appropriate group algebras, cf., [2, Chapter 5]. In
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particular C[S] is semisimple for finite inverse semigroups S. Recently the
authors [8] have shown by a difficult argument that the complex semigroup
algebras of finite monoids of Lie type are also semisimple. These are the
finite analogues of linear algebraic monoids.

Let S be a finite semigroup. Then S is an amalgamation base for the

class of finite semigroups if any finite semigroup amalgam (T, ..., T, ;S)
can be embedded in a finite semigroup. By Remark 6(ii), Theorem 7 and [6]
we have:

THEOREM 9. Let S be a finite semigroup with C[S] semisimple. Then S
is an amalgamation base for the class of finite semigroups if and only if the
T -classes of S are linearly ordered.

CoROLLARY 10. A finite inverse semigroup S is an amalgamation base for
the class of finite semigroups if and only if the T -classes of S are linearly
ordered.

The authors [8, Corollary 2.10] have shown that C[.#, (F)] is semisimple
for any finite field F . This result was claimed much earlier by Faddeev [3].
However, his proof is incomplete with no further details ever published or
otherwise available. Since .#, (F) has linearly ordered .7 -classes, we have:

CoRrOLLARY 11. For any finite field F , the multiplicative semigroup A, (F)
is an amalgamation base for the class of finite semigroups.

The problem of determining all (regular) amalgamation bases for the class
of finite semigroups remains open. In light of the results of this paper, we
feel that the final answer will have something to do with linear representation
theory. However by Hall [4], the two element right zero semigroup is an
amalgamation base, while the three element right zero semigroup is not. So
the exact conditions are not at this point clear to the authors.
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