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1. Introduction. In this note, we first establish an integral transform pair where the
kernel of each integral involves the Gaussian hypergeometric function. Special cases of
Theorem 1 have been studied by several authors [1, 2, 5, 6]. In Theorem 2 a similar integral
transform pair involving a confluent hypergeometric function is given.

We conclude with several examples.

2. Results.
THEOREM 1. Let n be an integer, n > Re (c) > 0; let 0 < y g 1; let Fix) e C and G(x)

be absolutely continuous, 0 ^ x^ 1, and let F(l) = F'(l) = ... = Fin~l)(l) - 0. Then either of
the statements

x-yrliFi(fi,bi c; l-ylx)G(x)dx,
y

(2)

implies the other.

Proof. In (1) and (2) let y = e~\ x = e"", F(e"') =/(<), G(e->~I / C = 0(«)- Equations
(1) and (2) become

f(t) = ['v.-e-«-'*]r1
2Fl(a, b; c; l-e^-^)g(u)du, (3)

Jo

ec'g(t) = r(c)r\nJ
\^{u)du. (4)

Because of Euler's relationship

2Fv(a, b; c; z) = (l-z)-f c
2F1(c-a) b; c; z/(z-l)), (5)

(4) may be written

t This research was supported by the United States Air Force through the Aeronautical Research Labora-
tories under contract AF 33(657)-8872.
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Equations (3) and (6) are integral equations of convolution type and each may be solved by the
use of Laplace transforms under the given hypotheses.

Let

*{f(t)}=j(p)=r e-"Mdt. (7)
Jo

We need the following known formulae [3]:

= CP-D(P-2) - (p-n)J(p-n),

= 0 (fc = 0,l n - l ) ; (8)

; (9)

The Laplace transform of (3) is

while (6) yields

-t , u \ r(p)T(b-a+pXn+p+b-c-l)(n+p+b-c-2)...(j>+b-c)f(p+b-c)
fllD + O — C) =} r(c)T(p-a)r(n+p+b-c)

r(p)r(b-a+p)j(P+b-c)
r(c)r(p-a)r(p+b-c)

(Re(p+h-c)>0) , (12)

which holds since / w (0) = Fm(l) = 0 (A: = 0, 1,.. . ,«-1). But (11) and (12) are equivalent
statements, and thus the theorem is proved.

To obtain the result in [1], let a= -\-%v+\n, b= - iv+ i / i , c =/* and make the obvious
changes of variable.! Likewise the transform pairs given in [2] and [5] follow by the proper
identification of parameters.

Let us write (3) in the form

f(t)=\'k(t-u)g(u)du. (13)
Jo

A feature of the present study is that the inverse Laplace transform of k{p)~l has a simple
form. Whenever this is true, the solution of (13) often yields a simple integral transform pair.
Our second theorem, which involves a confluent hypergeometric function, demonstrates this.

t The powers of (/• - *•) in the first two equations of this reference should read (ft -1)/2 instead of (1 -/*)/2.
There the conditions of validity on F were omitted.
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THEOREM 2. Suppose thatf(t) e C withf(O) =/ '(0) = ... =f-i\0) = 0. Let g(t) be
absolutely continuous for t ^ 0. Then, for n > Re (c) > 0, ei'/Aer o/f/ie statements below implies
the other.

f(t) = {'(t-uy-^ia, c; k(t-
Jo

u))g{u) du, (14)

9(t) =
( " a ' n ~ c ; A ( ' -

(Here 3>(a, b; z) is Kummer's confluent hypergeometric function iFt(a, b; z).)

Proof. The proof follows the manner of that for Theorem 1 (see (3) and (4)). The trans-
form pairs needed are given in [3, 4. 2. 3 (1), 4. 1 (8)].

3. Applications. We give two examples of (1) and (2) where the kernels involve elementary
transcendents. The conditions for validity may be inferred from Theorem 1.

If a = -i-, b = 1, c = | and n = 2, then

G(y) = l dx.

(16)

If b = a+$, c = \ and n = 1, then

G(y) = - - f \x2-y2y* Re {[y+i7(x2-/)]2a+1}F'(x) dx.
71 Jy

(17)

Other examples of (1) and (2) may be obtained by applying the formulae in [4, Ch. 2], and
examples of (14), (15) follow by using the results in [4, Ch. 6].
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