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This paper presents some properties of continuous complex-valued mean
periodic functions of a single real variable. The theory of these functions is due
mainly to Schwartz [7] and they have also been considered by Kahane [4,5].
Most of the properties outlined here are also shared by the continuous mean-
periodic functions on a half line introduced by Koosis [6].

We use C(R) to denote the set of all continuous complex-valued functions
defined on the real line, R, taken with the topology of convergence uniform on all
compact subsets of R. A function / belonging to C(R) is mean periodic if the
linear subspace spanned by/and its translates is not dense in C(R); this condition
is equivalent to each of: (i) the existence of a non-zero measure, /i, of compact
support such that /i */ = 0, i.e.

r
I fit - r)dn(r) = 0 for all real t;

(ii)/is the limit in C(R) of a sequence of exponential polynomials/,, each satisfying
^ */n = 0 for some non-zero measure fi of compact support. Here by an exponential
polynomial is meant a finite linear combination of terms unea where
unea: t -* feat, n is any non-negative integer and a is any complex number.

Throughout this note, we will understand the term 'measure' to mean a
measure of compact support and use the facts that the convolution of two
measures, is a measure and that operation of convolution of measures with
measures or measures with continuous functions restricted to a half line, is
associative and commutative (see, for example, Edwards [2], 4.19). Also, / is
used to denote a mean periodic function belonging to C(R) and \i a non-zero
measure such that /; */= 0. From this characterization, it follows that any primitive
of/or the derivative of/(when it is continuous) is mean periodic and both have the
same mean period of/. The mean period of/ is the infimum of the lengths of the
intervals containing the supports of the non-zero measures n such that (i*f = 0.

We note that \i * k is a non-zero measure when \i and X are non-zero measures.
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Also fi*X has support contained in an interval of length 2e when the lengths of
the supporting intervals of fi and X do not exceed E. If MP denotes the set of all
mean periodic functions in C(R) and MP0 the set of mean periodic functions
with mean period zero, then it follows that MP and MP0 are linear subspaces of
C(R). The set of exponential polynomials is a linear subspace of MP0 and the
set MP is a proper dense subspace of C(R).

The truncated convolution product of two C(R) functions x and y is defined
by

r
x © y: t -» x(t — r)y{r)dr

Jo

and x ®y e C(R). With addition and this product, C(R) is an algebra (see Erdelyi
[3] for this and other details of this product).

PROPOSITION 1. The truncated convolution product of two mean periodic
functions is mean periodic.

PROOF. Let f,ge MP and, as well as n * / = 0, suppose that A is a nonzero
measure such that X * g = 0. Let/~ be equal t o / o n (— oo,0)and be zero otherwise;
also l e t / + =f — f~ and define g~ and g+ in the same way. Then v = n*f~ is a
function of compact support and as

f+*9+ = (f®g)+ and f-*g~ = - (f ® g)~, then

n*(f®g) = v*(f+*g+ -f~*g~)

= (~v)*g+ - v*g~

= ~v*g.

Hence n * X * ( / © g)= — v*g *X = 0 and as fi * X is a non-zero measure, / © g is

mean periodic.

COROLLARY. MPO and MP are subalgebras of C(R).

PROPOSITION 2. Iffandf@g are mean periodic, if f is non-zero and if g is
continuous, then g is mean periodic.

PROOF. AS above, set v = fi*f~ and note that as well as v having compact
support, it is non-zero for / and hence / " are non-zero. Let v be a non-zero
measure such that v*{f®g) = 0;then from n*(f®g)= - v*g, it follows that
v*v*g = 0 and as v* v is a non-zero measure, g is mean periodic.

COROLLARY. Let f be non-zero and g be continuous. Iff and f®g have
mean period zero then g has mean period zero.
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PROPOSITION 3. / / / is mean periodic and if g is an exponential poly-
nomial, then fg is mean periodic.

PROOF. We firstly consider uf where uf: t->tf(t). With / i* /=0 ,

H*uf=u(n*f)-A*f= - X*f

where X is the non-zero measure defined by X{x) = fi(ux) for each x e C(R). Hence

= — n*X*f=0

and as fi * fi is a non-zero measure, uf is mean periodic. Thus wn/is mean periodic.
Since multiplication by an exponential does not affect a function's mean periodi-
city, unej is mean periodic. Hence fg is mean periodic.

COROLLARY. Let g be an exponential polynomial. Thenfg is mean periodic
with mean period zero when f is.

The following examples show that the pointwise product of two mean per-
iodic functions need not be mean periodic: le t /and g be two continuous periodic
functions that have no non-zero Fourier coefficients /(m), g(n) (m, n any integers)
where/has period 2nja, g has period 2n/P and a//J is irrational.

To show that fg is not mean periodic, we suppose that X is any measure with
a compact support K satisfying X * (fg) = 0 and let aNf and oNg denote the
Cesaro means associated wi th /and g so that aNfx aNg converges uniformly to
fg as N -> oo. Using the fact that

converges uniformly in r to 0 as T-> oo if d ̂  0 and

it follows that

lim -^ I mgtfe-^dt

= lim X Z
iV->oo | m | < N | n | < J

T l
. ~ J-r

x /(m)i(n) li ^ fr '

f{m)g(n) (y = am + J?n),
0 (otherwise).
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Hence when y = am + fin,

f(m)g(n) ! e'^dkir) = lim f e^'dl^r) 1 f * /
JK T-»« JK 1 J-r

= lim 1 I* e-*» f f(t - r)g{t - r)dk{r)dt
T-oo J JO JK

= 0.
If

Af(z) = f e-iz'dX(t),
JK

the Fourier transform of the measure A, we see that M vanishes on the set
S = {am + fin: m,n are integers}. As M is an entire function and 5 is dense in the
real line, it follows that M is zero. Hence A is zero and so fg cannot be a mean
periodic function.

In the above example, / and g have mean periods of 2n /oc and 2n /ft. If we
now have /(m) non-zero when m = + p2 and zero otherwise and §(ri) non-zero
when n = + q2 and zero otherwise (p, q integers), then both / and g have mean
period zero since the spectrum {ak} of either function is real and simple and
satisfies L l /\ak\ < oo.

From the above calculations, if v is any measure satisfying v * (fg) = 0 and
if v has Fourier transform L, then L vanishes on the set S" = { + ctp2 + Pq2: p, q
are integers}. When a.IP is irrational and ^fa/P is approximable by rationals to
order three, then for any positive e, an infinity of integers p, q can be found such
that | ap2 — Pq2 j < e. Thus S' has zero as a limit point and as L is an entire
function, it must be zero. Thus v is zero and so fg is not mean periodic.

We now consider the relationship between mean periodic functions and
linear differential equations with constant coefficients and other functional
equations.

PROPOSITION 4. The differential equation x' + ax = y where a is a constant,
yeC(R) and x(a) = c has a mean periodic solution if and only if the forcing
term y is mean periodic.

PROOF. It is trivial that y is mean periodic when x is mean periodic. Con-
versely, the solution of this equation is

- Vea'y(r)dr\x(t) = e'Ace^ - Vea'y(r)dr\ + e_a ® y(t)

which, by Proposition 1, is mean periodic when y is.

COROLLARY. When the solution and forcing term are mean periodic, both
have the same mean period.
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PROPOSITION 5. For the system of equations,

x'(t) + Ax(t) = y(t) with x(a) = c

where y is an n-vector valued function with continuous components and A is a
constant n x n matrix, a necessary and sufficient condition that x be mean
periodic is that y be mean periodic.

PROOF. If x is mean periodic in the sense that there exists a non-zero measure
/ such that X * x, = 0 for each component of x, then as x is continuously dif-
ferentiable, X*x' = 0; also 2.*Ax = AX*x = 0 so that X*y = O showing y is
mean periodic.

Conversely, if y is mean periodic and such that v * y = 0 where visa non-zero
measure, set z = v * x so that

z ' + Az = v * x' + Av * x = v * (x' + Ax) = v * y = 0.

Then z{t) — e~A'd where d is some constant vector. As the elements of the matrix
e~At are exponential polynomials, the components of z are exponential polynomi-
als. Thus ip*z = 0 and soi/ '*v*x = 0 where \\i and \ji* v are non-zero measures,
and so x is mean periodic.

PROPOSITION 6. For the two kinds of integral equations of convolution type

(1) x®f = y

(2) x — ax ®f ~ y

where a is a non-zero constant, y is continuous and f is a non-zero mean periodic
function, if x is mean periodic, then so is y. Conversely, if y is mean periodic,
there is only one continuous solution and this is mean periodic.

PROOF. The first statement follows directly from Proposition 1. For the
converse part of (1), the mean periodicity of any continuous solution is due to
Proposition 2 and its uniqueness is due to the fact that the difference between any
two continuous solutions, say z, is mean periodic and satisfies z © / = 0 . As a
non-zero mean periodic function cannot vanish on a half line, / + and / ~ are
non-zero so from Titchmarch's convolution theorem, z+ and z" are zero so that z
is zero.

For (2) when y is mean periodic with A * y = 0 where 1 is a non-zero measure
and n*f~ = v,

H*y =n* x + ax *v

so that A * {n + av) * x = 0. As fi + av = fi * (5 + af~) is a non-zero measure, it
follows that x is mean periodic when it is continuous. If z is the difference between
any two continuous solutions of (2), then
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z = a(z © / ) = z © (a / )

and since af is continuous, a /V <5 and so z = 0. Here, <5 denotes the Dirac measure
with S(g) = g(0) and d*g = g for each g e C(R).

PROPOSITION 7. For the differential-difference equation

n

(3) x'(t) + Z akx(t - (ok) = y(t)
k = 0

where y is continuous on R, n > 0, ao,a1,...,an are non-zero complex numbers
and co0 < Wt < ... < con are real numbers, if any solution is mean periodic,
then y is mean periodic. Conversely, if y is mean periodic, then all solutions
valid on R are mean periodic.

PROOF. Any solution of (3) that is valid on the real line is continuously
differentiable so that if it is mean periodic as well, x' together with the translates
of x are mean periodic. Thus y is mean periodic.

Conversely, let T denote the distribution D5 + S" = o ak dak where 5a is the
Dirac measure placed at w so that (3) can be written as T* x = y. Since y is
mean periodic, there exists a non-zero measure X such that X * y = 0. If p is any
non-zero indefinitely differentiable function with a compact support, then so is
ifr = p*X*T and \]/*x = 0. Thus x is mean periodic.

We note that the above propositions and their corollaries are valid for the
continuous complex-valued mean periodic functions denned on R + , the set of
nonnegative real numbers (Koosis [6]). The proofs in the case of these functions
resemble those given above and are omitted. However, Proposition 7 can be
modified to give

PROPOSITION 8. For the differential-difference equation (3) of retarded type
where

(i) y is continuous on R +

(ii) 0 = a>0 < ajj < ... < <an = a, n > 0, an # 0,

(iii) g is continuous on [0, a],

(a) there exists a unique function, x which is continuous on R + , satisfies (3) on
(a, oo) and coincides with g on [0, a]. Moreover, u is continuously differentiable
on (a, oo), and
(b) a necessary and sufficient condition that the solution be mean periodic on a
half line is that y be mean periodic on a half line.

PROOF. The proof of (a) is routine. For (b), there is no restriction in assuming
that x and y are defined on R and zero on ( - oo, 0). Equation (3) can be written as
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n

(4) x'(t + a) + £ akx(t + a - cok) = y(t + a) for t > 0.

When the solution is mean periodic on a half line since it is also continuously
differentiable on (a, oo), the function T-Xx': t -> x'(t + a) along with the translates
of x and so T^xy are mean periodic on a half line. Thus there exists a non-zero
measure A with support contained in [ — fi, 0] for some ft > 0 such that
A*T_£j> = <5_a*A*}> is zero on (0, oo). As 6-x*l is a non-zero measure with a
compact support in (— oo,0], y is mean periodic on a half line.

Equation (4) can be written as S*x = T-Xy where S is the distribution

n

D5_x + E ak8-x+mk
k = O

with support contained in [— a, 0]. When y is mean periodic on a half line with v,
a non-zero measure such that v and v * y have compact supports in (— oo,0], then
v*T_xy — v*S*x also has compact support in (— oo,0]. When p is any non-zero
indefinitely differentiable function with a compact support in (— oo,0], so also
is \\i = p * v * S. Thus \p * x is zero on (0, oo) so that x is mean periodic on a half line.

NOTE. An alternative method of proving the converse portion of the above
(and also Proposition 7) that is longer and more constructive is now outlined.
The characteristic equation of (3) is

n

h(z) = z+ E a*exp(— za>k) = 0

and has at least one root, z = c say. For if not, h{z) is of the form eg(z) where
g(z) is an entire function. As h(z) is of order one, g(z) = dz + A where A and d
are constants so that h(z) = eAedz which is contradictory.

Now set x{i) = ec'v(t) so that (4) becomes

n

v'(t + tx)- E akexp(- co)k)(v(t + a)-v(t + u- cok)) = e~c'~cizy(t + a).

On integration and rearrangement this equation gives

(5) v(t + oi)- E akexp(-ca)k) | v(t - r)dr = A + F{i)

where

A = u(a) — E a t exp(— ccok) v(r + a — cok)dr,
k = 0 JOJO
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a constant that may be determined from the boundary condition and

F(t) = f e-cry{r)dr.

If X is the measure with support [ — a, 0] denned by

n /* —a

X(w) = w( — a) — X ak exp (— ccok) I w(r) dr

for each continuous function w, then (5) can be written as X * v = A + F. When y
is mean periodic on a half line, so also are F and A + F so there exists a non-zero
measure v such that v and v*(A + F) have compact supports in (— oo,0]. Hence
v * X * v and the non-zero measure v * X have compact supports in (— oo, 0] showing
that v and x are mean periodic on a half line.

COROLLARY. When y is zero, the solution x is uniformly approximable on
all compact subintervals of (a, oo) by finite linear combinations of exponential
monomials unea where the characteristic equation h(z) = 0 has a zero of order
exceeding n at z = a.

PROOF. That the mean period of the solution does not exceed a follows from
p * S * x = 0 on (0, oo) when y = 0 since p can be chosen with support contained
in an interval of arbitrarily small length and S has support [— <x,0]. The spectrum
of x, Ax, is contained in the set {(a, p): §{z) has a zero of order p at z = a} where
§(z) is the Fourier transform of the distribution S and equal to S(e_,-2). Hence x
is uniformly approximable on compact subsets of (a, oo) by linear combinations
of exponential monomials uneia where (a,p)eAx and n<p (Koosis [6]). As
S(z) = e""h(iz), the statement of the corollary is proved.

This result forms part of the statement of Theorem 4.2 (Bellman and Cooke
[1], page 109). However, our treatment using mean periodic functions does not
readily give a series representation in terms of the exponential monomials or
consider conditions when this series is uniformly convergent as Bellman and
Cooke's approach does.
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