
TLP 18 (5–6): 722–724, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000406
722

Past and present (and future) of parallel and
distributed computation in (constraint) logic

programming

F E R D I N A N D O F I O R E T T O
University of Michigan, Ann Arbor, MI 48109, USA

(e-mail: fioretto@umich.edu)

E N R I C O P O N T E L L I
New Mexico State University, Las Cruces, NM 88003, USA

(e-mail: epontell@cs.nmsu.edu)

submitted 05 July 2018; revised 07 July 2018; accepted 08 July 2018

1 Introduction

Declarative languages offer unprecedented opportunities for the use of parallelism to speed
up execution. A declarative language, being not procedural, removes the need to perform
operations in a strict order and reduces the number of dependencies among operations,
thus opening the doors for concurrent execution. The potential for transparent exploitation
of parallelism in logic programming emerged almost immediately with the birth of the
paradigm (Pollard 1981).

An extensive literature has been developed exploring issues like automated paralleliza-
tion of logic programs, the use of logic programs to describe parallel and distributed
computations, and logic programming models to capture concurrency and facilitate the de-
velopment of provably correct concurrent applications. The literature on parallel execution
of logic-based languages has extensively explored many of the issues related to exploitation
of parallelism in traditional execution models of languages like Prolog (e.g., Gupta et al.
2001) as well as execution models of more recent logic-based paradigms, including Satisfi-
ability Modulo Theory (Hyvarinen and Wintersteiger 2018)and Answer Set Programming
(Dovier et al. 2018). After over 30 years of research in these domains, the state of the
art has reached a stage where technologies are highly complex and sophisticated, and
applications are plentiful. Yet, the continuous development of novel architectures (e.g., the
onset of GPU-based computing; the widespread use of simple inter-connected devices, like
Arduino and Raspberry Pi), the appearance of new domains and potential applications (e.g.,
big data), and the developments in novel logic programming languages and paradigms are
creating new research opportunities and fueling new ideas and developments.

2 The papers

The goal of this special issue is to provide a three-fold perspective on research at the
junction between parallel and distributed computation and (constraint) logic programming:

https://doi.org/10.1017/S1471068418000406 Published online by Cambridge University Press

http://orcid.org/0000-0002-7753-1737
https://doi.org/10.1017/S1471068418000406


Editorial 723

(1) Well-thought assessments of the state of the art (e.g., in the form of well organized
surveys).

(2) Cutting-edge coverage of new developments (e.g., novel execution models, innovative
systems, and implementations).

(3) New research directions, offering clear motivations, new perspectives, and solid foun-
dations for other researchers to build upon.

The following is a brief summary of the papers that have been accepted as part of this
special issue—organized in two groups: Survey Papers and Original Contributions.

2.1 Survey papers

The special issue presents three outstanding survey papers that explore the issue of par-
allelism and concurrency in three core domains: Constraint Solving, Constraint Handling
Rules, and Datalog-based Big Data.

The paper by Gent, McCreesh, Miguel, Moore, Nightingale, Prosser, and Unsworth,
titled A Review of Literature on Parallel Constraint Solving, provides a thorough review
of the techniques explored to parallelize the process of constraint solving, with a focus
on the use of multi-core platforms and an eye on challenges and opportunities that can be
explored in the future. The paper categorizes existing work into parallel consistency and
propagation, parallelizing the search process, multi-agent search, and portfolios.

The paper by Gent et al. is nicely complemented by the survey by Thom Früwirth,
titled Parallelism, Concurrency and Distribution in Constraint Handling Rules: A Survey.
This survey provides an overview of concurrent, parallel, and distributed semantics for
the Constraint Handling Rules framework. On the more practical side, the survey explores
parallel implementations that have been proposed alongside with meaningful examples
and benchmarks. Additionally, it reviews concurrency models that have been encoded in
Constraint Handling Rules to get a better understanding of them and sometimes to extend
them. The survey also identifies common topics and issues that lead to open research
questions.

The third survey moves into the world of Big Data. The paper by Condie, Shkapsky,
Das, Interlandi, Yang, and Zaniolo, titled Scaling-Up Reasoning and Advanced Analytics
on BigData examines the difficulties and reviews solutions for challenges at the language
level and at the system level arising when creating an efficient and scalable systems using
logic to express queries and reasoning. The survey explores extensions of Datalog suitable
to enhance performance and scalability on distributed computing platforms and multi-core
architectures, including platforms like Apache Spark.

2.2 Original papers

The special issue includes a number of original papers that explore different dimensions of
parallelism and concurrency in different constraint and logic-based paradigms.

The work by Calegari, Denti, Mariani, and Omicini, titled Logic Programming as a
Service takes a novel approach to concurrency and distribution, by introducing the notion
of Logic Programming as a Service. The Logic Programming as a Service framework
provides a solution to the problem of using logic engines as distributed services. The paper

https://doi.org/10.1017/S1471068418000406 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000406


724 F. Fioretto and E. Pontelli

presents a prototype of Logic Programming as a Service built on top of the tuProlog sys-
tem. Among the advantages of the proposed framework, exploiting a Logic Programming
approach in pervasive systems encourages representing and reasoning with situations using
a declarative language, promotes cooperation and inter-operation between different entities
of a pervasive system, and enables reasoning over data streams as collected by sensors.

The paper by Interlandi and Tanca, titled A Datalog-based Computational Model for
Coordination-free, Data-Parallel Systems, proposes a study of a logic programming-based
computational model for eventually consistent, data-parallel systems, the keystone of which
is provided by the recent finding that the class of programs that can be computed in an
eventually consistent, coordination-free way is that of monotonic programs. The paper
analyzes this principle, called CALM, under synchronous and reliable settings, and shows
that the CALM principle holds also in rsync settings, but in general only for the subclass
of monotonic queries defined as connected.

The paper by Pakin (Performing Fully Parallel Constraint Logic Programming on a
Quantum Annealer) takes us into one of the first ever proposed studies that explores the use
of quantum annealing techniques in the context of parallel constraint logic programming.
Quantum annealers provide a method to solve particular classes of optimization problems,
the paper shows how to compile a subset of Prolog, enhanced with support for constraint
logic programming, into a model suitable for execution on a quantum annealer. To express
constraint logic programming in the form accepted by quantum-annealing hardware, the
paper identifies an analogy between expression minimization in an Ising-model Hamilto-
nian and unification in constraint logic programming. Based on that insight, the author
implemented QA Prolog, a compiler that converts Prolog programs into 2-local Ising-
model Hamiltonians, runs these on a D-Wave quantum annealer, and reports the results
in terms of program variables.

Last but not least, the paper by Areias and Rocha, titled Table Space Designs For Im-
plicit and Explicit Concurrent Tabled Evaluation, offers a comprehensive overview of the
techniques for concurrent tabled evaluation and describes the design and implementation
challenges of several alternative table space designs for implicit and explicit concurrent
tabled evaluation, as explored in the YAP Prolog system. The paper further rises important
questions and identifies future challenging research directions.

References

DOVIER, A., FORMISANO, A. AND PONTELLI, E. 2018. Parallel answer set programming. In
Handbook of Parallel Constraint Reasoning. Y. Hamadi and L. Sais, Eds. Springer International
Publishing: Heidelberg, Germany, 237–282.

GUPTA, G., PONTELLI, E., CARLSSON, M., HERMENEGILDO, M. AND ALI, K. 2001. Parallel
execution of prolog programs: A survey. ACM Transactions on Programming Languages and
Systems 23, 4, 472–602.

HYVARINEN, A. AND WINTERSTEIGER, C. 2018. Parallel satisfiability modulo theories. In
Handbook of Parallel Constraint Reasoning. Y. Hamadi and L. Sais, Eds. Springer: Heidelberg,
Germany, 141–178.

POLLARD, G. H. 1981. Parallel Execution of Horn Clause Programs. PhD Thesis, Department of
Computing, Imperial College, London.

https://doi.org/10.1017/S1471068418000406 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000406

