UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS

SEIZÔ ITÔ

§0. Introduction. Recently I. Gelfand and M. Neumark [2] have determined the types of irreducible unitary representations of the group G_1 of linear transformations of the straight line. The analogous result is obtained for the group G_2 of transformations $z \rightarrow az + b$ in the complex-number plane \mathcal{C} , where a and b run over all complex numbers with the exception of a = 0, which may be considered as the group of all sense-preserving similar transformations in the two-dimensional euclidean space E^2 . In this paper, we shall determine the types of cyclic¹⁾ unitary representations and irreducible unitary representations of the group G of all sense-preserving congruent transformations in E^2 , which may be realized as the group of all transformations in \mathcal{C} of the form $z \rightarrow az + b$; $a, b \in \mathcal{C}$ and |a| = 1. The method is due to the same idea as Gelfand-Neumark's one [2], but we need Lemma 2 (§2) which is not necessary in the case of G_1 and of G_2 . Our method may be applied to the group G' of all transformations $q \rightarrow aq + b$ in the field Q of quaternions, where $a, b \in \mathbb{Q}$ and $||a|| = 1^{2}$

The author expresses his hearty thanks to Prof. K. Yosida, Mr. H. Yoshizawa and Mr. S. Murakami who have encouraged him with kind discussions.

§1. Main results. Let G be the group of all transformations $z \rightarrow az + b$ in the complex-number plane \mathbb{C} where $a, b \in \mathbb{C}$ and |a| = 1. Then the group U of all rotations $z \rightarrow az$, |a| = 1, is a subgroup of G and the group V of all translations $z \rightarrow z + b$ is a commutative normal subgroup of G, and it holds that

(1.1)
$$\begin{cases} G = U \cdot V, & U \cap V = \{e\} \\ G/V \cong U. \end{cases}$$
 (e = the identity of G),

Hereafter we shall denote by u_a and v_b the elements of U and V corresponding to the complex number a (|a|=1) and b respectively. Then we have $u_1 = v_0 = e$ and

Received September 17, 1951.

¹⁾ It is called "simple" in [3].

²⁾ The group G' is different from the group of all sense-preserving congruent transformations in E^4 . It seems to be more complicated to determine the types of unitary representations of the group of all sense-preserving congruent transformations in E^n for $n \ge 3$; — see § 4.

 $(1.2) u_a v_b = v_{ab} u_a.$

Let X be the character group of V and χ_0 be the identity character. Then X is isomorphic to the two-dimensional vector group as well as V and consequently every element χ of X may be considered as a complex number $r \exp(i\theta)(r \ge 0)$. Hereafter we shall denote every $\chi \equiv r \exp(i\theta) \in X$ by the couple $\langle s, r \rangle$ where $s = \exp(i\theta)$; such a couple is unique for $\chi \ne \chi_0 \equiv 0$, and $\tilde{X} = X - \{\chi_0\}$ is the topological product space of the unit circle S in the complex-number plane and $R = (0, \infty)$. Thus we may consider the transformations $\chi \rightarrow a\chi$ in X and $s \rightarrow as$ (|a| = 1) in S as the multiplication of complex numbers.

We shall here state the main theorems.

THEOREM 1. Let $\sigma(\Gamma)$ ($\Gamma \subset S$) be the measure on S invariant under rotations; —

i) Fix an arbitrary element $r_0 \in R$, and define the unitary operator U(g) $(g \in G)$ in the Hilbert space $\mathfrak{H} = L^2(S, \sigma)$ as follows: $U_a \psi(s) = \psi(a^{-1}s)$, $V_b \psi(s)$ $= (b, \langle s, r_0 \rangle) \psi(s)^{3}$ ($\psi(s) \in L^2(S, \sigma)$) and $U(g) = U_a V_b$ for $g = u_a v_b$.⁴ Then $\{\mathfrak{H}, U(g)\}$ is an irreducible unitary representation of G, and for any fixed $\psi_0(s) \in L^2(S, \sigma)$ such that $\|\psi_0\| = 1$ the function

(1.3)
$$\varPhi(g) \equiv \varPhi(u_a v_b) = \int_{\mathcal{S}} (b, \langle a^{-1} s, r_0 \rangle) \psi_0(a^{-1} s) \overline{\psi_0(s)} d\sigma(s) \quad (g = u_a v_b)$$

is the normal elementary⁵⁾ p. d.⁵⁾ function on **G** corresponding to the above irreducible unitary representation.

ii) If $r_1, r_2 \in R$ and $r_1 \neq r_2$, then the unitary representation as stated in i) corresponding to r_1 is not unitary equivalent to that corresponding to r_2 .

iii) Let \mathfrak{H} be the one-dimensional unitary space and l be any fixed integer $(\gtrless 0)$, and define the unitary operator U(g) by $U_a\psi = a^l\psi$, $V_b\psi = \psi$ ($\psi \in \mathfrak{H}$) and $U(g) = U_aV_b$ for $g = u_av_b$. Then $\{\mathfrak{H}, U(g)\}$ is an irreducible unitary representation of \mathbf{G} , and

(1.4)
$$\Phi(g) \equiv \Phi(u_a v_b) = a^l \equiv \exp(il\theta) \quad (for \ a = \exp(i\theta))$$

is the corresponding normal elementary p. d. function on G.

iv) Every irreducible unitary representation of G is unitary equivalent to one of the above stated types. Consequently every normal elementary p. d. function on G is expressible in the form (1.3) or (1.4).

THEOREM 2. Let $\sigma(\Gamma)$ be as stated in Theorem 1, and $\rho_j(\Delta)$ ($\Delta \subset R$), j = 1,

³⁾ (b, χ) denotes the value of character $\chi (\in X)$ at the element $v_b \in V$.

⁴⁾ Any element $g \in G$ is uniquely expressible in this form by virtue of (1.1) and (1.2).

⁵⁾ See [3] § 15.

⁶⁾ Abbreviated for positive definite.

2,..., $n \ (\leq \infty)$, be measures on R such that $\rho_j(R) < \infty$;—

i) In every Hilbert space $\mathfrak{M}_j = L^2(\widetilde{X}, \sigma \otimes \rho_j)^{\tau_j}$ we define the unitary operator U(g) $(g \in G)$ as follows: $U_a \psi(s, r) = \psi(a^{-1}s, r)$ $V_b \psi(s, r) = (b, \langle s, r \rangle) \psi(s, r)$ $(\psi(s, r) \in L^2(\widetilde{X}, \sigma \otimes \rho_j))$ and $U(g) = U_a V_b$ for $g = u_a v_b$; and let $f_j(s, r), j = 1, 2, \ldots, n(\leq \infty)$, be functions as follows:

- 1°) $f_j(s, r) \in L^2(\widetilde{X}, \sigma \otimes \rho_j)$ for every j,
- 2°) $\int_{s} |f_j(s, r)|^2 d\sigma(s) = 1$ for ρ_j -almost all r,
- 3°) $f_j(s, r)/f_k(s, r)$ is not constant essentially (σ) as a function of s for ρ_j or ρ_k -almost all r.

Let $\{\mathfrak{N}_l, U_l(g)\}$ be the irreducible unitary representation of G as stated in Theorem 1 ii) corresponding to the integer l, f'_l be an arbitrarily fixed element of \mathfrak{N}_l , and $\{l_1, l_2, \ldots, l_N\}$ $(N \leq \infty)$ be a sequence of integers such that $k \neq j$ implies $l_k \neq l_j$. Then any of $\{\mathfrak{M}_j, U(g), f_j\}$ $(j = 1, 2, \ldots, n)$ and $\{\mathfrak{H}, U(g), f^\circ\}$ defined by

$$\{\mathfrak{H}, U(g)\} = \left[\bigoplus_{j=1}^{n} \{\mathfrak{M}_{j}, U(g)\} \right] \oplus \left[\bigoplus_{k=1}^{N} \{\mathfrak{M}_{l_{k}}, U_{l_{k}}(g)\} \right]^{(s)}$$

and

$$f^{\circ} = \sum_{j=1}^{n} \alpha_{j} f_{j} + \sum_{k=1}^{N} \beta_{k} f_{l_{k}}^{\prime (9)} \qquad \begin{cases} \sum_{j=1}^{n} |\alpha_{j}|^{2} < \infty (if \ n = \infty) \\ \sum_{k=1}^{N} |\beta_{k}|^{2} < \infty (if \ N = \infty) \end{cases}$$

are cyclic unitary representations of G. The p. d. function $\Psi(g)$ corresponding to the unitary representation $\{\delta, U(g), f^{\circ}\}$ is as follows:

(1.5)

$$\begin{aligned}
\Psi(g) &\equiv \Psi(u_a v_b) \\
&= \sum_{j=1}^n A_j \int_R d\rho_j(r) \int_S (b, \langle a^{-1}s, r \rangle) f_j(a^{-1}s, r) \overline{f_j(s, r)} d\sigma(s) \\
&+ \sum_{k=1}^N B_k \exp(il_k \theta) \qquad \qquad for \quad g = u_a v_b, \ a = e^{i\theta}. \\
&\quad (A_j = |\alpha_j|^2, \quad B_k = |\beta_k|^2).
\end{aligned}$$

ii) Every cyclic unitary representation of G is unitary equivalent to that of above stated type, and any p. d. function on G is expressible in the form (1.5), where $0 \le n \le \infty$ and $0 \le N \le \infty$. The functions

⁷⁾ $\sigma \otimes \rho_j$ denotes the product measure of σ and ρ_j .

⁸⁾ See [3] § 5 as for the direct sum of unitary representations.

⁹⁾ The right-hand side means the summation as elements of the Hilbert space \mathfrak{H} .

and

$$\chi_l(g) \equiv \chi_l(u_a v_b) = \exp(il\theta) \quad for \quad a = e^{i\theta}$$
$$(l = \ldots, -2, -1, 0, 1, 2, \ldots)$$

are normal elementary p. d. functions on G and any p. d. function $\Psi(g)$ is expressible in the form

(1.6)
$$\Psi(g) = \sum_{j=1}^{\infty} A_j \int_R \varphi_j(g; r) d\rho_j(r) + \sum_{l=-\infty}^{\infty} B_l \chi_l(g),$$

where A, $B \ge 0$, $\sum_{j=1}^{\infty} A_j \rho_j(R) < \infty$ and $\sum_{l=-\infty}^{\infty} B_l < \infty$. (Cf. Bochner-Raikov's theorem for p. d. functions on commutative groups.)

As for the group G' of all transformations $q \rightarrow aq + b$, ||a|| = 1, in the field Q of quaternions, any irreducible unitary representation and any cyclic unitary representation of G' may be obtained by the same methods as stated in Theorems 1 and 2, where the irreducible unitary representation stated in Theorem 1 iii) must be replaced by an irreducible unitary representation of the compact group of all transformations $q \rightarrow aq$ (||a|| = 1) in Q; such modifications are necessary for cyclic unitary representations.

After some preliminaries in \$2, we shall prove Theorem 1 in \$3 and Theorem 2 in \$4. Some supplementary remarks will be also given in \$4.

§2. Preliminary lemmas.

LEMMA 1. Let $\{\mathfrak{M}, U(\mathbf{x})\}$ be a unitary representation (not necessarily cyclic) of the n-dimensional vector group \mathbf{X} , where \mathfrak{M} is a separable Hilbert space. Then there exists a resolution of the identity $\{E(\Lambda)\}$ in \mathfrak{M} on the character group \mathbf{X} of the group \mathbf{X} such that

$$U(x) = \int_{X} (x, \chi) dE(\chi).$$

Further the space \mathfrak{M} can be realized as an at most countable direct sum of spaces \mathfrak{M}_j (j = 1, 2, ...) of the function $f_j(\mathfrak{X})$ such that

$$||f_j|| = \int_{\mathcal{X}} |f_j(\chi)|^2 dF_j(\chi) < \infty$$

where $F_j(\Lambda)$ is a measure on X such that $F_j(X) = 1$ and every $F_j(\Lambda)$ is absolutely continuous with respect to $F_{j-1}(\Lambda)$ (j > 1); furthermore, if $f \in \mathbb{M}$ is realized by $\{f_j(\chi) \mid j = 1, 2, \ldots\}$, then U(x)f by $\{(x, \chi)f_j(\chi) \mid j = 1, 2, \ldots\}$.

This lemma is well known as Stone's theorem and Hahn-Hellinger's theory¹⁰, in the case n = 1, and may be proved in our general case by the same idea.

LEMMA 2, Let \tilde{X} , R and S be as stated in §1 and $F(\Lambda)$ $(\Lambda \subset \tilde{X} \equiv S \times R)$ be a measure on \tilde{X} such that $F(\tilde{X}) < \infty$, and assume that there exists a non-nega-

4

¹⁰⁾ See [5] Chapter VII.

tive function $u(a; \chi)$ on $S \times \tilde{X}$ $(a \in S, \chi \in \tilde{X})$, B-measurable in $\langle a, \chi \rangle$ and summable on \tilde{X} with respect to the measure $F(\Lambda)$ for every $a \in S$, such that

(2.1)
$$F(a^{-1}\Lambda) = \int_{\Lambda} u(a; \chi) dF(\chi)^{11}$$

for any $\Lambda \subset \tilde{X}$ and any $a \in S$. Then there exist a non-negative B-measurable function $\omega(s, r)$ on $\tilde{X} = S \times R$ and a measure $\rho(\Delta)$ on R, $\rho(R) < \infty$, such that $F(\Lambda)$ is given by

(2.2)
$$F(\Lambda) = \int_{\Lambda} \omega(s, r) d\sigma(s) d\rho(r)$$

where $\sigma(\Gamma)$ is the measure on S invariant under rotations.

Proof. For any fixed $\Delta \subset R$, $F_{\Delta}(\Gamma) = F(\Gamma \times \Delta)$ ($\Gamma \subset S$) is a measure on S and it follows from the assumption (2.1) that $F_{\Delta}(a\Gamma)$ is absolutely continuous with respect to $F_{\Delta}(\Gamma)$ for every $a \in S$. Hence $F_{\Delta}(\Gamma)$ is absolutely continuous with respect to the invariant measure $\sigma(\Gamma)$.¹²⁾ And hence there exists a function $\mu(s, \Delta)$ of a point $s \in S$ and a set $\Delta \subset R$ such that

i) for any fixed $s \in S$, $\mu(s, \Delta)$ is a regular measure on R and $\mu(s, R) < \infty$,

ii) for any fixed $\Delta \subset R$, $\mu(s, \Delta)$ is B-measurable in s, and

iii) for any $\Gamma \subset S$ and $\Delta \subset R$, $F(\Gamma \times \Delta) = \int_{\Gamma} \mu(s, \Delta) d\sigma(s)$; this fact is proved by J. L. Doob [1] as the existence- and uniqueness-theorem of the conditional probability law. Consequently for any $\varphi(\chi) \equiv \varphi(s, r) \in L^1(\tilde{X}, F)$, we have

(2.3)
$$\int_{\widetilde{\chi}} \varphi(s, r) dF(\chi) = \int_{s} d\sigma(s) \int_{R} \varphi(s, r) \mu(s, dr);$$

the iterated integral in the right-hand side is well defined by i) and ii), and this equals the left-hand side by iii). From (2.1) and (2.3), we get

$$\int_{\Gamma} \mu(as, \Delta) d\sigma(s) = F(a^{-1}\Gamma \times \Delta) = \int_{\Gamma \times \Delta} u(a; \lambda) dF(\lambda)$$
$$= \int_{\Gamma} d\sigma(s) \int_{\Delta} u(a; s, r) \mu(s, dr)$$

for any $\Gamma \subseteq S$, $\Delta \subseteq R$ and any $a \in S$, where $u(a; s, r) = u(a; \chi)$ for $\chi = \langle s, r \rangle$. And hence, for any Δ , we have

(2.4)
$$\mu(as, \Delta) = \int_{\Delta} u(a; s, r) \mu(s, dr) \qquad \text{for } \sigma \text{-almost all } s \in S.$$

By Fubini's theorem, (2.4) is true for σ -almost all a for σ -almost all s. Since the space R has countable open bases and since $\mu(s, \Delta)$ is a regular measure

¹¹⁾ $a^{-1}\Lambda = \{a^{-1}\chi \mid \chi \in \Lambda\};$ see § 1.

¹²⁾ This fact is well known as D. Raikov's lemma.

SEIZÔ ITÔ

on R for every s, there exists a point $s_0 \in S$, independent of Δ , such that

$$\mu(as_0, \Delta) = \int_{\Delta} u(a; s_0, r) \mu(s_0, dr) \qquad \text{for } \sigma \text{-almost all } a \in S.$$

Since the transformation $a \rightarrow as_0^{-1}$ is measure-preserving, we obtain by putting $a = ss_0^{-1}$ that

(2.5)
$$\mu(s, \Delta) = \int_{\Delta} u(ss_0^{-1}; s_0, r) \mu(s_0, dr) \qquad \text{for } \sigma\text{-almost all } s \in S.$$

If we put $\omega(s, r) = u(ss_0^{-1}; s_0, r)$ and $\rho(\Delta) = \mu(s_0, \Delta)$, then $\omega(s, r)$ is B-measurable in $\langle s, r \rangle$ and, by (2.3), (2.4) and Fubini's theorem, we have

$$\int_{\widetilde{X}} \varphi(s, r) dF(\chi) = \int_{s} d\sigma(s) \int_{R} \varphi(s, r) \omega(s, r) d\rho(r)$$
$$= \int_{\widetilde{X}} \varphi(s, r) \omega(s, r) d\sigma(s) d\rho(r)$$

for any $\varphi \in L^1(\tilde{X}, F)$; this implies (2.2), q.e.d.

LEMMA 3. Let U, V and \tilde{X} etc. be as in Theorem 2, $f_1(s, r)$ be a function $\in L^2 \equiv L^2(\tilde{X}, \sigma \otimes \rho_1)$ such that $\sigma(\{s \mid f_1(s, r) \neq 0\}) > 0$ for ρ_1 -almost all $r \in R$, and L be the totality of linear combinations of the functions of the form $(b, \langle s, r \rangle)f_1(a^{-1}s, r), |a| = 1$. Then L is dense in L^2 with respect to the norm in L^2 .

Proof (outline). For any set $\Lambda \subset \widetilde{X}$ and any $r \in R$, Λ_r denotes the set $\{s \mid \langle s, r \rangle \in \Lambda\}$ by definition. Let Λ be any fixed subset of R. If $\sigma(\Lambda_r) > 0$ for ρ_1 -almost all $r \in \Lambda$ and $\Lambda' \subset S \times \Lambda$, then there exist $u_{a_1}, \ldots, u_{a_n} \in U$ for any $\varepsilon > 0$ such that $\sigma \otimes \rho_1(\Lambda' - [a_1 \Lambda \cup \ldots \cup a_n \Lambda]) < \varepsilon$. On the other hand, any continuous function on \widetilde{X} is approximated uniformly on any compact subset of \widetilde{X} by means of linear combinations of characters. By making use of these facts, we may prove that any continuous function on \widetilde{X} which vanishes outside of a compact set is approximated in L^2 by means of functions $\in L$. Lemma 3 follows from this result at once.

§3. Proof of Theorem 1. Let G, U and V etc. be as stated in Theorem 1 and $\{\mathfrak{H}, U(g), f^{\circ}\}$ be a cyclic unitary representation of G, and put $U_a = U(u_a)$ for $u_a \in U$ and $V_b = U(v_b)$ for $v_b \in V$. Then it follows from (1.2) that

$$(3.1) U_a V_b = V_{ab} U_a.$$

Since G satisfies the second countability axiom and since the representation is cyclic, the Hilbert space \mathfrak{H} is separable. Put

$$\mathfrak{N} = \{ f \in \mathfrak{H} \mid V_b f = f \text{ for all } v_b \in \mathbf{V} \}.$$

Then, since V is a normal subgroup of G, $f \in \mathbb{N}$ implies that $V_b U(g) f = U(g) U(g^{-1} v_b g) f = U(g) f$ for any $g \in \mathbf{G}$ and $v_b \in \mathbf{V}$. Therefore \mathbb{N} and con-

sequently $\mathfrak{M} = \mathfrak{H} \odot \mathfrak{N}$ are U(g)-invariant subspaces of \mathfrak{H} . The representation, considered in \mathfrak{N} , yields a representation of the group U ($\cong G/V$).

Consider the representation in \mathfrak{M} ; \mathfrak{M} is separable as well as §. By Lemma 1, there exists a resolution of the identity $\{E(\Lambda)\}$ in \mathfrak{M} on X such that

$$V_b = \int_{\mathcal{X}} (b, \chi) dE(\chi);$$

and the space \mathfrak{M} may be realized as an at most countable direct sum of the spaces \mathfrak{M}_j of functions:

$$\mathfrak{M}_j = \{f_j(\chi) \mid ||f_j||^2 = \int_{\chi} |f_j(\chi)|^2 dF_j(\chi) < \infty \},$$

where $F_j(\Lambda)$ is a measure on X such that $F_j(X) = 1$ and every $F_j(\Lambda)$ (j > 1) is absolutely continuous with respect to $F_{j-1}(\Lambda)$. When $f \in \mathfrak{M}$ is realized by $\{f_j(\chi)\}$, we write $f \sim \{f_j(\chi)\}$; then

$$(3.2) V_b f \sim \{(b, \chi) f_j(\chi)\} for any v_b \in V.$$

Since 0 is the only one element of \mathfrak{M} that fulfills $V_b f = f$ for all $v_b \in \mathbf{V}$ we obtain $F_j(\{\chi_0\}) = 0, \ j = 1, 2, \ldots$ Thus we may consider $F_j(\Lambda), \ j = 1, 2, \ldots$, as measures on $\widetilde{X} = X - \{\chi_0\}$.

The operator U_a is expressible as a matrix $(U_{jk}(a))$ where $U_{jk}(a)$ is a bounded operator from \mathfrak{M}_k into \mathfrak{M}_j such that

$$U_{a}f \sim \{\sum U_{jk}(a)f_{k}(\chi)\}_{j=1,2,\ldots} \qquad \text{for } f \sim \{f_{j}(\chi)\}.$$

Since U_a is unitary, we have

(3.3)
$$\sum_{j} \|f_{j}\|^{2} = \sum_{j} \|\sum_{k} U_{jk}(a)f_{k}\|^{2}$$

Next, if we put $U_{jk}(a) \cdot 1 = u_{jk}^{\circ}(a; \mathcal{X})$, then

$$\|u_{jk}^{\circ}(a; \chi) - u_{jk}^{\circ}(b; \chi)\|^{2} \leq \|U_{a}f^{\lambda} - U_{b}f^{\lambda}\|_{\mathfrak{H}}^{2} \quad (|a| = |b| = 1),$$

where $f^k \sim \{f_j(\chi)\}$ such that $f_k(\chi) \equiv 1$ and $f_j(\chi) \equiv 0$ $(j \neq k)$, and $\|\cdot\|_{\mathfrak{H}}$ denotes the norm in \mathfrak{H} ; moreover U satisfies the second axiom of countability. Hence we may construct a function $u_{jk}(a; \chi)$ B-measurable in $\langle a, \chi \rangle$ and such that $u_{jk}(a; \chi) = u_{jk}^{\circ}(a; \chi)$ for F_j -almost all χ for every a.¹³⁾ Thus we may consider that $U_{jk}(a) \cdot 1 = u_{jk}(a; \chi)$. Then we get

$$(3.4) U_{jk}(a)f_k(\chi) = u_{jk}(a;\chi)f_k(a^{-1}\chi).$$

At first we can prove this equality for functions of the form $f_k(\chi) = (b, \chi)$ (for any fixed b) by making use of (3.1), (3.2) and the fact that $(ab, \chi) = (b, a^{-1}\chi)$

¹³) Such $u_{jk}(a; x)$ may be obtained by the same way as constructing the "measurable kernel" of a stochastic process. See [4].

(|a|=1). Since the totality of linear combinations of "characters" (b, χ) is dense in $L^2(\tilde{X}, F_k)$, (3.4) is true for all $f_k \in L^2(\tilde{X}, F_k)$. Hence (3.3) becomes as follows:

(3.5)
$$\sum_{j} \int_{\widetilde{X}} |f_j(\chi)|^2 dF_j(\chi) = \sum_{j} \int_{\widetilde{X}} |\sum_{k} u_{jk}(a;\chi) f_k(a^{-1}\chi)|^2 dF_j(\chi).$$

Let $\varphi(\chi)$ be the characteristic function of $\Lambda \subset \widetilde{X} = S \times R$ and put in (3.5) $f_1(\chi) = \varphi(a\chi)$ and $f_j(\chi) \equiv 0$ for $j \neq 1$. Then we obtain

(3.6)

$$F_{1}(a^{-1}\Lambda) = \int_{\widetilde{\chi}} \varphi(a\chi) dF_{1}(\chi) = \sum_{j} \int_{\widetilde{\chi}} |u_{j1}(a;\chi)\varphi(\chi)|^{2} dF_{j}(\chi)$$

$$= \sum_{j} \int_{\Lambda} |u_{j1}(a;\chi)|^{2} dF_{j}(\chi).$$

Since all $F_j(\Lambda)$ are absolutely continuous with respect to $F_1(\Lambda)$ (by Lemma 1), we may write

$$F_j(\Lambda) = \int_{\Lambda} \mathcal{O}_j(\chi) dF_1(\chi)$$

where every $\Phi_j(\chi)$ is non-negative, B-measurable in χ and summable on \widetilde{X} with respect to F_1 . Then the function

$$u(a; \chi) = \sum_{j} |u_{j1}(a; \chi)|^2 \Phi_j(\chi) \quad (\geq 0)$$

is B-measurable in $\langle a; \chi \rangle$ and summable on \tilde{X} with respect to F_1 for any a, and it follows from (3.6) and by Lebesgue's convergence theorem that

(3.7)
$$F_1(a^{-1}\Lambda) = \int_{\Lambda} u(a; \chi) dF_1(\chi).$$

Hence, by Lemma 2, there exist a non-negative B-measurable function $\omega(s, r)$ on \tilde{X} and a measure $\rho(\Delta)$ on R such that $\rho(R) = 1$ and $F_1(\Lambda)$ is given by

$$F_1(\Lambda) = \int_{\Lambda} \omega(s, r) d\sigma(s) d\rho(r),$$

and consequently there exist non-negative B-measurable functions $\omega_j(s, r)$, $j = 1, 2, \ldots$, on $\tilde{X} = S \times R$ such that

(3.8)
$$F_j(\Lambda) = \int_{\Lambda} \omega_j(s, r) d\sigma(s) d\rho(r).$$

Now put $\Lambda_j = \{\langle s, r \rangle \mid \omega_j(s, r) = 0\}$. Evidently $\Lambda_1 \subset \Lambda_2 \subset \ldots$ Put $\varphi_j(s, r) = \omega_j(s, r)f_j(s, r)$ for every $f \sim \{f_j(s, r)\}$ and define the norm of φ_j by

$$\|\varphi_j\|^2 = \int_{\widetilde{X}} |\varphi_j(s, r)|^2 d\sigma(s) d\rho(r).$$

Then we have $\|\varphi_j\|^2 = \|f_j\|^2$, and hence the mapping $f_j \to \varphi_j$ is an isometric mapping from \mathfrak{M}_j onto

$$\mathfrak{L}_j = \{ \varphi_j(s, r) / \|\varphi_j\|^2 < \infty, \ \varphi_j(s, r) = 0 \text{ on } \Lambda_j \}.$$

So we can realize \mathfrak{M} as a direct sum of \mathfrak{L}_j . The mapping $f_j \to \varphi_j$ carries $U_{jk}(a)$ into operators on $\{\varphi_j(s, r)\}$; we denote them by $U_{jk}(a)$ again. Define

$$u'_{jk}(a; s, r) = \begin{cases} \omega_j(s, r)u_{jk}(a; s, r)\omega_k(a^{-1}s, r)^{-1} & \text{if } \langle a^{-1}s, r \rangle \notin A_k, \\ 0 & \text{if } \langle a^{-1}s, r \rangle \in A_k \end{cases}$$

 $(u_{jk}(a; s, r) \equiv u_{jk}(a; \chi) \text{ for } \chi = \langle s, r \rangle)$. Then it follows from (3.4) and by the definition of $\varphi_j(s, r)$ that

(3.9)
$$U_{jk}(a)\varphi_k(s, r) = u'_{jk}(a; s, r)\varphi_k(a^{-1}s, r),$$

and unitary condition (3.5) becomes

(3.10)
$$\sum_{j} \int_{\widetilde{\mathfrak{X}}} |\varphi_{j}(s, r)|^{2} d\sigma(s) d\rho(r) = \sum_{j} \int_{\widetilde{\mathfrak{X}}} |\sum_{k} u_{jk}'(a; s, r) \varphi_{k}(a^{-1}s, r)|^{2} d\sigma(s) d\rho(r)$$
$$= \sum_{j} \int_{\widetilde{\mathfrak{X}}} |\sum_{k} u_{jk}'(a; as, r) \varphi_{k}(s, r)|^{2} d\sigma(s) d\rho(r).$$

Denote by $n \ (\leq \infty)$ the number of \mathfrak{M}_j and by \mathfrak{H}_0 the unitary space of all sequences $\xi = \{\xi_j\} \equiv \{\xi_1, \ldots, \xi_n\}$ of complex numbers such that $\|\xi\|^2 = \sum_{j=1}^n |\xi_j|^2$ $<\infty$ (if $n = \infty$) and by \mathfrak{H}_k ($k = 1, 2, \ldots$) the finite-dimensional subspace of \mathfrak{H}_0 defined by the condition $\xi_k = \xi_{k+1} = \ldots = 0$. $f \sim \varphi(\chi) = \{\varphi_j(s, r)\}$ means that $f \in \mathfrak{M}$ is realized as a vector function $\varphi(\chi)$ such that $\varphi(\chi) \in \mathfrak{H}_0$ for $\chi \notin \bigcup_{k=1}^n A_k$ and $\varphi(\chi) \in \mathfrak{H}_k$ for $\chi \in A_k$. Denote the matrix $(u'_{jk}(a; s, r))$ by M(a; s, r) for every $\langle a; s, r \rangle$. Then $f \sim \varphi(\chi) \equiv \varphi(s, r)$ implies that

(3.11)
$$\begin{cases} \|f\|_{\mathfrak{H}}^{2} = \int_{\mathfrak{X}} \|\varphi(s,r)\|^{2} d\sigma(s) d\rho(r) & (\|\varphi(s,r)\|^{2} = \sum_{j} |\varphi_{j}(s,r)|^{2}), \\ U_{a}f \sim M(a; s, r)\varphi(a^{-1}s, r), \\ V_{b}f \sim (b, \langle s, r \rangle)\varphi(s, r) \end{cases}$$

by (3.2), (3.9) and the definition of $\varphi_j(s, r)$.

(3.10) is now written as follows:

$$\int_{\widetilde{X}} \|\varphi(s, r)\|^2 d\sigma(s) d\rho(r) = \int_{\widetilde{X}} \|M(a; as, r)\varphi(s, r)\|^2 d\sigma(s) d\rho(r).$$

If we put in this equality $\varphi(s, r) = \{\xi_j \varphi_{\Lambda}(s, r)\}$ where $\xi = \{\xi_j\} \in \mathfrak{H}_k$ and $\varphi_{\Lambda}(s, r)$ is the characteristic function of any assigned Borel set $\Lambda \subset \Lambda_k - \Lambda_{k-1}$, then

$$\int_{\Lambda} \|\xi\|^2 d\sigma(s) d\rho(r) = \int_{\Lambda} \|M(a; as, r)\xi\|^2 d\sigma(s) d\rho(r).$$

This implies that, for any $u_a \in U$, M(a; s, r) considered on \mathfrak{H}_k is an isometric operator for almost all¹⁴ $\langle s, r \rangle \in a(\Lambda_k - \Lambda_{k-1})$. Further, by the definition of

¹⁴⁾ Here we mean "for almost all $\langle s, r \rangle$ with respect to the product measure $\sigma \otimes \rho$."

SEIZÔ ITÔ

 $u'_{jk}(a; s, r)$, the range of M(a; s, r) is \mathfrak{H}_k for almost all $\langle s, r \rangle \in (\Lambda_k - \Lambda_{k-1})$ $(k \ge 2)$. Since $\Lambda_1 \subset \Lambda_2 \subset \ldots$, it follows that for almost all $\langle s, r \rangle \in [a(\Lambda_k - \Lambda_{k-1}) - (\Lambda_k - \Lambda_{k-1})]$ the operator M(a; s, r) maps \mathfrak{H}_k isometrically onto \mathfrak{H}_j for some $j \ne k$. Hence every $(\Lambda_k - \Lambda_{k-1})$ $(k \ge 2)$ must be of the form $S \times \mathcal{A}_k$ $(\mathcal{A}_k \subset R)$ (with the exception of the set of measure zero). On the other hand, Λ_1 is of the form $S \times \mathcal{A}$ $(\mathcal{A} \subset R)$ from (3.7) and the definition of Λ_1 . Hence the same is true for every Λ_k $(k = 1, 2, \ldots)$.

Hereafter we shall say that a matrix $M_1(a; s, r) = (u_{jk}^1(a; s, r))$ is equal to another matrix $M_2(a; s, r) = (u_{jk}^2(a; s, r))$ for a. a. $(= \text{almost all}) \langle s, r \rangle$ if and only if $u_{jk}^1(a; s, r) = u_{jk}^2(a; s, r)$ for $\sigma \otimes \rho$ -almost all $\langle s, r \rangle \notin A_k$ for j = 1, 2, ..., n; this condition is equivalent to the following one: $M_1(a; s, r) = M_2(a;$ s, r) as operators stated in (3.11). By the above obtained result concerning the form of Λ_k , if $M_1(a; s, r) = M_2(a; s, r)$ for a. a. $\langle s, r \rangle$ then, for any b $(|b| = 1), M_1(a; bs, r) = M_2(a; bs, r)$ for a. a. $\langle s, r \rangle$.

It follows from (3.11) that for any a, b(|a| = |b| = 1) and any $\varphi(s, r) = \{\varphi_j(s, r)\} (\varphi_j \in \Omega_j)$

(3.12)
$$M(a; s, r)\varphi(s, r) = M(b; s, r)M(b^{-1}a; b^{-1}s, r)\varphi(s, r)$$

as elements of \mathfrak{M} . We fix an arbitrary element $u_a \in U$. From (3.12) and by Fubini's theorem, we have

(3.13)
$$M(a; s, r) = M(b; s, r)M(b^{-1}a; b^{-1}s, r)$$
 for a. a. $\langle b, s, r \rangle$.

Since the transformation $\langle b, s, r \rangle \rightarrow \langle sb, s, r \rangle$ is measure-preserving, (3.13) implies that

$$M(a; s, r) = M(sb; s, r)M(b^{-1}s^{-1}a; b^{-1}, r)$$
 for a. a. $\langle b, s, r \rangle$;

this holds for any fixed $u_a \in U$. Since U is separable, there exists a countable set $U_0 \subset U$ which is dense in U and contains the identity e of G. Hence we may take an element $b_0 \in S$ such that

$$M(a; s, r) = M(sb_0; s, r)M(b_0^{-1}(a^{-1}s)^{-1}; b_0^{-1}, r)$$
 for a. a. $\langle s, r \rangle$

for all $u_a \in U_0$, and that $N_1(s, r) = M(sb_0; s, r)$ and $N_2(s, r) = M(b_0^{-1}s^{-1}, b_0^{-1}, r)$ are isometric operator for a. a. $\langle s, r \rangle$. Thus we obtain

(3.14)
$$M(a; s, r) = N_1(s, r)N_2(a^{-1}s, r)$$
 for a. a. $\langle s, r \rangle$

for all $u_a \in U_0$. Putting $u_a = e(\in U_0)$, we get

$$(3.15) N_1(s, r)N_2(s, r) = I \text{ for a. a. } \langle s, r \rangle.$$

Now put $\psi(s, r) = N_2(s, r)\varphi(s, r)$; then $\|\psi(s, r)\| = \|\varphi(s, r)\|$ and $\varphi(s, r) = N_1(s, r)\psi(s, r)$ (by (3.15)) for a. a. $\langle s, r \rangle$. And hence, by (3.14) and (3.11), $f \sim \varphi(s, r) \sim \psi(s, r)$ implies

$$\begin{cases} \|f\|_{\mathfrak{H}}^{2} = \int_{\mathfrak{X}} \|\varphi(s, r)\|^{2} d\sigma(s) d\rho(r); \\ U_{a}f \sim \psi(a^{-1}s, r) \quad \text{for any} \quad u_{a} \in \mathbf{U}_{0}; \\ V_{b}f \sim (b, \langle s, r \rangle) \psi(s, r) \quad \text{for any} \quad v_{b} \in \mathbf{V} \end{cases}$$

By the definition of \mathfrak{F}_0 , $\psi(s, r) = \{\psi_1(s, r), \psi_2(s, r), \ldots\}$, where $\psi_j(s, r) \in L^2(\widetilde{X}, \sigma \otimes \rho)$ and $\|\psi(s, r)\|^2 = \sum_{j=1}^n |\psi_j(s, r)|^2$ for every $\langle s, r \rangle$. Hence \mathfrak{M} may be realized as a subspace of the direct sum of at most countable number of $L^2(\widetilde{X}, \sigma \otimes \rho)$, and $f \sim \{\psi_j(s, r)\}$ implies

(3.16)
$$\begin{cases} i) \|f\|_{\mathfrak{H}}^{2} = \sum_{j=1}^{n} \int_{\mathfrak{X}} |\psi_{j}(s, r)|^{2} d\sigma(s) d\rho(r) \quad (n \leq \infty) \\ ii) \quad U_{a} f \sim \{\psi_{j}(a^{-1}s, r)\} \quad \text{for any} \quad u_{a} \in \mathbf{U}_{0} \\ iii) \quad V_{b} f \sim \{(b, \langle s, r \rangle) \psi_{j}(s, r)\} \quad \text{for any} \quad v_{b} \in \mathbf{V}. \end{cases}$$

For any $u_a \in U$, there exists a sequence $\{u_{a_n}\} \subset U_0$ such that $u_{a_n} \to u_a$, and $U_{a_n} f \sim \{\psi_j(a_n^{-1}s, r)\}$ for any $f \sim \{\psi_j(s, r)\}$. Since the representation U(g) is strongly continuous, we may easily show that $U_a f \sim \{\psi_j(a^{-1}s, r)\}$ for any $f \sim \{\psi_j(s, r)\}$. Namely (3.16) ii) holds for any $u_a \in U$. Hereafter we shall write $\|\cdot\|$ instead of $\|\cdot\|_{5}$.

Let now the cyclic unitary representation $\{\emptyset, U(g), f^{\circ}\}$ be irreducible. Then either \mathfrak{M} or \mathfrak{N} must be $\{0\}$. If $\mathfrak{M} = \{0\}$, then $\{\mathfrak{N}, U_a\}$ is an irreducible representation of the group U and $V_b = I$ in \mathfrak{N} for all $v_b \in V$. Hence the normal elementary p. d. function $\mathfrak{O}(g)$ corresponding to the irreducible representation $\{\emptyset, U(g)\}$ ($\emptyset = \mathfrak{N}$) is a character $\chi(a)$ stated in Theorem 1 iii). Conversely such a representation $\{\emptyset, U(g)\}$ of G is evidently irreducible. Next suppose that $\mathfrak{N} = \{0\}$; then the unitary space \mathfrak{H}_0 stated above is of one dimension and there exists a point $r_0 \in R$ such that $\rho(\{r_0\}) > 0$ and $\rho(R - \{r_0\}) = 0$. Hence the irreducible representation $\{\emptyset, U(g)\}$ and the corresponding normal elementary p. d. function are of the form stated in Theorem 1 i). The irreducibility of such representation is proved by means of Lemma 3. Thus, i), iii) and iv) of Theorem 1 is established.

Next we shall prove ii). If the representation $\{\mathfrak{F}_1, U_1(g)\}$ corresponding to r_1 is unitary equivalent to $\{\mathfrak{F}_2, U_2(g)\}$ corresponding to $r_2(\neq r_1)$, then $(U_1(g)f_1, f_1) = (U_2(g)f_2, f_2)$ for certain $f_1 \in \mathfrak{F}_1$ and $f_2 \in \mathfrak{F}_2$. Hence, if we consider the direct sum $\{\mathfrak{F}, U(g)\} = \{\mathfrak{F}_1, U_1(g)\} \oplus \{\mathfrak{F}_2, U_2(g)\}$ and put $f = f_1 + f_2$, then $\{U(g)f \mid g \in \mathbf{G}\}$ does not span \mathfrak{F} by Theorem 8 in [3]. But we may prove by Lemma 3 that $\{U(g)f \mid g \in \mathbf{G}\}$ spans \mathfrak{F} . Hence we get Theorem 1 ii).

§4. Proof of Theorem 2 and supplementary remarks. In this paragraph, we shall make use of the results obtained in §3. If $\{\mathfrak{H}, U(g), f^{\circ}\}$ is any cyclic unitary representation of **G**, then the space \mathfrak{H} is decomposable to the direct sum of two U(g)-invariant subspaces \mathfrak{N} and \mathfrak{M} , as stated in §3; the space \mathfrak{M} is

realized as the space of \mathfrak{H}_0 -valued functions $\psi(s, r) = \{\psi_j(s, r)\}$ on $S \times R$ and the norm ||f|| of the element $f \in \mathfrak{M}$ and unitary operators U_a (for $u_a \in U$) and V_b (for $v_b \in V$) are given by (3.16).

In the case that the cyclic unitary representation $\{\mathfrak{H}, U(g), f^{\circ}\}$ is not necessarily irreducible, both \mathfrak{M} and \mathfrak{N} may be $\neq \{0\}$. If $\mathfrak{N} \neq \{0\}$, then $\{\mathfrak{N}, U(g)\}$ is a cyclic unitary representation of the group U, and consequently is the direct sum $\bigoplus_{k=1}^{\mathfrak{N}} \{\mathfrak{N}_{l_k}, U_{l_k}(g)\}$ $(N \leq \infty)$ as stated in Theorem 2 i). If $\mathfrak{M} \neq \{0\}$, then $\{\mathfrak{M}, U(g)\}$ is cyclic and is decomposable to the direct sum of $\{\mathfrak{M}_j, U(g)\}$, $j = 1, 2, \ldots, n$ $(\leq \infty)$, where \mathfrak{M}_j is a subspace of $L^2(\widetilde{X}, \sigma \otimes \rho)$ and U(g) is defined by (3.16) for every j. If

$$f^{\circ} = \sum_{j=0}^{n} \psi_{j}^{\circ} \qquad \psi_{0}^{\circ} \in \mathfrak{N}, \quad \psi_{j}^{\circ} \in \mathfrak{M}_{j} \quad (j \ge 1),$$

then $\{\mathfrak{M}_j, U(g), \phi_j^\circ\}, j = 1, 2, \ldots, n$, are cyclic unitary representation of **G**. Put $J_j(r) = \int_s |\phi_j^\circ(s, r)|^2 d\sigma(s), \ \rho_j(\Delta) = \int_A J_j(r) d\rho(r)$ for $\Delta \subset R$ and

(4.1)
$$\widetilde{\psi}_j(s, r) = \begin{cases} \psi_j(s, r)/J_j(r) & \text{if } J_j(r) \neq 0\\ 0 & \text{if } J_j(r) = 0, \end{cases}$$

and define the unitary operator $U(g) = U_a V_b$ (for $g = u_a v_b$) by $U_a \tilde{\psi}_j(s, r) = \tilde{\psi}_j(a^{-1}s, r)$ and $V_b \tilde{\psi}_j(s, r) = (b, \langle s, r \rangle) \tilde{\psi}_j(s, r)$. Then the unitary representation $\{L^2(\tilde{X}, \sigma \otimes \rho), U(g)\}$ (defined by (3.16)) is unitary equivalent to $\{L^2(\tilde{X}, \sigma \otimes \rho), U(g)\}$ (defined above) by means of the mapping $\psi_j(s, r) \rightarrow \tilde{\psi}_j(s, r)$. If we put $f_j(s, r) = \tilde{\psi}_j^\circ(s, r)$, then $\{U(g)f_j \mid g \in G\}$ spans $L^2(\tilde{X}, \sigma \otimes \rho_j)$ by Lemma 3. Hence we may consider that $\mathfrak{M}_j = L^2(\tilde{X}, \sigma \otimes \rho_j)$. Clearly the functions $f_j(s, r), j = 1, 2, \ldots$, satisfy the conditions 1°) and 2°) in Theorem 2 i). By Theorem 8 in [3], the direct sum $\{\mathfrak{M}, U(g)\} = \bigoplus_{j=1}^n \{\mathfrak{M}_j, U(g)\}$ is cyclic if and only if $f_j(s, r), j = 1, 2, \ldots$, satisfy the condition 3°) also. Thus $\{\mathfrak{H}, U(g), f^\circ\}$ must be of the form as stated in Theorem 2, and the corresponding p. d. function $\Psi(g)$ is given by (1.5), and consequently (1.6) is evident.

Conversely let us consider the unitary representation $\{\mathfrak{H}, U(g), f^{\circ}\}$ stated in Theorem 2 i). $\{\mathfrak{M}_j, U(g), f_j\}, j = 1, 2, \ldots$, are cyclic as stated above. Consequently p. d. functions $\Psi_j(g) = (U(g)f_j, f_j), j = 1, 2, \ldots$, are mutually disjoint¹⁵ from the assumptions 1°), 2°) and 3°). Hence the direct sum $\bigoplus_{j=1}^{n} \{\mathfrak{M}_j, U(g), f_j\}$ is cyclic as is earily proved by making use of Theorem 8 in [3]. Similar argument shows that the direct sum $\bigoplus_{k=1}^{N} \{\mathfrak{M}_{l_k}, U_{l_k}(g)\}$ also is cyclic. Since $U_{l_k}(v_b)$ $= I \text{ in } \bigoplus_{k=1}^{N} \mathfrak{N}_{l_k}$ for all $v_b \in \mathbb{V}$ and $U(v_b) \equiv V_b \neq I$ in \mathfrak{M}_j for all $v_b \neq e$, we may prove by making use of Theorem 8 in [3] again that $\{\emptyset, U(g), f^{\circ}\}$ is a cyclic unitary representation of **G**. And hence (1.5) follows at once. Thus Theorem 2 is established.

Supplementary remarks. In the proofs of Theorems 1 and 2, we make use of the following fact. The group G has the property (1.1), where the group U may be replaced by any group the types of whose unitary representations are well known (for example, a maximally almost periodic Lie group), and either the character group X of the commutative group V or $\tilde{X} = X - \{\chi_0\}$ is a topological product space $S \times R$, where S is invariant under the transformation $\chi \to T_a \chi$ defined by $(u_a v_b u_a^{-1}, \chi) = (v_b, T_a \chi)$ and may be considered as a group isomorphic to the group U. The group G' (stated in § 0) also satisfies the above conditions.

As for the group of all congruent transformations in the *n*-dimensional euclidean space E^n for $n \ge 3$, the space S is not a group but a factor space SO(n)/SO(n-1) while U = SO(n). Hence we must consider the space of functions $\psi(u, r)$ on $U \times R$ instead of the space of functions $\psi(s, r)$ on $S \times R$ (in §3). It seems to be difficult to find irreducible invariant subspaces in the space of functions on $U \times R$, since the similar argument to Lemma 3 is impossible.

LITERATURE

- J. L. Doob: Stochastic processes with an integral-valued parameter, Trans. Amer. Math. Soc. 44 (1938).
- [2] I. Gelfand and M. Neumark: Unitary representations of the group of linear transformations of the straight line, C. R. (Doklady) Acad. Sci. URSS. 55 (1947) pp. 567-570.
- [3] R. Godement: Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. 63, No. 1 (1948) pp. 1-84.
- [4] E. Slutsky: Sur les fonctions aléatoires presque périodiques et sur la décomposition des fonctions aléatoires stationaires en composantes, Act. Sci. Ind. 738 (1938).
- [5] M. H. Stone: Linear transformations in Hilbert spaces and their applications to analysis, New York (1932).

Mathematical Institute, Nagoya University