
UNITARY REPRESENTATIONS OF

SOME LINEAR GROUPS

SEIZO ITO

§0. Introduction. Recently I. Gelfand and M. Neumark [2] have deter-
mined the types of irreducible unitary representations of the group Gi of
linear transformations of the straight line. The analogous result is obtained
for the group G2 of transformations z-*az + b in the complex-number plane (£,
where a and b run over all complex numbers with the exception of a - 0, which
may be considered as the group of all sense-preserving similar transformations
in the two-dimensional euclidean space E2. In this paper, we shall determine
the types of cyclic1* unitary representations and irreducible unitary representa-
tions of the group G of all sense-preserving congruent transformations in E2,
which may be realized as the group of all transformations in (S of the form
z -» az -h b a, b e & and I a | = 1, The method is due to the same idea as Gelfand-
Neumark's one [2], but we need Lemma 2 (§2) which is not necessary in the
case of Gi and of G2. Our method may be applied to the group G' of all
transformations q-^aq + b in the field Q of quaternions, where a, ^GQ and

The author expresses his hearty thanks to Prof. K. Yosida, Mr. H. Yoshi-
zawa and Mr. S. Murakami who have encouraged him with kind discussions.

§ 1. Main results. Let G be the group of all transformations z ->az + b in the
complex-number plane (£ where α j e δ and \a\ = 1. Then the group U of all
rotations z->az, \a\ = 1, is a subgroup of G and the group V of all translations
z-*z-\- b is a commutative normal subgroup of G, and it holds that

ίG = U V, UΓiV={<?} (e = the identity of G),

Hereafter we shall denote by ua and Vb the elements of U and V corresponding

to the complex number a ( l α | = l ) and b respectively. Then we have wi = #o

-e and

Received September 17, 1951.
J> It is called "simple" in [3].
2 ) The group G' is different from the group of all sense-preserving congruent transformations

in E4. It seems to be more complicated to determine the types of unitary representations
of the group of all sense-preserving congruent transformations in En for w=^3; — see §4.
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2 SEIZO ITO

(1.2) UaVb-VabUa.

Let X be the character group of V and Xo be the identity character. Then X
is isomorphic to the two-dimensional vector group as well as V and consequently
every element X of J m a y be considered as a complex number rexp (iβ)(r^Q).
Hereafter we shall denote every X ==rexp(id)&X by the couple <s, r> where
s = exp(/0) such a couple is unique for Z^Zo^O, and X~X— {XQ} is the
topological product space of the unit circle S in the complex-number plane and
R = (0, oo ). Thus we may consider the transformations X->aX in X and s-> as
(\ a I = 1) in S as the multiplication of complex numbers.

We shall here state the main theorems.

THEOREM 1. Let o(Γ) (ΓdS) be the measure on S invariant under ro-
tations —

i) Fix an arbitrary element n&R, and define the unitary operator U(g)
OgreG) in the Hilbert space $ = L2(S, a) as follows: Uaψ(s) =φ{a~ιs)9 Vbφ(s)
= (b, <js, ro»0(s)3> (ψ(s)εΞLHS, a)) and U(g) = UaVb for g= uavb.

A) Then (ft
U(g)} is an irreducible unitary representation of G, and for any fixed ψo{s)
eL2(S, a) such that IWI = 1 the function

(1. 3) Φ(g) = Φ(uaVb) = \ {b, <a'\ ro»
s

is the normal elementary^ p. d.G) function on G corresponding to the above irre-
ducible unitary representation.

ii) If n, r2E:R and ri^r2, then the unitary representation as stated in i)
corresponding to n is not unitary equivalent to that corresponding to r2.

iii) Let %> be the one-dimensional unitary space and I be any fixed integer
(=0), and define the unitary operator U{g) by Uaψ = aιφ, Vbψ = ψ (ψ&ξ>) and
U{g) = UaVb for g= uάVb* Then {$, U(g)) is an irreducible unitary representa-
tion of G, and

(1.4) Φ(g)=Φ(uaVb)=aι=Ξexp(ild) (for a = exp(#))

is the corresponding normal elementary p. d. function on G.
iv) Every irreducible unitary representation of G is unitary equivalent to

one of the above stated types. Consequently every normal elementary p. d.
function on G is expressible in the form (1.3) or (1.4).

THEOREM 2. Let σ(Γ) be as stated in Theorem 1, and QJ(Δ) (JGR), j = l,

3 ) (6, X) denotes the value of character X ( ε X ) at the element
4 ) Any element #e=G is uniquely expressible in this form by virtue of (1.1) and (1.2).
s > See [3] §15.
6 > Abbreviated for positive definite.
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UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS 3

2, . . . , n ( *= oo )9 be measures on R such that pj(R) < oo —

i) In every Hubert space 3R/ = L2(AΓ, σ($)pj),Ί) ive define the unitary operator

U(g) (g&G) as follows: Uaψ{s, r) ^φ{aΓxs9 r) Vbφ{s, r) = (b, <s, r»ψ(s, r)

(ψ(s, r)E:L2(X, a®pj)) and U(g) = UaVb for g^uάΰbl and let fj(s, r),j = l,

2,. . . , n{ ̂  oo), be functions as follows:

1°) fj(s, r)&L2(X, σ®pj) for every j ,

2°) [ \fj(s, r)\2 dσ(s) = l for pj-almost all r,
J S

3°) fj(s, r)/fk(s, r) is not constant essentially (σ) as a function of s for

pj- or pk-almost all r.

Let {9?/, Uι(g)} be the irreducible unitary representation of G as stated in

Theorem 1 ii) corresponding to the integer I, fι be an arbitrarily fixed element

of %, and {h, h, . . . , h) {N^ oo) be a sequence of integers such that k^j

implies h*lj. Then any of {2»y, U(g\ //} O' = l, 2, . . . , n) and {ξ>, U(g),

f°) defined by

and

/- JV=oo)

are cyclic unitary representations of G. The p. d. function Wig) corresponding

to the unitary representation {ξ>, U{g),f°) is as follows:

(1.5) =ΣA/f dpj(r)[ {b, <a~xs, r^fjia^s, r)fj{s, r)dσ(s)

Λ"

fc exp (ihθ) for g= uavb, a - e'\

ii) Every cyclic unitary representation of G is unitary equivalent to that of

above stated type, and any p. d. function on G is expressible in the form (1.5),

where O^n^ oo and O^N-ύ oo. The functions

Φj(g; r) Ξ=φj(uavb, r)

- \ (*, <a'% r>)fs((Γιs, r)fϊWrjdσ(s)

j^l, 2,. . .)

7 ) σ ® ^ - denotes the product measure of σ and pj.
8 ) See [3] § 5 as for the direct sum of unitary representations.
9 • T h e right-hand side means the summation as elements of the H u b e r t space § .
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4 SEIZO ITO

and

Xι(g) 2 Xι{uavb) = exp (*70) for a = **

( / = . . . , - 2 , - 1 , 0, 1, 2, . . .)

are normal elementary p. d. functions on G and any p. d. function Ψ(g) is ex-
pressible in the form

(1. 6) Ψ{g) = ijilyf Φj(g; r)dβj(r) + Ί]BιXι(g)9

A, B^O, Σ-Aypy(Λ) < °° ^ ^ Σ 5 / < ° ° . (Cf. Bochner-Raikov's theorem
j = l I=-oo

for p. d. functions on commutative groups.)
As for the group G' of all transformations q->aq + b, ||βl! = l, in the field

Q of quaternions, any irreducible unitary representation and any cyclic unitary
representation of G' may be obtained by the same methods as stated in Theorems
1 and 2, where the irreducible unitary representation stated in Theorem 1 iii)
must be replaced by an irreducible unitary representation of the compact group
of all transformations q-*aq (\\a\\ = 1) in Q such modifications are necessary for
cyclic unitary representations.

After some preliminaries in § 2, we shall prove Theorem 1 in § 3 and Theo-
rem 2 in § 4. Some supplementary remarks will be also given in § 4.

§ 2. Preliminary lemmas.

LEMMA 1. Let {Wl, U{x)} be a unitary representation (not necessarily cyclic)
of the n-dimensional vector group X, where Wl is a separable Hubert space. Then
there exists a resolution of the identity {E(A)} in 9Jΐ on the character group X
of the group X such that

U(x) = f (x, Y.)dE(Z).

Further the space W can be realized as an at most countable direct sum of
spaces 3K/ (j = 1, 2, . . .) of the function fj{X) such that

\\fj\\^[\fj(X)\2dFj(X) < o o

where Fj(A) is a measure on X such that Fj{X) = 1 and every Fj(A) is abso-

lutely continuous ivith respect to Fj-i(Λ) (j>l); furthermore, if fE:W is realized

by (fj(X) I j = 1, 2, . . .}, then U(x)f by {(*, X)fj(X) / j = l,2, . .-.}.

This lemma is well known as Stone's theorem and Hahn-Hellinger's theoryI0)

in the case n = l, and may be proved in our general case by the same idea.

LEMMA 2, Let X, R and S be as stated in §1 and F(Λ) (ΛCX=SxR) be
a measure on X such that F(X)<<*>, and assume that there exists a non-nega-

See [5] Chapter VII.
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UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS 5

live function u(a; X) on SxX (βεS, XELX), B-measurable in <a, X> and sum-
mable on X with respect to the measure F(Λ) for every a&S, such that

n)(2.1) Fia-'Λ) = [ u(a; X)dF(X)

for any ΛCX and any β e S . Then there exist a non-negative B-measurable
function ω{s, r) on X=SxR and a measure p(Δ) on R, ρ(R)<oo, such that
F(Λ) is given by

(2. 2) F(A) = f ω(s, r)dσ{s)dp(r)

where a(Γ) is the measure on S invariant under rotations.

Proof For any fixed ΔCR9 FA(Γ) = F(Γx Δ) (ΓCS) is a measure on S and
it follows from the assumption (2.1) that FA(aΓ) is absolutely continuous with
respect to FA(Γ) for every «GS. Hence FA(Γ) is absolutely continuous with
respect to the invariant measure </(T).12) And hence there exists a function
μ(s, A) of a point s&S and a set ΔCR such that

i) for any fixed s e S , μ(s, Δ) is a regular measure on R and μ(s, R)<oo,
ii) for any fixed ΔCR, μ{s, Δ) is B-measurable in 5, and

iii) for any Γ C S and ΔCR, F(ΓxΔ) = { /x(s, Δ)dσ(s) \ this fact is proved
Jf

by J. L. Doob [1] as the existence- and uniqueness-theorem of the conditional
probability law. Consequently for any ψ(X) =ψ(s, r)&Lι(X, F), we have

(2.3) [jp{s, r)dF(X) --= f dσ(s)[ <f(s, r)μ(s, dr)

the iterated integral in the right-hand side is well defined by i) and ii), and

this equals the left-hand side by iii). From (2.1) and (2.3), we get

[ μ(as, Δ)da(s) = F{a"ιΓx Δ) = ί u(a X)dF(X)

= \ dσ($)\ u(a; s, r)μ(s, dr)

for any ΓCS, ΔCR and any Λ G S , where u(a\ s, r) = u(a; X) for X = (s, r>.
And hence, for any Δ, we have

(2.4) μ(as9 Δ) = ί u{a) s, r)μ{s9 dr) for (r-almost all s^S.

By Fubini's theorem, (2. 4) is true for <τ-almost all a for <;-almost all s. Since
the space R has countable open bases and since μ{s, Δ) is a regular measure

; — see §1.
l2> This fact is well known as D. Raikov's lemma.
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6 SEIZO ITO

on R for every s, there exists a point soGS, independent of Δ9 such that

μ(aso, Δ) = I u(a', s0, r)/j(s0, dr) for <;-almost all «GS.

Since the transformation a-^asό1 is measure-preserving, we obtain by putting

a = sso"1 that

(2.5) μ(s, Δ) = f aίsso""1; 5o, r)/i(5o, rfr) for (j-almost all sGS.

If we put ω(s, r) = wίssί"1; s0, r) and p(J) =μ(so, Δ), then ω(s, r) is B-measurable

in <s, r> and, by (2.3), (2.4) and Fubini's theorem, we have

ψ(s, r)dF(X) - ( tb(s)[ ψ(s9 r)ω(s, r)dp(r)

= [~ψ(s, r)ω(s, r)dσ(s)dρ(r)
Jx

for any φ&L\X, F); this implies (2.2), q.e.d.

LEMMA 3. Let ϋ, V and X etc. be as in Theorem 2, fι(s, r) be a function

&L2~L\X, σΘpi) such that σ({s / Ms, r ) # 0 } ) > 0 for pi-almost all r&R,

and L be the totality of linear combinations of the functions of the form {b, <s,

r>)fi(a~ιs, r), \a\ = 1. Then L is dense in L2 with respect to the norm in L2.

Proof (outline). For any set ΛCX and any rG/?, Λr denotes the set

(s I is, r>E:Λ} by definition. Let Δ be any fixed subset of R. If σ(Λr)>0

for ^-almost all r^Δ and Λ'CSxΔ, then there exist uai9 . . . , «αftSU for any

ε>0 such that σ®pι{Λ9 -ZaιA\J . . . \JanΛ])<ε. On the other hand, any con-

tinuous function on X is approximated uniformly on any compact subset of

X by means of linear combinations of characters. By making use of these

facts, we may prove that any continuous function on X which vanishes out-

side of a compact set is approximated in L2 by means of functions GE L. Lemma

3 follows from this result at once.

§ 3. Proof of Theorem 1. Let G, U and V etc. be as stated in Theorem 1

and {& U(g),f°} be a cyclic unitary representation of G, and put Ua^U(ua)

for % £ ϋ and Vb=U{vb) for ^GV. Then it follows from (1.2) that

(3.1) UaVb=VάbUa.

Since G satisfies the second countability axiom and since the representation is

cyclic, the Hubert space ξ> is separable. Put

^f for all weV}.

Then, since V is a normal subgroup of G, / e 9 l implies that VbU(g)f

= U(g)U(g~%g)f=U(g)f for any g^G and w e V . Therefore 3Ϊ and con-
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UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS 7

sequently Tl = ©Θ9I are U(g)-invariant subspaces of €>. The representation, con-
sidered in 9ΐ, yields a representation of the group U (sG/V).

Consider the representation in Ίfl Wl is separable as well as £>. By Lemma
1, there exists a resolution of the identity {2?(Λ)} in 9JΪ on X such that

Vb=[ (b, X)dE(X);

and the space ΊR may be realized as an at most countable direct sum of the
spaces 3Ky of functions:

where Fy(Λ) is a measure on X such that Fj(X) = 1 and every Fy(Λ) (j>l) is
absolutely continuous with respect to Fy-i(Λ). When/G9JΪ is realized by
we write /~ifj(X)} then

(3.2) VJ/-{(*, t)fjiX)) for any

Since 0 is the only one element of 9)1 that fulfills Vtf-f for all #6G V we obtain
Fj({X0})=0, y = l, 2, . . . . Thus we may consider Fyί^ί), y = l, 2, . . . , as
measures on X-X— {Xϋ}.

The operator Z7β is expressible as a matrix (Ujk{a)) where Ujk(a) is a
bounded operator from % into 3Qly such that

i. 2, for f ^

Since Z7Λ is unitary, we have

(3.3)

Next, if we put Ujk(a) l-ujk(al X), then

\\ujk(a; X) -u]k(b; X)f f£\\Uafk~ U(f% ( l α | = 1*1 = 1 ) ,

where/*-{//(*)} such thatΛ(Z) = l and/i(Z)-0 (j*k), and !| ||© denotes
the norm in © moreover ϋ satisfies the second axiom of countability. Hence
we may construct a function ujk(a\ X) B-measurable in (a, X> and such that
Ujk(a; X) -Ujk(a; X) for Fy-almost all X for every a.n) Thus we may consider
that Ujk{a)Λ = ujk(a X). Then we get

(3. 4) Ujk(a)MX) = ujkia

At first we can prove this equality for functions of the form fk(X) = (b, X) (for
any fixed b) by making use of (3.1), (3.2) and the fact that {ab, X) = (b, a'ιX)

18) Such Ujic(a; X) may be obtained by the same way as constructing the "measurable

kernel" of a stochastic process. See [4].
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8 SEIZO IT6

( | t f |= l ) . Since the totality of linear combinations of "characters" {b, X) is

dense in L2(X, Fk), (3.4) is true for a\lfkeL2(X9 Fk). Hence (3.3) becomes

as follows:

(3.5) Σ fj/yOOί2 dFj(X) = Σ ί j Έujkia I X)fk(a'1X)\2dFj(X).
i JX j Jx Jc

Let ψ(X) be the characteristic function of Λ(ZX=SxR and put in (3.5)

fL{X) = ψ(aX) and fj(X) = 0 for j # 1. Then we obtain

(3.6) t a **

Since all Fj(A) are absolutely continuous with respect to Fi(Λ) (by Lemma

1), we may write

= f Φj
JΛ

where every 0/(#) is non-negative, B-measurable in X and summable on X with

respect to Fu Then the function

u(a; X) = Y>j\ujX(a; X)\2Φj(X) U O )

is B-measurable in <α; Z> and summable on X with respect to Fi for any a,

and it follows from (3.6) and by Lebesgue's convergence theorem that

(3. 7) Ftia-'Λ) = f u(a X)dFΛX).

Hence, by Lemma 2, there exist a non-negative B-measurable function ω(s, r)

on X and a measure p{Δ) on i? such that p(R) = 1 and Fi(yl) is given by

FiU) = f ω(s, r)dσ(s)dp(r),

and consequently there exist non-negative B-measurable functions ωj(s, r)9

j = 1, 2, . . . , on X=SxR such that

(3.8) FyU) = f ωy(5, r)dσ(s)dp(r).
JΛ

Now put yίy = {<5, r> / ωy(5, r) = 0}. Evidently Λ1C.A2C . . . . Put £/(s, r)

= ωy(s, r)fj(s, r) for every f^ifjis, r)} and define the norm of fy by

L W s s r)\2dσ(s)dp{r).
x

Then we have I!̂ ill2 = ll/yl!2, and hence the mapping fj-*ψj is an isometric

mapping from DUly onto
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UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS 9

2j = {<Pj(s, r) I lψjf< oo, ψj(s, r) =0 on Aj).

So we can realize 9Ή as a direct sum of 2y. The mapping fj^ψj carries Ujk(a)
into operators on {<fj(s, r))\ we denote them by Ujk(a) again. Define

ujkia; s r) = ( ω ^ s ' r^u^a; s> ^Wα""1^ r Γ 1 if <β~1s? r>$Λ*,
*0 if < ^ S ? r><ΞΛ*

(«#(« s, r) = ujkia #) for X = <s, r>). Then it follows from (3.4) and by the

definition of <pj(s, r) that

(3,9) Ujk(a)φk(s, r) = «jΛ(α s, r)ψk{a"ιs, r),

and unitary condition (3.5) becomes

(3.10) ' J * ^ J ^ &

= ΣLlΣ«JΛ(α; as, r)ψk(s, r)\2dσ(s)dp(r).
j J X k

Denote by n (^ oo) the number of 2K/ and by ©o the unitary space of all

sequences f = {?y} = {fi, . . . , fΛ} of complex numbers such that | |£||2= Σlf/I2

< oo (if n = oo ) and by ^ (ft = 1, 2, . . .) the finite-dimensional subspace of §o
defined by the condition & = &+!= . . . =0, f^ψ(X) = {^(s? r)} means that

is realized as a vector function ^(Z) such that f(Z)εC)ϋ for ? φ U

and ψ(X)&φk for Ze/1^. Denote the matrix (ujk(a; s, r)) by M{a\ s, r) for
every <α s, r>. Then f-^ψ(X) = ̂ (s? r) implies that

!

J^ , r)ψ = Σ

(*, <5, r»φ{s, r)

by (3.2), (3.9) and the definition of ^(5, r).
(3.10) is now written as follows:

f 11̂ (5, r)\\*dσ(s)dp{r) = [j\M(a; as, r)φ{s, r)fdσ(s)dp(r).
J X J X

If we put in this equality φ(s, r) ={ξjψΛs, r)} where ξ = ffy} e f e and fΛ(s, r)

is the characteristic function of any assigned Borel set ΛCAk- Ak-i, then

f \\ξfda{s)dp{r) - f \\M(a; as, r)ξfdσ(s)dp(r).
J Λ JΛ

This implies that, for any «aE(J, M(«; s, r) considered on $k is an isometric
operator for almost all14) (s, r)G:a{Ak~- Λk-ι). Further, by the definition of

14> Here we mean "for almost all <s, r) with respect to the product measure α ^p."
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10 SEIZO ITO

u'jkia s, r), the range of M(a', s, r) is ξ>k for almost all <s, r>&.{Λk~ Λk-i)
(k^2). Since Λ1CΛ2C . . .., it follows that for almost all <s, r>G:[_a(Λk — Λk-ι)
- (Λk- Λk-iΏ the operator Mia] s, r) maps & isometrically onto φ/ for some

j*k. Hence every (Ak - A-i) (&^2) must be of the form SxJk iACR) (with
the exception of the set of measure zero). On the other hand, Λ\ is of the
form Sx Δ (ACR) from (3.7) and the definition of Λu Hence the same is true
for every Λk (ft = 1, 2, . . . ) .

Hereafter we shall say that a matrix Miial s, r) = iujkial s, r)) is equal
to another matrix M%ia\ s, r) = iu%ia\ s, r)) for a. a. ( = almost all) <s, r> if
and only if ujkial s, r) = u%(a'f s, r) for <T®p-almost all <s} r>φΛk for .7 = 1,
2, . . . , « this condition is equivalent to the following one: Mι(a s, r) = M 2(Λ
s? r) as operetors stated in (3.11). By the above obtained result concerning
the form of Λk, if Mi(a] s, r)-Mi(a\ s, r) for a. a. <s, r> then, for any b

= 1), ΛΓI(Λ *5, r) = M2(α ^5, r) for a. a. <s, r>.

It follows from (3.11) that for any a, b ( |α | = | 6 | = 1 ) and any <p(s, r)
ψj(s, r)} (

(3.12) Mia s, r)y>(s, r) = Λf(* 5, r)M{b'ιa ft-S, r)y(s, r)

as elements of ϊft. We fix an arbitrary element « f l6U. From (3.12) and by

Fubini's theorem, we have

(3.13) Mia s, r) = Mib s, r)Mib~xa b^s, r) for a. a. <b, s, r>.

Since the transformation Q), s, r>-*(sb, s, r> is measure-preserving, (3.13) im-
plies that

Mia 5, r) = ifcf(s£ 5? r)Mib~ιs~ιa ] b~\ r) for a. a. <£, 5, r>

this holds for any fixed «flGU. Since U is separable, there exists a countable
set UoCU which is dense in U and contains the identity e of G. Hence we
may take an element &oeS such that

Mia ;s,r)= Misbo s, riMibΛa^sY1 K\ r) for a. a. <s, r>

for all MflGϋo, and that Ni(s, r) ^MisBo', s, r) and N2is, r) sMCδ^V1, ftΓ1,
are isometric operator for a. a. <s? r>. Thus we obtain

(3.14) Mia ;s,r)= Nιis> r)N2ia"1s, r) for a. a. <s, r>

for all %eϋo. Putting w« = e(eU 0 ), we get

(3.15) Mis, r)N As, r) = / for a. a. <s, r>.

Now put ^(5, r)=N2is, r)φ(s, r) I then ||#(s, r) | | = l!^(s, r)| | and ψis, r)
~-=NΛs, r)ψis, r) (by (3.15)) fora. a. <s, r>. And hence, by (3.14) and (3.11),

f^ψ(s9 r)~~ψ(s, r) implies
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Uσf~~φ(a~1s, r) for any

Vbf*^{b, is, ry)ψ(s, r) for any VbE:\.

By the definition of § 0 ? ψ(s, r) -{ψΛs, r), ψ2(s, r), . . .}, where ψj(s,
n

σ®p) and \\ψ(s, r)f = *Σ\ψj(s, r)\2 for every <s9 r>. Hence 3R may be realized

as a subspace of the direct sum of at most countable number of L2(X, σ&p),

and f**{ψj(s, r)} implies

(3.16) J
ii) Uf{ψA~ιs

s, r)\*d<Λ$)dp{r) in

ii) Uaf^{ψAa~ιs, r)} for any %Gϋo

liii) Vbf*{(b9 <s, r»ψj(s, r)} for any

For any % G ϋ , there exists a sequence {«flH}Cϋ0 such that uan~>ua9 and
Uanf^{ψj(anXs, r)} for any f~~{ψj(s, r)}. Since the representation £/(£•) is
strongly continuous, we may easily show that Uaf^-{<pj(a~ls, r)} for any f—
{ψj(s, r)}. Namely (3.16) ii) holds for any % e ϋ . Hereafter we shall write
II H instead of || ||β.

Let now the cyclic unitary representation {ξ>? U(g), f°) be irreducible.
Then either m or 9ί must be {0}. If 3Jt - {0}? then {3?, Ua) is an irreducible
representation of the group ϋ and Vb = / in 5Ϊ for all vtE: V. Hence the normal
elementary p. d. function Φ(g) corresponding to the irreducible representation
{©, U(g)} (© = ςR) is a character Z(«) stated in Theorem 1 iii). Conversely such
a representation {©, Z7(̂ )} of G is evidently irreducible. Next suppose that
yt = {0} then the unitary space §o stated above is of one dimension and there
exists a point r o ei? such that p({rQ})>Q and p(/? -{r0}) =0. Hence the ir-
reducible representation {€>, Uig)} and the corresponding normal elementary p. d.
function are of the form stated in Theorem 1 i). The irreducibility of such
representation is proved by means of Lemma 3. Thus, i), iii) and iv) of Theo-
rem 1 is established.

Next we shall prove ii). If the representation {©i, UAg)} corresponding
to n is unitary equivalent to {£>2, U2(g)} corresponding to n( # n)9 then (Ui(g\fu
fi) = (U2(g)f 2, fo) for certain /iGξ)i and /2eξ>2. Hence, if we consider the direcΐ
sum {$, Z7(̂ ).} = {©i, ϋite)}®{&, Z72(̂ )} and put / = / i + / 2 , then {U(g)f / g
GG} does not span © by Theorem 8 in [3]. But we may prove by Lemma 3
that {U(g)f / ^GG} spans ©. Hence we get Theorem 1 ii).

§ 4. Proof of Theorem 2 and supplementary remarks. Jn this paragraph,
we shall make use of the results obtained in §3. If {£>, U(g),f°} is any cyclic
unitary representation of G? then the space $ is decomposable to the direct sum
of two £%)-invariant subspaces 5ϊ and 2R, as stated in §3; the space 3Jt is
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realized as the space of §0-valued functions ψ(s, r) = {ψjis, r)} on SxR and the
norm ||/l! of the element /e9Jΐ and unitary operators Ua (for % G ϋ ) and Vb
(for %eV) are given by (3.16).

In the case that the cyclic unitary representation {ξ>, U(g),f°) is not neces-
sarily irreducible, both 2W and 91 may be ^ {0}. If 9ί^{0}, then {5?, U(g)} is
a cyclic unitary representation of the group IT, and consequently is the direct

N

sum ®{%c, Uιk(g)) (Ng oo) as stated in Theorem 2 i). • If 3Jl^{0}, then {3JI,

£/(#)} is cyclic and is decomposable to the direct sum of {*/?>, U(g)},j = l,
2, . . . , n ( ^ oo), where 9JΪ/ is a subspace of L2(X, σ®p) and £/(#) is defined
by (3.16) for every j . If

then {Wj, U{g), Φj), J*=l, 2, . . . , n, are cyclic unitary representation of G,

Put Jj(r) = { |0j(s, r)|Vfo(s), #(J) = f Jjir)df(r) for JCi? and

and define the unitary operator U(g) = UaVb (for g~uavb) by Uaψj(s, r)
~ψj(a~ίs, r) and Vδ$>;(ss r) = (̂ , <s, r»ψj(s, r). Then the unitary representa-

tion {L2(X, ag>p), U(g)} (defined by (3.16)) is unitary equivalent to {L\%,
a<8)(>j), U{g)) (defined above) by means of the mapping ψj(s, r)->ψj(s,r). If we
put fj(s, r)=ψ](s, r), then {U(g)fj I g&G} spans L2(X, a®pj) by Lemma 3.
Hence we may consider that W2j=L2(X, crgpj). Clearly the functions fj(s9 r),
j~l,2,..., satisfy the conditions 1°) and 2°) in Theorem 2 i). By Theorem

8 in [3], the direct sum {W, U(g)} = @ {*0ΐ;, U(g)} is cyclic if and only if

fj(s9 r), y = l , 2,. . . , satisfy the condition 3°) also. Thus {©, U(g),f°) must
be of the form as stated in Theorem 2, and the corresponding p. d. function
Ψ(g) is given by (1.5), and consequently (1.6) is evident.

Conversely let us consider the unitary representation {£>, U(g), f°) stated
in Theorem 2 i). {3R, , U(g), fj}, j = 1, 2,. . . , are cyclic as stated above. Con-
sequently p. d. functions Ψj(g) = (U(g)fj, fj), j = I, 2, . . . , are mutually disjoint15)

n

from the assumptions 1°), 2°) and 3°). Hence the direct sum Θ{3R/, U(g), fj}
j = l

is cyclic as is earily proved by making use of Theorem 8 in [31 Similar argu-
N

ment shows that the direct sum ®{%k, Uιk (g)} also is cyclic. Since Uιk{vb)
= / in ®%k for all %GV and U(vb) ^Vb^Iin %Rj for all Vb*e, we may prove

15> See [3] § 12.
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by making use of Theorem 8 in [3] again that {§, U(g), f°} is a cyclic unitary
representation of G. And hence (1.5) follows at once. Thus Theorem 2 is
established.

Supplementary remarks. In the proofs of Theorems 1 and 2, we make use
of the following fact. The group G has the property (1.1), where the group ϋ
may be replaced by any group the types of whose unitary representations are
well known (for example, a maximally almost periodic Lie group), and either
the character group X of the commutative group V or X=X — {XQ} is a topo-
logical product space Sxi?? where S is invariant under the transformation X-+ TaX
defined by (uaVbUa\ X) = (vt, TaX) and may be considered as a group isomorphic
to the group U. The group G' (stated in §0) also satisfies the above conditions.

As for the group of all congruent transformations in the ^-dimensional
euclidean space En for n =*3? the space S is not a group but a factor space
SO(n)/SO(n — l) while U = SO(n). Hence we must consider the space of func-
tions φ(u, r) on ϋ x i ? instead of the space of functions ψ(s, r) on SxR (in §3).
It seems to be difficult to find irreducible invariant subspaces in the space of
functions on UxR, since the similar argument to Lemma 3 is impossible.
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