UNITARY REPRESENTATIONS OF
SOME LINEAR GROUPS

se1zO 17d

§0. Introduction. Recently I. Gelfand and M. Neumark [2] have deter-
mined the types of irreducible unitary representations of the group G; of
linear transformations of the straight line. The analogous result is obtained
for the group G: of transformations z—@z+ b in the complex-number plane €,
where a and b run over all complex numbers with the exception of ¢ =0, which
may be considered as the group of all sense-preserving similar transformations
in the two-dimensional euclidean space E®. In this paper, we shall determine
the types of cyclic” unitary representations and irreducible unitary representa-
tions of the group G of all sense-preserving congruent transformations in E?,
which may be realized as the group of all transformations in € of the form
z2->az+b; a, b6 and |a] =1, The method is due to the same idea as Gelfand-
Neumark’s one [2], but we need Lemma 2 (§2) which is not necessary in the
case of G; and of G.. Our method may be applied to the group G' of all
transformations ¢—>ag+ b in the field Q of quaternions, where ¢, bEQ and
lall =12

The author expresses his hearty thanks to Prof. K. Yosida, Mr. H. Yoshi-
zawa and Mr. S. Murakami who have encouraged him with kind discussions.

§ 1. Main results. Let G be the group of all transformations 2z »az + b in the
complex-number plane € where a, b€ and |a|=1. Then the group U of all
rotations z->az, |a| =1, is a subgroup of G and the group V of all translations
z- 2+ b is a commutative normal subgroup of G, and it holds that

{G =U-V, UNV={e} (e = the identity of G),

.1 G/V=U.

Hereafter we shall denote by #. and vy the elements of U and V corresponding
to the complex number a (Jal=1) and b respectively. Then we have u; = v,
=e and
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D It is called “simple” in [3].

?) The group G’ is different from the group of all sense-preserving congruent transformations
in E4 It seems to be more complicated to determine the types of unitary representations
of the group of all sense-preserving congruent transformations in E” for n=3; — see § 4.

1

https://doi.org/10.1017/50027763000022935 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000022935

2 SEIZO 1TO

(1. 2) UaVb = VabUa.

Let X be the character group of V and X, be the identity character. Then X
is isomorphic to the two-dimensional vector group as well as V and consequently
every element ¥ of X may be considered as a complex number rexp (#0)(r20).
Hereafter we shall denote every X =7exp(i#f)EX by the couple <s, > where
s=exp(i0); such a couple is unique for X% % =0, and X=X—{X} is the
topological product space of the unit circle S in the complex-number plane and
R=(0, ). Thus we may consider the transformations ¥ -»a¢X in X and s as
(la] =1) in S as the multiplication of complex numbers.
We shall here state the main theorems.

TueoreMm 1. Let o(I') (I'CS) be the measure on S invariant under ro-
tations; —

i) Fix an arbitrary element rER, and define the unitary operator U(g)
(geG) in the Hilbert space 9= L*(S, o) as follows: Ux(s) = ¢(a™’s), Vep(s)
= (b, <s, 70)P(8)® (P(s)E LS, o)) and U(Q) = UV for g=uavs Then {9,
U(g)} is an irreducible unitary representation of G, and for any fixed ¢ols)
€ LS, o) such that |l =1 the function

(1.3) 0(g) = 0(uvs) = Ss(b, La7's, 7o0) do(a's)dols)do(s) (g = wuavs)

is the normal elementary® p. d¥ function on G corresponding to the above irre-
ducible unitary representation.

ii) If 71, 2ER and 7,5 r., then the unitary representation as stated in i)
corresponding to ry is not unitary equivalent to that corresponding to 7.

iii) Let $ be the one-dimensional unitary space and | be any fixed integer
(£0), and define the unitary operator U(g) by Ug=a'¢, Vi =¢ (¢€9) and
U(g) = U, Vs for g=uavs. Then {9, U(g)} is an irreducible unitary representa-
tion of G, and

(1.4) 0(g) = 0(uavy) = a' =exp(ilf) (for a =exp(ih))

is the corresponding normal elementary p. d. function on G.

iv) Every irreducible unitary representation of G is unitary equivalent to
one of the above stated types. Consequently every normal elementary p. d.
Sunction on G is expressible in the form (1.3) or (1. 4).

TuEOREM 2. Let o(T") be as stated in Theorem 1, and pj(4) (ACR), j=1,

% (b, x) denotes the value of character X (e X) at the element v, V.

) Any element geG is uniquely expressible in this form by virtue of (1.1) and (1.2).
5 See [3] §15.

8) Abbreviated for positive definite.
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2,...,n (£ x), be measures on R such that p;(R) < co ;—

i) In every Hilbert space W; = L(X, 0 ® p;),” we define the unitary operator
U(g) (gEG) as follows: Ux(s, ) =¢(a's, 7) Vig(s, 7) = (b, <s, )¢ (s, 7)
(¢(s, NeLX(X, 0&0)) and U(Q =UsVs for g=uaws; and let fi(s, 7), j=1,
2,e .., n( £ o), be functions as follows:

1°) fi(s, nEIXX, a®0;) for every j,

2°) Lifj(S, 7 do(s) =1 for opj-almost all 7,

3°) fi(s, P)/fi(s, 7) is not constant essentially (s) as a function of s for
0j- or pr-almost all 7.

Let (N, Ulg)} be the irreducible unitary representation of G as stated in
Theorem 1 ii) corresponding to the integer I, f1 be an arbitrarily fixed element
of Mu, and {Ii, b, ..., Iy} (N< ) be a sequence of integers such that kj
implies Iy x1. Then any of (W, Ug), £} (i=1,2,...,n and {9, Ulg),
f°} defined by

(8, V@) =[O, UNIGLS N, U@

and

n ¥ ilcrj}2<oo(z‘fn=oo)
o= S+ ek 4y
S Sl < oo if N= o)

are cyclic unitary representations of G. The p. d. function ¥(g) corresponding
to the unitary representation {9, U(g), f°} is as follows:

() = V(uavs)

(1.5) = }i‘.}A;Sdej(r)Sg(b, Lals, »)i(a™ s, ) fis, 7)ds(s)
+ ngk exp (ilxf) for &= uavs, a=e".

2

(Aj=la;l’, Be=|pel®).
ii) Every cyclic unitary representation of G is unitary equivalent to that of
above stated type, and any p. d. function on G is expressible in the form (1.5),
where 0=n< o and 0£N< . The functions

0;(g; 7) = 0;(uavp, )
= Ss(b, a’'s, )fi(a"'s, r)fi(s, 7)do(s)
(reR; j=1,2,...)

7 ¢ & p; denotes the product measure of ¢ and pj.
8) See [3] §5 as for the direct sum of unitary representations.
9 The right-hand side means the summation as elements of the Hilbert space 9.
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and
7(8) = Xiuqvs) = exp (518) for a=e"
i=...,-2,-1,0,1,2,...)

are normal elementary p. d. functions on G and any p. d. function ¥(g) is ex-
Dressible in the form

(1.6) v() = B4 0.8 Vb0 + S Bil),

where A, Bx0, Z:Ajpj(R) < o and S)B;< . (Cf. Bochner-Raikov’s theorem
i- 1

for p. d. functions on commutative groups.)

As for the group G’ of all transformations g—>aq+b, lal =1, in the field
Q of quaternions, any irreducible unitary representation and any cyclic unitary
representation of G’ may be obtained by the same methods as stated in Theorems
1 and 2, where the irreducible unitary representation stated in Theorem 1 iii)
must be replaced by an irreducible unitary representation of the compact group
of all transformations g->aq (llal =1) in @; such modifications are necessary for
cyclic unitary representations.

After some preliminaries in §2, we shall prove Theorem 1 in § 3 and Theo-
rem 2 in §4. Some supplementary remarks will be also given in §4.

§ 2. Preliminary lemmas.

LemMmA 1. Let {M, U(x)} be a unitary representation (not necessarily cyclic)
of the n-dimensional vector group X, where M is a separable Hilbert space. Then

there exists a resolution of the identity {E(A)} in M on the character group X
of the group X such that

Ulx) = j (x, DIE7).

Further the space M can be realized as an at most countable direct sum of
spaces M; (7=1,2, ...) of the function fi{X) such that

15l = { 15ordr 0 < e

where Fj(A) is a measure on X such that Fi(X) =1 and every F;(A) is abso-
lutely continuous with respect to Fj-i(A) (7> 1); furthermore, if f&M is realized
by {fi(X) | j=1,2, ...}, then Ux)f by {(x, 1)fi(X) | j=1,2, . ..}
This lemma is well known as Stone’s theorem and Hahn-Hellinger’s theory'”
in the case #=1, and may be proved in our general case by the same idea.
Lemma 2, Let X, R and S be as stated in §1 and F(4) (ACX=SxR) be
a measure on X such that F(X)< oo, and assume that there exists a non-nega-

10) See [5] Chapter VII.
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tive function u(a; X) on SxX (a€S, X&X), B-measurable in {a, ¥> and sum-
mable on X with respect to the measure F(A) for every aE S, such that

(2.1) Fla™'A) = SAu(a; X)dF()®

for any ACX and any a€S. Then there exist a non-negative B-measurable
Sunction o(s, ) on X=SXR and a measure o(4) on R, p(R) < «, such that
F(A) is given by

(2.2) F(4) = SA‘"(S’ 7)da(s)do(r)

where ¢(I') is the measure on S invariant under rotations.

Proof. For any fixed 4CR, Fs(I') = F(I'x 4) (I'CS) is a measure on S and
it follows from the assumption (2.1) that Fi(al") is absolutely continuous with
respect to Fa(I) for every a€S. Hence Fu(I') is absolutely continuous with
respect to the invariant measure o(7).” And hence there exists a function
#(s, 4) of a point s€S and a set AC R such that

- i) for any fixed s€S, u(s, 4) is a regular measure on R and u(s, R) < «,
ii) for any fixed 4CR, u(s, 4) is B-measurable in s, and

iii) for any I'C S and 4CR, F(I'x 4) =Sp,u(s, 4)das(s) ; this fact is proved

by J. L. Doob [1] as the existence- and uniqueness-theorem of the conditional
probability law. Consequently for any ¢(X) = ¢(s, reli(X, F), we have

(2.3) {.¢(s, nar = do(s)f ots, Nuts, an;

the iterated integral in the right-hand side is well defined by i) and ii), and
this equals the left-hand side by iii). From (2.1) and (2. 3), we get

Spu(as, Ndo(s) = Fa™'Tx 4) = Sm"(“‘ 2)dF(X)
=S do(s)’S ula; s, r)uls, dr)
T A

for any I'CS, 4CR and any a€S, where u(a;s, 7) =u(a; X) for XL =<s, 7).
And hence, for any 4, we have

(2.4) ulas, 4) =S u(a; s, r)uls, dr) for g-almost all sES.
A

By Fubini’s theorem, (2.4) is true for ¢-almost all @ for ¢-almost all s. Since
the space R has countable open bases and since u(s, 4) is a regular measure

M g-iA={a"3x / XA} ;— see §1.
12) This fact is well known as D. Raikov’s lemma.
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on R for every s, there exists a point s,& S, independent of 4, such that
ulasy, 4) =5 ula; so, 7)1(s0, A7) for ¢-almost all a€S.
A

Since the transformation a— as;' is measure-preserving, we obtain by putting
a =ss;' that

(2.5) uls, 4) =5Au(sso' s so, ) u(s0, dr) for s-almost all sES.

If we put w(s, 7) = u(sss*; so, 7) and p(d) = u(so, 4), then w(s, r) is B-measurable
in <s, 7> and, by (2.3), (2.4) and Fubini’s theorem, we have

[0, Nar@) = § dots){ (s, Nats, Ndo(r)
= S;SD(S’ ro(s, r)ds(s)dp(r)

for any ¢ L' (X, F); this implies (2.2), g.e.d.

Lemma 3. Let U, V and X etc. be as in Theorem 2, fi(s, r) be a function
eL’=IXX, o®p) such that o({s | fi(s, 7) %0})>0 for pralmost all rER,
and L be the totality of linear combinations of the functions of the form (b, <s,
)f(a’s, 7), lal =1. Then L is dense in L* with respect to the norm in L2

Proof (outline). For any set ACX and any rER, A, denotes the set
{s | &s, ¥»>E 4} by definition. Let 4 be any fixed subset of R. If o(4,)>0
for pi-almost all 7&4 and A'CSx 4, then there exist #a,, . . . , 42, &U for any
¢>0 such that ¢ ®pi(A' ~[aAU . .. Uasd4])<e. On the other hand, any con-
tinuous function on X is approximated uniformly on any compact subset of
X by means of linear combinations of characters. By making use of these
facts, we may prove that any continuous function on X which vanishes out-
side of a compact set is approximated in L by means of functions €L. Lemma
3 follows from this result at once.

§3. Proof of Theorem 1. Let G, U and V etc. be as stated in Theorem 1
and {9, U(g), f°} be a cyclic unitary representation of G, and put U= U(ua)
for ua&€U and Vp= Ulwp) for vs=V. Then it follows from (1.2) that

(3. 1) UaVb = VabUa.

Since G satisfies the second countability axiom and since the representation is
cyclic, the Hilbert space § is separable. Put

N={fe9 /| Vof =f for all vs=V}.

Then, since V is a normal subgroup of G, fEN implies that ViU(g)f
=U(Q)U(g 'vsg)f = U(Q)f for any gEG and vs V. Therefore ® and con-
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sequently M = HON are U(g)-invariant subspaces of . The representation, con-
sidered in %, yields a representation of the group U (=G/V).

Consider the representation in I ; M is separable as well as §. By Lemma
1, there exists a resolution of the identity {E(4)} in M on X such that

V= Sx(b, DAEL) ;

and the space M may be realized as an at most countable direct sum of the
spaces N; of functions:

W= {500 1A = § AR < ),

where F;(A4) is a measure on X such that F;(X) =1 and every Fj(4) (7>1) is
absolutely continuous with respect to Fj-1(4). When f& M is realized by { f5(X)},
we write f~{f;(X)}; then

(3.2) Vaf ~{(b, X))} for any v V.

Since 0 is the only one element of M that fulfills Vef =f for all vs&V we obtain
Fi({%}) =0, =1, 2,.... Thus we may consider Fj(4), j=1,2, ..., as
measures on X = X—{%}.

The operator U, is expressible as a matrix (Uj(ae)) where Uj(a) is a
bounded operator from T into M; such that

Uaf‘”(gwk(a)fk(?{))jﬂ, 2 ... for f~{ (1)}

Since U, is unitary, we have
(3.3) Sl = SIS UM
M J g
Next, if we put Ujr(a)*1l = ujr(a; 7), then
legu(as 1) — ufu(l; DI < | US* ~ Uiy (al=1bl=1),

where f¥~{fj(X)} such that /x(X)=1 and f;(X) =0 (jxk), and |+l denotes
the norm in 9; moreover U satisfies the second axiom of countability. Hence
we may construct a function ux(a; X) B-measurable in <a, X> and such that

uir(a; 1) = upla; %) for Fj-almost all X for every a.'” Thus we may consider
that Uj(a)*1 =uj(a; %). Then we get

(3.4) Ui(a)fe(X) = win(a; V)fe(a™%).

At first we can prove this equality for functions of the form f(X) = (b, %) (for
any fixed &) by making use of (3.1), (3.2) and the fact that (ab, ¥) = (b, a™ ()

%) Such u;x(a; x) may be obtained by the same way as constructing the “measurable
kernel” of a stochastic process. See [4].
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(lal =1). Since the totality of linear combinations of “characters” (&, X) is
dense in L*X, Fi), (3.4) is true for all fz€L*(X, F;). Hence (3.3) becomes
as follows:

3.8 S IHOF a0 = S| Suila; Dfia DIAFD).

Let ¢(X) be the characteristic functiorn of ACX =SxR and put in (3.5)
Ji(X) =¢(aX) and f7(X) =0 for j=x1. Then we obtain

Fi(a™4) = 5~¢<ax)dm(x) - EjJ wir(a; 0)e(X) 1%dF;(X)
(3.6) X 7 JX
= jESAlujx(a; 1) 12dF; ().

Since all Fj(4) are absolutely continuous with respect to Fi(4) (by Lemma
1), we may write

Fi(A) = SAmj(waL(x)

where every 0;(X) is non-negative, B-measurable in X and summable on X with
respect to Fi. Then the function

u(as X) = Djlui(a; D0, (X) (20)

is B-measurable in <@; %> and summable on X with respect to F; for any a,
and it follows from (3.6) and by Lebesgue’s convergence theorem that

(3.7) Fia™4) = SAu(a; 2)aF(X).

Hence, by Lemma 2, there exist a non-negative B-measurable function w(s, 7)
on X and a measure p(4) on R such that p(R) =1 and Fi(A) is given by

Fy(A) = SAa)(s, 7)ds(s)dp(7),

and consequently there exist non-negative B-measurable functions wj(s, 7),
j:l’ 29 «e., 0N X=SXR such that

(3.8) Fi(4) = Sij(s, 7)da(s)do(7).

Now put 4; ={<s, > / wj(s, ) =0}. Evidently 4/ CA4C.... Put ¢;i(s, )
= wj(s, 7)fi(s, ) for every f~{fi(s, r)} and define the norm of ¢; by

il = 1 9iCs. ) Ido(s)dp(r).

Then we have ||¢;|*=|lf5I’, and hence the mapping fj— ¢; is an isometric
mapping from M; onto
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L ={¢i(s, 7) / llg;IP< o, ¢i(s, ) =0 on 4;}.

So we can realize M as a direct sum of ¢;. The mapping fj— ¢; carries Ujr(a)
into operators on {¢;(s, 7)}; we denote them by Ujr(a) again. Define

. . . ~1 -1 : -1
dilas s, 7) = { wi(s, Nujr(a; s, ror(a™s, 7) }f <a‘ls, 7y € Ag,
0 if <a7's, WE M4

(ujk(a; s, r)=upla; X) for X =, r>). Then it follows from (3.4) and by the
definition of ¢;(s, 7) that

o~

3.9) Ui(a)¢i(s, v) =uirla; s, r)er(as, 7).
and unitary condition (3.5) becomes

3 leits, Nids()do(r) = 3| Sda(a; s, Newa™s, 7I*do(s)dolr)
(8.100 7 °F ek

= Si{_ I S3ujk(as as, euts, 1) I*do()do().
Denote by # (= ) the number of ; and by 9, the unitary space of all
n
sequences & ={&}={&, ..., &} of complex numbers such that [£[*= X‘I &l?
4

<o (ifn=oo)and by $ (£=1,2, ...) the finite-dimensional subspace of
defined by the condition & =8&k1=...=0. f~¢(X) ={¢i(s, )} means that

n
SEM is realized as a vector function ¢(¥) such that ¢(X)€9, for ¥ EEkL_JlAk
and ¢(X) €9, for 1€ Ar. Denote the matrix (wii(a; s, 7)) by M(a;s, r) for

every <a; s, »>. Then f~¢(X) =¢(s, ) implies that

I = j},ll?(S, Ndo(s)dp(r)  (lg(s, PIF = JZ lpi(s, P)I%),
Usf~Ma; s, r)¢(a™'s, 7),

Vif ~ (b, <s, ©)¢(s, 7)

by (3.2), (3.9) and the definition of ¢;(s, 7).
(3.10) is now written as follows:

(3.11)

S;W(s’ Pda(s)dp(r) = S}HM(a; as, r)¢(s, 7)I’ds(s)dp(7).

If we put in this equality ¢(s, 7) ={&¢.(s, 7)} where & ={&;} €9, and ¢.(s, 7)
is the characteristic function of any assigned Borel set AC Ax — Ax-1, then

[ 1elds(s)da(r) =  1M(a; as, P2 Pdo(s)dp(r).

This implies that, for any u., €U, M(a; s, ) considered on 9 is an isometric
operator for almost all <s, >&a(Ar — Ax-1). Further, by the definition of

M) Here we mean “for almost all {s, 7> with respect to the product measure s &p.”
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wie(a; s, r), the range of M(a;s, r) is ©r for almost all <s, & (A ~ Ap—y)
(£=22). Since 4 CAC . .., it follows that for almost all <s, r>E[a(Ar — Ap-1)
— (A — Ar-1)] the operator M(a; s, ) maps $r isometrically onto §; for some
7= k. Hence every (Ag — Ap-y) (22) must be of the form SX 4 (4CR) (with
the exception of the set of measure zero). On the other hand, 4 is of the
form Sx 4 (4CR) from (3.7) and the definition of ;. Hence the same is true
for every Ar (k=1,2, ...).

Hereafter we shall say that a matrix Mi(a; s, 7) = (4ju(a; s, 7)) is equal
to another matrix Mx(a; s, 7) = (x(a; s, 7)) for a. a. (=almost all) <s, 7 if
and only if wir(a; s, ) =u(a; s, 7) for s® p-almost all <s, >4 for j=1,
2, ..., n; this condition is equivalent to the following one: Mi(a; s, 7) = Mz(a;
s, r) as operetors stated in (3.11). By the above obtained result concerning
the form of A, if Mi(a;s, ) =M(a;s, r) for a. a. <s, 7> then, for any b
(18] =1), M(a: bs, r) = M(a; bs, r) for a. a. <s, .

It follows from (3.11) that for any a, & (lal =|bl=1) and any ¢(s, 7)
={¢i(s, )} (¢;EL)

(3.12) M(a;s, (s, ) =M(b; s, )M 'a; b7's, r)¢(s, r)

as elements of M. We fix an arbitrary element #,€U. From (3.12) and by
Fubini’s theorem, we have

(3.13) M(a;s, r)=M(b;s, NM®ba; b s, r) for a. a. <b, s, 7).

Since the transformation <8, s, >—><sb, s, > is measure-preserving, (3.13) im-
plies that

Ma;s, r)=M(sb;s, r)Mb 's™'a; 5™, r) for a. a. <b, s, 773

this holds for any fixed #,€U. Since U is separable, there exists a countable
set UyCU which is dense in U and contains the identity e of G. Hence we
may take an element b&E S such that

Ma; s, r)=M(sby; s, )M (a s)™; b5Y, ) for a.a. <s, 7

for all #,€U,, and that Ni(s, 7) = M(sby; s, ) and Nu(s, 7) = M(b;'s™", b5', 7)
are isometric operator for a. a. <s, >. Thus we obtain

(3.14) M(a; s, ) = Ni(s, r)No(a™'s, 7) for a. a. <s, 70
for all u,€U,. Putting u,=e(€U,), we get
(3.15) Ny(s, r)Ny(s, ) =1 for a. a.<s, 7).

Now put ¢(s, 7) =Ny(s, 7)¢(s, 7); then ll¢g(s, Pl =ll¢(s, ) and ¢(s, 7)
= Ni(s, 7)¢(s, ) (by (3.15)) for a. a. {s, 7>. And hence, by (3.14) and (3.11),
F~¢l(s, r)~¢ls, ) implies
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Ity = [_lg(s, »Pdos)dotr);
X
U f~¢(a™'s, ) for any u.€Us;
Vof ~ (b, <s, 70)¢(s, ) for any vsEV.
By the definition of §o, ¢(s, 7) ={¢i(s, 7), ¢=(s, 7), . . .}, where ¢;(s, r) e LA X,
o®p) and |l¢(s, )P =j§}|¢j($, 7)|? for every <s, 7>. Hence M may be realized

as a subspace of the direct sum of at most countable number of L*(X, s% p),
and f~{¢;(s, )} implies

D Il =23 [ 10i(s. M as()db(r) (n= )

i) Uaf~{¢i(a’'s, r)} for any wu.€U,

iii) Vaf~{(b, {s, »)¢;i(s, )} for any wvsEV.

For any u.EU, there exists a sequence {#q,}CU, such that us, - 2., and
Ua f~{¢ilan's, )} for any f~{¢;j(s, )}. Since the representation Ulg) is
strongly continuous, we may easily show that U./~{¢j(a”’s, 7)} for any f~
{¢i(s, r)}. Namely (3.16) ii) holds for any u.=U. Hereafter we shall write
i+ | instead of I|+llg.

(3.16)

Let now the cyclic unitary representation {9, U(g), f°} be irreducible.
Then either M or N must be {0}. If M = {0}, then (N, U,} is an irreducible
representation of the group U and Vp=1 in N for all vs& V. Hence the normal
elementary p. d. function #(g) corresponding to the irreducible representation
{9, U(g)} (D =N) is a character {(a) stated in Theorem 1 iii). Conversely such
a representation {$, U(g)} of G is evidently irreducible. Next suppose that
M ={0}; then the unitary space 9, stated above is of one dimension and there
exists a point 7ER such that p({7})>0 and p(R—-{n}) =0. Hence the ir-
reducible representation {$, U(g)} and the corresponding normal elementary p. d.
function are of the form stated in Theorem 1 i). The irreducibility of such
representation is proved by means of Lemma 3. Thus, i), iii) and iv) of Theo-
rem 1 is established.

Next we shall prove ii). If the representation {©:, Ui(g)} corresponding
to 7 is unitary equivalent to {£,, U:(2)} corresponding to 7:( = 71), then (Uy(gf1,
f1) = (U @)fs, f2) for certain €9 and fo= . Hence, if we consider the direct
sum {9, U(@)}={91, Ui()}® {9, Ux(g)} and put f=fi+/2, then {Ulg)f / g
€G) does not span § by Theorem 8 in [3]. But we may prove by Lemma 3
that {U(g)f /| g&G} spans . Hence we get Theorem 1 ii).

§4. Proof of Theorem 2 and supplementary remarks. In this paragraph.
we shall make use of the results obtained in §3. If {9, U(g), f°} is any cyclic
unitary representation of G, then the space § is decomposable to the direct sum
of two U(g)-invariant subspaces M and M, as stated in §3; the space M is
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realized as the space of §-valued functions ¢(s, 7) ={¢;(s, )} on Sx R and the
norm |lf|! of the element f&IM and unitary operators U, (for #.€U) and Vs
(for vs€ V) are given by (3.16).

In the case that the cyclic unitary representation {9, U(g), /°} is not neces-
sarily irreducible, both M and N may be ={0}). If Nx{0}, then {M, U(g)} is
a cyclic unitary representation of the group U, and consequently is the direct

N

sum ®l(mlka U,(8)} (N<g =) as stated in Theorem 2 i). If M= {0}, then {M,
k=

U(g)) is cyclic and is decomposable to the direct sum of {%f;, U(g)}, j=1,

2, ..., n (=), where M; is a subspace of L*(X, ¢®p) and U(g) is defined
by (3.16) for every j. If

=30 GiER dem Ga,

then {M;, U(g), ¢37), j=1, 2,..., n, are cyclic unitary representation of G.
Put Ji(7r) = Sslgb}’(S, 7)%ds(s), pi(4) = SA]j(r)a’,O(r) for 4CR and

(4.1) ¢i(s, r) = {ﬁj(s’ i) :ff }J((:))fg
J - Y

and define the unitary operator U(g) = U,Vs (for g=uws) by Uadi(s, 7)
=¢i(a™'s, ) and Visg;(s, 7) = (b, <s, ©)¢;(s, 7). Then the unitary representa-
tion {L(X, ¢®p), U(g)} (defined by (3.16)) is unitary equivalent to {IL3(X,
o®0j), U(g)} (defined above) by means of the mapping ¢;(s, 7) > ¢;(s, 7). If we
put fi(s, 7) =¢;(s, 7), then {U(2)f; /| gEG} spans L*(X, ¢®p;) by Lemma 3.
Hence we may consider that M;=ZLYX, ¢Xp;). Clearly the functions fi(s, 7),
7=1,2, ..., satisfy the conditions 1°) and 2°) in Theorem 2 i). By Theorem

. n
8 in [3], the direct sum {M, U(g*)}:QEB1 {M;, U(g)} is cyclic if and only if
j=
fils, ), j=1,2,..., satisfy the condition 3°) also. Thus {9, U(g), f°} must
be of the form as stated in Theorem 2, and the corresponding p. d. function
v(g) is given by (1.5), and consequently (1.6) is evident.

Conversely let us consider the unitary representation {9, U(g), f°} stated
in Theorem 2 i). {Mj, U(g), f;}, 7=1,2,. .., are cyclic as stated above. Con-
sequently p. d. functions ¥;(g) = (U(g)f5, f7), j=1,2, . . ., are mutually disjoint™

n
from the assumptions 1°), 2°) and 3°). Hence the direct sum ® {W;, U2, fi}
/=
is cyclic as is earily proved by making use of Theorem 8 in [3]. Similar argu-
N
ment shows that the direct sum k@l(%,c, Ui, ()} also is cyclic. Since Uy, (vs)
N =

=1Iin I;btlsﬂlk for all vs€V and U(vs) = VeI in M; for all vy = ¢, we may prove

15) See [3] §12.
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by making use of Theorem 8 in [3] again that {9, U(g), f°} is a cyclic unitary
representation of G. And hence (1.5) follows at once. Thus Theorem 2 is
established.

Supplementary remarks. In the proofs of Theorems 1 and 2, we make use
of the following fact. The group G has the property (1.1), where the group U
may be replaced by any group the types of whose unitary representations are
well known (for example, a maximally almost periodic Lie group), and either
the character group X of the commutative group V or X=X-{X) is a topo-
Jogical product space SX R, where S is invariant under the transformation 7= TaX
defined by (u.wsuz’, X) = (vs, ToX) and may be considered as a group isomorphic
to the group U. The group G’ (stated in §0) also satisfies the above conditions.

As for the group of all congruent transformations in the #z-dimensional
euclidean space E" for m=3, the space S is not a group but a factor space
SO(%n)/SO(n —1) while U=SO0(n). Hence we must consider the space of func-
tions ¢(x, ) on U X R instead of the space of functions ¢(s, 7) on SX R (in §3).
It seems to be difficult to find irreducible invariant subspaces in the space of
functions on U X R, since the similar argument to Lemma 3 is impossible.
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