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ABELIAN THEOREMS FOR HARDY 
TRANSFORMATIONS 

BY 

R. S. PATHAK AND J. N. PANDEY 

ABSTRACT. Initial and final value theorems for Hardy transforma­
tions JJ f(x)Cv(xy) dx and fâ f(x)Fv(xy) dx of a suitably chosen 
function f(x) under a certain set of conditions on v and p where 

(1) Cv(x) = cos p7T Ji>(x) + sin pir Yv(x) 

Jv(x) and Yv(x) being Bessel functions of the first and second kind, 
and 
(2) FM=22—2psv+2p_l,vU)/{r(p)r(i/+p» 

s„,v(x) being Lommel's function, are proved. 

1. Introduction. Applications of Abelian theorems in solving boundary 
value problems are well known. Abelian theorems for Laplace transforms are 
given by Widder [8] and that for the Hankel transform are given by Zemanian 
[9]. Abelian theorems for Y- and H -transforms are not available in Literature. 
In the following we give Abelian theorems for the Hardy transforms which 
incorporate Y- and H- transforms as special cases. 

THEOREM 1. Let 3/2<Tj<2-|Rev | where v is complex. Let f(x) be a 
measurable function on the interval (0, <») such that xvf(x) is Lebesgue integrable 
on every interval of the form (x, °°), X>0 . 

Assume that 

(3) lim x^/U^A, 
x-*0+ 

where A is complex in general and define the Hardy transformation F(y) of f{x) 
by 

(4) F ( y ) = l /wx Cv(*y)d* 
where Cv(x) is the function defined by (1). 

Then 

(5) limy2-T'F(y) = AG(v,T,) 
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where 

cos(P^)r(-^-j smp^cot^-^—Jr(i+— j 
(6) G(v,-n) = ——— -—— 

2 , - , r ( ^ ) 2 , . , ^ 

p being a complex number. 

Proof. From (3), f(x) = 0[x~v], x-»0+. Since, 

0 [x~M], x^>0 + 
0 [ J T 1 / 2 ] , x-»°° *^v\X) r, r - l / 2 l 

the Hardy transform F(y) of f(x) exists. 
Now form [2; pp. 326, 329] 

(7) f t^CMdt^G^ri); K i , < 2 - | R e " | . 
Jo 

using the transformation t = xy, y > o in (6) we have 

(8) I " y ' - V ^ C U y ) dx = G(i/, i,) 
Jo 

Therefore, in view of (4) and (7) we have 

(9) |y2-"F(y)-AG(nTj)|^yJ[ \xj(x)-\\\(xy)l-«CAxy)\dx 

= y£ I x ^ / W - A l K x y ) 1 - ^ , ^ ) ! ^ 

+ yf \xJ(x)-X\\(xy)l^Cv(xy)\dx,S>0 

§ sup |r7(0-A|[ Ix'-̂ CCx)! dx 
0<t2S8 Jo 

+ y3/2-„ f | x i / 2 / ( x ) ^ AjT*+1*||V(*y)C(*y)l dx 
h 

Since Jo° |X1_11CV(JC)| dx is convergent in view of (3) for e >0 we can choose a 
positive ô such that 

l ' 7 0 ) - A | < — 

21 W~nCv{x)\dx 

Fix 8 this way. Therefore in view of (8) 

(10) \y2-*F{y)-kG(v, t , ) |<!+ y< 3 / 2 )-jr l*1/2/(*)-Ax-+1/2||VxyC(xy)| dx. 
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Let 

$up\y/xCv(x)\ = K 
x>0 

and 

\~ \xmf(x)-kx-*+m\dx = C. 
Jo 

Then, from (9) 

(H) |y 2 -F(y)-AG(^î , ) |< |+y 3 / 2 ~ T ' J K:C 

We can now choose N>0 sufficiently large such that 

(12) y3 / 2~ t ,XC<^ for all y>JV. 

Now from (10) and (11) we have 

\y2~vF(y)-\G(v,ri)\<e for all y > N . 

Since e is arbitrary our result is proved. 

THEOREM 2. Let v and p be complex numbers and TJ a real number satisfying 
3/2 < TJ < 2 - |Re"|. Assume that f(x) is a measurable function in (0, &) such that 
xl '^"'/(x) is Lebesgue integrable on every interval of the form 0 < x < X (X < °o) 
and that there exists a complex number À such that 

(13) l imx7(x) = A. 

Then with F(y) and G(v, TJ) as defined by (4) and (6) respectively 

lim y2 T ,F(y) = AG(v,rj). 
y-»0+ 

Proof. Since Cv(x) = 0(x~,v|) as x-»0 + and C„(x) = 0(x~1/2) as x-*oo our 
conditions on f(x) insure that the transform F(y) of f(x) as defined by (4) exists 
for y > 0 . 

Now, 

|y2-*F(y)-AG(v,T,) |<y| \x"f(x)-k\\(xyy-"CAxy)\ dx 

=£yf \x*f(.x)-\\\{xyy-"CAxy)\dx 

+ y f " l*7(*) - AI \(xy)l^Q,(xy)\ dx. 
JX 
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Exploiting (13) for e > 0 we can find X > 0 such that 

|/(x)x" - A | < — for all x > X. 
t 1 - |Q,(f)| dt 

Therefore, Jo 

|y2-*F(y)-KG(v, i,)|< y ( \x"f(x)-A|(xy)1-"C^(xy) dx + e 
Jo 

or 

(14) |y
2-"F(y)-AG(I')T,)|<e + y3/2- t ,[ |/(x)-Ax-,,||CUxy)VxyVxdx. 

There exists a positive number A„ such that 

(15) |VfCv(r)|<A„r|Re,'l+1/2 for all f>0. 

Therefore exploiting (14) and (15) we have 

\y2-"F(y)-kG(v, T,)|<e + A„y2-"-|Rev| [ |/(x)-Ax-*|x- |RH+1 dx 

<e + A.y2-"-1^"1 [ |/(x) - Ax"" | x~^+1 dx. 

Letting y-»0 + we have 

lïm |y2-"F(y)-AG(v,T})|^e. 
y-»0+ 

Since e is arbitrary our lemma is proved. 

THEOREM 3. Let a + 2 < rj < Re(i> + 2p + 2) where a = max(-4, Re(i> + 2p - 2)) 
v and p being complex numbers. Let f(x) be a measurable function on 0 < JC < °c 
such that x^^fix) is Lebesgue integrable on every interval of the form X < JC <<» 
(X>0) and that there exists a complex number such that limx_>0+ xr)f(x) = À. 

Let the Fv-transform of f{x) be defined by 

(16) F(y)= [ f(x)Fv(xy)xdx for each y>0, 

where 

tvW {T(p)T(v + p)} 

s^,v(x) being Lommel's function. Then 

limy2-"F(y) = \H(v,n) 
y—>oo 
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where 

«f^-^T*) . (17) H(v,v) = - , -<T,<2 + Re(v + 2p). 
r - . r ( V ) r ( ^ ) * 

Proof. The proof follows quite readily by using the fact that 

I t1~*Fv(t)dt = H(v,r]); 7]<2 + Re(v + 2p), 
Jo 

[3, p. 385] 
and the technique used in the proof of Theorem 1. 

THEOREM 4. Let a + 2<i7<Re(v + 2p) + 2 wheje o- = max(-4, -Re(i/ + 
2p + 2)) v and p being complex constant Let f(x) be a measurable 
function on 0<x<<» such that xv+2p+1f(x) is Lebesgue integrable over any 
interval of the form 0<x<X (X<co) and that limx_*ooxvf(x) = A, A being a 
complex number in general 

Then with F(y) and H(v, TJ) as defined by (16) and (17) respectively, 
lim y2"T,F(y) = AH(v,îî). 

y-»0+ 

Proof. The proof follows quite readily by using the fact that 

I f1-T,Fv(/)^ = H(ï/,7?),T?<2 + Re(ï/ + 2p), 
Jo 

and the technique used in the proof of Theorem 2. 
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