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Abstract
In this paper, we analyze two types of refutations for Unit Two Variable Per Inequality (UTVPI) con-
straints. A UTVPI constraint is a linear inequality of the form: ai · xi + aj · xj ≤ bk, where ai, aj ∈ {0, 1,−1}
and bk ∈Z. A conjunction of such constraints is called a UTVPI constraint system (UCS) and can be rep-
resented in matrix form as: A · x≤ b. UTVPI constraints are used in many domains including operations
research and program verification. We focus on two variants of read-once refutation (ROR). An ROR is a
refutation in which each constraint is used at most once. A literal-once refutation (LOR), a more restrictive
form of ROR, is a refutation in which each literal (xi or −xi) is used at most once. First, we examine the
constraint-required read-once refutation (CROR) problem and the constraint-required literal-once refu-
tation (CLOR) problem. In both of these problems, we are given a set of constraints that must be used in
the refutation. RORs and LORs are incomplete since not every system of linear constraints is guaranteed to
have such a refutation. This is still true even when we restrict ourselves to UCSs. In this paper, we provide
NC reductions between the CROR and CLOR problems in UCSs and the minimum weight perfect match-
ing problem. The reductions used in this paper assume a CREW PRAM model of parallel computation.
As a result, the reductions establish that, from the perspective of parallel algorithms, the CROR and CLOR
problems in UCSs are equivalent to matching. In particular, if an NC algorithm exists for either of these
problems, then there is an NC algorithm for matching.

Keywords: UTVPI constraints; matching; parallel algorithms; read-once refutation

1. Introduction
This paper examines several problems associated with linearly infeasible systems of Unit Two
Variable Per Inequality (UTVPI) constraints. A linear relationship of the form: ai · xi + aj · xj ≤ bk
is called a UTVPI constraint, if ai, aj ∈ {0, 1,−1} and bk ∈Z. A conjunction of such constraints is
called a UCS. Observe that a UCS is a specialized linear program and thus can be represented in
matrix form as: U : A · x≤ b. This means that if U has no linear (rational) solutions, then there
exists a non-negative vector y, such that y ·A= 0, y · b< 0. This follows directly from Farkas’
Lemma (Farkas 1902). The vector y serves as a refutation of U. This is because this vector proves
that U has no linear (rational) solutions. In this paper, we study a specialized form of refutation
called read-once refutation. A read-once refutation (ROR) is a refutation that uses each constraint
at most once. Thus, a refutation y is read-once, if each element yi of y belongs to the set {0, 1}. A
literal-once refutation (LOR) is a refutation that uses each literal (xi or −xi) at most once. Note
that every LOR is an ROR.

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129523000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000300
https://orcid.org/0000-0001-5821-5117
mailto:k.subramani@mail.wvu.edu
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129523000300&domain=pdf
https://doi.org/10.1017/S0960129523000300


228 K. Subramani and P. Wojciechowski

Of the various forms of linear refutation, read-once refutations can be considered to be the sim-
plest. Observe that a read-once refutation of a systemU corresponds to a subset of the constraints
ofU that when summed together derives a contradiction. This is in contrast to more general forms
of refutation where the number of times each constraint is used is important. Additionally, since
coefficients are unnecessary for read-once refutations, read-once refutations are more compact
than more general forms of refutation. This makes read-once refutations a highly desirable proof
of infeasibility.

Unfortunately, read-once and literal-once refutations are incomplete proof systems, since there
exist infeasible linear programs that do not have such refutations. In fact, this is still the case for
UCSs (see Section 2). Consequently, the problems of checking if an arbitrary UCS has a read-once
or literal-once refutation are still interesting.

The primary focus of this paper is variants of the LOR and ROR problems in which we are
given a set of constraints that the refutation is required to use. These variants are known as the
constraint-required read-once refutation (CROR) and constraint-required literal-once refutation
(CLOR) problems, respectively. We provide NC reductions between the CROR and CLOR prob-
lems in UCSs and the decision version of the minimum weight perfect matching (MWPMD)
problem (see Section 2.3). Note that the complexity class NC consists of problems solvable in
polylogarithmic time by a parallel machine with polynomially many processors. In total, we will
provide three NC reductions between the CROR and CLOR problems in UCSs and the MWPMD
problem.

Together, these reductions prove that the CROR and CLOR problems in UCSs are NC equiva-
lent to the MWPMD problem. All of these reductions are created assuming the CREW PRAM
model of parallel computation. This extends the work done in Subramani and Wojciechowki
(2019) which provided polynomial time reductions from the ROR and LOR problems in UCSs
to the problem of finding a minimum weight perfect matching in an undirected graph.

The principal contributions of this paper are as follows:

1. A proof that the CROR problem in UCSs is NC equivalent to the MWPMD problem.
2. A proof that the CLOR problem in UCSs is NC equivalent to the MWPMD problem.

The rest of this paper is organized as follows: Section 2 formally describes the problems under
consideration. The motivation for our work and related approaches in the literature are described
in Section 3. In Section 4, we provide the NC reductions between CROR and MWPMD. In
Section 5, we provide theNC reductions between CLOR and MWPMD. We conclude in Section 6
by summarizing our contributions and identifying avenues for future research.

2. Statement of Problems
In this section, we formally describe the problems under consideration and define the terms that
will be used throughout this paper.

A Linear Program (LP) is a conjunction of linear inequalities. System (1) denotes the matrix
representation of a linear program.

A · x≤ b (1)

Throughout this paper, we use n to denote the number of variables in an LP andm to denote the
number of constraints. Thus, in System (1),A has dimensionsm× n and b is an integralm-vector.

We now define several types of constraints referred to throughout this paper.

Definition 1. A constraint of the form ai · xi ≤ bk is called an absolute constraint, if ai ∈ {1,−1}
and bk ∈Z.

Example (1): The constraints x1 ≤ 2 and −x2 ≤ 3 are absolute constraints.
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Definition 2. A constraint of the form ai · xi + aj · xj ≤ bk is called a difference constraint, if ai, aj ∈
{1,−1}, ai = −aj, and bk ∈Z.

Example (2): The constraints x1 − x3 ≤ 2 and −x2 + x4 ≤ −3 are difference constraints.
A conjunction of difference constraints is called a difference constraint system (DCS).

Definition 3. A constraint of the form ai · xi + aj · xj ≤ bk is called a Unit Two Variable Per
Inequality (UTVPI) constraint, if ai, aj ∈ {0, 1,−1}, ai and aj are not both 0, and bk ∈Z.

Example (3): The constraints x1 + x2 ≤ 3 and −x2 − x3 ≤ −4 are UTVPI constraints.
A conjunction of UTVPI constraints is called a UTVPI constraint system (UCS).
In the above definitions, bk is called the defining constant of the constraint. Note that in this

paper, we require bk to be integral. Additionally, the terms xi and −xi are called literals.
Note that both absolute constraints and difference constraints are UTVPI constraints.
In this paper, we examine proofs of infeasibility. In linear programs (systems of linear

inequalities), we are interested in refutations that use the following inference rule:
∑n

i=1 ai · xi ≤ b1
∑n

i=1 a′
i · xi ≤ b2

∑n
i=1 (ai + a′

i) · xi ≤ b1 + b2
(2)

Rule (2) is called the addition (ADD) rule and corresponds to the summation of constraints. The
ADD rule plays a similar role in refutations of linear programs to the role played by resolution in
refutations of CNF formulas. Observe that any assignment that satisfies the hypotheses of Rule (2)
must also satisfy the consequent. Thus, Rule (2) is a sound inference rule.

Example (4): From the constraints x1 + x2 ≤ 3 and x3 − x2 ≤ −1, we can derive the constraint
x1 + x3 ≤ 2 by applying the ADD rule.

Additionally, if System (1) is unsatisfiable, then repeated applications of Rule (2) to the con-
straints in System (1) will result in a contradiction of the form: 0≤ −a, a> 0. Thus, Rule (2) is a
complete inference rule.

The completeness of the ADD rule was established by Farkas (1902), in a lemma that is
famously known as Farkas’ Lemma for systems of linear inequalities (Schrijver 1987):

Lemma 1. Let A · x≤ b denote a system of m linear constraints over n variables. Then, either
∃x A · x≤ b or (mutually exclusively), ∃y ∈ �m+ y ·A= 0, y · b< 0.

In addition to Farkas’ Lemma, there are additional lemmata that provide pairs of linear systems
such that exactly one system in the pair is feasible. Such lemmata are called “Theorems of the
Alternative” (Nemhauser and Wolsey 1999).

In this paper, we refer to the y variables in Farkas’ Lemma as the Farkas’ variables. These vari-
ables provide a certificate that proves that the original system is infeasible. In general, the Farkas’
variables can assume any non-negative real value. However, we are interested only in cases where
the Farkas’ variables are restricted to the set {0, 1} (see Section 2.1).

For systems of UTVPI constraints, Rule (2) can be restricted as follows:

ai · xi + aj · xj ≤ bk1 −aj · xj + al · xl ≤ bk2
ai · xi + al · xl ≤ bk1 + bk2

(3)

We refer to Rule (3) as the transitive inference rule. Although it is a restricted version of the
ADD rule, it remains both sound and complete for the purposes of proving the linear infeasibility
of UCSs (Lahiri and Musuvathi 2005).
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2.1 The read-once refutation (ROR) problem
We now define what it means for a refutation to be read-once.

Definition 4. A refutation is said to be read-once, if each constraint is used at most once in the
derivation of a contradiction.

This restriction applies to both constraints in the original system as well as those derived from
previous inferences. However, a derived constraint can be reused, if it can be rederived using a
different set of input constraints.

Example (5): Consider the UCS defined by System (4).

l1 : x1 + x2 ≤ −2 l2 : −x1 + x2 ≤ 0
l3 : −x2 + x3 ≤ 0 l4 : −x2 − x3 ≤ 1

(4)

System (4) has the following read-once refutation:

1. Apply the transitive inference rule to l1 and l2 to derive the constraint l5 : 2 · x2 ≤ −2.
2. Apply the transitive inference rule to l3 and l5 to derive the constraint l6 : x2 + x3 ≤ −2.
3. Apply the transitive inference rule to l4 and l6 to derive the contradiction 0≤ −1.

In this paper, we are interested in the problem of checking if a UCS has a read-once refutation.

Definition 5. The read-once refutation (ROR) problem: Given a UCS U, does U have a read-once
refutation?

Example (6): Consider the UCS defined by System (5).

l1 : x1 + x2 ≤ −2 l2 : −x1 + x4 ≤ 1
l3 : −x1 − x4 ≤ 1 l4 : −x2 + x3 ≤ 0
l5 : −x2 − x3 ≤ 0

(5)

Observe that l1 is the only constraint in System (5) with a negative defining constant. Thus, l1
must be included in any refutation of System (5).

Any refutation of System (5) must derive a constraint of the form 0≤ b where b< 0. Thus, all
variables in l1 must be eliminated by using other constraints. To eliminate x1 from l1, we must
include either l2 or l3 in the refutation. However, if only one of these constraints is included, then
the variable x4 is not eliminated. Thus, both l2 and l3 must be in the refutation.

Similarly, to eliminate x2 from l1, we must include both l4 and l5. If both constraints are not
used, then the variable x3 is not eliminated.

Thus, any refutation of System (5) must include all five constraints in the system. However, the
sum of these five constraints is the constraint l6 : −x1 − x2 ≤ 0. This is obviously not a contra-
diction. The only way to derive a contradiction is to include the constraint l1 a second time. Thus,
System (5) does not have a read-once refutation.

However, every infeasible UCS has a refutation in which each constraint is used at most twice
(Subramani and Wojciechowski 2017).

In this paper, we study a variant of the ROR problem known as the CROR problem.

Definition 6. The constraint-required ROR (CROR) problem in UCSs: Given a UCS U and a set of
constraints S⊆U, does U have a read-once refutation that uses all of the constraints in S?
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Given an unsatisfiable UCS U, the purpose of the ROR problem is to determine if U has a
read-once refutation. In other words, we wish to find a subset of constraints in U whose sum is a
contradiction of the form 0≤ b where b< 0.

As stated previously, read-once refutations can be represented by placing a restriction on the
Farkas’ variables. Thus, the ROR problem can be modeled as an integer program. This integer
program is represented by System 6.

∃y y ·A = 0 (6)
y · b ≤ −1

y ∈ {0, 1}m

Proposition 1. Let R be a read-once refutation of a UCS U. If we add the constraints in R, we get a
contradiction of the form: 0≤ b, b< 0.

Proof. This follows immediately from System (6).

2.2 The literal-once refutation (LOR) problem
We now define what it means for a refutation to be literal-once. First, we define a literal.

Definition 7. In a UCS, a literal is either a variable xi or its negation −xi.

Definition 8. A refutation is said to be literal-once, if each literal is used at most once in the
derivation of a contradiction.

This restriction applies to both constraints in the original system as well as those derived from
previous inferences. However, a derived constraint can be reused, if it can be rederived using a
different set of input constraints.

Example (7): Consider the UCS defined by System (7).

l1 : x1 + x2 ≤ −2 l2 : −x1 + x4 ≤ 0
l3 : −x2 + x3 ≤ 0 l4 : −x3 − x4 ≤ 1

(7)

System (7) has the following literal-once refutation:

1. Apply the transitive inference rule to l1 and l2 to derive the constraint l5 : x2 + x4 ≤ −2.
2. Apply the transitive inference rule to l3 and l5 to derive the constraint l6 : x3 + x4 ≤ −2.
3. Apply the transitive inference rule to l4 and l6 to derive the contradiction 0≤ −1.

In this paper, we are interested in the problem of checking if a UCS has a literal-once refutation.

Definition 9. The literal-once refutation (LOR) problem: Given a UCSU, doesU have a literal-once
refutation?

Example (8): Recall the UCS defined by System (4).

l1 : x1 + x2 ≤ −2 l2 : −x1 + x2 ≤ 0
l3 : −x2 + x3 ≤ 0 l4 : −x2 − x3 ≤ 1

System (4) does not have a literal-once refutation. Observe that l1 is the only constraint in System
(4) with a negative right-hand side. Thus, l1 must be in any refutation of System (4). Constraint l1
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contains the literal x1. Thus, any refutation of System (4)must use a constraint with the literal−x1.
The only such constraint is l2. However, both l1 and l2 contain the literal x2. Thus, any refutation
of System (4) that uses both l1 and l2 is not a literal-once refutation. However, any refutation of
System (4) must contain both constraints. This means that System (4) does not have a literal-once
refutation.

In this paper, we study a variant of the LOR problem known as the CLOR problem.

Definition 10. The constraint-required LOR (CLOR) problem in UCSs: Given a UCS U and a set
of constraints S⊆U, does U have a literal-once refutation that uses all of the constraints in S?

Example (9): Consider the UCS defined by System (8).

l1 : x1 + x2 ≤ −2 l2 : −x1 − x2 ≤ 0
l3 : x1 + x3 ≤ 1 l4 : −x1 − x3 ≤ 0

(8)

Let S= {l1}. System (8) has the following CLOR that uses all the constraints in S:

1. Apply the transitive inference rule to l1 and l2 to derive the contradiction 0≤ −2.

Now let S= {l3}. This constraint uses the literal x3. The only constraint in S that uses the literal−x3
is l4. Thus, any refutation of System (8) that uses l3 must also use l4. Observe that the constraint l3
uses the literal x1 and the constraint l4 uses the literal −x1. This means that an LOR of System (8)
that uses both l3 and l4 cannot use either l1 or l2. However, applying the transitive inference rule
to l3 and l4 results in the constraint 0≤ 1. This is not a contradiction. Thus, System (8) does not
have a CLOR that uses all the constraints in S.

2.3 Theminimumweight perfect matching (MWPM) problem
The problem of finding aminimumweight perfect matching (MWPM) in an undirected, weighted
graph is a well-known and well-studied problem (Cook et al. 1998). Our work in this paper focuses
on establishing the equivalence of the MWPM problem and the CLOR and CROR problems in
UCSs. Accordingly, we provide a brief overview of the MWPM problem.

Let G= 〈V, E, c〉 be an undirected graph, with vertex set V, edge set E, and edge cost function
c. Amatching is any collection of vertex-disjoint edges. A perfect matching is a matching in which
each vertex v ∈V is matched. Without loss of generality, we assume that |V| is even, since G
cannot have a perfect matching, otherwise.

In this paper, we relate the ROR problem in UCSs to the decision version of the minimum
weight perfect matching (MWPMD) problem.

Definition 11. The MWPMD problem: Given an undirected graph G= 〈V, E, c〉 and an integer L,
does G have a perfect matching with weight at most L.

Example (10): Let G be the graph in Fig. 1.

1. The edges x1
0 x2, x4

−1 x6, x5
1 x7, x9

0 x10, and x11
0 x12 form a

matching of weight 0.
2. The edges x1

0 x2, x3
0 x4, x5

0 x6, x7
0 x8, x9

0 x10, and x11
0 x12

form a perfect matching of weight 0.
3. The edges x2

−1 x3, x4
−1 x6, x5

1 x7, x8
1 x9, x10

−1 x11, and x12
−1 x1

form a minimum weight perfect matching of weight −2.
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Figure 1. Undirected graph G.

The MWPMD problem is one of the classical problems in combinatorial optimization (Korte
and Vygen 2010). Over the years, there has been a steady stream of papers documenting improve-
ments in algorithms for this problem (Duan et al. 2018; Edmonds 1967; Gabow 1976). While the
MWPMD problem is in P, it is unknown if the MWPMD problem is in NC.

2.4 Complexity classes
We now define the complexity classes used in this paper. First, we define the complexity class NC
(Papadimitriou 1994).

Definition 12. A problem belongs to the class NC, if it can be solved in polylogarithmic parallel
time using a polynomial number of processors.

The class NC can be broken down further.

Definition 13. A problem belongs to the classNCi, if it can be solved in O(logi n) parallel time using
a polynomial number of processors.

We can also look at reductions that fall into these complexity classes.

Definition 14. 1. An NC reduction can be performed in polylogarithmic parallel time using a
polynomial number of processors.

2. An NCi reduction is one that can be performed in O(logi n) parallel time using a polynomial
number of processors.

Two problems which can be reduced to each other by NC reductions are known as NC
equivalent.

For parallel algorithms, we have different ways tomeasure efficiency. These are known as work-
optimality and work-efficiency (Khan et al. 2013).

Definition 15. A parallel algorithm is work-optimal, if the total work done by the algorithm is
within a constant factor of the work done by the best known sequential algorithm for the same
problem.
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Definition 16. A parallel algorithm is work-efficient, if the total work done by the algorithm is
within a logarithmic factor of the work done by the best known sequential algorithm for the same
problem.

3. Motivation and Related Work
Refutations are “no”-certificates, in that they provide an explanation for why a given constraint
system is infeasible. Within the realm of Boolean formulas, resolution is one of the oldest and
most widely used refutation techniques (Robinson 1965). Certificates enhance the reliability of
responses provided by the implementation of an algorithm. For instance, consider an algorithm
for checking Boolean satisfiability. Given an instance φ of a formula in Conjunctive Normal Form
(CNF), a solver typically provides a “yes/no” answer. However, the answer itself does not serve
as convincing evidence that the answer provided is correct. The solver could provide a satisfying
assignment in case that it decides that φ is a “yes”-instance. This assignment serves as a certificate
of feasibility and can be checked independently (Blum et al. 1990). The natural question is what
form a certificate of infeasibility would take. In the case of clausal formulas, resolution refutations
are the preferred form of negative certificates (Vinyals et al. 2018). In general, a resolution certifi-
cate of an arbitrary 3CNF formula is exponential in the size of the formula; indeed, exponential
lower bounds on the size of resolution proofs were derived in Haken (1985). This is not surpris-
ing since, if every 3CNF formula had a short resolution refutation (or a short refutation in any
reasonable proof system), then it would mean that NP= coNP. Since exponential length refuta-
tions are difficult to store and actually verify, research has proceeded along the lines of finding
refutations in incomplete refutation systems. One such refutation system is the read-once refuta-
tion system. Read-once refutation, when specialized to resolution, is called read-once resolution
(Iwama and Miyano 1995). Another line of research is to investigate the lengths of refutations
and find the shortest refutation to explain the infeasibility of the formula. In Iwama (1997), it
was shown that the problem of finding the shortest resolution proofs in arbitrary 3CNF formulas
is NP-complete. A stronger result was obtained in Alekhnovich et al. (1998); they showed that
the problem of finding the shortest resolution proof in Horn formulas is not linearly approx-
imable, unless P=NP. This result is interesting because it is easy to see that every unsatisfiable
Horn formula has a resolution refutation that is quadratic in the number of clauses.

In Iwama and Miyano (1995), it was shown that the ROR problem for resolution in arbitrary
CNF formulas isNP-complete. This result was later strengthened by showing that the ROR prob-
lem for resolution in 3CNF formulas is NP-complete (Kleine Büning and Zhao 2002). In Szeider
(2001), it was shown that the LOR problem for resolution in CNF formulas is NP-complete. It
was later shown that the ROR problem for resolution in 2CNF formulas is NP-complete (Kleine
Büning et al. 2018). In this paper, we examine these problems on continuous (as opposed to
discrete) variables.

UTVPI constraints occur in a number of problem domains including but not limited to pro-
gram verification (Lahiri and Musuvathi 2005), abstract interpretation (Cousot and Cousot 1977;
Miné 2006), real-time scheduling (Gerber et al. 1995), and operations research (Hochbaum and
(Seffi) Naor 1994). In particular, the Octagon Abstract Domain used in program verification is
represented by UTVPI constraints (Harvey and Stuckey 1997; Miné 2006).

For systems of UTVPI constraints, the problem of checking for read-once refutations seems to
be more difficult than that of checking for linear or even integer feasibility. Previous results have
established that the problems of checking for linear feasibility and integer feasibility of a UCS can
both be solved in O(m · n) time (Subramani and Wojciechowski 2017, 2018). However, checking
for the existence of read-once refutations takes O((m+ n)2 · log (m+ n)) time (Subramani and
Wojciechowki 2019).

In Lahiri and Musuvathi (2005), the problem of checking the linear feasibility of a UCS was
reduced to the problem of checking the linear feasibility of a system of difference constraints.
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Figure 2. NC reductions.

Note that this problem is equivalent to the problem of finding shortest paths in a directed graph
(Cormen et al. 2001) and thus belongs to the class NC (Leighton 1992).

In this paper, we show the equivalence of the CROR and CLOR problems in UCSs and the
MWPMD problem. General matching problems have been extensively studied from the perspec-
tive of parallel complexity. However, it remains unknown if the MWPMD problem belongs to the
complexity class NC (Anari and Vazirani 2020).

4. The CROR Problem in UTVPI Constraints
In this section, we show that the CROR problem in UTVPI constraints is NC equivalent to the
MWPMD problem. This will be done by providing an NC reduction from the CROR problem to
the MWPMD problem and an NC reduction from the MWPMD problem to the CROR problem.
We will later do the same for the MWPMD problem and the CLOR problem. Fig. 2 shows these
reductions.

First, we reduce the CROR problem to the MWPMD problem. This is done using a mod-
ified version of the reduction used in Subramani and Wojciechowki (2019). For the sake of
completeness, we now describe that reduction.

Given a UCS U :A · x≤ b, we construct the undirected graph G= 〈V, E, c〉 as follows:
1. For each variable xi in U, add the vertices x+

i , x′
i
+, x−

i , and x′
i
− to V. Additionally, add the

edges x−
i

0 x+
i and x′

i
− 0 x′

i
+ to E.

2. Add the vertices x+
0 and x−

0 to V. Additionally, add the edge x−
0

0 x+
0 to E.

3. For each constraint lk of U, add the vertices lk and l′k to V and the edge lk
0 l′k to E.

Additionally:

(a) If lk is xi + xj ≤ bk, add the edges x+
i

bk
2 lk, x′

i
+

bk
2 lk, x+

j

bk
2 l′k, and x′

j
+

bk
2 l′k

to E.

(b) If lk is xi − xj ≤ bk, add the edges x+
i

bk
2 lk, x′

i
+

bk
2 lk, x−

j

bk
2 l′k, and x′

j
−

bk
2 l′k

to E.

(c) If lk is−xi + xj ≤ bk, add the edges x−
i

bk
2 lk, x′

i
−

bk
2 lk, x+

j

bk
2 l′k, and x

′
j
+

bk
2 l′k

to E.

(d) If lk is−xi − xj ≤ bk, add the edges x−
i

bk
2 lk, x′

i
−

bk
2 lk, x−

j

bk
2 l′k, and x

′
j
−

bk
2 l′k

to E.

(e) If lk is xi ≤ bk, add the edges x+
i

bk
2 lk, x′

i
+

bk
2 lk, x+

0

bk
2 l′k, and x−

0

bk
2 l′k to E.

(f) If lk is −xi ≤ bk, add the edges x−
i

bk
2 lk, x′

i
−

bk
2 lk, x+

0

bk
2 l′k, and x−

0

bk
2 l′k to

E.
Observe that ifU hasm constraints over n variables, then G has (4 · n+ 2 ·m+ 2) vertices and

(2 · n+ 5 ·m+ 1) edges. In other words, G has O(m+ n) vertices and O(m+ n) edges.
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Figure 3. Undirected graph.

Example (11): Let us consider the UCS represented by System (9).

l1 : x1 − x2 ≤ −4 l2 : x1 + x3 ≤ −4
l3 : −x1 − x4 ≤ −4 l4 : −x1 − x5 ≤ −4
l5 : x2 − x3 ≤ 0 l6 : x4 + x5 ≤ 0

(9)

The undirected graph corresponding to UCS (9) is shown in Fig. 3.
The minimum weight perfect matching in this graph is x+

0
0 x−

0 , x
+
1

−2 l2,
l′2

−2 x+
3 , x

−
3

0 l′5, l5
0 x+

2 , x
−
2

−2 l′1, l1
−2 x′

1
+, x′

1
− −2 l3, l′3

−2 x−
4 ,

x+
4

0 l6, l′6
0 x+

5 , x
−
5

−2 l′4, l4
−2 x−

1 , x
′
2
+ 0 x′

2
−, x′

3
+ 0 x′

3
−, x′

4
+ 0 x′

4
−,

and x′
5
+ 0 x′

5
−. This matching has weight −16 and corresponds to the read-once refuta-

tion obtained by summing all six constraints. Note that this example is similar to Example 7 in
Subramani and Wojciechowki (2019).

From Subramani and Wojciechowki (2019), G has a negative weight perfect matching, if and
only if, U has a read-once refutation.

We nowmodify the reduction from Subramani andWojciechowki (2019), to reduce the CROR
problem in UCSs to the MWPM problem.

Let U be a UCS and let G be the corresponding undirected graph. If S is a set of constraints in
U, let G′

S be the graph constructed by removing the edge lr
0 l′r from G for each constraint

lr ∈ S.
We now relate the CROR problem in UCSs to the MWPMD problem.

Theorem 1. LetU be a UCS and let S be a set of constraints inU.U has a read-once refutation that
uses all of the constraints in S, if and only if, G′

S has a negative weight perfect matching.

Proof. First, assume that U has a read-once refutation R that uses all of the constraints in S. Since
R is a read-once refutation of U, the corresponding undirected graph G has a negative weight
perfect matchingM (Subramani and Wojciechowki 2019).

From Subramani and Wojciechowki (2019), for each constraint lk in U, the perfect matching
M uses the edge lk

0 l′k, if and only if, R does not use the constraint lk. Let lr be a constraint
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in S. Since R uses the constraint lr, the edge lr
0 l′r is not in M. Note that this is true for each

constraint in S. Thus,M is a negative weight perfect matching of the graph G′
S.

Now assume that G′
S has a negative weight perfect matching M. Note that M is also a neg-

ative weight perfect matching of G. Thus, U has a read-once refutation R (Subramani and
Wojciechowki 2019).

For each constraint lk in U, the perfect matching M uses the edge lk
0 l′k, if and only if, R

does not use the constraint lk. Let lr be a constraint in S. Since M is a perfect matching of G′
S, M

does not use the edge lr
0 l′r. Thus, R uses the constraint lr as desired.

We now show that the graph G′
S can be constructed efficiently in parallel.

Theorem 2. Given a UCS U with m constraints over n variables and a set S of constraints, the
corresponding graph G′

S can be constructed in constant time using O(m+ n) processors.

Proof. The construction of G′
S can be performed in parallel as follows:

1. For each i= 1 . . . n, the ith processor creates the vertices and edges corresponding to the
variable xi. These are the vertices and edges specified in step (1) of the construction of G.
All of these edges are also in G′

S. Note that, in this step, each processor creates four vertices
and two edges. Additionally, no two processors are required to access the same memory
locations. Thus, this step can be performed in constant time in the CREW PRAMmodel.

2. For each j= 1 . . .m, the jth processor creates the vertices and edges corresponding to the
constraint lj. These are the vertices and edges specified in step (3) of the construction of

G. If lj 
∈ S, then all of these edges are also in G′
S. If lj ∈ S, then the edge lj

0 l′j is not
in G′

S. Note that, in this step, each processor creates two vertices and four or five edges.
Additionally, no two processors are required to access the same memory locations. Thus,
this step can be performed in constant time in the CREW PRAMmodel.

From this, it is easy to see that the reduction from the CROR problem in UCSs to the MWPM
problem is an NC0 reduction.

Note that this reduction works regardless of the size of S. Thus, the CROR problem can be NC
reduced to the MWPMD problem even when |S| ∈O(m).

Now we need to show that this reduction can be performed in the opposite direction. That
is, we want to construct an NC reduction from minimum weight perfect matching to the CROR
problem in UCSs.

Let G be an undirected graph with n vertices and m edges, and let L be an arbitrary integer.
From G and L, we construct a UCS U as follows.

1. For each vertex xi in G, create the variable xi.
2. For each edge xi

bk xj in G, create the constraint −xi − xj ≤ bk.
3. Let −C be the smallest weight of any edge in G. If all edge weights are positive, then let

C = 0. Additionally, letW =max{m · C + L+ 1, 1}.
4. Create the constraint x1 ≤ (n− 1) ·W − L− 1.
5. For each variable xi, i= 2, . . . , n, create the constraint xi ≤ −W.

Example (12): Consider the the undirected graph G and corresponding UCS U, when L= 4,
in Fig. 4.
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Figure 4. Undirected graph and corresponding UCS.

Note that U has a read-once refutation R that uses the constraint x1 ≤ 50. R consists of the
constraints −x1 − x4 ≤ 1, −x2 − x3 ≤ 0, −x5 − x6 ≤ 2, x1 ≤ 50, and x2 ≤ −11 through x6 ≤ −11.
Thus,G has a perfectmatching of weight atmost 4. Thismatching consists of the edges x1

1 x4,
x2

0 x3, and x5
2 x6.

We now show that G has a perfect matching of weight at most L, if and only if, U has a read-
once refutation that uses the constraint x1 ≤ (n− 1) ·W − L− 1.

Theorem 3. LetG be an undirected graph and let L be an arbitrary integer,G has a perfect matching
of weight at most L, if and only if, the corresponding UCS U has a read-once refutation that uses the
constraint x1 ≤ (n− 1) ·W − L− 1.

Proof. LetM be a perfect matching in G with cost cM ≤ L. FromM, we can construct a read-once
refutation R of U as follows:

1. For each edge xi
bk xj inM, add the constraint −xi − xj ≤ bk to R.

2. Add the constraints x1 ≤ (n− 1) ·W − L− 1, x2 ≤ −W, . . ., xn ≤ −W to R.

Note that summing the constraints x1 ≤ (n− 1) ·W − L− 1, x2 ≤ −W, . . ., xn ≤ −W results
in the constraint

∑n
i=1 xi ≤ −L− 1.

Since M is a perfect matching, every vertex in G is used by exactly one edge in M. Thus, each
variable in U is used by exactly one constraint of the form −xi − xj ≤ bk in R. Summing these
constraints results in the constraint − ∑n

i=1 xi ≤ cM . Summing this result with the constraint∑n
i=1 xi ≤ −L− 1 results in the constraint 0≤ cM − L− 1. Since cM ≤ L, this constraint is a con-

tradiction. Thus, R is a refutation ofU. Since R uses each constraint at most once, R is a read-once
refutation as desired. Additionally, note that R uses each literal at most once. Thus, R is also an
LOR.

Now assume that U has a read-once refutation R that uses the constraint x1 ≤ (n− 1) ·W −
L− 1. Any summation of the constraints in U corresponding to the edges in G results in a
constraint with a defining constant H where H ≥ −C ·m since there are m such constraints
and the defining constant of each constraint is at least −C. If R uses f constraints of the
form xi ≤ −W, then summing the constraints in R would result in a constraint of the form
0≤ (n− 1− f ) ·W − L− 1+H, where H ≥ −C ·m.

Since R is a read-once refutation, (n− 1− f ) ·W − L− 1+H < 0. Note thatW ≥ C ·M + L+
1≥ L+ 1−H. Thus, (n− 1− f ) ·W − L− 1+H ≥ (n− 2− f ) ·W. Since, (n− 1− f ) ·W −
L− 1+H < 0 and W ≥ 1, (n− 2− f )< 0. Thus, f ≥ n− 1. Consequently, R must use all con-
straints of the form xi ≤ −W. Summing these constraints, together with the constraint x1 ≤
(n− 1) ·W − L− 1, results in the constraint

∑n
i=1 xi ≤ −L− 1.

Since summing the constraints in R results in a contradiction of the form 0≤ bwhere b< 0, the
remaining constraints in Rmust sum together to produce a constraint of the form− ∑n

i=1 xi ≤ cM
where cM ≤ L. By construction of U, each −xi term must come from a constraint of the form
−xi − xj ≤ bk. Thus, the non-absolute constraints in R have the following properties:
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1. Each variable xi is used by exactly one constraint in R of the form −xi − xj ≤ bk.
2. The defining constants of these constraints sum to the value cM ≤ L.

Thus, the edges corresponding to these constraints form a perfect matching in G with weight at
most L.

Now that we have established the correctness of the reduction from MWPM to the CROR
problem in UCS, we need to show that this reduction is an NC reduction.

Theorem 4. Given an undirected graph G with n vertices and m edges, the corresponding UCS U
can be constructed in O(log n) time using O(m+ n) processors.

Proof. The construction can be performed in parallel as follows:

1. Find C. Note that this can be done in O(log n) time using O(n) processors using a divide
and conquer parallel search procedure.

2. For each j= 1 . . .m, the jth processor creates the constraint corresponding to the jth edge
in G. This is the constraint specified in step (2) of the construction of U. Note that no
two processors are required to access the same memory locations. Thus, this step can be
performed in constant time in the CREW PRAMmodel.

3. For each i= 2 . . . n, the ith processor creates the constraint xi ≤ −W. Meanwhile, the
first processor creates the constraint x1 ≤ (n− 1) ·W − L− 1. Note that, in this step, no
two processors are required to access the same memory locations. Thus, this step can be
performed in constant time in the CREW PRAMmodel.

From this, it is easy to see that the reduction from the ROR problem in UCSs to minimum
weight perfect matching can be accomplished by an NC1 reduction.

Note that there is only one constraint that is required to be used by the read-once refutation
of U. Thus, the MWPMD problem can be NC reduced to the CROR problem in UCSs even when
|S| = 1.

5. The CLOR Problem in UTVPI Constraints
In this section, we show that the CLOR problem in UTVPI constraints is NC equivalent to the
MWPMD problem.

First, we reduce the CLOR problem to the MWPMD problem. This is done using a mod-
ified version of the reduction used in Subramani and Wojciechowki (2019). For the sake of
completeness, we now describe that reduction.

Given a UCS U :A · x≤ b, we construct the undirected graph G= 〈V, E, c〉 as follows:

1. Add the vertices x+
0 and x−

0 to V. Additionally, add the edge x−
0

0 x+
0 to E.

2. For each variable xi in U, add the vertices x+
i and x−

i to V. Additionally, add the edge
x−
i

0 x+
i to E.

3. For each constraint lk of U, add the vertices lk and l′k to V and the edge lk
0 l′k to E.

Additionally:

(a) If lk is of the form xi + xj ≤ bk, add the edges x+
i

bk
2 lk and x+

j

bk
2 l′k to E.

(b) If lk is of the form xi − xj ≤ bk, add the edges x+
i

bk
2 lk and x−

j

bk
2 l′k to E.
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Figure 5. Undirected graph corresponding to UCS (10).

(c) If lk is of the form −xi + xj ≤ bk, add the edges x−
i

bk
2 lk and x+

j

bk
2 l′k to E.

(d) If lk is of the form −xi − xj ≤ bk, add the edges x−
i

bk
2 lk and x−

j

bk
2 l′k to E.

(e) If lk is of the form xi ≤ bk, add the edges x+
i

bk
2 lk, x+

0

bk
2 l′k, and x−

0

bk
2 l′k to E.

(f) If lk is of the form −xi ≤ bk, add the edges x−
i

bk
2 lk, x+

0

bk
2 l′k, and x

−
0

bk
2 l′k to E.

Observe that ifU hasm constraints over n variables, then G has (2 · n+ 2 ·m+ 2) vertices and
(n+ 3 ·m+Na + 1) edges where Na is the number of absolute constraints in U. Since Na ≤m, G
has O(m+ n) vertices and O(m+ n) edges.

Example (13): Let us consider the UCS represented by System (10).

l1 : −x1 + x2 ≤ −2 l2 : x1 + x3 ≤ −2 l3 : −x2 − x3 ≤ 2 (10)

The undirected graph corresponding to UCS (10) is shown in Fig. 5.
The minimum weight perfect matching in this graph is x+

1
−1 l2, l′2

−1 x+
3 , x

−
3

1 l′3,
l3

1 x−
2 , x

+
2

−1 l′1, and l1
−1 x−

1 . This matching has weight −2 and corresponds to the
literal-once refutation obtained by summing constraints l1, l2, and l3. Note that this example is
Example 5 in Subramani and Wojciechowki (2019).

From Subramani and Wojciechowki (2019), G has a negative weight perfect matching, if and
only if, U has a literal-once refutation.

We nowmodify the reduction from Subramani andWojciechowki (2019), to reduce the CLOR
problem in UCSs to the MWPM problem.

Let U be a UCS and let G be the corresponding undirected graph. If S is a set of constraints in
U, let G′

S be the graph constructed by removing the edge lr
0 l′r from G for each lr ∈ S.

We now relate the CLOR problem in UCSs to the MWPMD problem.

Theorem 5. Let U be a UCS and let S be a set of constraints in U. U has a literal-once refutation
that uses all of the constraints in S, if and only if, G′

S has a negative weight perfect matching.

Proof. First, assume that U has a literal-once refutation R that uses all of the constraints in S.
Since R is a literal-once refutation of U, the corresponding undirected graph G has a negative
weight perfect matchingM (Subramani and Wojciechowki 2019).
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From Subramani and Wojciechowki (2019), for each constraint lk in U, the perfect matching
M uses the edge lk

0 l′k, if and only if, R does not use the constraint lk. Let lr be a constraint

in S. Since R uses the constraint lr , the edge lr
0 l′r is not inM. Note that this applies to every

constraint in S. Thus,M is a negative weight perfect matching of the graph G′
S.

Now assume that G′
S has a negative weight perfect matching M. Note that M is also a neg-

ative weight perfect matching of G. Thus, U has a literal-once refutation R (Subramani and
Wojciechowki 2019).

For each constraint lk in U, the perfect matching M uses the edge lk
0 l′k, if and only if, R

does not use the constraint lk. Let lr be a constraint in S. Since M is a perfect matching of G′
S, M

does not use the edge lr
0 l′r. Thus, R uses the constraint lr as desired.

Theorem 6. Given a UCS U with m constraints over n variables, the corresponding graph G can be
constructed in constant time using O(m+ n) processors.

Proof. The construction can be performed in parallel as follows:

1. For each i= 1 . . . n, the ith processor creates the vertices and edges corresponding to the
variable xi. These are the vertices and edges specified in step (1) of the construction of G.
All of these edges are also in G′

S. Note that, in this step, each processor creates two vertices
and one edge. Additionally, no two processors are required to access the same memory
locations. Thus, this step can be performed in constant time in the CREW PRAMmodel.

2. For each j= 1 . . .m, the jth processor creates the vertices and edges corresponding to the
constraint lj. These are the vertices and edges specified in step (3) of the construction of

G. If lj 
∈ S, then all of these edges are also in G′
S. If lj ∈ S, then the edge lj

0 l′j is not
in G′

S. Note that, in this step, each processor creates two vertices and two to four edges.
Additionally, no two processors are required to access the same memory locations. Thus,
this step can be performed in constant time in the CREW PRAMmodel.

From this, it is easy to see that the reduction from the CLOR problem in UCSs to the MWPM
problem is an NC0 reduction.

Now we need to show that this reduction can be performed in the opposite direction. That
is, we want to construct an NC reduction from minimum weight perfect matching to the CLOR
problem in UCSs.

By the proof of Theorem 3, the reduction from theMWPMD problem to the CROR problem in
UCSs is also a reduction to the CLOR problem in UCSs. Thus, that reduction is an NC reduction
from minimum weight perfect matching to the CLOR problem in UCSs.

6. Conclusion
In this paper, we investigated the applicability of parallelization to the problem of finding CRORs
and CLORs of systems of UTVPI constraints. In previous work (Subramani and Wojciechowki
2019), the ROR and LOR problems were reduced to the minimum weight perfect matching
problem. We extended these results to a more restrictive form of refutation.

Additionally, we were able to reduce minimum weight perfect matching to the CROR and
CLOR problems in UTVPI constraints. This establishes these problems as being equivalent to
matching from the perspective of parallel algorithms. UTVPI constraints are an important class
of linear constraints that find applications in abstract interpretation and program verification. It
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follows that certificates of infeasibility for UTVPI constraint systems are of enormous practical
significance. Read-once and literal-once certificates are particularly useful in applications, since
they are “short” by definition. We are currently looking into implementing this algorithm on a
parallel computer in order to empirically validate our work.

From the perspective of future research, the following avenues appear promising:

1. What is the parallel complexity of the CROR problem in difference constraints? Note that
difference constraints are a subset of UTVPI constraints. Thus, the CROR problem in dif-
ference constraints may be easier than the CROR problem in UTVPI constraints. This is
supported by the fact that the reduction from MWPM to the CROR problem in UTVPI
constraints utilizes constraints of the form xi + xj ≤ b. Thus, the reduction in this paper
does not work for difference constraints.

2. It is known that the minimum weight perfect matching problem for planar graphs belongs
to the class NC (Anari and Vazirani 2017; Sankowski 2018). Can this result be extended to
provide an NC algorithm for a restricted form of UTVPI constraint systems? For example,
DCSs can be modeled using directed graphs. This means that we can consider DCSs that
correspond to planar graphs. It may be possible to utilize the NC matching algorithm for
planar graphs to develop an NC algorithm for this class of DCSs. We can then extend this
result to a similar class of UCSs.

3. The problem of checking the linear feasibility of a UCS can be solved by an NC algorithm
for shortest paths (Leighton 1992). Can a similar result be obtained for checking the integer
feasibility of a UCS?
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