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CO-ABSOLUTELY CO-PURE MODULES

by V. A. HIREMATH

(Received 30th November 1983)

B. Maddox [15] defined absolutely pure modules and derived some interesting
properties of these modules. C. Megibben [17] continued the study of these modules
and found more interesting properties. We introduce in this paper co-absolutely co-pure
modules as dual to absolutely pure modules. We first prove that over a commutative
classical ring these modules are precisely the flat modules. As a biproduct we get a
projective characterization of flat modules over a commutative co-noetherian ring.
Secondly, over a quasi-Frobenius ring R, co-absolutely co-pure right R-modules turn
out to be projective modules. Finally we get a characterization of almost Dedekind
domains in terms of co-absolutely co-pure modules.

Throughout this paper by a ring R we mean an associative ring R with identity and
by an R-module M we mean an unitary right R-module M.

Before defining a co-absolutely co-pure module we recall:

Definition 1. (i) An R-module M is said to be finitely embedded [22] (later called by
Jans [14] co-finitely generated) if E(M) = E(Sl)(&---@E(Sn) for some simple R-modules
Sl5..., Sn (here E(X) denotes the injective hull of an R-module X).

(ii) An R-module M is said to be co-free [10, Definition 6] if M is isomorphic to
FI{£(SJ: Sa is a simple R-module, ae A} for some index set A.

(iii) An R-module M is said to be co-finitely related [10, Definition 14] if there is an
exact sequence 0->M-»N->K->0 of R-modules where N is co-finitely generated, co-
free and K is co-finitely generated.

(iv) A short exact sequence 0-><4->£->C->0 of R-modules is said to be co-pure [11,
Definition 3] if every co-finitely related R-module is injective relative to this sequence.

(v) A ring R is said to be right co-noetherian [14, p. 588] if every homomorphic image
of a co-finitely generated R-module is co-finitely generated.

(vi) A submodule A of an R-module B is said to be pure [4, p. 383] if for every left
R-module M, the induced map A®RM—*B®RM of abelian groups is a
monomorphism.

More generally, a monomorphism f:A—>B of R-modules is said to be pure if for any
left R-module M, the induced map f® 1M:A®RM—>B®RM is a monomorphism. We
then say that a short exact sequence 0—*A-̂ *B-S*—>C—>0 of R-modules is pure if / is a
pure monomorphism.

(We remark that Warfield [24, Proposition 3] has proved that a short exact sequence
0->/4-»B->C-»0 of R-modules is pure if and only if every finitely presented R-module
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is projective relative to this sequence. Using this characterization of pure short exact
sequences we dually defined co-purity (iv) noting that "co-finitely related" is the dual
of "finitely presented".)

(vi) An R-module A said to be absolutely pure [15, 17] if A is a pure submodule of
every .R-module in which it is contained (or equivalently, every short exact sequence
0—>A—>B—>C->0 of R-modules is pure).

Dually we define:

Definition 2. An R-module C is said to be co-absolutely co-pure (c.c. in short) if
every short exact sequence 0—>A—>B—>C—>0 of R-modules is co-pure.

Remark 3. Clearly every projective R-module is c.c. But the converse need not be
true.

Example. The additive group Q of rational numbers being flat as a Z-module it is
c.c. as a Z-module by [21, Proposition I.I 1.1] since purity and co-purity are equivalent
for Z-modules [11, Theorem 20]. But <Q> is not projective as a Z-module.

Proposition 4. For a ring R the following conditions are equivalent:

(i) every R-module is c.c;

(ii) every co-finitely related R-module is injective;

(iii) every short exact sequence of R-modules is co-pure;

(iv) R is a right V-ring.

Proof. (ii)<=>(iii)<=>(iv) follow from [11, Proposition 5]. (i)-»(iii) are obvious.

Now we derive a few equivalent conditions for the class of c.c. modules.

Proposition 5. The following conditions are equivalent for an R-module C:

(i) C is c.c;

(ii) there is a co-pure short exact sequence 0->K-+P->C->0 of R-modules with P

projective;

(iii) Extj^(C, M) = 0 for every co-finitely related R-module M.

Proof. (i)=>(ii) is obvious.
(ii)=>(iii): For any co-finitely related R-module M we have the induced exact sequence

HomR(P, M)-^HomR(K, M)->Ext]<(C, M)->Ext£(P, M) = 0

of abelian groups (where i* is the map induced by i) the last group being zero as P is
projective. By the co-purity of the exact sequence in (ii), i* is an epimorphism. Hence
Extjj(C,M) = 0.

(iii)=>(i): Let 0—•/l-^B—>C—>0 be a short exact sequence of R-modules. For any co-
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finitely related R-module M, we have the induced exact sequence

UomR(B, M)-^HomR(/l, M)->Exti(C, M) = 0

of abelian groups where the last group is zero by hypothesis. Then i* is an epimorphism
showing the co-purity of the given sequence. Thus C is c.c.

Corollary 6. The class of c.c. modules is closed under taking arbitrary direct sums and
direct summands.

Before stating the next proposition we recall [18, p. 136] that if e is a class of short
exact sequences of i?-modules, an R-module M is said to be E-projective if M is
projective relative to each member of £.

Proposition 7. The following conditions are equivalent for an R-module C:

(i) C is c.c;

(ii) C is E-projective where e is the class of all short exact sequences 0—>X—>7—>Z—*0
of R-modules where X is co-finitely related;

(iii) C is E-projective where e is the class of all short exact sequences 0—>X—>Y—>Z—>0
of R-modules where X is co-finitely related and Y is injective;

(iv) C is E-projective where E is the class of all short exact sequences 0—*X—*Y—>Z—>0
of R-modules where Y is co-finitely generated, injective and Z is co-finitely
generated.

Proof. (i)=>(ii): Let 0—>X—*Y^+Z—>0 be any short exact sequence of /^-modules
with X co-finitely related. This yields us the exact sequence

HomR(C, Y^Hom^C,Z)—Ext1
R(C,X)=0

of abelian groups. Since X is co-finitely related, the last group is zero by Proposition 5.
Hence g^ is an epimorphism.

(ii)=>(iii)=>(iv) are obvious.
(iv)=>(i): Let M be any co-finitely related J?-module. Then we have an exact sequence

0—>M—>N-̂ >K—>0 of .R-modules with N co-finitely generated, co-free (so injective) and
K co-finitely generated. This yields us the exact sequence

HomR(C, N)AHomR(C, K)-»ExtR(C, M)->Extl
R(C,N)=0

of abelian groups. The last group is zero since N is injective and gM is an epimorphism
by (iv). Hence ExtR(C, M) = 0. Thus C is c.c. by Proposition 5.

Corollary 8. / / R is a right co-noetherian ring, then the c.c. R-modules are precisely
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the e-projective R-modules where e is the class of short exact sequences 0—>X—>Y—>Z—»0
of R-modules where Y is artinian and injective.

Proof. The proof follows from (i)<=>(iv) of the above Proposition 7 and the facts that
over a right co-noetherian ring R, the co-finitely generated R-modules are precisely the
artinian R-modules ([22], Proposition 2*) and every homomorphic image of a co-finitely
generated R-modules is co-finitely generated.

Before stating the next corollary we recall [12, Definition 1] that an R-module A is
said to be co-finitely projective if it is e-projective where e is the class of all short exact
sequences 0—>X—*Y—>Z—>0 of R-modules where Z is co-finitely generated.

Corollary 9. Every co-finitely projective R-module is c.c.

Remark 10. The converse of the Corollary 9 need not be true.

Example. We have observed in Remark 3 that the additive group Q of rational
numbers is c.c. as a Z-module. But Q is not co-finitely projective as a Z-module by [12,
Proposition 6].

We now compare co-absolute co-purity with flatness and projectivity.
For the next proposition we recall the following from [23].

(i) An R-module M is said to be linearly compact if every family of cosets in M with
finite intersection property has non-empty intersection.

(ii) A commutative ring R is said to be classical if E(S) is linearly compact for every
simple R-module S.

Proposition 11. Over a commutative classical ring every flat module is c.c.

Proof. The proof follows from [21, Proposition I.I 1.1] and the fact that purity
implies co-purity for a commutative classical ring [13, Corollary 16].

Remark 12. In general a flat module need not be c.c.

Example. Since there are Von Neumann regular rings which are not K-rings (for
example, the ring of linear operators of an infinite dimensional vector space), by
Proposition 4 and [7, Theorem 11.24] there is a flat module which is not c.c.

Proposition 13. For a commutative ring R, co-purity implies purity.

Proof. Let 0—*A-^B^*C—>0 be a co-pure short exact sequence of R-modules. To
prove the purity of this short exact sequence we need only prove, by [4, p. 384], that
the induced sequence 0->A ®RM->B®RM->C®RM-»0 of R-modules (note that R is
commutative) is exact for every finitely presented R-module M. Since, by [10,
Proposition 2], the family {E(S):S a simple R-module} is a family of co-generators for
mod-R, the category of all R-modules and all R-homomorphisms, it suffices to prove
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that the induced sequence

0->HomiJ(C(g)RJVf, £(S))->HomR(B®RM, E(S))->HomR(A ®RM, £(S))->0

of R-modules is exact for every finitely presented R-module M and for every simple R-
module S. Since HomR(M, £(S)) is co-finitely related whenever M is finitely presented
and S is simple the exactness of the last sequence follows from the co-purity of the given
short exact sequence and from the adjoint isomorphism Horn and ®. This proves the
proposition.

Corollary 14. Over a commutative ring R every c.c. R-module is flat.

Proof. Follows from Proposition 13 and [21, Proposition I.I 1.1].

Remark 15. In general a c.c. module need not be flat.

Example. Cozzens [5] has constructed the ring R = k[x, D] of all differentiable
polynomials in an indeterminate x with coefficients in an universal field k with a
derivation D (here the multiplication is given by ax = xa + D(a), aek). Cozzens has
proved that R is a right K-domain (that is, a right K-ring which is a domain) and not a
field. Then by [7, Theorem 11.24] and by Proposition 4 there is a c.c. module which is
not flat.

From Proposition 11 and Corollary 14 we have:

Corollary 16. / / R is a commutative classical ring then the c.c. R-modules are precisely
the flat R-modules.

Since a commutative co-noetherian ring is classical [22, Theorem 2], and [23,
Proposition 4.1] we have, from Corollaries 8 and 16, the following projective
characterization of flat modules over a commutative co-noetherian ring.

Proposition 17. / / R is a commutative co-noetherian ring, the flat R-modules are
precisely the e-projective R-modules where e is the class of all short exact sequences
0—>/4—*B—*C—>0 of R-modules with B artinian, injective.

We next prove that the c.c. modules are projective over a quasi-Frobenius ring.

Proposition 18. Let R be a right co-noetherian, right perfect ring [1]. Then an R-
module is c.c. if and only if it is projective.

We need the following lemma for the proof of this proposition.

Lemma 19. / / R is a right co-noetherian ring then an R-module cannot contain a non-
zero co-pure small submodule.

Proof. Let K be a small co-pure submodule of an R-module A. Suppose K^O. Let
0=fcxeK and let L be a submodule of K maximal with respect to x^L. Then K/L is
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subdirectly irreducible and hence is co-finitely generated. Since R is right co-noetherian,
K/L is co-finitely related. As K is co-pure in A, K/L is a direct summand of A/L by [11,
Proposition 11]. Now K/L is small in A/L as K is small in A. So K/L=0, that is, L=K,
a contradiction since xeK\L. Thus K = 0.

Proof of the proposition. We need only prove the "only if" part. Let C be a ex. R-
module. Since R is right perfect, C has a projective cover, say, C = P/K where P is a
projective .R-module and K is a small submodule of P. But K is co-pure in P as C is c.c.
Then K = 0 by the above lemma. Thus C = P is projective.

We recall [8, p. 204] that a ring i? is said to be quasi-Frobenius (QF) if R is both left
and right artinian and R is right self-injective.

Lemma 20. Every QF ring is right co-noetherian.

Proof. Let R be a QF ring. To prove that R is right co-noetherian we need only
prove that the injective hull of every simple i?-module is artinian. Let S be a simple R-
module. Since E(S) is projective, by [8, Theorem 24.20], E(S) is contained in a direct
sum of cyclic R-modules. Then E(S) is finitely generated by [8, Proposition 20.14]. Since
R is right artinian it follows that £(5) is also artinian. Thus R is right co-noetherian.

Since every QF ring (more generally, any left or right artinian ring) is right perfect [1,
Theorem P] we have the following proposition as a consequence of Proposition 18 and
Lemma 20.

Proposition 21. Over a quasi-Frobenius ring R, the c.c. R-modules are precisely the
projective R-modules.

We are not able to characterize the rings for which every c.c. .R-module is projective.
However we have:

Proposition 22. (i) / / R is a commutative perfect ring then every c.c. R-module is
projective.

(ii) / / R is a commutative classical ring such that every c.c. R-module is projective then
R is artinian.

Proof, (i) follows from [1, Theorem P] and Corollary 14.
(ii) follows from [1, Theorem P] and [23, Proposition 4.6].

We next investigate the rings for which the co-absolute co-purity is a hereditary
property.

Prior to this, we derive some results for flat modules. We recall [2, p. 122] that if M
is an .R-module and n is a non-negative integer then we define n to be the weak
dimension of M (notation: n = w.dimM) if n is the largest integer such that
Tor*(M, N)=fc0 for some left R-module N. Our weak dimension is the flat dimension of
Rotman [20, p. 180, Exercise 9.13]. We define the right global weak dimension of R
(notation: r.gl.w.dimR) to be the supremum of the weak dimensions of all R-modules.
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Similarly we define the weak dimension of a left R-module and the left global weak
dimension of R. Since, by [20, Theorem 9.16], r.gl.w.dimR = l.gl.w.dimR we denote this
common value by gl.w.dimR and call it the global weak dimension of R.

Proposition 23. For a ring R the following conditions are equivalent.

(i) Every submodule of aflat R-module is flat.

(ii) Every right ideal of R is flat as an R-module.

(iii) gl.w.dimR^l.

Proof. (i)=>(ii) is obvious.
(ii)=>(iii): Let / be any right ideal of R. Then the natural short exact sequence

0—>/—>R—>R//—>0 of R-modules gives us the exact sequence

Torf (R, ,4)->Torf (R/1,4)-»Tor?(/, A)

of abelian groups, for any left .R-module A. In this latter exact sequence the first and the
last abelian groups are zero by [20, Theorem 8.7] as both R and / are flat R-modules.
Hence Torf(R/I,A) = 0 for any left R-module A so that w .d imR/ /^ l . Hence, by [20,
Theorem 9.18], w.gl .dimR^l.

(iii)=>(i): Let M be a flat R-module and let N be a submodule of M. Then, for any left
R-module A, we have the exact sequence

Torf (M/N, A)-*Tov?(N, A)-^Torf (M, A)

of abelian groups. Now the first member of this sequence is zero as, by hypothesis,
w.gl.dimR^l and the last member is zero as M is flat [20, Theorem 8.7]. Thus
Tor?(N,A) = 0 for any left R-module A. So N is flat by [20, Theorem 8.8].

Corollary 24. / / R is a right semi-hereditary ring then the flatness is a hereditary
property for R-modules.

Proof. Follows from [3, Theorem 4.1] and Proposition 23 by noting the left-right
symmetry of global weak dimension of R.

We now return to c.c. modules.

Proposition 25. For a ring R the following conditions are equivalent:

(i) every submodule of a c.c. R-module is c.c;

(ii) every right ideal of R is c.c. as an R-module;

(iii) every quotient of an injective R-module by a co-finitely related submodule is
injective.

Proof. (i)=>(ii) is obvious.
(ii)=>(iii): Let Q be an injective R-module and let A be a co-finitely related submodule
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of Q. Let f:I—>Q/A be any .R-homomorphism of a right ideal / of R into Q/A. Since /
is c.c., by (ii), there is a homomorphism g:I—>Q, by Proposition 7, such that ng=f
where n:Q—>Q/A is the canonical map. Now g will be given by multiplication by an
element x e Q as Q is injective. Since / is then given by multiplication by r\{x) e Q/A the
injectivity of Q/A follows.

(iii)=>(i): Let B be a c.c. .R-module and let A be a submodule of B. Let Q be an
injective R-module and let K be a co-finitely related submodule of Q. Let f:A—>Q/K be
any homomorphism. Since Q/K is injective, by (iii), / has an extension g to B. Then by
Proposition 7 and by the co-absolute co-purity of B there is an h:B—*Q such that nh=g
where r]\Q—>Q/K is the canonical map. If k = h\A:A—*Q,k has the property that t]k=f
proving, by Proposition 7, the co-absolute co-purity of A.

Corollary 26. (i) / / R is a right hereditary ring then every submodule of a c.c. R-
module is c.c.

(ii) If R is a commutative classical semi-hereditary ring then every submodule of a c.c.
R-module is c.c.

Proof, (i) follows from Proposition 25.
(ii) follows from the Corollaries 16 and 24.

We recall [23, p. 126] that a commutative ring R is said to be a valuation ring if the
ideals of R are totally ordered under inclusion. A valuation ring R is said to be almost
maximal if every proper homomorphic image of R, as an .R-module, is linearly compact
and R is said to be maximal if R is linearly compact as an R-module.

Since every almost maximal valuation domain is classical [23, Proposition 4.4] and
semi-hereditary [6, Theorem 2], we have:

Corollary 27. For an almost maximal valuation domain R, every submodule of a c.c. R-
module is c.c.

We do not know whether, in general, for a right semi-hereditary ring R, every
submodule of a c.c. i?-module is c.c.

Proposition 28. For a commutative co-noetherian ring R the following conditions are
equivalent:

(i) every submodule of a c.c. R-module is c.c;

(ii) every submodule of a flat R-module is flat;

(iii) w.gl.dimR^l;

(iv) RM is a discrete valuation ring for each maximal ideal Jl of R.

Proof, (i)o(ii) follow from Corollary 16.
(ii)<=>(iii) follow from Proposition 23.
(iii)<=>(iv) follow from [6, Proposition 11] and the facts that for a co-noetherian ring

R, RM is a noetherian ring for each maximal ideal Ji of R [22, Theorem 2] and a
noetherian valuation domain is a discrete valuation ring (in [6] a valuation ring is
assumed to be a domain).
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A commutative integral domain R is said to be an almost Dedekind domain [9, p. 434]
if Rjf is a noetherian valuation ring i.e., a discrete valuation ring for each maximal ideal
Jt ofR.

We now have:

Corollary 29. A commutative co-noetherian domain is an almost Dedekind domain if
and only if every submodule of a c.c. R-module is ex.
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