
Proceedings of the Edinburgh Mathematical Society (2003) 46, 147–157 c©
DOI:10.1017/S0013091502000299 Printed in the United Kingdom

PRODUCTS OF PAIRWISE TOTALLY PERMUTABLE GROUPS
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1. Introduction

All groups considered in this paper are finite. Within the framework of factorized groups,
products of totally permutable groups have been widely investigated (cf. [4,5,7,9]). We
recall that the subgroups H and K of a group G are totally permutable if every subgroup
of H permutes with every subgroup of K. Moreover, a group G is the totally permutable
product of the subgroups H and K if G = HK and H and K are totally permutable.
One of the leading questions in this context asks about properties of the factors which are
inherited by the whole group (and vice versa). This can be stated in the following way:
assume that L is a class of groups and G = HK is the product of the totally permutable
subgroups H and K. We then have the following questions.

(1) Do H, K ∈ L imply G ∈ L?

(2) Does G ∈ L imply H, K ∈ L?

These questions were answered positively for suitable formations L containing the for-
mation U of all supersoluble groups. Moreover, the corresponding natural extensions for
products of finitely many pairwise totally permutable groups also hold. We refer to [1–3]
for details. For the dual type of classes, namely for Fitting classes containing U , the
questions mentioned above were considered in [9]. Although they remain open for an
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arbitrary Fitting class L containing U , positive results were obtained for important types
of such Fitting classes, among them Fischer classes. In this paper we take this study fur-
ther by investigating the case of finitely many factors in the context of Fitting classes. It
turns out that whenever L is a Fitting class containing U and satisfying either (1) or (2),
then the respective extensions for products of finitely many pairwise totally permutable
groups hold.

We refer to [8] for the notation and basic results on classes of groups.

2. Preliminaries

In the next lemma we recall a fundamental property of totally permutable groups which
will be used often below.

Lemma 2.1 (see Theorem 1 in [5]). Assume that H and K are totally permutable
groups. Then H centralizes KN and K centralizes HN , where N denotes the class
of all nilpotent groups. In particular, HN and KN are both normal subgroups of the
product HK.

The following lemma is an extension of [5, Corollary 2] for products of pairwise totally
permutable groups.

Lemma 2.2. Let G = G1G2 · · ·Gr be a group such that G1, G2, . . . , Gr are pairwise
totally permutable subgroups of G. Then [

∏
i∈I Gi,

∏
j∈J Gj ] is a nilpotent normal sub-

group of G, for any I, J ⊆ {1, 2, . . . , r} such that {I, J} is a partition of {1, 2, . . . , r}.

Proof. We denote by Ti an N -projector of Gi, for each i ∈ {1, 2, . . . , r}. Then
Gi = GN

i Ti, for each i ∈ {1, 2, . . . , r}. Since the group Gj centralizes GN
i , for each

i, j ∈ {1, 2, . . . , r}, i �= j, by Lemma 2.1, we have that
[∏

i∈I

Gi,
∏
j∈J

Gj

]
=

[∏
i∈I

GN
i Ti,

∏
j∈J

GN
j Tj

]
=

[∏
i∈I

Ti,
∏
j∈J

Tj

]
�

(∏
i∈I

Ti

∏
j∈J

Tj

)′
.

We notice that
∏r

i=1 Ti is a product of pairwise totally permutable nilpotent subgroups.
Then it is a supersoluble group by [6, Theorem 1], and so the result is clear. �

Lemma 2.3. Let T = 〈x〉〈y〉 be a product of two permutable cyclic q-groups, with q

an odd prime. Assume that there exists a q′-group H acting on T by automorphisms such
that T = [H, T ] and 〈x〉 and 〈y〉 are H-invariant groups. Then T is an abelian group.

Proof. According to [10, III Satz 11.5], T is metacyclic, that is, there exists a normal
subgroup A of T such that A and T/A are cyclic. We now deduce that T is an M -group,
that is, a group with modular subgroup lattice, by [11, Lemma 2.3.4]. Moreover, since q

is odd, T does not involve Q8, the quaternion group of order 8, and so T is an M∗-group,
according to [11, p. 58].

Assume that T is non-abelian. Since T is an M∗-group, by [11, Theorem 2.3.23] there
exist characteristic subgroups R and S of T such that Φ(T ) � S < R and [R, Aut(T )] �
S. Since T = [H, T ], with H � Aut(T ), it is clear that R < T . On the other hand,
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T/Φ(T ) ∼= Zq × Zq and so |T : R| = q and S = Φ(T ). Consequently, [R, H] � Φ(T ).
Moreover, R = [R, H]CR(H) by coprime action and we know, by [11, Lemma 2.3.2],
that any two of the subgroups of T permute. We may assume that 〈x〉 �⊆ R. Then

T = R〈x〉 = Φ(T )CR(H)〈x〉 = CR(H)〈x〉.

So
T = [H, T ] = [H, CR(H)〈x〉] = [H, 〈x〉] � 〈x〉,

a contradiction which proves the result. �

3. The results

Theorem 3.1. Let F be a Fitting class containing U and satisfying the following
property.

(∗) If a group G = HK is the product of the totally permutable subgroups H and K

such that H ∈ F and K ∈ F , then G ∈ F .

Let the group G = G1G2 · · ·Gr be a product of the pairwise totally permutable subgroups
G1, G2, . . . , Gr. If Gi ∈ F , for all i ∈ {1, 2, . . . , r}, then G ∈ F .

Proof. Assume that the result is false and let G = G1G2 · · ·Gr be a counterexample
where G1, G2, . . . , Gr are pairwise totally permutable F-subgroups of G with |G|+ |G1|+
· · · + |Gr| minimal. We split the proof into the following steps.

(1) We may assume that G2, . . . , Gr are nilpotent groups and that G1 is not nilpotent.
We denote H = G1 and K = G2 · · ·Gr. Moreover, K ∈ U and [K, HN ] = 1.

If Gi ∈ N for all i ∈ {1, 2, . . . , r}, then G ∈ U ⊆ F , by [6, Theorem 1], which
is a contradiction. Assume now that there exist i, j ∈ {1, 2, . . . , r}, i �= j, such
that Gi �∈ N and Gj �∈ N . From Lemma 2.1 it follows that [Gk, GN

t ] = 1, for
all k, t ∈ {1, 2, . . . , r}, k �= t. Then Gt � CG(GN

i ) < G for every t �= i, and
Gt � CG(GN

j ) < G for every t �= j. Hence

CG(GN
i ) =

( r∏
t=1
t�=i

Gt

)
(Gi ∩ CG(GN

i ))

is a product of pairwise totally permutable subgroups in F , as CGi(G
N
i ) � Gi ∈ F .

We conclude that CG(GN
i ) ∈ F , by the choice of G. In a similar way, CG(GN

j ) ∈ F .
Then

G = CG(GN
i )CG(GN

j ) ∈ n0(F) = F ,

a contradiction.

Consequently, there exists a unique i ∈ {1, 2, . . . , r} such that Gi �∈ N . Without loss
of generality we may suppose i = 1. Now the conclusion is clear, by [6, Theorem 1]
and Lemma 2.1.
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(2) KG ∩ H ∈ N and KG ∈ U .

Since [K, HN ] = 1 we can deduce that KG ∩ HN � Z(KG ∩ H) and so KG ∩ H ∈
N . Finally, since KG = (KG ∩ H)K is a product of pairwise totally permutable
nilpotent subgroups, then KG ∈ U , by [6, Theorem 1].

(3) There exists a prime number p such that G = HN HpK
G, with Hp a Sylow p-

subgroup of H.

Since HN HqK
G is a normal subgroup of G, for all primes q, where Hq is a Sylow

q-subgroup of H, the result follows after taking into account the choice of G.

(4) For all primes q �= p, HN Hq[H, K] is a normal F-subgroup of G, where Hq is a
Sylow q-subgroup of H.

We notice first that HN Hq[H, K] is a normal subgroup of G = HK contained in
HN KG by (3). Then the result follows from (2) and this fact.

(5) HN Hp[Hp, K] �∈ F .

Suppose that HN Hp[Hp, K] ∈ F . Since HN Hp[Hp, K] = (HN Hp)G is a normal
subgroup of G, then

HG = H[H, K] = (HN Hp[Hp, K])
(∏

q �=p

HN Hq[H, K]
)

∈ n0(F) = F ,

by (4). Consequently, G = HGKG ∈ n0(F) = F , a contradiction which proves
Step (5).

(6) G = HN HpK.

If HN HpK < G, then HN HpK ∈ F by the choice of G. But this contradicts
Step (5), since HN Hp[Hp, K] is a normal subgroup of HN HpK.

(7) H/HN is a p-group.

This follows from (6) by the choice of (G1, . . . , Gr).

(8) p � q for all primes q dividing |K| and G = HN HpKpKp′ , where Kp is a Sylow
p-subgroup of K and Kp′ is a Hall p′-subgroup of K. Moreover, Kp′ is a normal
subgroup of G.

Suppose that p � q, for all primes q dividing |K|. Since HpK is a supersoluble
group by [6, Theorem 1], we can deduce that H = HN Hp is a subnormal subgroup
of G = HN HpK. Hence, G = KGH ∈ n0(F) = F , a contradiction. Consequently,
there exists a prime q dividing |K| with p < q.

Let

π(K) ∪ {p} = {p1, p2, . . . , pt = p, pt+1, . . . , pn},

with p1 < p2 < · · · < pt = p < pt+1 < · · · < pn.
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We let π = {p, pt+1, . . . , pn} and π′ = (π(K) ∪ {p})\π. Since HpK is a super-
soluble group, Kπ′ normalizes HpKπ, where Kπ′ and Kπ are a Hall π′-subgroup
and the Hall π-subgroup of K, respectively. Hence HN HpKπ is a normal sub-
group of G. Assume that HN HpKπ < G. We notice that Kπ = Oπ(G2) · · ·Oπ(Gr)
is a product of pairwise totally permutable nilpotent subgroups each of which is
totally permutable with H. It then follows that HN HpKπ ∈ F by the choice of G.
Therefore, G = (HN HpKπ)KG ∈ n0(F) = F , a contradiction which implies that
G = HN HpKπ. Now, by the choice of (G1, . . . , Gr), it follows that K = Kπ and
p � q for all primes q ∈ π(K). Since HpK ∈ U , it is clear that Kp′ is a normal
subgroup of G = HN HpKpKp′ and we are done.

(9) K is a normal p′-subgroup of G.

We notice that Kp′ = Op′(G2) · · ·Op′(Gr). If HKp′ < G, then HKp′ ∈ F by the
choice of G. Now, since HN Kp′ is a normal subgroup of G and G/HN Kp′ is a p-
group by (8), it follows that HKp′ is a subnormal subgroup of G. This means that
G = (HKp′)KG ∈ n0(F) = F , a contradiction. Hence G = HKp′ and K = Kp′ by
the choice of (G1, . . . , Gr). By (8), K is normal in G.

(10) For all j ∈ {2, . . . , r}, Gj = [Gj , H]. Moreover,
∏t

k=1 Gjk
= [

∏t
k=1 Gjk

, H] for each
set of indices {j1, . . . , jt} ⊆ {2, . . . , r}. In particular, HG = G and K = [H, K] is a
nilpotent group.

First, we remark that for every j ∈ {2, . . . , r}, [Gj , H] = [Gj , Hp] � Gj because
H = HN Hp, [HN , K] = 1 and HpK is a supersoluble group, with p the smallest
prime dividing its order. Now, since Gj is a p′-group, by coprime action we know
that Gj = [Gj , Hp]CGj (Hp), for all j ∈ {2, . . . , r}. Then we have that

HG = 〈HG2···Gr 〉 � H

( r∏
j=2

[Gj , Hp]
)

� HG.

Since HG = H(
∏r

j=2[Gj , Hp]) is a product of pairwise totally permutable sub-
groups in F , if we assume that HG < G, then by the choice of G we deduce that
HG ∈ F and G = KHG ∈ n0(F) = F , a contradiction. Hence

G = HG = H

( r∏
j=2

[Gj , Hp]
)

.

By the choice of (G1, . . . , Gr) we conclude that Gj = [Gj , Hp] = [Gj , H], for all
j ∈ {2, . . . , r}.

Now, if we take {j1, . . . , jt} ⊆ {2, . . . , r}, then we have that
t∏

k=1

Gjk
=

t∏
k=1

[Gjk
, H] �

[ t∏
k=1

Gjk
, H

]
�

t∏
k=1

Gjk
.

In particular, K = [H, K] is a nilpotent group, by Lemma 2.2.
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(11) For all j ∈ {2, . . . , r}, Gj is an abelian group and, moreover, H normalizes each
subgroup of Gj .

Choose any j ∈ {2, . . . , r}. We claim that H does not centralize any non-trivial
Sylow subgroup of Gj . Assume that it does and let (Gj)q �= 1, a Sylow q-subgroup
of Gj , for some prime q, such that [(Gj)q, H] = 1. Then HG � H(

∏
1 �=i �=jGi)(Gj)q′

and, by (10), we deduce that G = H(
∏

1 �=i �=jGi)(Gj)q′ . Now, by the choice of
(G1, . . . , Gr), we obtain that Gj = (Gj)q′ and (Gj)q = 1, a contradiction.

Since Hp(Gj)q is a product of totally permutable subgroups and it is a supersoluble
group, it follows that Hp normalizes each subgroup of (Gj)q but does not centralize
(Gj)q, for all primes q ∈ π(Gj). By [5, Lemma 1], (Gj)q is an abelian group, for all
primes q ∈ π(Gj), and hence Gj is an abelian group.

Again, since HpGj is a supersoluble group which is a product of two totally per-
mutable subgroups, and p is the smallest prime dividing its order, we deduce that
Hp normalizes each subgroup of Gj . Now, since [HN , Gj ] = 1, the result follows
by (7).

(12) Gj is a cyclic pj-group, for some prime pj , for all j ∈ {2, . . . , r}.

Choose any j ∈ {2, . . . , r}. Since Gj is abelian by (11), it is a direct product of
cyclic subgroups of prime power orders. Let Gj = ×iTji

, Tji
∼= Zp

αi
i

for some primes
pi > 2 and some integers αi � 0 for each i. Then G = H(

∏
1 �=k �=j Gk)(×iTji) is a

product of pairwise totally permutable subgroups in F . Now,

|H| +
∑

1 �=k �=j

|Gk| +
∑

i

|Tji
| < |G1| + · · · + |Gr|,

since ∑
i

|Tji | <
∏

i

|Tji |

unless Gj = Tji
for some index ji. It follows that each Gj is a cyclic pj-group, for

some prime pj , by the choice of (G1, . . . , Gr).

(13) K = G2 · · ·Gr is an abelian group.

Since K is a nilpotent group by (10), it suffices to show that any Sylow q-subgroup
of K, for any prime q, is abelian. Take any pair of indices i, j ∈ {2, . . . , r} such
that Gi and Gj are q-groups and denote Tij = GiGj . By (10), Tij = [Tij , H] =
[Tij , Hp]. Moreover, by (12), Tij is the product of two permutable cyclic H-invariant
q-subgroups, where q is an odd prime (we recall that p < q). Then Tij is an abelian
group by Lemma 2.3. This means that [Gi, Gj ] = 1 for every pair of q-groups Gi and
Gj . Consequently, we deduce that any Sylow q-subgroup of K is abelian, by (12),
and the result follows.

(14) The final contradiction.

Since K = G2 · · ·Gr is an abelian group and H normalizes each subgroup of Gr,
it is clear that HG2 · · ·Gr−1 is totally permutable with Gr. If HG2 · · ·Gr−1 is a
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proper subgroup of G, then it is an F-group by the choice of G. Consequently,
G = (HG2 · · ·Gr−1)Gr is a product of two totally permutable subgroups in F .
From our assumption we obtain that G ∈ F , a contradiction. This implies that
G = HG2 · · ·Gr−1. By the choice of (G1, . . . , Gr) we have that G ∈ F , the final
contradiction.

�

Theorem 3.2. Let F be a Fitting class containing U and satisfying the following
property.

(∗∗) If a group G = HK is the product of the totally permutable subgroups H and K

such that G ∈ F , then H ∈ F and K ∈ F .

Let the group G = G1G2 · · ·Gr be a product of the pairwise totally permutable subgroups
G1, G2, . . . , Gr. If G ∈ F , then Gi ∈ F for all i ∈ {1, 2, . . . , r}.

Proof. Assume that the result is false and let G = G1G2 · · ·Gr ∈ F be a counter-
example where G1, G2, . . . , Gr are pairwise totally permutable subgroups of G, not all of
them in F , with |G| + |G1| + · · · + |Gr| minimal. We split the proof into the following
steps.

(1) We may assume that G2, . . . , Gr are nilpotent groups and G1 is not nilpotent. We
denote H = G1 and K = G2 · · ·Gr. Moreover, K ∈ U and [K, HN ] = 1.

Obviously, not all G1, G2, . . . , Gr are nilpotent. If we assume that there exists
i, j ∈ {1, 2, . . . , r}, i �= j, such that Gi �∈ N and Gj �∈ N , we can deduce, as in
Theorem 3.1, Step (1), that CG(GN

i ) = (
∏r

t=1, t�=i Gt)(Gi ∩ CG(GN
i )) is a proper

normal subgroup of G. By the choice of G, we obtain that Gt ∈ F , for all t �= i. In
a similar way, using Gj , we deduce that Gl ∈ F , for all l �= j. Then Gk ∈ F for all
k ∈ {1, 2, . . . , r}, a contradiction.

Consequently, there exists a unique i ∈ {1, 2, . . . , r} such that Gi �∈ N . Without
loss of generality we may assume that i = 1. The conclusion is now clear by [6,
Theorem 1] and Lemma 2.1.

(2) KG ∩ H ∈ N and KG ∈ U .

We can argue as in Theorem 3.1, Step (2).

(3) There exists a prime number p such that G = HN HpK
G, with Hp a Sylow p-

subgroup of H.

Assume that HN HqK
G < G, for all primes q, where Hq is a Sylow q-subgroup

of H. For every prime q, since HN HqK
G is a normal subgroup of G, we have

that HN HqK
G ∈ sn(F) = F . But HN HqK

G = HN Hq(KG ∩ H)K is a prod-
uct of pairwise totally permutable subgroups. By the choice of G we deduce that
HN Hq(KG ∩ H) ∈ F . In particular, HN Hq ∈ sn(F) = F , for all primes q, and so
H ∈ n0(F) = F , a contradiction.
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(4) For all primes q �= p, HN Hq ∈ F , where Hq is a Sylow q-subgroup of H. Moreover,
HN Hp �∈ F .

We notice that HN Hq is contained in HN (KG ∩H) by (3). But HN (KG ∩H) ∈ F
because it is the product of two normal F-subgroups of H. Then HN Hq ∈ sn(F) =
F . Finally, if HN Hp ∈ F , then H ∈ n0(F) = F , a contradiction which proves (4).

(5) H/HN is a p-group, p � q for all primes q dividing |K| and G = HN HpKpKp′ ,
where Kp is a Sylow p-subgroup of K and Kp′ is a Hall p′-subgroup of K. Moreover,
Kp′ is a normal subgroup of G.

Since HN Hp[Hp, K] = (HN Hp)G is a normal subgroup of G, we have that
HN Hp[Hp, K] ∈ F .

First we claim that there exists a prime q dividing |K| with p < q. Otherwise, we
can obtain, as in Theorem 3.1, Step (8), that HN Hp is a subnormal subgroup of
HN Hp[Hp, K]. Then HN Hp ∈ sn(F) = F , which contradicts Step (4).

Let

π(K) ∪ {p} = {p1, p2, . . . , pt = p, pt+1, . . . , pn},

with p1 < p2 < · · · < pt = p < pt+1 < · · · < pn.

We let π = {p, pt+1, . . . , pn} and π′ = (π(K) ∪ {p})\π. We recall that K =
G2 · · ·Gr = KπKπ′ is a supersoluble group, where Kπ′ ∈ Hallπ′(K) and Kπ ∈
Hallπ(K). We may assume that Kπ′ = Oπ′(G2) · · ·Oπ′(Gr) is a product of pair-
wise totally permutable nilpotent subgroups each of which is totally permutable
with H. Then HpKπ′ is a supersoluble group by [6, Theorem 1]. Consequently, Kπ′

normalizes both Kπ and Hp and so we have that

[Hp, K] = [Hp, Kπ′ ][Hp, Kπ] � Hp[Hp, Kπ].

Therefore, HN Hp[Hp, Kπ] = HN Hp[Hp, K] is a normal F-subgroup of G. On the
other hand, arguing as above, we have that HpKπ is also a supersoluble group.
This implies that Kπ is a subnormal subgroup of HpKπ. Hence HN HpKπ =
HN Hp[Hp, Kπ]Kπ ∈ n0(F) = F .

If HN HpKπ < G, then HN Hp ∈ F , by the choice of G, which contradicts Step (4).
So we may assume that G = HN HpKπ. Now, by the choice of (G1, . . . , Gr), we can
deduce that H = HN Hp, K = Kπ and p � q for all primes q ∈ π(K). Moreover,
since HpK ∈ U , it is clear that Kp′ is a normal subgroup of G, and the result
follows.

(6) K is a normal p′-subgroup of G.

Since HN Kp′ is a normal subgroup of G and G/HN Kp′ is a p-group by (5), then
HKp′ is a subnormal subgroup of G. In particular, HKp′ ∈ sn(F) = F . If HKp′ <

G, then by the choice of G we can deduce that H ∈ F , a contradiction. Hence
G = HKp′ and K = Kp′ by the choice of (G1, . . . , Gr).
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(7) For all j ∈ {2, . . . , r}, Gj = [Gj , H]. Moreover,

t∏
k=1

Gjk
=

[ t∏
k=1

Gjk
, H

]

for each set of indices {j1, . . . , jt} ⊆ {2, . . . , r}. In particular, HG = G and K =
[H, K] is a nilpotent group.

From (1), (5) and (6), we can argue as in Theorem 3.1, Step (10), to obtain that
[Gj , H] = [Gj , Hp] � Gj , for every j ∈ {2, . . . , r}, and that

HG = H

( r∏
j=2

[Gj , Hp]
)

.

In particular, HG is a normal subgroup of G ∈ F , which is a product of pairwise
totally permutable subgroups. If HG < G, then H ∈ F by the choice of G, a
contradiction. Consequently,

G = HG = H

( r∏
j=2

[Gj , Hp]
)

and, by the choice of (G1, . . . , Gr), we conclude that Gj = [Gj , Hp] = [Gj , H], for
all j ∈ {2, . . . , r}.

The remainder follows easily as in Theorem 3.1, Step (10).

(8) For all j ∈ {2, . . . , r}, Gj is an abelian group and, moreover, H normalizes each
subgroup of Gj .

This follows by arguing as in Theorem 3.1, Step (11).

(9) Gj is a cyclic pj-group, for some prime pj , for all j ∈ {2, . . . , r}.

Arguing as in Theorem 3.1, Step (12), and with the same notation, we obtain that,
for any j ∈ {2, . . . , r}, G = H(

∏
1 �=k �=j Gk)(×iTji) is a product of pairwise totally

permutable subgroups with

|H| +
∑

1 �=k �=j

|Gk| +
∑

i

|Tji | < |G1| + · · · + |Gr|,

unless Gj is a cyclic pj-subgroup, for some prime pj . Since H �∈ F , the result follows
analogously by the choice of (G1, . . . , Gr).

(10) K = G2 · · ·Gr is an abelian group.

This follows from Lemma 2.3, Steps (7) and (9), arguing as in Theorem 3.1,
Step (13).
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(11) The final contradiction.

By Steps (8) and (10), it is clear that HG2 · · ·Gr−1 is totally permutable with Gr.
Then we can apply our assumption on the group G = (HG2 · · ·Gr−1)Gr ∈ F to
obtain that HG2 · · ·Gr−1 ∈ F . By the choice of (G, G1, . . . , Gr) we can deduce
that H ∈ F , which provides the final contradiction.

�

Final remarks

(1) If F is either a Fischer class containing U or the Fitting class product N ♦ H,
H being a Fitting class containing N , then F satisfies properties (∗) and (∗∗) in
Theorems 3.1 and 3.2 (see [9, Theorems 2 and 5]).

(2) If F is a Fitting class containing U and satisfying the property that G/N ∈ F ,
whenever G ∈ F and N � ZU (G) (in particular, if F is a q-closed Fitting class),
then F satisfies the property (∗∗) in Theorem 3.1 (see [9, Theorem 3]).

(3) If F is an r0-closed Fitting class containing U , then F satisfies the property (∗∗)
in Theorem 3.2 (see [9, Theorem 4]).
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Totally and mutually permutable products of finite groups, in Proc. of Groups St Andrews
1997, Bath, UK, vol. 1, pp. 65–68, London Mathematical Society Lecture Notes Series,
vol. 260 (Cambridge University Press, 1999).

5. J. Beidleman and H. Heineken, Totally permutable torsion subgroups, J. Group The-
ory 2 (1999), 377–392.

6. A. Carocca, A note on the product of F-subgroups in a finite group, Proc. Edinb. Math.
Soc. 39 (1996), 37–42.

7. A. Carocca and R. Maier, Theorems of Kegel–Wielandt type, in Proc. of Groups
St Andrews 1997, Bath, UK, vol. 1, pp. 195–201, London Mathematical Society Lecture
Notes Series, vol. 260 (Cambridge University Press, 1999).

https://doi.org/10.1017/S0013091501000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000293


Products of pairwise totally permutable groups 157

8. K. Doerk and T. Hawkes, Finite soluble groups (Walter De Gruyter, Berlin, 1992).
9. P. Hauck, A. Mart́ınez-Pastor and M. D. Pérez-Ramos, Fitting classes and prod-
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