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The modern ambient pressure or in-liquid electron microscopy of energy and catalysis related 

materials is based on microfluidic/closed cells equipped with a few tens of nanometers thick Si3N4 

(or SiO2) windows that are highly transparent for high energy (>100 keV) electrons [1]. Scanning 

electron microscopy (SEM) with true secondary electrons, Low Voltage SEM [2] or 

Photoemission Electron Microscopy (PEEM) [3] rely on detection of slow electrons emitted from 

very few surface layers and therefore have unique surface sensitive contrast mechanisms. 

However, ca. 1 nm to 3 nm short electron mean free path of the low energy elections in condensed 

matter makes it impossible to apply these powerful techniques to probe liquid-solid or gas-solid 

interfaces using the standard Si3N4 membranes.  We have recently shown, that this restriction can 

be lifted by filling of graphene-based membranes as electron transparent molecularly-impermeable 

windows separating the liquid (or gaseous) sample from the high vacuum of the microscope [4, 5].  

 

In this report we make one step further and design a novel graphene based micro-fabricated sample 

platform, which comprises millions of identical graphene-capped liquid-filled micro volumes. This 

platform, in combination with full field hyperspectral PEEM or scanning electron imaging, allows 

for both high resolution examination of individual channels, and global high-throughput screening 

of real-time processes taking place at the graphene–liquid interfaces [6]. Figure 1a depicts the 

principle design of the graphene-capped multi-channel liquid sample array (MCA). The spatially 

coded filling of 3 different analytes into MCA (Fig. 1b) allows for prompt combinatorial screening 

of different liquid-solid interfaces under the same imaging conditions (Fig. 1c). Discrimination 

between different analytes is possible via histogram analysis, with the difference between the 

MCA frame peak and liquid-filled cells peaks being specific to the analyte.  

 

MCA structure is ideally suitable for large-scale data mining and pattern recognition algorithms. 

We were able to interpret spectro-temporal and spatiotemporal evolutions of X-ray absorption 

spectra (XAS) at solid-liquid interfaces. Visualization and analysis of the 3-dimensional PEEM 

dataset (electron total yield intensity as a function of excitation energy and x-y coordinates) was 

performed using clustering and spectral unmixing algorithms such as Bayesian Linear Unmixing 

(BLU) algorithm [7,6]. The optimal number of BLU deduced behaviors present in the dataset was 

found to be four which abundance maps and endmember spectra are shown in Figure 2a-e. 

Component (i) is behavior of empty channels with very low spectral intensity, nearly energy-

independent. Component (ii) is the MCA frame behavior, which shows high intensity due to gold 

coating signal amplification. Component (iii) map pinpoints water-filled channels, and its 

spectrum has well-defined water XAS features and a small carbon peak. Component (iv) map 

highlights 3 cells in which water was significantly affected by radiolysis process as spectra were 

recorded. K-means clustering correctly identified localization of these 4 spectral behaviors (Fig. 
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2g, h): empty cells (cluster 3), MCA frame with small amount of water trapped beneath the 

graphene (cluster 1), MCA frame with large amounts of water (cluster 4) and water-filled cells 

(cluster 2). To investigate individual behaviors, was used. Thus, the combination of the MCA 

platform with BLU algorithm allowed us to extract complex behaviors from a multidimensional 

dataset and assign clear physical meaning to them. 
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Figure 1.  Combinatorial approach with MCA: a) SEM setup, b) MCA combinatorial sample, c) 

SEM images and histograms of MCA filled with: water, and 1M solutions of LiBr and NaBr.  

 
Figure 2.  PEEM dataset: a)-d) four BLU abundance maps and e) corresponding BLU 

endmembers; f) BLU error map; g) k-means clustering map and h) mean spectra corresponding to 

4 clusters of map g). 
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