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Abstract. This paper proves the existence of potentials of the first and second kind
of a Frobenius like structure in a frame, which encompasses families of arrangements.
The frame uses the notion of matroids. For the proof of the existence of the
potentials, a power series ansatz is made. The proof that it works requires that certain
decompositions of tuples of coordinate vector fields are related by certain elementary
transformations. This is shown with a nontrivial result on matroid partition.
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1. Introduction and main results. A Frobenius manifold comes equipped locally
with a potential. If one gives a definition that does not mention this potential explicitly,
one nevertheless obtains it immediately by the following elementary fact: Let zi be the
coordinates on �n and ∂i = ∂

∂zi
be the coordinate vector fields. Let M be a convex open

subset of �n and TM be the holomorphic tangent bundle of M. Let A : T 3
M → OM be a

symmetric map such that also ∂iA(∂j, ∂k, ∂l) is symmetric in i, j, k, l. Then, a potential
F ∈ OM with ∂i∂j∂kF = A(∂i, ∂j, ∂k) exists. On Frobenius manifolds, see [1, 4].

This paper is devoted to a nontrivial generalization of this fact. The generalization
turns up in the theory of families of arrangements as in [7, chap. 3]. The geometry
there looks at first view similar to the geometry of Frobenius manifolds, but at second
view, it is quite different.

At first view, one finds in both cases data (M, K,∇K , C, S, ζ ) with the following
properties: M is an open subset of �n (with coordinates zi and coordinate vector fields
∂i = ∂

∂zi
). K → M is a holomorphic vector bundle with a flat holomorphic connection

∇K . C is a Higgs field, i.e., an OM-linear map

C : O(K) → �1
M ⊗ O(K) (1.1)

such that all the endomorphisms CX : K → K, X ∈ TM , commute: CX CY = CY CX ,
and C and ∇K satisfy the integrability condition

∇K
∂i

C∂j = ∇K
∂j

C∂j for all i, j ∈ {1, . . . , n} (1.2)
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(which is equivalent to ∇K (C) = 0, see Remark 4.1). S is a ∇K -flat symmetric
nondegenerate and Higgs field invariant pairing. ζ is a global nowhere vanishing
section of K .

At second view, one sees the differences. In the case of a Frobenius manifold,
M is the Frobenius manifold, rk K = n, and (much stronger) C•ζ : TM → O(K) is an
isomorphism and all the sections C∂iζ are ∇K -flat. One obtains an identification of
TM with K and of the coordinate vector fields ∂i with the flat sections C∂iζ .

In the case of a family of arrangements, rk K ≥ n, and the ∇K -flat sections in K have
the following much more surprising form. Define J := {1, . . . , n}. A family of arrange-
ments in �k with k < n as in [7, ch. 3] comes equipped with vectors (vi)i∈J in M(1 ×
k, �) = {row vectors of length k with values in �} such that 〈v1, . . . , vn〉 = M(1 ×
k, �). A subset {i1, . . . , ik} ⊂ J is called maximal independent if vi1 , . . . , vik is a basis of
M(1 × k, �). The sections C∂i1

. . . C∂ik
ζ in K for such subsets {i1, . . . , ik} are ∇K -flat.

The purpose of this paper is to show that also in this situation a potential exists,
which resembles the potential of a Frobenius manifold. This is nontrivial. The proof
combines the integrability condition (1.2) with intricate combinatorial considerations,
which are due to the complicated form of the ∇K -flat sections.

Theorem 1.2 is the main result. Definition 1.1 gives the frame and the used notions.
The frame is in two mild aspects more general than the data above in the case of
arrangements. First, S is more general, and second, the maximal independent subsets
{i1, . . . , ik} ⊂ J are maximal independent with respect to an arbitrary matroid (J, F)
of rank k. See Definition 2.1 for the notion of a matroid.

DEFINITION 1.1.

(a) A Frobenius like structure of order (n, k, m) ∈ �3
>0 with n ≥ k is a tuple

(M, K,∇K , C, S, ζ, (J, F)) with the following properties. M, K,∇K , C, ζ and J
are as above. S is a ∇K -flat m-linear form S : O(K)m → OM , which is Higgs field
invariant, i.e.,

S(CX s1, s2, . . . , sm) = S(s1, CX s2, . . . , sm) = . . . = S(s1, s2, . . . , CX sm) (1.3)

for s1, s2, . . . , sm ∈ O(K) and X ∈ TM . (J, F) is a matroid with rank r(J) = k. For
any maximal independent subset {i1, . . . , ik} ⊂ J the section C∂i1

. . . C∂ik
ζ is ∇K -flat.

(b) Some notations: For any subset I = {i1, . . . , ik} ⊂ J, the differential operator
∂I := ∂i1 . . . ∂ik and the endomorphism CI := C∂i1

. . . C∂ik
: O(K) → O(K) are well

defined (they do not depend on the chosen order of the elements i1, . . . , ik).
(c) In the situation of (a), a potential of the first kind is a function Q ∈ OM with

∂I1 . . . ∂Im Q = S(CI1ζ, . . . , CImζ ) (1.4)

for any m maximal independent subsets I1, . . . , Im ⊂ J. A potential of the second
kind is a function L ∈ OM with

∂i∂I1 . . . ∂Im L = S(C∂i CI1ζ, . . . , CImζ ) (1.5)

for any m maximal independent subsets I1, . . . , Im ⊂ J and any i ∈ J.

THEOREM 1.2. Let (M, K,∇K , C, S, ζ, (J, F)) be a Frobenius-like structure of some
order (n, k, m) ∈ �3

>0. Then, locally (i.e., near any z ∈ M ⊂ �n) potentials of the first
and second kind exist.

https://doi.org/10.1017/S0017089517000374 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000374


POTENTIALS OF A FROBENIUS-LIKE STRUCTURE 683

Notice that by formulas (1.4) and (1.5), the potential of the first kind determines
the matrix elements of the m-linear form S on the flat sections C∂i1

. . . C∂ik
ζ , and the

potential of the second kind determines the matrix elements of the Higgs operators
C∂i acting on the flat sections C∂i1

. . . C∂ik
ζ . Thus, all information on the m-linear form

and the Higgs operators is packed into the two potential functions.
At the end of the paper, several remarks discuss the case of arrangements and

the relation to Frobenius manifolds. In the case of arrangements, one has an (n, k, 2)-
Frobenius type structure, but also other ingredients, which lead to richer geometry.
In the case of a Frobenius manifold, one has an (n, 1, 2)-Frobenius type structure.
The potential L above generalizes the potential of a Frobenius manifold. For generic
arrangements, a global explicit construction of the potentials Q and L had been given
in [8]. Recently, this was generalized in [5] to all families of arrangements as in [7, ch. 3].

Section 2 cites a nontrivial result of Edmonds [2, Theorem 4] on matroid partition
and adds some considerations. Section 3 applies an implication of it to a combinatorial
situation, which in turn is needed in the proof of the main Theorem 1.2 in Section 4.
Section 4 concludes with some remarks.

We thank a referee of an earlier version [3] of this paper for pointing us to the result
on matroid partition. This led to the present version of the paper that uses matroids.
The second author thanks the Max-Planck-Institut für Mathematik (MPI) in Bonn
for hospitality during his visit in 2015–2016.

2. Matroid partition. DEFINITION 2.1 For example, [2]. A matroid (E, F) is
a finite set E together with a nonempty family F ⊂ P(E) of subsets of E, called
independent sets, such that the following holds:

(i) Every subset of an independent set is independent.
(ii) For every subset A ⊂ E, all maximal independent subsets of A have the same

cardinality, called the rank r(A) of A.

For example, if V is a vector space and (ve)e∈E is a tuple of elements,which generates
V , one obtains a matroid where a subset B ⊂ E is independent if and only if the tuple
(vb)b∈B is a linearly independent tuple of vectors. In the case of a family of arrangements,
such a matroid will be used.

The following result on matroid partition was proved by Edmonds [2].

THEOREM 2.2 [2, Theorem 1]. Let (E, Fi), i = 1, . . . , m, be matroids that are defined
on the same set E. Let ri(A) be the rank of A ⊂ E relative to (E, Fi). The following two
conditions are equivalent:
(α) The set E can be partitioned into a family {Ii}i=1,...,m of sets Ii ∈ Fi.
(β) Any set A ⊂ E satisfies

|A| ≤
m∑

i=1

ri(A). (2.1)

The implication (α) ⇒ (β) is immediate: Suppose that {Ii}i=1,...,m is a partition of
E with Ii ∈ Fi. Then, for any A ⊂ E

A =
⋃̇m

i=1
A ∩ Ii, |A| =

m∑
i=1

|A ∩ Ii| ≤
m∑

i=1

ri(A).
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But the implication (β) ⇒ (α) is nontrivial. The proof in [2] is an involved inductive
algorithm.

We are interested in the more special situation in Theorem 2.6. Before, two lemmata
are needed.

DEFINITION 2.3 [2].

(a) A minimal dependent set of elements of a matroid is called a circuit.
(b) For any number l ∈ �≥0 and any finite set E with |E| ≥ l, the set F (l,E) := {I ⊂

E | |I| ≤ l} defines obviously a matroid (E, F (l,E)), the uniform matroid of rank l.

LEMMA 2.4 [2, Lemma 2]. The union of any independent set I and any element e
of a matroid contains at most one circuit of the matroid.

LEMMA 2.5. Let (E, F) be a matroid. Let A1, A2 ⊂ E be subsets. For i = 1, 2, let
Ii ⊂ Ai be a maximal independent subset of Ai. Suppose that I1 ∪ I2 is an independent
set. Then, I1 ∪ I2 is a maximal independent subset of A1 ∪ A2, and I1 ∩ I2 is a maximal
independent subset of A1 ∩ A2.

Proof. Suppose that for some element b ∈ (A1 ∪ A2) − (I1 ∪ I2) the union I1 ∪ I2 ∪
{b} is independent. Then, for some i ∈ {1, 2}, b ∈ Ai. But Ii ∪ {b} is a larger independent
subset of Ai than Ii, a contradiction. This proves that I1 ∪ I2 is a maximal independent
subset of A1 ∪ A2.

Suppose that for some element b ∈ (A1 ∩ A2) − (I1 ∩ I2) the union (I1 ∩ I2) ∪ {b} is
independent. If b ∈ Ii, then b /∈ Ij where {i, j} = {1, 2}. Then, Ij ∪ {b} is an independent
subset of Aj, a contradiction to the maximality of Ij. Therefore, b /∈ I1 ∪ I2. Thus, for
i = 1, 2, the set Ii ∪ {b} ⊂ Ai is dependent as it is larger than Ii. Therefore, it contains a
circuit Ci ⊂ Ii ∪ {b}. Obviously Ci ∩ (Ii − Ij) �= ∅, where {i, j} = {1, 2}. Thus, C1 �= C2.
Both are circuits in (I1 ∪ I2) ∪ {b}, a contradiction to Lemma 2.4. This proves that
I1 ∩ I2 is a maximal independent subset of A1 ∩ A2. �

THEOREM 2.6. Let (E, Fi), i = 1, . . . , m, be matroids that are defined on the same
set E and that satisfy together (α) and (β) in Theorem 2.2. Suppose that Fm = F (l,E) for
some l ∈ �≥0 with l ≤ |E|. Suppose that the set

G := {A ⊂ E | |A| = l +
m−1∑
i=1

ri(A)} (2.2)

contains the set E.

(a) Then, this set G is closed under the operations union and intersection of sets.
Especially, it contains a set called Amin ⊂ E, which is the unique minimal element of
G with respect to the partial order given by inclusion. Of course Amin �= ∅ if and only
if l ≥ 1.

(b) Now suppose l ≥ 1. Then, Amin = Apar, where Apar is the set

Apar := {b ∈ E | ∃ a partition {Ii}i=1,...,m of E (2.3)

such that Ii ∈ Fi and b ∈ Im}.

https://doi.org/10.1017/S0017089517000374 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000374


POTENTIALS OF A FROBENIUS-LIKE STRUCTURE 685

Proof.

(a) Choose a partition {Ii}i=1,...,m of E with Ii ∈ Fi. For any subset A ⊂ E, it induces
a partition A = ⋃̇m

i=1A ∩ Ii of A into subsets (A ∩ Ii) ∈ Fi. If A ∈ G, then by (2.2)
each set A ∩ Ii is a maximal independent subset of A with respect to the matroid
(E, Fi). As |A| ≥ l, especially |A ∩ Im| = l. As E itself is in G, |Im| = l, and thus
A ∩ Im = Im for any set A ∈ G.
Let A1, A2 ∈ G. For any i = 1, . . . , m, Lemma 2.5 applies to the maximal
independent sets A1 ∩ Ii and A2 ∩ Ii of A1 respectively A2 relative to the matroid
(E, Fi), because also (A1 ∪ A2) ∩ Ii ∈ Fi. Therefore, (A1 ∪ A2) ∩ Ii is a maximal
independent subset of A1 ∪ A2 relative to (E, Fi), and (A1 ∩ A2) ∩ Ii is a maximal
independent subset of A1 ∩ A2 relative to (E, Fi). Also, Im = A1 ∩ Im = A2 ∩ Im

shows

Im = (A1 ∪ A2) ∩ Im = (A1 ∩ A2) ∩ Im.

Now, A1 ∪ A2 ∈ G and A1 ∩ A2 ∈ G are obvious. Therefore, G is closed under the
operations union and intersection of sets.

(b) Apar ⊂ Amin: Fix an arbitrary element b ∈ Apar. Choose a partition {Ii}i=1,...,m of E
with Ii ∈ Fi and b ∈ Im. Recall Amin ∩ Im = Im. Thus, b ∈ Amin.
Amin ⊂ Apar: Fix an arbitrary element b ∈ Amin. Define Ẽ := E − {b}. Any set A ⊂
Ẽ does not contain Amin, because b ∈ Amin. Therefore, any set A ⊂ Ẽ satisfies A /∈ G
and

|A| ≤ −1 + l +
m−1∑
i=1

ri(A). (2.4)

Consider the matroids (Ẽ, F̃i), where F̃i := {I ∈ Fi | b /∈ I} for i ∈ {1, . . . , m − 1}
and F̃m := F (l−1,Ẽ). For i ∈ {1, . . . , m − 1} the rank of A ⊂ Ẽ relative to (Ẽ, F̃i) is
equal to the rank ri(A) of A relative to (E, Fi).
By (2.4) and Theorem 2.2, a partition {̃Ii}i=1,...,m of Ẽ with Ĩi ∈ F̃i exists. Now, the
sets Ii := Ĩi for i = 1, . . . , m − 1, and Im := Ĩm ∪ {b} form a partition of E with
Ii ∈ Fi. This shows b ∈ Apar.

�

3. An equivalence between index systems. In this section, we fix three positive
integers n, k, m ∈ �>0 with n ≥ k and a matroid (J, F) with underlying set J =
{1, . . . , n}, rank function r : P(J) → �≥0 and rank r(J) = k.

NOTATIONS 3.1. As usual �J := {maps : J → �} and �J
≥0 := {maps : J → �≥0}.

The set �J is an additive group, and the set �J
≥0 is an additive monoid.

For j ∈ J denote by [j] ∈ �J
≥0 the map with [j](j) = 1 and [j](i) = 0 for any i �= j.

Then, any map T ∈ �J can be written as T = ∑n
j=1 T(j) · [j]. For T ∈ �J denote |T | :=∑n

j=1 T(j) ∈ �. The support of T ∈ �J is supp T := {j ∈ J | T(j) �= 0}. The map

dH : �J × �J → �≥0, (T1, T2) �→
∑
j∈J

|T1(j) − T2(j)| (3.1)
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is a metric on �J . On �J one has the partial ordering ≤ with

S ≤ T ⇐⇒ S(j) ≤ T(j) ∀ j ∈ J. (3.2)

Any map T ∈ �J
≥0 with |T | = t ∈ �≥0 is called a system of elements of J or simply a

system or a t-system. If S and T are systems with S ≤ T , then S is a subsystem of T .

DEFINITION 3.2. Here, l ∈ �≥0. Here, all systems are systems of elements of J.

(a) A system T ∈ �J
≥0 is a base if supp T ∈ F and |T | = k (so the support supp T is a

maximal independent subset of J and all T(a) ∈ {0; 1}).
(b) A strong decomposition of an (mk + l)-system T is a decomposition T = T (1) +

· · · + T (m+1) into m k-systems T (1), . . . , T (m) and one l-system T (m+1) such that
T (1), . . . , T (m) are bases (and T (m+1) is an arbitrary l-system; e.g., if l = 0, then
T (m+1) = 0 automatically).

(c) An (mk + l)-system is strong if it admits a strong decomposition.
(d) A good decomposition of an N-system T with N ≥ mk + 1 is a decomposition

T = T1 + T2 into two systems such that T2 is a strong (mk + 1)-system of elements
of J.

(e) Two good decompositions T1 + T2 = T and S1 + S2 = T of an N-system T with
N ≥ mk + 1 are locally related, notation: (S1, S2) ∼loc (T1, T2), if there are strong
decompositions S(1)

2 + · · · + S(m+1)
2 = S2 of S2 and T (1)

2 + · · · + T (m+1)
2 = T2 of T2

with S(j)
2 = T (j)

2 for 1 ≤ j ≤ m. Of course, ∼loc is a reflexive and symmetric relation.
(f) Two good decompositions T1 + T2 = T and S1 + S2 = T of an N-system T with

N ≥ mk + 1 are equivalent, notation: (S1, S2) ∼ (T1, T2), if there is a sequence
σ1, σ2, . . . , σr for some r ∈ �≥1 of good decompositions of T such that σ1 =
(S1, S2), σr = (T1, T2), and σj ∼loc σj+1 for j = 1, . . . , r − 1. Of course, ∼ is an
equivalence relation.

The main result of this section is the following theorem.

THEOREM 3.3. Let T ∈ �J
≥0 be an N-system for some N ≥ mk + 1, which has good

decompositions. Then, all its good decompositions are equivalent.

The theorem will be proved after the proofs of Corollary 3.4 and Lemma 3.5.
Corollary 3.4 is a corollary of Theorem 2.6.

COROLLARY 3.4. Fix a strong (mk + l)-system T ∈ �J
≥0 with l ∈ �≥0. Then, for any

B ⊂ J ∑
j∈B

T(j) ≤ l + m · r(B). (3.3)

The set

G(T) := {B ⊂ supp T |
∑
j∈B

T(j) = l + m · r(B)} (3.4)

contains supp T and is closed under the operations union and intersection of sets.
Especially, it contains a set called Amin(T) ⊂ supp T, which is the unique minimal element
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with respect to inclusion. In the case l ≥ 1, define the set

Adec(T) := {b ∈ J | ∃ a strong decomposition (3.5)

T = T (1) + · · · + T (m+1) with b ∈ supp T (m+1)}.

Then, Amin(T) = Adec(T).

Proof. We will construct from T certain lifts of the matroids (J, F) and (J, F (l,J))
to matroids on the set E := {1, 2, . . . , mk + l} and go with them into Theorem 2.6.
Choose a map f : E → J with |f −1(j)| = T(j). Define the sets

F1 = . . . = Fm := {A ⊂ E | f |A : A → J injective, f (A) ∈ F} ⊂ P(E),

Fm+1 := F (l,E) ⊂ P(E).

Then, (E, Fi) for i ∈ {1, . . . , m + 1} is a matroid. Together they satisfy (α) in Theorem
2.2 (with m + 1 instead of m) because T is a strong (mk + l)-system. We go into
Theorem 2.6 with m + 1 instead of m.

That T is a strong (mk + l)-system, gives also E ∈ G and (3.3).
Therefore, the set Amin in Theorem 2.6 is well defined. The set Apar is well defined,

anyway. One sees easily

r1(A) = . . . = rm(A) = r(f (A)) for A ⊂ E,

G = {f −1(B) | B ∈ G(T)}.

Therefore, G(T) contains supp T and is closed under the operations union and
intersection of sets. Now, one sees also easily

Amin = f −1(Amin(T)), Apar = f −1(Adec(T)),

and thus Amin(T) = Adec(T). �
LEMMA 3.5. Let S and T ∈ �J

≥0 be two strong (mk + 1)-systems. At least one of
the following two alternatives holds:
(α) T has a strong decomposition T = T (1) + · · · + T (m+1) with T (m+1) = [i] for some

i ∈ supp T with T(i) > S(i).
(β) For any strong decomposition S = S(1) + · · · + S(m+1) a strong decomposition

T = T (1) + · · · + T (m+1) with T (m+1) = S(m+1) exists.

Proof. Suppose that (α) does not hold. Then, for any i ∈ Adec(T) S(i) ≥ T(i).
Especially, ∑

i∈Adec(T)

S(i) ≥
∑

i∈Adec(T)

T(i) = 1 + m · r(Adec(T)).

The equality uses Adec(T) = Amin(T) ∈ G(T). Now (3.3) for S instead of T shows that
≥ can be replaced by =. Therefore, Adec(T) ∈ G(S). Any element of G(S) contains
Amin(S). This and the equality Adec(S) = Amin(S) give

Adec(S) = Amin(S) ⊂ Adec(T).

Thus, (β) holds. �
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Proof of Theorem 3.3 Let (S1, S2) and (T1, T2) be two different good
decompositions of an N-system T of elements of J (with N ≥ mk + 1). Then, S2 and
T2 are strong (mk + 1)-systems of elements of J. At least one of the two alternatives
(α) and (β) in Lemma 3.5 holds for S2 and T2.

First case, (α) holds: Let T2 = T (1)
2 + · · · + T (m+1)

2 be a strong decomposition with
T (m+1)

2 = [i] for some i ∈ supp T2 with T2(i) > S2(i). Then, a j ∈ supp T with T1(j) >

S1(j) and T2(j) < S2(j) exists. The decomposition

T = R1 + R2 with R1 = T1 − [j] + [i], R2 = T2 + [j] − [i] (3.6)

is a good decomposition of T because T (1)
2 + · · · + T (m)

2 + [j] is a strong decomposition
of R2. The good decompositions (R1, R2) and (T1, T2) are locally related, (R1, R2) ∼loc

(T1, T2), and thus equivalent,

(R1, R2) ∼ (T1, T2). (3.7)

Furthermore,

dH(R2, S2) = dH(T2, S2) − 2. (3.8)

Second case, (β) holds: Let T2 = T (1)
2 + · · · + T (m+1)

2 and S2 = S(1)
2 + · · · + S(m+1)

2

be strong decompositions of T2 and S2 with T (m+1)
2 = S(m+1)

2 = [a] for some a ∈ supp T .
Two elements b, c ∈ supp T with T1(b) > S1(b), T2(b) < S2(b), and T1(c) < S1(c),
T2(c) > S2(c) exist. Consider the decompositions of T and S,

T = R1 + R2 with R1 = T1 − [b] + [a], R2 = T2 + [b] − [a], (3.9)

S = Q1 + Q2 with Q1 = S1 − [c] + [a], Q2 = S2 + [c] − [a]. (3.10)

They are good decompositions because R2 has the strong decomposition R2 = T (1) +
· · · + T (m) + [b] and Q2 has the strong decomposition Q2 = S(1) + · · · + S(m) + [c]. The
local relations

(R1, R2) ∼loc (T1, T2) and (Q1, Q2) ∼loc (S1, S2)

and the equivalences

(R1, R2) ∼ (T1, T2) and (Q1, Q2) ∼ (S1, S2) (3.11)

hold. Furthermore,

dH(R2, Q2) = dH(T2, S2) − 2. (3.12)

The properties (3.7), (3.8), (3.11) and (3.12) show that in both cases the equivalence
classes of (S1, S2) and (T1, T2) contain good decompositions whose second members
are closer to one another with respect to the metric dH than T2 and S2. This shows that
(S1, S2) and (T1, T2) are in one equivalence class. �

4. Potentials of the first and second kind. The main part of this section is devoted
to the proof of Theorem 1.2. At the end, some remarks on the relation to families of
arrangements and Frobenius manifolds are made.
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REMARK 4.1. Here, a coordinate free formulation of the integrability condition
(1.2) will be given. For M,∇K and C as in the introduction, ∇K (C) ∈ �2

M ⊗ O(End(K))
is the 2-form on M with values in End(K) such that for X, Y ∈ TM

∇K (C)(X, Y ) = ∇K
X (CY ) − ∇K

Y (CX ) − C[X,Y ]. (4.1)

Now, (1.2) is equivalent to ∇K (C) = 0

Proof of Theorem 1.2 Let (M, K,∇K , C, S, ζ, (J, F)) be a Frobenius-like structure
of some order (n, k, m) ∈ �3

>0.
We need some notations. If T ∈ �J

≥0 is a system of elements of J, then

(z − x)T :=
∏
i∈J

(zi − xi)T(i) for any x ∈ �n,

T ! :=
∏
i∈J

T(i)!, ∂T :=
∏
i∈J

∂T(i)
zi

, CT :=
∏
i∈J

CT(i)
∂zi

.

Thus, if S and T are systems of elements of J, then

∂T (z − x)S =
{

0 if T �≤ S,
S!

(S−T)! · (z − x)S−T if T ≤ S,
(4.2)

for any x ∈ �n.

The existence of a (not just local, but even global) potential Q of the first kind is
trivial. The function

Q :=
∑

T with (∗)

1
T !

· S(CTζ, ζ, . . . , ζ ) · zT (m times ζ ) (4.3)

(∗) : T ∈ �J
≥0 is a strong mk-system (Definition 3.1(c))

works. It is a homogeneous polynomial of degree mk and contains only monomials
that are relevant for (1.2). In fact, one can add to this Q an arbitrary linear combination
of the monomials zT for the mk-systems T that are not strong, so that are not relevant
for (1.2).

The existence of a potential L of the second kind is not trivial. Let some x ∈ M be
given. We make the power series ansatz

L :=
∑

T∈�J
≥0

aT · (z − x)T , (4.4)

where the coefficients aT have to be determined. If T satisfies |T | ≤ mk or if it satisfies
|T | ≥ mk + 1, but does not admit a good decomposition (Definition 3.1 (d)), then the
conditions (1.3) are empty for aT (z − x)T because of (4.2), so then aT can be chosen
arbitrarily, e.g., aT := 0 works.

Now, consider T with |T | ≥ mk + 1, which admits good decompositions. Then,
each good decomposition T = T1 + T2 gives via (1.3) a candidate

aT (T1, T2) := 1
T !

· (∂T1 S(CT2ζ, ζ, . . . , ζ )) (x), (4.5)
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for the coefficient aT of (z − x)T in L. We have to show that the candidates aT (T1, T2)
for all good decompositions (T1, T2) of T coincide.

Suppose that two good decompositions (T1, T2) and (S1, S2) are locally related,
(T1, T2) ∼loc (S1, S2) (Definition 3.1 (e)), but not equal. Then, there are strong
decompositions T2 = T (1)

2 + · · · + T (m)
2 + [a] and S2 = T (1)

2 + · · · + T (m)
2 + [b] with a �=

b, and thus also T1 − [b] = S1 − [a] ∈ �J
≥0 holds. Because any T (j)

2 , j ∈ {1, . . . , m}, is
independent, CT (j)

2
ζ is ∇K -flat. This and (4.3) give

∂zb S(CT2ζ, ζ, . . . , ζ )

= ∂zb S(C∂za
CT (1)

2
ζ, CT (2)

2
ζ, . . . , CT (m)

2
ζ )

= S(∇K
∂zb

(C∂za
)CT (1)

2
ζ, CT (2)

2
ζ, . . . , CT (m)

2
ζ )

= S(∇K
∂za

(C∂zb
)CT (1)

2
ζ, CT (2)

2
ζ, . . . , CT (m)

2
ζ )

= ∂za S(C∂zb
CT (1)

2
ζ, CT (2)

2
ζ, . . . , CT (m)

2
ζ )

= ∂za S(CS2ζ, ζ, . . . , ζ ). (4.6)

This implies

aT (T1, T2) = aT (S1, S2), (4.7)

so the locally related good decompositions (T1, T2) and (S1, S2) give the same candidate
for aT . Thus, all equivalent (Definition 3.1 (f)) good decompositions give the same
candidate for aT . By Theorem 3.3, all good decompositions of T are equivalent.
Therefore, they all give the same candidate for aT . Thus, a potential L of the second
kind exists as a formal power series as in (4.4).

It is in fact a convergent power series because of the following. There are finitely
many strong (mk + 1)-systems T2. Each determines the coefficients aT for all T ≥ T2.
We put aT := 0 for T, which do not admit good decompositions. The part of L in (4.4)
that is determined by some strong (mk + 1)-system T2 is a convergent power series.
Thus, L is the union of finitely many overlapping convergent power series. It is easy to
see that it is itself convergent. This finishes the proof of Theorem 1.2. �

REMARK 4.2. In [7, chap. 3], families of arrangements are considered, which give
rise to Frobenius-like structures (M, K,∇K , C, S, ζ, (J, F)) of order (n, k, 2), see the
special case of generic arrangements in [6, 8].

Start with two positive integers k and n with k < n and with a matrix B :=
(bj

i)i=1,...,n;j=1,...,k ∈ M(n × k, �) with rank B = k. Define J := {1, . . . , n}. Here, the
matroid (J, F) is the vector matroid (also called linear matroid) of the tuple (vi)i∈J

of row vectors vi := (bj
i)j=1,...,k of the matrix B. More precisely, a subset A ⊂ J is

independent, if the tuple (vi)i∈A is a linearly independent system of vectors.
Consider �n × �k with the coordinates (z, t) = (z1, . . . , zn, t1, . . . , tk) and with the

projection π : �n × �k → �n. Define the functions

gi :=
k∑

j=1

bj
i · tj, fi := gi + zi for i ∈ J (4.8)

on �n × �k.
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We obtain on �n × �k the arrangement C = {Hi}i∈J , where Hi is the zero set
of fi. Let U(C) := �n × �k − ⋃

i∈J Hi be the complement. For every x ∈ �n, the
arrangement C restricts to an arrangement C(x) on π−1(x) ∼= �k. For almost all x ∈ �n

the arrangement C(x) is essential (definition in [7]) with normal crossings. The subset
	 ⊂ �n, where this does not hold, is a hypersurface and is called the discriminant, see
[7, Subsection 3.2]. Define M := �n − 	.

A set I = {i1, . . . , ik} ⊂ J is maximal independent, i.e., (vi1 , . . . , vik ) is a basis of
M(1 × k, �), if and only if for some (or equivalently for any) x ∈ �n the hyperplanes
Hi1 (x), . . . , Hik (x) are transversal.

Let a = (a1, . . . , an) ∈ (�∗)n be a system of weights such that for any x ∈ M the
weighted arrangement (C(x), a) is unbalanced: See [7] for the definition of unbalanced,
e.g., a ∈ �n

>0 is unbalanced, also a generic system of weights is unbalanced. The master
function of the weighted arrangement (C, a) is


a(z, t) :=
∑
i∈J

ai log fi. (4.9)

Several deep facts are related to this master function. We use some of them in the
following. See [7] for references.

For z ∈ M all critical points of 
a are isolated, and the sum μ of their Milnor
numbers is independent of the unbalanced weight a and the parameter z ∈ M. The
bundle

K :=
⋃
z∈M

Kz with Kz := O(U(C) ∩ π−1(z))/
(

∂
a

∂tj
| j = 1, . . . , k

)
(4.10)

over M is a vector bundle of μ-dimensional algebras.
It comes equipped with the section ζ of unit elements ζ (z) ∈ Kz, a Higgs field C, a

combinatorial connection ∇K and a pairing S. The Higgs field C : O(K) → �1
M ⊗ O(K)

is defined with the help of the period map

� : TM → K, ∂zi �→
[
∂
a

∂zi

]
=

[
ai

fi

]
=: pi (4.11)

by

C∂zi
(h) := pi · h for h ∈ Kz. (4.12)

Because of

0 =
[
∂
a

∂tj

]
=

n∑
i=1

bj
ipi, (4.13)

the Higgs field vanishes on the vector fields Xj := ∑n
i=1 bj

i∂i, j ∈ {1, . . . , k},

CXj = 0 for j ∈ {1, . . . , k}. (4.14)

In fact the whole geometry of the family of arrangements is invariant with respect to
the flows of these vector fields.
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The sections det(bj
i)i∈I,j=1,...,k · CIζ for all maximal independent sets I =

{i1, . . . , ik} ⊂ J generate the bundle K , and they satisfy only relations with constant
coefficients in �. The combinatorial connection ∇K is the unique flat connection
such that the sections CIζ for I ⊂ J maximal independent are ∇K -flat. The sections
det(bj

i)i∈I,j=1,...,k · CIζ for I ⊂ J maximal independent generate a ∇K -flat �-lattice
structure on K .

The pairing S comes from the Grothendieck residue with respect to the volume
form

dt1 ∧ . . . ∧ dtk∏k
j=1

∂
a
∂tj

. (4.15)

It is symmetric, nondegenerate, ∇K -flat, multiplication invariant and Higgs field
invariant.

The existence of potentials of the first and second kind for families of arrangements
was conjectured in [6]. If all the k × k minors of the matrix B = (bj

i) are nonzero, the
potentials were constructed in [6], cf. [8]. In [5], this was generalized to all cases
in Remark 4.2. The potentials are given by explicit formulas in terms of the linear
functions defining the hyperplanes in �n composing the discriminant.

REMARK 4.3.

(i) The situation in Remark 4.2 is in several aspects richer than a Frobenius-like
structure of type (n, k, m). The bundle K is a bundle of algebras. The sections
CIζ for maximal independent sets I ⊂ J generate the bundle. The sections
det(bj

i)i∈I,j=1,...,k · CIζ generate a flat �-lattice structure in K . The Higgs field
vanishes on the vector fields X1, . . . , Xk. The m-linear form S is a pairing
(m = 2) and is nondegenerate. We will not discuss the �-lattice structure, but
we will discuss some logical relations between the other enrichments and some
implications of them.

(ii) Let (M, K,∇K , C, S, ζ, V, (v1, . . . , vn)) be a Frobenius-like structure of order
(n, k, m). Suppose that it satisfies the generation condition

(GC) The sections CIζ for maximal independent sets I ⊂ J (4.16)

generate the bundle K.

Let μ be the rank of K . Then, for any x ∈ M, the endomorphisms CX , X ∈
TxM, generate a μ-dimensional commutative subalgebra Az ⊂ End(Kx), and any
endomorphism that commutes with them is contained in this subalgebra. This
gives a rank μ bundle A of commutative algebras. And, the map

A → K, B �→ Bζ, (4.17)

is an isomorphism of vector bundles and induces a commutative and associative
multiplication on Kx for any x ∈ M, with unit field ζ (x). Therefore, the special
section ζ and the generation condition (GC), which exist and hold in Remark
4.2, give the multiplication on the bundle K there.

(iii) In the situation in (ii) with the condition (GC), the m-linear form is multiplication
invariant because it is Higgs field invariant. The condition (GC) implies also that
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it is symmetric:

S(CI1ζ, CI2ζ, . . . , CImζ ) = S(CIσ (1)ζ, CIσ (2)ζ, . . . , CIσ (m)ζ )

for any maximal independent sets I1, . . . , Im and any permutation σ ∈ Sm.
(iv) The following special case gives rise to Frobenius manifolds without Euler fields.

Consider a Frobenius-like structure (M, K,∇K , C, S, ζ, (J, F)) of order (n, 1, 2)
with nondegenerate pairing S, ∇K -flat section ζ , the uniform matroid (J, F) =
(J, F (1,J)) and the condition that the map C•ζ : TM → K is an isomorphism.
Then, the sections C∂iζ generate the bundle K and are ∇K -flat. Here, M becomes
a Frobenius manifold (without Euler field) whose flat structure is the naive flat
structure of �n ⊃ M. The potential L is the potential of the Frobenius manifold.
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