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Abstract

In the present study, the mRNA levels of hepatic proteins involved in the drug metabolism of rats fed a-lipoic acid were evaluated by DNA

microarray and real-time PCR analyses. Experimental diets containing 0, 0·1, 0·25 and 0·5 % (w/w) a-lipoic acid were fed to four groups of

rats consisting of seven animals each for 21 d. DNA microarray analysis revealed that the diet containing 0·5 % a-lipoic acid significantly

(P,0·05) increased the mRNA levels of various phase I drug-metabolising enzymes up to 15-fold and phase II enzymes up to 52-fold

in an isoenzyme-specific manner. a-Lipoic acid also up-regulated the mRNA levels of some members of the ATP-binding cassette transpor-

ter superfamily, presumed to be involved in the exportation of xenobiotics, up to 6·6-fold. In addition, we observed that a-lipoic acid

increased the mRNA levels of many proteins involved in antioxidation, such as members of the thiol redox system (up to 5·5-fold), metal-

lothioneins (up to 12-fold) and haeme oxygenase 1 (1·5-fold). These results were confirmed using real-time PCR analysis, and a-lipoic acid

dose dependently increased the mRNA levels of various proteins involved in drug metabolism and antioxidation. Consistent with these

observations, a-lipoic acid dose dependently increased the hepatic concentration of glutathione and the activities of glutathione reductase

and glutathione transferase measured using 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates, but decreased the

hepatic and serum concentrations of malondialdehyde. In conclusion, the present study unequivocally demonstrated that a-lipoic acid

increases the mRNA expression of proteins involved in drug metabolism and antioxidation in the liver.
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a-Lipoic acid is a natural compound that is widely distributed

in plants and animals and functions as a cofactor within mito-

chondrial enzymes to catalyse the oxidative decarboxylation

of a-keto acids (such as pyruvate dehydrogenase and a-keto-

glutarate dehydrogenase) and the cleavage of glycine(1,2).

Besides its role in the mitochondrial metabolic pathway,

a-lipoic acid, when supplemented in diets, performs various

physiological activities in experimental animals(1,2) and is

widely used as a dietary supplement by humans. However,

the concentration of a-lipoic acid in natural food items is

very low(3). Therefore, dietary a-lipoic acid supplements are

manufactured by chemical synthesis. It has been well estab-

lished that dietary a-lipoic acid is effective at attenuating

oxidative stress(1,2,4–8). Many studies have also indicated that

a-lipoic acid modulates glucose metabolism and is effective

at ameliorating insulin resistance and attenuating type 2

diabetes(1,6,7). The lipid-lowering property of a-lipoic acid has

also frequently been reported(2,9–11). In this context, we had

previously demonstrated that a-lipoic acid strongly reduces

the activity and mRNA levels of hepatic lipogenic enzymes

in rats(12–14). Therefore, the reduction in hepatic lipid biosyn-

thesis may account for the lipid-lowering effect of a-lipoic

acid. During the course of the studies, we had found that diet-

ary a-lipoic acid lowers serum concentrations of TAG, choles-

terol and phospholipids and hepatic concentrations of TAG

and cholesterol, but increases the hepatic concentration of

phospholipids. The increased hepatic concentration of phos-

pholipids implies that a-lipoic acid causes biomembrane pro-

liferation in this tissue. We hypothesise that a-lipoic acid is an

inducer of hepatic drug-metabolising enzymes because drugs
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that induce hepatic drug metabolism also increase phospho-

lipid concentration and synthesis in this tissue accompanying

the proliferation of the endoplasmic reticulum(15). In relation

to this, some studies(16–18) have shown that a-lipoic acid

increases the mRNA expression or activity or the protein con-

centrations of drug-metabolising enzymes in cultured cells.

However, information on the effect of a-lipoic acid on drug-

metabolising enzymes in experimental animals is lacking. In

this context, we investigated the effect of dietary a-lipoic

acid on the gene expression of hepatic enzymes involved in

drug metabolism in rats in the present study, employing

DNA microarray analysis, a powerful technique for analysing

the mRNA expression of thousands of genes in a short

period of time. Drug metabolism usually involves many isoen-

zymes differing in substrate specificity. A considerable number

of isoenzymes are relatively irrelevant and only a small

number are sensitive to dietary factors(19). Therefore, micro-

array-based profiling of gene expression helps to clarify the

overall picture of the physiological effect of a-lipoic acid on

the mRNA expression of enzymes involved in drug meta-

bolism and to identify isoenzyme(s) specifically affected by

this compound.

Materials and methods

Animals and diets

Male Sprague–Dawley rats obtained from Charles River Japan

at 4 weeks of age were housed individually in animal cages in

a room with controlled temperature (20–228C), humidity (55–

65 %) and lighting (lights on from 07.00 to 19.00 hours) and

fed a commercial non-purified diet (Type NMF; Oriental

Yeast Company) for 7 d. After this acclimatisation period, the

rats were randomly divided into four groups with equal

mean body weights, consisting of seven animals each, and

fed purified experimental diets containing 0, 0·1, 0·25 and

0·5 % (w/w) of R/S-a-lipoic acid for 21 d. Rats are widely

used as an animal model for humans to evaluate the physio-

logical activity of dietary factors. The basal composition of

the experimental diets was as follows (in wt%): palm oil, 10;

casein, 20; maize starch, 15; cellulose, 2; mineral mixture

(AIN-93G-MX)(20), 3·5; vitamin mixture (AIN-93-VX)(20), 1·0;

L-cystine, 0·3; choline bitartrate, 0·25; sucrose, 100 g. There

were 15 g of DL-a-tocopherol acetate in 1 kg of AIN-93-VX.

HPLC analysis revealed that 1 kg of palm oil contained

0·164 g of D-a-tocopherol and 0·0059 g of D-g-tocopherol.

Therefore, all the experimental diets contained 0·015% (w/w)

DL-a-tocopherol acetate, 0·016 % (w/w) D-a-tocopherol and

0·0006 % (w/w) D-g-tocopherol as antioxidants. Although the

AIN-93G diet formula recommended by the American

Institute of Nutrition(20) is suggested to provide 0·0014% (w/w)

tert-butylhydroquinone as an antioxidant, we did not

use this compound in the present study. Chemically

synthesised R/S-a-lipoic acid with purity exceeding 990 g/kg

(manufacturer’s statement) was purchased from Tokyo

Chemical Industry. Enantioselective HPLC analysis(21) using

11-mercaptoundecanoic acid as an internal standard revealed

that the R/S-a-lipoic acid preparation contained 45·9 and

54·1 % (w/w) of R-isomers and S-isomers, respectively.

Varying amounts of a-lipoic acid were added to the diets at

the expense of sucrose. This resulted in a decrease in the

energy content of the experimental diets. However, this

decrease was very small (less than 0·23 % of the total energy

of the diets). Upon completion of the experimental period,

the rats were anaesthetised using diethyl ether and killed by

bleeding from the abdominal aorta, after which the livers

were excised. The present study was approved by the

review board of animal ethics of our institute, and we followed

the institute’s guidelines in the care and use of laboratory ani-

mals. We read and followed the ARRIVE (Animal Research:

Reporting In Vivo Experiments) guidelines for animal research

(http://www.nc3rs.org.uk/page.asp?id ¼ 1357) in conducting

the animal experiment and in preparing the manuscript.

Affymetrix GeneChip and GeneSpring analyses

Hepatic RNA was extracted according to the method of

Chomczynski & Sacchi(22). RNA from the livers of six rats fed

diets containing 0 and 0·5 % (w/w) a-lipoic acid each was sub-

jected to microarray analyses. Rats with the lowest body

weights in each group at the time of killing were excluded

from the microarray analyses. RNA was processed using kits

supplied by Affymetrix to prepare fragmented biotinylated

complementary RNA for hybridisation to the Rat Genome

230 2.0 Array. DNA microarray data were analysed using the

GeneSpring GX version 7.3 software (Agilent Technologies,

Inc.). Normalisations per chip and per gene were carried out

using the 50th percentile value of signal intensity in each

chip and the mean values in rats fed a control diet free of

a-lipoic acid, respectively. After normalisation, the following

filtering criteria were adopted to prepare the gene list for sub-

sequent analysis to eliminate unreliable data with low signals:

the expression data had to call more than six P- or M-flags

according to the Affymetrix algorithm out of twelve measure-

ments and the average signal intensity had to be greater than

100 in each treatment. The expression data of 12 335 genes ful-

filled these criteria. Fold changes in the expression of genes in

rats fed the diet containing 0·5 % (w/w) a-lipoic acid

compared with the values in rats fed the diet free of this

compound were evaluated using this gene list.

Real-time PCR quantification of mRNA

The real-time PCR quantification of mRNA was carried out as

described previously(23) in rats fed diets containing 0, 0·1,

0·25 and 0·5 % (w/w) a-lipoic acid. The abundance of

mRNA was calculated as a ratio to the abundance of b-actin

mRNA in each complementary DNA sample and expressed

as a fold change, assigning a value of 1 for rats fed the diet

free of a-lipoic acid. The mRNA levels of the aldehyde dehy-

drogenase 1 family, member A1 (Aldh1a1), aldo-keto

reductase family 1, member D1 (Akr1d1), aldo-keto reductase

family 7, member A3 (Akr7a3), cytochrome P450, family 2,

subfamily b, polypeptide 12 (Cyp2b12), cytochrome P450,

family 4, subfamily b, polypeptide 1 (Cyp4b1), epoxide hydro-

lase 1, microsomal (Ephx1), flavin-containing monooxygenase
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5 (Fmo5), glutamate–cysteine ligase, modifier subunit (Gclm),

glutamate–cysteine ligase, catalytic subunit (Gclc), glutathione

reductase (Gsr), glutathione S-transferase alpha 3 (Gsta3), glu-

tathione S-transferase pi 1 (Gstp1), glutathione S-transferase

theta 1 (Gstt1), glutathione S-transferase theta 3 (Gstt3),

metallothionein 1a (Mt1a) and NAD(P)H dehydrogenase,

quinone 1 (Nqo1) were measured using the TaqMan probe

PCR method as described in the handbook (Real-time PCR

Systems Chemistry Guide) supplied by Applied Biosystems.

The nucleotide sequences of primers and probes used for

detecting these mRNA were designed using the Primer Express

Software (Applied Biosystems), and these are listed in Table 1.

The mRNA levels of the ATP-binding cassette, subfamily B,

member 1A (Abcb1a), ATP-binding cassette, subfamily C,

member 4 (Abcc4), carboxylesterase 2C (Ces2c), glutathione

peroxidase 2 (Gpx2), nuclear receptor subfamily 1, group I,

member 3 (Nr1i3), sulfotransferase family, cytosolic, 1C,

member 2 (Sult1c2) and UDP-glucuronosyltransferase 2

family, polypeptide B1 (Ugt2b1) were measured using the

SYBR Green PCR method. Forward and reverse primers

used for detecting these mRNA were designed, prepared and

provided by Takara Bio, Inc. The reaction specificity for this

method was verified by a melting curve analysis. The nucleo-

tide sequences of primers are also listed in Table 1.

Enzyme assays

About 2·5 g of each liver sample were homogenised with 15 ml

of 0·25 M-sucrose containing 1 mM-EDTA and 3 mM-Tris–HCl

(pH 7·2) and centrifuged at 200 000g for 30 min. The activities

of Gst and Gsr were measured spectrophotometrically using

200 000g supernatant as an enzyme source. The activity of

Gst was assayed using 1-chloro-2,4-dinitrobenzene, 1,2-

dichloro-4-nitrobenzene, p-nitrobenzyl chloride and ethacry-

nic acid as substrates. The respective conditions (concen-

trations of substrates and pH) under which enzyme activity

was determined using these substrates were the same as

those described by Habig & Jakoby(24). The activity of Gsr

was measured according to the method described by Carlberg

& Mannervik(25).

Analyses of serum and liver components

For the determination of hepatic glutathione concentration,

about 1·5 g of liver sample were homogenised with 4·5 ml of

8 % perchloric acid and centrifuged at 15 000g for 30 min.

The supernatants (4 ml each) were neutralised with 3 M-

K2CO3. After allowing to stand in ice for 10 min, the mixtures

were centrifuged at 3000g for 10 min. The supernatants were

used to determine glutathione concentration by the method of

Anderson(26). Malondialdehyde in the serum and liver samples

was analysed by HPLC as thiobarbituric acid adducts(27).

Statistical analysis

Microsoft Excel add-in software (Excel Statistics 2010, Social

Survey Research Information Company) was used for statistical

analysis. The constancy of the variance and normality of the

distribution of the observations were evaluated using Levene’s

test and the Kolmogorov–Smirnov test, respectively. If var-

iances were heterogeneous and/or the distributions were not

normal, they were transformed logarithmically. The transform-

ations were successful in rendering the variance of the obser-

vation constant and the distribution of data normal, and hence

the transformed values were used for subsequent statistical

evaluations. Significant differences in the means

for microarray data at a level of P,0·05 were evaluated

with two-sided Student’s t test. The other data were analysed

with one-way ANOVA to establish whether the effect of

a-lipoic acid was significant, and significant differences in

the means at a level of P,0·05 were evaluated with two-

sided Tukey’s test.

Results

Growth parameters and liver weight

a-Lipoic acid at a dietary level of up to 0·25 % (w/w) did not

affect food intake (Table 2). However, the diet containing

0·5 % (w/w) a-lipoic acid compared with the diet free of this

compound significantly reduced this parameter. Growth was

significantly lower in rats fed diets containing 0·25 and 0·5 %

(w/w) a-lipoic acid than in those fed the a-lipoic acid-free

diet. The diet containing 0·1 % (w/w) a-lipoic acid did not

affect this parameter. Liver weights were the same among

rats fed diets containing 0, 0·1 and 0·25 % (w/w) a-lipoic

acid. However, this parameter was significantly higher in rats

fed the diet containing 0·5 % (w/w) a-lipoic acid than in

those fed the a-lipoic acid-free diet.

Microarray analysis of mRNA expression

Considerable numbers of genes were affected by dietary a-

lipoic acid. In total, 997 and 1074 of the 12 335 filtered

genes were found to be up-regulated and down-regulated,

respectively, more than 1·5-fold by the diet containing 0·5 %

(w/w) a-lipoic acid. The numbers of genes up-regulated and

down-regulated more than 2-fold by a-lipoic acid were 410

and 245, respectively. We had previously reported that

a-lipoic acid reduces the activity and mRNA levels of many

enzymes involved in lipogenesis in the liver(12–14). Consistent

with this observation, in the present study using DNA micro-

array analysis, we observed that a-lipoic acid down-regulated

many genes related to lipogenesis more than 1·5-fold. These

included the patatin-like phospholipase domain containing 3

(Pnpla3; four probes detected the mRNA levels of this protein

and the values assigning a value of 1 for rats fed the diet free

of a-lipoic acid were in the range of 0·052–0·081), fatty acid

synthase (Fasn; the values for two probes were 0·125 and

0·251), acetyl-CoA carboxylase-a and -b (Acaca and Acacb;

the values for two probes were 0·350 and 0·438 and 0·166

and 0·188, respectively), ELOVL fatty acid elongase-2, -5 and

-6 (Elovl2, -5 and -6; 0·337 and 0·505 for Elovl2 and -5, respect-

ively, and 0·213 and 0·250 for Elovl6 for two probes, respect-

ively), pyruvate kinase, liver and red blood cell (Pklr; 0·351),

thyroid hormone-responsive protein (Thrsp; 0·383 and 0·506
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Table 1. Primers and probes used in real-time PCR analysis of mRNA

Genes (gene symbol) Sense primer Antisense primer Probe

Length
of PCR

products
(bp)

GenBank
accession

no.

TaqMan probe PCR method
Aldehyde dehydrogenase 1
family, member A1 (Aldh1a1)

50-GGAGGACCAGTCGTGATTTAAGC-30 50-CCGACTCTGCAGTTATCATGCA-30 50-TGTCCCTCTGTGACCCCTTGAACTGCT-30 82 NM_022407

Aldo-keto reductase family 1,
member D1 (Akr1d1)

50-CACCACATACCCCTAAATGATGGT-30 50-CCGGTCTAGGGTCTGAGTAGGTT-30 50-ACAGCATTCCGATCATCGGGCTTG-30 73 NM_138884

Aldo-keto reductase family 7,
member A3 (Akr7a3)

50-GGTTCTTTCCTTTTTAGACAGGTCACT-30 50-CTCAGCCAGCTCTCACTTTGAA-30 50-TTTCTTCCCTGCTTTCTATACAGCCAGTTGC-30 86 NM_013215

Cytochrome P450, family 2,
subfamily b, polypeptide 12
(Cyp2b12)

50-GAACAAAATTATGCTGTGAGTCTAGAAGA-30 50-CAGCTTCGTTATATGAATTTCATCTGA-30 50-CAACCCCCTCTCCTGCTTCTGTTTCA-30 85 NM_017156

Cytochrome P450, family 4,
subfamily b, polypeptide 1
(Cyp4b1)

50-GGCCAGGGCTATGGACAGTT-30 50-ATCTCAAGGGCATGACCAAAA-30 50-CCCAGGGCCCCCCACACA-30 66 NM_016999

Epoxide hydrolase 1,
microsomal (Ephx1)

50-GAGTTTTACAAGATCATCCCACTACTGA-30 50-TTCAAACACGTGCTCGTCACT-30 50-TGACCCCAAGTCCCACGGTCT-30 72 NM_001034090

Flavin-containing mono-
oxygenase 5 (Fmo5)

50-TGGGAGCCATTATGCCTATTTC-30 50-GGCAATTTCTTTAGCCCTTTGA-30 50-AGCTCCAAGGACGCTGGGCCACT-30 76 NM_144739

Glu–Cys ligase, modifier
subunit (Gclm)

50-CGCCTGCGGAAAAAGTGT-30 50-TCATTCAAGGTCTTTTGGATACAGTCT-30 50-CGTCCACGCACAGCGAGGAGCT-30 71 NM_017305

Glu–Cys ligase, catalytic
subunit (Gclc)

50-AACATCAGGCTCTTTGCACGAT-30 50-TGCTCTGGCAGTGTGAATCC-30 50-CTTCATTTCCCAGGCTAGGCTGCCC-30 70 NM_012815

Glutathione reductase (Gsr) 50-AACATCCCTACCGTGGTCTTCA-30 50-GGACGGCTTCATCTTCAGTGA-30 50-CACCCGCCTATCGGGACAGTGG-30 70 NM_053906
Glutathione S-transferase
alpha 3 (Gsta3)

50-TAAAGGCCCTGAGAACCAGAGT-30 50-TGGCTGCCAGGCTGAAG-30 50-AGCAACCTCCCCACAGTGAAGAAATT-30 67 NM_001009920

Glutathione S-transferase pi 1
(Gstp1)

50-GGAGGAGGTGGTTACCATAGATGT-30 50-GGAGCTGCCCATACAGACAAG-30 50-TGGCTTCAAGGCTCGCTCAAGTCC-30 71 NM_012577

Glutathione S-transferase
theta 1 (Gstt1)

50-CCGTGCTCGTGTGGATGAG-30 50-CAGGGTCCGGAGACAGCTT-30 50-TGGCATGGCAGCATACGACCCTTC-30 70 NM_053293.

Glutathione S-transferase
theta 3 (Gstt3)

50-TGCAAGGGCAGTCACGAA-30 50-GCCTTTGTCCTCAGGGTCTTC-30 50-AGCCCTGCACCCCACCTATACCA-30 70 BM390378

Metallothionein 1a (Mt1a) 50-TGTGCCTGAAGTGACGAACAG-30 50-AGGTGTACGGCAAGACTCTGAGT-30 50-TGCCCTCAGGTGTAAATAATTTCCGGACC-30 80 NM_138826
NAD(P)H dehydrogenase,
quinone 1 (Nqo1)

50-GCCGAAGGACTCGGAGAAC-30 50-CTCAGGCGGCCTTCCTTATA-30 50-TTCAGTACCCTGTTGAGTCATCTCTG-30 69 NM_017000

Thioredoxin reductase 1
(Txnrd1)

50-TTTGACAAGAAGGTGATGGTCTTG-30 50-CCCCCGAGACCCCATCT-30 50-ACTTCGTCACACCAACTCCTCTCGGAAC-30 71 NM_031614

SYBR Green PCR method
ATP-binding cassette, sub-
family B, member 1A
(Abcb1a)

50-AGATCGTGAAGGCAGCCAAG-30 50-AGAAGTAAGATGTGAGGCTGTCTGA-30 166 NM_133401·1

ATP-binding cassette, sub-
family C, member 4 (Abcc4)

50-AGCCCTGCGGTTATGAGCAC-30 50-GGACACCCTGGAAACAGACTTGA-30 106 NM_133411·1

Carboxylesterase 2C (Ces2c) 50-AGCTGCTGAGTAGGCGGATGA-30 50-CCAACACAGGCCAGTAGGGTAGA-30 93 NM_133586·1
Glutathione peroxidase 2
(Gpx2)

50-TGAGTTGCAGTGCCGCTTTC-30 50-GGACATACTTGAGGCTGTTCAGGA-30 116 NM_183403·2

Nuclear receptor subfamily 1,
group I, member 3 (Nr1i3)

50-ATGGAGCAACAGTCAAGACTCCAA-30 50-CCCTGGATGCGATGGATTTC-30 116 NM_022941·3

Sulfotransferase family,
cytosolic, 1C, member 2
(Sult1c2)

50-ACATGAAGGTGGCCTTTGGAA-30 50-AACTGGCTCCACACTGACCATC-30 81 NM_133547·4

UDP-glucuronosyltransferase
2 family, polypeptide B1
(Ugt2b1)

50-GCTTCTGCTCTTGCCCAAATTC-30 50-GCCTCATAGATGCCATTTGTTCC-30 176 NM_173295·1
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for two probes), phosphogluconate dehydrogenase (Pgd;

0·403), stearoyl-CoA desaturase 1 (Scd1; 0·458), glycerol-

3-phosphate acyltransferase, mitochondrial (Gpam; 0·467

and 0·619 for two probes), glucose-6-phosphate dehydrogen-

ase (G6pd; 0·504), ATP citrate lyase (Acly; 0·519 and 0·532 for

two probes), fatty acid desaturase-1 and -2 (Fads1 and -2;

0·566 and 0·541, respectively), malic enzyme 1 (Me1; 0·561

and 0·600 for two probes) and SREBF chaperone (Scap; 0·575).

In addition to the lipogenic pathway, we found that genes

involved in drug metabolism and the antioxidation system

were targeted by dietary a-lipoic acid. Table 3 lists the

genes affected more than 1·5-fold by the diet containing

0·5 % (w/w) a-lipoic acid. The drug metabolism pathway

has generally been grouped into phase I reactions, in which

enzymes carry out oxidation, reduction or hydrolysis reac-

tions; phase II reactions, in which enzymes form a conjugate

of the substrate; and phase III reactions, in which enzymes

transport drugs. a-Lipoic acid apparently increased the

mRNA expression of many phase I enzymes that catalyse oxi-

dation (Cyp4b1, Cyp2b12 and Fmo5), reduction (Akr7a3,

Aldh18a1, Aldh1a7, Akr1c1, Aldh1a1, Akr1d1 and Nqo1)

and hydrolysis reactions (Ces2c and Ephx1). This compound

also increased mRNA expressions of phase II enzymes that

catalyse glutathione conjugation (Gsta3, Gstt3, Gstp1, Gstt1

and Gsto1), sulfation (Sult1c2) and glucuronidation (Ugt2b1

and Ugt1a). The mRNA expression of some phase III transpor-

ters, including Abcb1a, ATP-binding cassette, subfamily B,

member 1B (Abcb1b), Abcc4 and ATP-binding cassette, sub-

family A (ABC1), member 8 (Abca8), was also up-regulated

by a-lipoic acid. Nr1i3 is a member of the nuclear receptor

superfamily and activates many genes involved in drug meta-

bolism(28). a-Lipoic acid increased the mRNA expression of

this transcription factor.

We also observed that a-lipoic acid increased the mRNA

expression of miscellaneous proteins involved in the antioxi-

dation system. Metallothionein is a cysteine-rich protein that

has marked capacity to bind metal ions. This protein controls

metal ion homeostasis and prevents the toxicity of heavy

metals. Metallothionein has also been found to perform

diverse functions. In particular, this protein has been

considered to be a key component of cellular defence against

oxidative stress(29). In rats, four types of the metallothionein

gene, termed Mt1a, metallothionein 2A (Mt2A), Mt3 and

Mt4, have so far been discovered. a-Lipoic acid at a dietary

level of 0·5 % (w/w) caused about a 10-fold increase in the

mRNA expression of Mt1a and Mt2A. In organisms, two sys-

tems are considered critical for general reduction–oxidation

(redox) regulation, the thioredoxin and glutaredoxin (Glrx)/

glutathione systems(30). Thioredoxin and thioredoxin

reductase and Glrx, glutathione and Gsr represent primary

components of the former and latter systems, respectively.

In rats, three forms of thioredoxin reductase have been ident-

ified (Txnrd1–3). a-Lipoic acid caused more than a 2-fold

increase in the mRNA expression of Txnrd1 in the present

study. Among the proteins involved in the Glrx/glutathione

system, a-lipoic acid increased the mRNA expression of Gsr,

Gclc (a heavy catalytic subunit of glutamate–cysteine ligase

that catalyses the first step of glutathione synthesis) and the

mitochondrial isoform of Glrx (Glrx2), but unexpectedly

decreased the mRNA expression of the cytosolic form of

Glrx (Glrx1). Although the magnitude of the increase did

not exceed 1·5-fold, a-lipoic acid also caused a significant

increase in the mRNA expression of a light regulatory subunit

of glutamate–cysteine ligase (Gclm) (1·00 (SEM 0·056) and 1·45

(SEM 0·09) in rats fed the a-lipoic acid-free diet and the diet

containing 0·5 % (w/w) a-lipoic acid, respectively). The perox-

iredoxins function as cysteine-dependent thiol peroxidases

that detoxify H2O2 and lipid peroxides and hence exert

cytoprotective and antioxidative effects. Under increased oxi-

dative stress, the cysteine moiety of peroxiredoxins is hyper-

oxidised to sulfinic acid and hence they lose their

peroxidase activity. This inactive form can be reduced back

to the active thiol form by sulfiredoxin 1 (Srxn1), an ATP-

dependent reductase(31). The mRNA expression of this

reductase was found to be up-regulated by a-lipoic acid in

the present study. APEX nuclease 1 (Apex1) is a DNA repair

protein that also functions as a redox regulator in mam-

mals(30). a-Lipoic acid caused a 2·5-fold increase in the

mRNA expression of this protein. Glutathione peroxidase

catalyses the reduction of hydroperoxides and H2O2 by gluta-

thione and thereby protects against oxidative damage. So far,

eight different isoforms of glutathione peroxidase have

been identified in humans (GPX1–8) and rodents (Gpx1–8).

Microarray analysis indicated that a-lipoic acid increased the

mRNA expression of Gpx2 but not of other Gpx isoforms.

Table 2. Growth parameters and liver weight

(Mean values with their standard errors, n 7)

Dietary a-lipoic acid (wt%)

0 0·1 0·25 0·5

Mean SEM Mean SEM Mean SEM Mean SEM

Body weight
Initial (g) 136 3 135 2 135 2 138 2
Final (g) 309 9 297 10 274* 7 260** 7
Growth (g/21 d) 173 8 162 10 139* 9 122** 7

Food intake (g/d) 19·5 0·8 18·7 0·8 17·8 0·2 15·9** 0·4
Liver weight (g/100 g body weight) 5·15 0·27 4·98 0·16 5·06 0·18 5·86* 0·12

Mean values were significantly different from those of rats fed the a-lipoic acid-free diet: *P,0·05; **P,0·01.
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Table 3. Microarray analysis results for the mRNA of hepatic proteins involved in drug metabolism and prevention of oxidative stress

(Mean values with their standard errors, n 6)

Fold changes (dietary a-lipoic acid, wt%)

0 0·5

Accession no. Gene symbol Gene name Mean SEM Mean SEM

Oxidation, reduction and hydrolysis

M29853 Cyp4b1 Cytochrome P450, family 4, subfamily b, polypeptide 1 1·00 0·07 14·9** 1·7

NM_013215 Akr7a3 Aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase) 1·00 0·08 8·51** 0·33

AI454613 Cyp2b12 Cytochrome P450, family 2, subfamily b, polypeptide 12 1·00 0·06 3·80** 0·19

BG380693 Aldh18a1 Aldehyde dehydrogenase 18 family, member A1 1·00 0·08 4·12** 0·46

M23995 Aldh1a7 Aldehyde dehydrogenase family 1, subfamily A7 1·00 0·31 3·52** 0·50

NM_022407 Aldh1a1 Aldehyde dehydrogenase 1 family, member A1 1·00 0·19 2·77** 0·20

AI454611 Fmo5 Flavin-containing monooxygenase 5 1·00 0·19 2·60** 0·36

AI028867 Akr1d1 Aldo-keto reductase family 1, member D1 1·00 0·13 1·99** 0·09

J02679 Nqo1 NAD(P)H dehydrogenase, quinone 1 1·00 0·15 1·92** 0·14

NM_133586 Ces2c Carboxylesterase 2C 1·00 0·16 1·93** 0·17

AI072107 Akr1c1 Aldo-keto reductase family 1, member C1 1·00 0·22 1·76** 0·36

NM_012844 Ephx1 Epoxide hydrolase 1 1·00 0·04 1·76** 0·09

Conjugation

AA945082 Gsta3 Glutathione S-transferase alpha 3 1·00 0·26 51·7** 3·4

BI300997 Sult1c2 Sulfotransferase family, cytosolic, 1C, member 2 1·00 0·15 13·5** 1·5

NM_133547 Sult1c2 Sulfotransferase family, cytosolic, 1C, member 2 1·00 0·18 8·86** 0·8

BM390378 Gstt3 Glutathione S-transferase, theta 3 1·00 0·20 4·83** 0·86

X02904 Gstp1 Glutathione S-transferase pi 1 1·00 0·05 3·45** 0·86

M13506 Ugt2b17 UDP-glucuronosyltransferase 2 family, polypeptide B17 1·00 0·17 1·94* 0·46

NM_053293 Gstt1 Glutathione S-transferase theta 1 1·00 0·09 1·87** 0·24

J02612 Ugt1a1; Ugt1a6; Ugt1a7;

Ugt1a8; Ugt1a3; Ugt1a10

UDP-glucuronosyltransferase 1 family, polypeptide A1; A6; A7; A8;

A2; A3; A10

1·00 0·05 1·66** 0·06

BE113459 Gsto1 Glutathione S-transferase omega 1 1·00 0·04 1·62** 0·07

Transporters

AF286167 Abcb1a ATP-binding cassette, subfamily B (MDR/TAP), member 1A 1·00 0·15 6·62** 0·67

AF257746 Abcb1a ATP-binding cassette, subfamily B (MDR/TAP), member 1A 1·00 0·17 3·53** 0·72

AY082609 Abcb1b; Abcb1a ATP-binding cassette, subfamily B (MDR/TAP), member 1B; 1A 1·00 0·10 3·45** 0·34

BE100533 Abcc4 ATP-binding cassette, subfamily C (CFTR/MRP), member 4 1·00 0·09 3·00** 0·23

BF386852 Abca8 ATP-binding cassette, subfamily A (ABC1), member 8 1·00 0·19 2·49** 0·26

Transcription factor

NM_022941 Nr1i3 Nuclear receptor subfamily 1, group I, member 3 1·00 0·18 2·59** 0·13

Antioxidation system

AF411318 Mt1a Metallothionein 1a 1·00 0·22 11·6** 0·6

BM383531 Mt2A Metallothionein 2A 1·00 0·13 9·00** 1·56

H31896 Srxn1 Sulfiredoxin 1 1·00 0·05 5·51** 0·86

AA800587 Gpx2 Glutathione peroxidase 2 1·00 0·18 4·20** 0·35

AF311054 Apex1 APEX nuclease (multifunctional DNA repair enzyme) 1 1·00 0·06 2·54** 0·22

U63923 Txnrd1 Thioredoxin reductase 1 1·00 0·05 2·43** 0·17

NM_031614 Txnrd1 Thioredoxin reductase 1 1·00 0·04 2·20** 0·14

NM_053906 Gsr Glutathione reductase 1·00 0·07 1·94** 0·10

AW525635 Glrx2 Glutaredoxin 2 1·00 0·04 1·67** 0·12

J05181 Gclc Glu–Cys ligase, catalytic subunit 1·00 0·04 1·65** 0·12

AA848536 Glrx2 Glutaredoxin 2 1·00 0·09 1·56** 0·20

NM_012580 Hmox1 Haeme oxygenase (decycling) 1 1·00 0·10 1·52** 0·10

NM_022278 Glrx1 Glutaredoxin 1 1·00 0·07 0·438** 0·032

Mean values were significantly different from those of rats fed the a-lipoic acid-free diet: *P,0·05; **P,0·01.
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Real-time PCR analysis of mRNA expression and
determination of enzyme activities

The observations made with DNA microarray analysis

revealed that dietary a-lipoic acid increased the mRNA

expression of proteins involved in drug metabolism and

attenuation of oxidative stress. To confirm this observation,

we analysed mRNA expression by real-time PCR analysis in

rats fed diets containing varying amounts of a-lipoic acid.

The observations made with real-time PCR analysis essentially

confirmed those made with DNA microarray analysis. In fact,

a-lipoic acid dose dependently increased the mRNA

expression of phase I enzymes (Cyp2b12, Cyp4b1, Fmo5,

Akr1d1, Akr7a3, Aldh1a1, Nqo1, Ces2c and Ephx1) (Fig. 1),

phase II enzymes (Gsta3, Gstp1, Gstt1, Gstt3, Ugt2b1 and

Sult1c2) and phase III transporters (Abcb1a and Abcc4)

(Fig. 2). We also confirmed that a-lipoic acid even at a dietary

level of 0·1 % (w/w) significantly increased the mRNA

expression of Nrli3. The magnitudes of the increase observed

in rats fed the diet containing 0·5 % (w/w) a-lipoic acid gene-

rally approximated those observed with DNA microarray

analysis except for a few genes (Ces2c, Gsta3 and Sult1c2).

The extent of changes in the expression of these genes

induced by a-lipoic acid was considerably lower when the

values were obtained using real-time PCR than when obtained

using DNA microarray analysis.

As a-lipoic acid increased the mRNA expression of some Gst

isoenzymes, we analysed the activity of Gst using four different

substrates (1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitro-

benzene, p-nitrobenzyl chloride and ethacrynic acid). The

enzyme activity measured using 1-chloro-2,4-dinitrobenzene

as a substrate was significantly higher in rats fed diets contain-

ing various amounts of a-lipoic acid than in those fed the diet

free of this compound (Fig. 3). The activity of the enzyme

measured using this substrate was about 1·5 times higher in

rats fed the diet containing 0·5 % (w/w) a-lipoic acid than in

those fed the diet free of this compound. Significant but less

prominent increases in enzyme activity were also observed

when 1,2-dichloro-4-nitrobenzene was used as a substrate in

rats fed diets containing 0·25 and 0·5 % (w/w) a-lipoic acid

than in those fed the a-lipoic acid-free diet. However, signifi-

cant increases in enzyme activity in rats fed diets containing

various amounts of a-lipoic were not observed when using

p-nitrobenzyl chloride and ethacrynic acid as substrates

(data not shown).
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Fig. 1. Levels of the mRNA of enzymes involved in phase I reactions in drug metabolism in the liver of rats fed diets containing various amounts of a-lipoic acid.

The levels of mRNA were quantified using real-time PCR analysis. (a) Cyp2b12, (b) Cyp4b1, (c) Fmo5, (d) Akr1d1, (e) Akr7a3, (f) Aldh1a1, (g) Aldh1a7, (h) Nqo1,

(i) Ces2c, (j) Ephx1. Values are means, with their standard errors represented by vertical bars (n 7). Mean values were significantly different from those of rats fed

the a-lipoic acid-free diet: *P,0·05; **P,0·01. The names of genes represented by gene symbols are given in Table 3.
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In Fig. 4(a), the effect of dietary a-lipoic acid on the mRNA

levels of proteins involved in the thiol redox regulation system

and Mt1a analysed by real-time PCR analysis among rats fed

diets containing varying amounts of a-lipoic acid is shown.

The results obtained using DNA microarray analysis were gen-

erally confirmed using real-time PCR analysis; that is, dietary

a-lipoic acid dose dependently increased the mRNA levels

of Gsr, Gpx2, Gclc, Gclm, Glrx2, Txnrd1, Srnx1 and Apex1.

The decrease in the mRNA expression of Glrx1 caused by

the diet containing 0·5 % (w/w) a-lipoic acid observed using

DNA microarray analysis was also observed using real-time

PCR analysis. However, the decrease was considerably attenu-

ated when the parameter was analysed using real-time PCR

analysis. A significant decrease in this parameter was not

confirmed in rats fed diets containing 0·1 and 0·25 % (w/w)

a-lipoic acid. As a-lipoic acid increased the mRNA expression

of subunits of a rate-limiting enzyme in glutathione

biosynthesis, we measured hepatic glutathione concentration

(Fig. 4(b)). Dietary a-lipoic acid dose dependently increased

this parameter, and values observed in rats fed diets

containing 0·25 and 0·5 % (w/w) a-lipoic acid were

significantly higher than those in rats fed the diet free of

a-lipoic acid. We also measured the activity of Gsr (Fig. 4(c)).

Dietary a-lipoic acid dose dependently increased the activity

of this enzyme. Consistent with the observation that

a-lipoic acid increased the mRNA expression of proteins

involved in the redox system, a-lipoic acid strongly and

dose dependently reduced the concentrations of malondial-

dehyde, a marker of lipid peroxidation, in both the serum

and liver (Fig. 4(d)).

Discussion

Previous studies have indicated that a-lipoic acid increases the

mRNA expression or the activity or protein levels of enzymes

involved in drug metabolism, including NAD(P)H:quinone

oxidoreductase(16–18), Gst-a2 and microsomal epoxide hydro-

lase(18), in various types of cultured cells. However, an animal

study examining the physiological activity of a-lipoic acid

affecting drug-metabolising enzymes has been lacking.

The present study using DNA microarray analysis unequivo-

cally demonstrated that dietary a-lipoic acid up-regulates the

gene expression of various proteins involved in drug meta-

bolism. Drug metabolism involves many enzymes that catalyse

numerous types of chemical reactions, and each reaction is

often catalysed by many isoenzymes differing in substrate

specificity. Therefore, the DNA microarray technique is quite

useful for identifying isoenzymes involved in drug metabolism
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Fig. 2. Levels of the mRNA of enzymes involved in phase II conjugation reactions and phase III transportation in drug metabolism as well as a transcription factor

regulating the gene expression of drug-metabolising enzymes in the liver of rats fed diets containing various amounts of a-lipoic acid. The levels of mRNA were

quantified using real-time PCR analysis. (a) Gsta3, (b) Gstp1, (c) Gstt1, (d) Gstt3, (e) Ugt2b1, (f) Sult1c2, (g) Abcb1a, (h) Abcc4 and (i) Nr1i3. Values are means,

with their standard errors represented by vertical bars (n 7). Mean values were significantly different from those of rats fed the a-lipoic acid-free diet: *P,0·05;

**P,0·01. The names of genes represented by gene symbols are given in Table 3.
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specifically affected by various physiological and dietary

factors.

The Cyp proteins are a superfamily of enzymes highly

expressed in the liver and involved in the metabolism of xeno-

biotic compounds, as well as the synthesis and catabolism of

endogenous compounds. Among the various Cyp, DNA micro-

array and real-time PCR analyses revealed that a-lipoic acid

dose dependently increased the mRNA expression of

Cyp4b1 and Cyp2b12. Cyp4b1 is involved in the v-oxidation

of lauric acid and mutagenic activation of some chemical

compounds(32,33). Some xenobiotic compounds, such as

terephthalic acid, have been shown to increase the mRNA

expression of Cyp4b1 in the liver(34), and caffeic acid has

been shown to increase the mRNA expression in the

colon(35). The role of Cyp2b12 in hepatic drug metabolism is

not clear.

Fmo are another superfamily of enzymes involved in drug

metabolism(36) and are expressed at high levels in the liver.

Many different enzyme genes have been identified in mam-

mals. Studies have indicated that Fmo1, Fmo3 and Fmo5 are

the major Fmo in mouse liver and Fmo5 predominates over

the other two isoforms(37). DNA microarray analysis revealed

that the mRNA expression of Fmo5 but not of other Fmo

was up-regulated by dietary a-lipoic acid. Some studies(37,38)

have shown that Fmo5, similar to other Fmo, can oxidise

various endogenous and xenobiotic substrates.

Many aldehydes generated during normal physiological

processes are cytotoxic and carcinogenic. Aldh detoxify

various aldehydes. Aldh is a superfamily consisting of many

genes. In the present study, a-lipoic acid increased the

mRNA expression of Aldh1a1, Aldh1a7 and Aldh18a1.

Studies have indicated that Aldh1a1 is involved in the detoxi-

fication of various xenobiotic aldehydes(39). As Aldh1a1 and

Aldh1a7 appear to be coordinately regulated(40,41), it is

plausible that not only Aldh1a1 but also Aldh1a7 plays a

crucial role in drug metabolism. The role of Aldh18a1 in

drug metabolism is not clear at present.

The role of Nqo1 and Ephx1 in drug metabolism has been

well documented(42,43). In the present study, we observed

that a-lipoic acid increased the mRNA expression of these

enzymes. This is agreement with the results of previous

studies in cultured cells(16–18).

It has been suggested that various Akr isoenzymes are

involved in the detoxification of lipid aldehydes and various

xenobiotic compounds(44). DNA microarray and real-time

PCR analyses revealed that a-lipoic acid dose dependently

increased the mRNA expression of Akr7a3, Akr1d1 and

Akr1c1. Akr7a3, alternatively known as aflatoxin aldehyde

reductase, was discovered(45) as an enzyme to reduce afla-

toxin B1-dihydrodiol to the dialcohol metabolite in rats.

Studies(46,47) have demonstrated that this enzyme also reduces

various aldehyde and keto substrates. In addition,

studies(46–48) have shown that many compounds having che-

mopreventive properties increase the expression of this

enzyme. Studies have indicated that Akr1c1 plays a crucial

role in the metabolism of xenobiotic compounds and in che-

moprevention(49). Akr1d1 may play a crucial role in bile acid

synthesis(50) rather than in drug metabolism. Data suggest

that several Akr isoforms convert polycyclic aromatic hydro-

carbons into carcinogenic compounds, referred to as remote

quinones(51). This does not comply with the consideration

that Akr are involved in chemoprevention.

Carboxylesterases comprise a superfamily of microsomal

enzymes that catalyse the hydrolysis of a variety of ester-

and amide-containing chemicals to their respective free

acids. They are involved in the detoxification or metabolic

activation of xenobiotic compounds(52). Dietary a-lipoic acid

increased the mRNA expression of Ces2c but not of other iso-

enzymes. Ces2 isoforms can hydrolyse various xenobiotic

compounds(52). Therefore, the increase in the mRNA

expression of a member of the Ces2 family may stimulate

the metabolism of xenobiotic compounds.

More than twenty Gst isoenzymes have so far been ident-

ified in rats. In spite of the fact that the DNA microarray con-

tained nineteen probes for various Gst, we observed that the

diet containing 0·5 % (w/w) a-lipoic acid significantly

increased the mRNA expression of Gsta3, Gstt1 and Gstt3,

Gstp1 and Gsto1 but not of other Gst more than 1·5-fold.

Therefore, the effect of a-lipoic acid on the mRNA expression

of Gst was again isoenzyme specific. It has been reported that

several synthetic or natural compounds with anti-carcinogenic

activities increase the mRNA or protein expression of Gsta3

and Gstp1 in rat liver(47,53). So, it is possible that these iso-

forms play a role in the detoxification of xenobiotic com-

pounds and cancer prevention. Also, some epidemiological

surveys have indicated that GSTT1 deletion in humans

increases the risk of cancer(54). Gstt3 has so far been identified

in mice and rats and is highly expressed in the liver(55). How-

ever, the physiological significance of this Gst isoenzyme in

detoxification and cancer prevention is not known. Gsto1 is

expressed abundantly in the liver, macrophages, and glial

and endocrine cells(56), but information regarding the role of

this isoform in drug metabolism is scarce. A case–control

study failed to find a clear-cut relationship between GSTO1

polymorphisms and cancer risk(57). We observed that dietary

a-lipoic acid increased cytosolic Gst activity when using

1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene

as substrates. However, the extent of the increases was

much lower than that observed for the mRNA levels of

Gsta3, Gstt1 and Gstt3, Gstp1 and Gsto1. This is not surprising
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Fig. 3. Activity of glutathione transferase in the liver of rats fed diets contain-

ing various amounts of a-lipoic acid. Enzyme activity was measured using

(a) 1-chloro-2,4-dinitrobenzene and (b) 1,2-dichloro-4-nitrobenzene as sub-

strates. Values are means, with their standard errors represented by vertical

bars (n 7). Mean values were significantly different from those of rats fed the

a-lipoic acid-free diet: *P,0·05; **P,0·01.
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because the effect of a-lipoic acid on Gst was isoenzyme

specific and it did not affect the mRNA levels of many other

Gst. a-Lipoic acid failed to affect enzyme activity when using

p-nitrobenzyl chloride and ethacrynic acid as substrates. The

substrate specificity of each Gst isoenzyme differs consider-

ably(56). Therefore, it is reasonable that a-lipoic acid did not

increase the amount of Gst molecules, which is specific to

p-nitrobenzyl chloride and ethacrynic acid.

Cytosolic Sult are phase II drug-metabolising enzymes. In

mammals, four to five gene families of Sult have been ident-

ified(58). Each family comprises more than one member, and

the DNA microarray used in the present study contained

seven probes for various Sult1 family members, five for Sult2

family members, and one each for Sult4 and Sult5 members.

Among the various Sult, a-lipoic acid increased the mRNA

expression of Sult1c2, but not of the other isoforms. It has

been reported that phenolic compounds including carcino-

gens can serve as substrates for Sult belonging to the 1c

family(58).

Among the various Ugt isoenzymes, a-lipoic acid

significantly increased the mRNA expression of UDP

glucuronosyltransferase 2 family, polypeptide B17 (Ugt2b17)

and isoenzyme(s) belonging to the Ugt1a family. Ugt belong-

ing to 1a and 2b families are abundantly expressed in the liver

and catalyse the glucuronidation of various endogenous and

xenobiotic compounds(59).

The Abc transporters transport a wide variety of exogenous

and endogenous substances across membranes. There are

seven subfamilies, termed Abca, Abcb, Abcc, Abcd, Abce,

Abcf and Abcg. Many Abc transporters are involved in the

export of xenobiotic compounds and hence in drug resist-

ance. In the present study, a-lipoic acid increased the mRNA

expression of three Abc transporters (one each from Abca,

Abcb and Abcc subfamilies). As these Abc subfamilies play

crucial roles in the export of xenobiotics out of the cell(60),

a-lipoic acid may stimulate drug metabolism through the

up-regulation of not only phase I and II enzymes but also

phase III transporters.

a-Lipoic acid increased the mRNA expression of

Nr1i3, alternatively known as constitutive androstane/

activated receptor (Car). This transcription factor activates

various genes involved in drug metabolism(28).
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Fig. 4. Levels of the mRNA of proteins involved in the antioxidation system ((a) Gsr, (b) Gpx2, (c) Gclc, (d) Gclm, (e) Glrx1, (f) Glrx2, (g) Txnrd1, (h) Srnx1,

(i) Apex1, (j) Mt1a), (k) concentration of glutathione, (l) activity of glutathione reductase in the liver as well as concentrations of malondialdehyde in the (m) serum

and (n) liver of rats fed diets containing various amounts of a-lipoic acid. The levels of mRNA were quantified using real-time PCR analysis. Values are means,

with their standard errors represented by vertical bars (n 7). Mean values were significantly different from those of rats fed the a-lipoic acid-free diet: *P,0·05;

**P,0·01. The names of genes represented by gene symbols are given in Table 3.
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Therefore, up-regulationof themRNAexpressionof this transcrip-

tion factor may account for thea-lipoic acid-dependent increase in

the mRNA levels of various proteins involved in drug metabolism.

In the present study, we demonstrated that a-lipoic acid

increases the gene expression of proteins involved in the anti-

oxidation system in addition to that of those involved in drug

metabolism. The observations that a-lipoic acid increased

hepatic glutathione concentration and mRNA levels of two

subunits of g-glutamylcysteine ligase (Gclc and Gclm) were

in agreement with those made by Suh et al.(61). Xu et al.(8)

have also recently reported that a-lipoic acid increases hepatic

glutathione concentration and activities of enzymes involved

in the antioxidation system. Moreover, in the present study

using DNA microarray analysis, we demonstrated that

a-lipoic acid increases the mRNA expression of various

other proteins presumed to be involved in the thiol redox

system, including Srxn1, Gpx2, Apex1, Txnrd1, Gsr and

Glrx2 (cytosolic form of Glrx), but decreases that of the mito-

chondrial form of Glrx (Glrx1). However, real-time PCR

analysis indicated that a-lipoic acid is rather weak in terms

of affecting the mRNA expression of Glrx1. In addition to

the proteins involved in the thiol redox system, a-lipoic

acid significantly increased the mRNA expression of

metallothioneins (Mt1a and Mt2A). Studies have indicated

that metallothionein plays a crucial role in the prevention of

oxidative stress in animals(29). Haeme oxygenase is involved

in the conversion of haeme into strong antioxidants (biliverdin

and biliverdin)(62). Therefore, haeme oxygenase is considered

to play a decisive role in the attenuation of the oxidative pro-

cess. So far, two forms of haeme oxygenase (Hmox1 and

Hmox2) have been identified in both humans and rodents.

Hmox1 but not Hmox2 is considered to play a crucial role

in protection against oxidative stress(62).

Some previous studies(61,63,64) have indicated that a-lipoic

acid increases the expression of genes involved in the anti-

oxidation system. The present study extended this evidence

and newly identified many genes involved in the antioxidation

system that are affected by a-lipoic acid. Therefore, it is

plausible that this at least partly accounts for the potent anti-

oxidation activity of dietary a-lipoic acid, as confirmed in

the present study using malondialdehyde as a marker of

lipid peroxidation.

A transcription factor called nuclear factor, erythroid derived

2, like 2 (Nfe2l2) or NFE2-related factor 2 (Nrf2) regulates the

gene expression of many enzymes involved in the antioxida-

tion system and drug metabolism(61,65). There is a possibility

that this transcription factor is involved in a-lipoic acid-depen-

dent changes in the mRNA expression of proteins involved in

drug metabolism and the antioxidation system. In fact, the

mRNA expression of many genes targeted by this transcription

factor, such as Nqo1, Hmox1, subunits of glutamate–cysteine

ligase (Gclm and Gclc), Ephx1, Srxn1 and Abcc4, was up-

regulated by dietary a-lipoic acid. Moreover, recent studies

have indicated that Nrf2 is also involved in the regulation of

hepatic lipid biosynthesis(66). Therefore, alterations in the

Nrf2 signalling pathway may account for not only the

a-lipoic acid-dependent changes in the mRNA expression of

proteins involved in drug metabolism and the antioxidation

system observed in the present study, but also the reduction

in lipid biosynthesis reported previously(12–14).

Finlay et al.(67) have recently reported the results of DNA

microarray analysis on the hepatic gene expression of young

and old rats fed a-lipoic acid. Consistent with our previous

studies(12–14) and the present study, they found that a-lipoic

acid strongly reduced the mRNA levels of proteins involved

in lipogenesis. They also suggested that a-lipoic acid altered

the expression of genes governing circadian rhythm. How-

ever, they did not make any comment regarding the effect

of a-lipoic acid on proteins involved in drug metabolism

and in the antioxidation system.

Previous animal experiments(8–11,63) using rats or mice have

employed dietary levels of a-lipoic acid of 0·05–1 % (w/w),

which are similar to the levels employed in the present

study. A nutritional survey conducted in the UK in 2008–9(68)

has indicated the median food intake of adult humans to be

435 and 338 g/d for men and women, respectively. A nutri-

tional survey conducted in Japan in 2011 (http://www.mhlw.

go.jp/stf/houdou/2r9852000002q1st-att/2r9852000002q1wo.pdf)

has also indicated the average food intake of adult humans to

be 447 and 374 g/d for men and women, respectively. There-

fore, the intake of diets containing 0·1, 0·25 and 0·5 % (w/w)

a-lipoic acid used in the present animal study corresponds

to the daily consumption of approximately 340–450,

850–1100 and 1700–2200 mg/person of this compound,

respectively, when extrapolated to humans. These values are

comparable to those employed in previous human studies

(200–2400 mg/d per person)(2). With regard to the safe dose

level of a-lipoic acid, the acute LD50 (lethal dose 50 %)

appeared to be very high in rats (.2000 mg/kg body

weight), although lower values have been reported in some

other species (dogs, mice and cats) and the NOAEL (no

observed adverse effect level) has been estimated to be

61·9 mg a-lipoic acid/kg body weight per d for rats(2). On

the basis of the body weight and food intake of rats observed

in the present study, approximate dose levels of a-lipoic acid

were estimated to be 16, 40 and 80 mg/kg body weight per d

for animals fed diets containing this compound at the levels of

0·1, 0·25 and 0·5 % (w/w), respectively. Therefore, these

values did not markedly exceed the NOAEL of a-lipoic acid,

although dietary levels of 0·25 and 0·5 % (w/w) significantly

reduced the body weight of animals. The diet containing

0·25 % (w/w) a-lipoic acid reduced the growth of rats without

significantly affecting food intake in the present study. In this

context, it has been reported that a-lipoic acid increases

energy expenditure(69,70) and reduces intestinal sugar absorp-

tion(71) in rats.

It has been reported that orally administered a-lipoic acid in

rats is well absorbed from the intestine(2,72). Pharmacokinetic

analyses of the metabolic fate of orally and intravenously

administered radiolabelled a-lipoic acid have indicated that

66 % of orally administered a-lipoic acid is absorbed from

the intestine. An alternative evaluation based on the measure-

ments of urinary excretion of 14C gave a higher value of

absorption (93 %)(72).

In conclusion, DNA microarray and real-time PCR analyses

revealed that dietary a-lipoic acid strongly increases the
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mRNA expression of various proteins involved in drug

metabolism and the antioxidation system. Therefore, it is

expected that a-lipoic acid would be effective at ameliorating

pathological conditions induced by physiological factors and

xenobiotic toxic compounds. In this context, it has been

well demonstrated that compounds having the propensity to

increase the activity and gene expression of enzymes involved

in drug metabolism exhibit chemopreventive effects. In fact,

some studies have indicated that a-lipoic acid is effective

against tumour development(73). Evaluation of the physio-

logical effect of a-lipoic acid in pathological conditions

would clarify the physiological significance of the

up-regulation of the gene expression of proteins involved in

drug metabolism and antioxidation by a-lipoic acid. This

needs to be clarified in future studies.
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