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Abstract
We consider bond percolation on high-dimensional product graphs G=�t

i=1G(i), where � denotes the
Cartesian product. We call the G(i) the base graphs and the product graph G the host graph. Very recently,
Lichev (J. Graph Theory, 99(4):651–670, 2022) showed that, under a mild requirement on the isoperimetric
properties of the base graphs, the component structure of the percolated graph Gp undergoes a phase
transition when p is around 1

d , where d is the average degree of the host graph.
In the supercritical regime, we strengthen Lichev’s result by showing that the giant component is in fact
unique, with all other components of order o(|G|), and determining the sharp asymptotic order of the
giant. Furthermore, we answer two questions posed by Lichev (J. Graph Theory, 99(4):651–670, 2022):
firstly, we provide a construction showing that the requirement of bounded degree is necessary for the
likely emergence of a linear order component; secondly, we show that the isoperimetric requirement
on the base graphs can be, in fact, super-exponentially small in the dimension. Finally, in the subcriti-
cal regime, we give an example showing that in the case of irregular high-dimensional product graphs,
there can be a polynomially large component with high probability, very much unlike the quantitative
behaviour seen in the Erdős-Rényi random graph and in the percolated hypercube, and in fact in any reg-
ular high-dimensional product graphs, as shown by the authors in a companion paper (Percolation on
high-dimensional product graphs. arXiv:2209.03722, 2022).
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1. Introduction andmain results
In 1957, Broadbent andHammersley [6] initiated the study of percolation theory in order tomodel
the flow of fluid through amediumwith randomly blocked channels. In (bond) percolation, given a
graph G, the percolated random subgraph Gp is obtained by retaining every edge of the host graph
G independently and with probability p. If we take the host graph G to be the complete graph
Kd+1 then Gp coincides with the well-known binomial random graph model G(d + 1, p). In their
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seminal paper from 1960, Erdős and Rényi [12] showed that G(d + 1, p)1 undergoes a dramatic
phase transition, with respect to its component structure, when p is around 1

d . More precisely,
given a constant ε > 0 let us define y= y(ε) to be the unique solution in (0, 1) of the equation

y= 1− exp
(−(1+ ε)y

)
, (1)

where we note that y is an increasing continuous function on (0,∞) with y(ε)= 2ε −O(ε2).

Theorem 1 ([12]). Let ε > 0 be a small enough constant. Then, with probability tending to one as
d → ∞,

(a) if p= 1−ε
d , then all the components of G(d + 1, p) are of order Oε

(
log d

)
; and,

(b) if p= 1+ε
d , then there exists a unique giant component in G(d + 1, p) of order (1+

o(1))y(ε)d. Furthermore, all the other components of G(d + 1, p) are of order Oε

(
log d

)
.

We refer the reader to [3, 14, 17] for a systematic coverage of random graphs, and to the
monographs [5, 15, 18] on percolation theory.

This phenomenon of such a sharp change in the order of the largest component has been
subsequently studied in many other percolation models. Some well-studied examples come from
percolation on lattice-like structures with fixed dimension (see [16] for a survey onmany results in
this subject). Another extensively studiedmodel is the percolated hypercube, where the host graph
is the d-dimensional hypercube Qd. Indeed, answering a question of Erdős and Spencer [13], Ajtai,
Komlós, and Szemerédi [1] proved that Qd

p undergoes a phase transition quantitatively similar to
the one which occurs in G(d + 1, p), and their work was later extended by Bollobás, Kohayakawa,
and Łuczak [4].

Theorem 2 ([1, 4]). Let ε > 0 be a small enough constant. Then, with probability tending to one as
d → ∞,

(a) if p= 1−ε
d , then all the components of Qd

p are of order Oε(d); and,

(b) if p= 1+ε
d , then there exists a unique giant component of order (1+ o(1))y(ε)2d.

Furthermore, all the other components of Qd
p are of order Oε(d).

Note that, since |V(Qd)| = 2d, in both Theorems 1 and 2 the likely order of the largest component
changes from logarithmic in the order of the host graph in the subcritical regime, to linear in
the order of the host graph in the supercritical regime, whilst the second-largest component in
the supercritical regime remains of logarithmic order. Furthermore, in both models this giant
component is the unique component of linear order, and covers the same asymptotic fraction of
the vertices in each case. We informally refer to this quantitative behaviour as the Erdős-Rényi
component phenomenon.

Recently, Lichev [19] initiated the study of percolation on some families of high-dimensional
graphs, those arising from the product of many bounded-degree graphs. Given a sequence of
graphs G(1), . . . ,G(t), the Cartesian product of G(1), . . . ,G(t), denoted by G=G(1)� · · ·�G(t) or
G=�t

i=1G(i), is the graph with the vertex set

V(G)=
{
v= (v1, v2, . . . , vt) : vi ∈V(G(i)) for all i ∈ [t]

}
,

1In fact, Erdős and Rényi worked in the closely related uniform random graph model G(d + 1,m). As we mainly consider
graphs with average degree d, we use the slightly unusual notation of G(d + 1, p) instead of G(n, p), to make the comparison
of the results simpler.
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and the edge set

E(G)=
⎧⎨
⎩uv :

there is some i ∈ [t] such that uivi ∈ E
(
G(i))

and uj = vj for all i �= j

⎫⎬
⎭ .

We call G(i) the base graphs of G. Throughout the rest of the paper, we denote by |G| the number
of vertices of the graph G, and use t for the number of base graphs in the product. We denote by
d := d(G) the average degree of a given graph G.

Considering percolation in these high-dimensional product graphs, Lichev [19] showed the
existence of a threshold for the appearance of a component of linear order in these models,
under some mild assumptions on the isoperimetric constants of the base graphs. The isoperimetric
constant i(H) of a graph H is a measure of the edge-expansion of H and is given by

i(H)= min
S⊆V(H),

|S|≤|V(H)|/2

e(S, SC)
|S| .

Throughout the paper, all asymptotics are with respect to t, and we use the standard Landau
notations (see e.g., [17]). We often state results for properties that hold whp, (short for “with high
probability”), that is, with probability tending to 1 as t tends to infinity.

Theorem 3 ([19]). Let C, γ > 0 be constants and let ε > 0 be a small enough constant. Let
G(1), . . . ,G(t) be graphs such that 1≤ �

(
G(j))≤ C and i

(
G(j))≥ t−γ for all j ∈ [t]. Let G=

�t
j=1G(j). Then, whp

1. if p= 1−ε
d , then all the components of Gp are of order at most exp

(
− ε2t

9C2

)
|G|;

2. if p= 1+ε
d , then there exists a positive constant c1 = c1(ε, C, γ ) such that the largest

component of Gp is of order at least c1|G|.
Lichev asked if the conditions in Theorem 3 could be weakened.

Question 4 ([19, Question 5.1]). Does Theorem 3 still hold without the assumption on the
maximum degrees of the G(j)?

Question 5 ([19, Question 5.2]). Does Theorem 3 still hold if the isoperimetric constant i
(
G(j))

decreases faster than a polynomial function of t?

Furthermore, in comparison to Theorems 1 and 2, we note that Theorem 3 only gives a rough,
qualitative description of the phase transition, and it is natural to ask if a more precise, quanti-
tative description of the component structure of these percolated product graphs in the sub- and
supercritical regimes can be given, in the vein of the Erdős-Rényi component phenomenon, and
if not in general, then under which additional assumptions?

In a recent paper [9], the authors gave a partial answer to this final question, showing that it is
sufficient to assume that the base graphs are all regular and of bounded order.

Theorem 6 (Informal [9]). Let C > 1 be a constant and let G=�t
j=1G(j) be a product graph where

G(j) is connected and regular and 1<
∣∣V (G(j))∣∣≤ C for each j ∈ [t]. Then Gp undergoes a phase

transition around p= 1
d , which exhibits the Erdős-Rényi component phenomenon.

In this paper, we will investigate further the properties of the phase transition in irregular high-
dimensional product graphs. Firstly, we will give a negative answer to Question 4, showing that
if the maximum degree of the base graphs is allowed to grow (as a function in t), then the largest
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component may have sublinear order for any p= �
( 1
d
)
. Let us write S(r, s) for the graph formed

by taking the complete graph Kr on r vertices and adding s leaves to each vertex of Kr .

Theorem 7. Let r = r(t) and s= s(t) be integers, which may tend to infinity as t tends to infinity,
such that r = ω(st). Let G(j) =K2 for 1≤ j< t, let G(t) = S(r, s) and let G=�t

i=1G(i), where we note
that d = (1+ o(1)) rs . Let p≤ 1

4st . Then, whp the largest component of Gp has order at most 2|G|
s .

Note that for the base graphs defined in Theorem 7, we have i
(
G(j))= 1 for 1≤ j≤ t − 1, and

i
(
G(t))= �

( 1
s
)
, and so, as long as s is not too large, this graph will satisfy the requirements of

Theorem 3 regarding the isoperimetric constant. However, by choosing s= ω(1) and r = ω(s2t),
so that the upper bound on the edge probability p in Theorem 7 is such that 1

4st = ω
( s
r
)= ω

( 1
d
)
,

we see that even significantly above the point p∗ = 1
d , the largest component in the percolated

product graph will typically have size o(|G|). The key observation in the construction is that most
vertices in G have degree t while d � t. Thus, these vertices are likely to be isolated for p which is
around 1

d .
However, we are able to give a positive answer to Question 5, showing that in fact a threshold

for the existence of a linear sized component in a percolated product graph exists even when
the isoperimetric constants of the base graphs are super-exponentially small in t. Furthermore, we
strengthen Lichev’s [19] result by determining the asymptotic order of the giant, and showing that
it is in fact unique.

Theorem 8. Let C > 0 be a constant, and let ε > 0 be a small enough constant. Let G(1), . . . ,G(t) be

graphs such that for all j ∈ [t], 1≤ �
(
G(j))≤ C and i

(
G(j))≥ t−t

1
4 . Let G=�t

j=1G(j), let d be the
average degree of G and let p= 1+ε

d . Then, whp

(a) Gp contains a unique giant component of order (1+ o(1))y(ε)|G|, where y(ε) is defined
according to (1);

(b) all other components of Gp are of order o(|G|).
Note that, this is the same asymptotic fraction of the vertices as in Theorems 1 and 2.
Whilst Theorem 8 concerns the size of the largest component in the supercritical regime,

which follows the Erdős-Rényi component phenomenon, we are also able to give an example
that demonstrates that, if the base graphs are allowed to be irregular, the percolated product graph
can also significantly deviate in behaviour from the Erdős-Rényi component phenomenon in the
subcritical regime.

Theorem 9. Let s be a large enough integer. Let G(i) = S(1, s), that is, a star with s leaves, for every
1≤ i≤ t, and let G=�t

i=1G(i), noting that d = 2st
s+1 . Let p= c

t for c> 1
3 . Then, whp the largest

component of Gp is of order at least |G|1−s−
1
6 .

Note that Theorem 9 demonstrates the necessity of the assumption that the base graphs are regu-
lar in Theorem 6, as well as the near optimality of the bound in Theorem 3 (a), in terms of the size
of the largest component in the subcritical regime. Indeed, since t = �( log |G|) and �

(
G(i))=

s= �(1) for all i, here we have that the largest component has order at least exp (−�(t)) |G|,
which matches the bound in Theorem 3 (a), up to the dependence on p and maxi{�

(
G(i))} in the

leading constant. Furthermore, note that as s grows, the bound on the largest component grows
close to linear in |G|.

The structure of the paper is as follows. In Section 2 we introduce some preliminary tools and
lemmas we will use in the paper. In Section 3 we give a (short) proof for Theorem 7. In Section 4
we provide a general framework for showing the existence of a large component, in particular in

https://doi.org/10.1017/S0963548323000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000469


Combinatorics, Probability and Computing 5

high-dimensional product graphs. We then use this framework to prove Theorem 8 and, with an
additional analysis of the structure of the t-fold product of stars, to prove Theorem 9, where the
proofs of these two theorems are the most involved part of the paper. Finally, in Section 5 wemake
some brief comments on our results and indicate directions for further research.

2. Preliminaries
With respect to high-dimensional product graphs, our notation follows that of [9]. Given a vertex
u= (u1, u2, . . . , ut) in V(G) and i ∈ [t] we call the vertex ui ∈V

(
G(i)) the ith coordinate of u.

We note that, as is standard, we may still enumerate the vertices of a given set M, such as M =
{v1, . . . , vm} with vi ∈V(G). Whenever confusion may arise, we will clarify whether the subscript
stands for enumeration of the vertices of the set, or for their coordinates.

WhenG(i) is a graph on a single vertex, that is,G(i) = ({u},∅), we call it trivial (and non-trivial,
otherwise). We define the dimension of G=�t

i=1G(i) to be the number of base graphs G(i) of G
which are non-trivial.

GivenH ⊆G=�t
i=1G(i), we callH a projection of G ifH can be written asH =�t

i=1H(i) where
for every 1≤ i≤ t, H(i) =G(i) or H(i) = {vi} ⊆V

(
G(i)); that is, H is a projection of G if it is the

Cartesian product graph of base graphs G(i) and their trivial subgraphs. In that case, we further
say that H is the projection of G onto the coordinates corresponding to the trivial subgraphs. For
example, let ui ∈V

(
G(i)) for 1≤ i≤ k, and let H = {u1}� · · ·�{uk}�G(k+1)� · · ·�G(t). In this

case we say that H is a projection of G onto the first k coordinates.
Given a graph H and a vertex v ∈V(H), we denote by Cv(H) the component of v in H. We

denote byNH(S) the external neighbourhood of a set S in the graphH, by EH(A, B) the set of edges
between A and B in H, and by eH(A, B) := |EH(A, B)|. When the graph we refer to is obvious, we
may omit the subscript. We omit rounding signs for the sake of clarity of presentation.

2.1. The BFS algorithm
For the proofs of our main results, we will use the Breadth First Search (BFS) algorithm. This
algorithm explores the components of a graph G by building a maximal spanning forest.

The algorithm receives as input a graphG and a linear ordering σ on its vertices. The algorithm
maintains three sets of vertices:

• S, the set of vertices whose exploration is complete;
• Q, the set of vertices currently being explored, kept in a queue; and
• T, the set of vertices that have not been explored yet.

The algorithm starts with S=Q= ∅ and T =V(G), and ends when Q∪ T = ∅. At each step,
if Q is non-empty, the algorithm queries the vertices in T, in the order σ , to ascertain if they are
neighbours in G of the first vertex v inQ. Each neighbour which is discovered is added to the back
of the queue Q. Once all neighbours of v have been discovered, we move v from Q to S. If Q= ∅,
then we move the next vertex from T (according to σ ) into Q. Note that the set of edges queried
during the algorithm forms a maximal spanning forest of G.

In order to analyse the BFS algorithm on a random subgraph Gp of a graph G with m edges,
we will utilise the principle of deferred decisions. That is, we will take a sequence (Xi : 1≤ i≤m) of
i.i.d. Bernoulli(p) random variables, which we will think of as representing a positive or negative
answer to a query in the algorithm. When the ith edge of G is queried during the BFS algorithm,
we will include it in Gp if and only if Xi = 1. It is clear that the forest obtained in this way has the
same distribution as a forest obtained by running the BFS algorithm on Gp.
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2.2. Preliminary lemmas
We will make use of two standard probabilistic bounds. The first is a typical Chernoff type tail
bound on the binomial distribution (see, for example, Appendix A in [2]).

Lemma 10. Let n ∈N, let p ∈ [0, 1], and let X ∼ Bin(n, p). Then for any positive m with m≤ np
2 ,

P
[|X − np| ≥m

]≤ 2 exp
(

− m2

3np

)
.

The second is the well-known Azuma-Hoeffding concentration inequality (see, for example,
Chapter 7 in [2]).

Lemma 11. Let X = (X1, X2, . . . , Xm) be a random vector with independent entries and with range
	 =∏i∈[m] 	i, and let f :	 →R be such that there exists C = (C1, . . . , Cm) ∈R

m such that for
every x, x′ ∈ 	 which differ only in the jth coordinate,

|f (x)− f (x′)| ≤ Cj.

Then, for every m≥ 0,

P
[∣∣f (X)−E

[
f (X)

] ∣∣≥m
]≤ 2 exp

(
− m2

2
∑m

i=1 C2
i

)
.

We will use the following result of Chung and Tetali [8, Theorem 2], which bounds the
isoperimetric constant of product graphs.

Theorem 12 ([8]). Let G(1), . . . ,G(t) be non-trivial graphs and let G=�t
i=1G(i). Then

min
j

{
i
(
G(j)
)}

≥ i(G)≥ 1
2
min
j

{
i
(
G(j)
)}

.

The following projection lemma, which is a key tool in [9, Lemma 4.1], allows us to cover
a small set of points in a product graph with a disjoint set of high-dimensional projections.
This allows us to explore the neighbourhoods of these points in the percolated subgraph in an
independent fashion.

Lemma 13 (Projection Lemma). Let G=�t
i=1G(i) be a product graph with dimension t. Let M ⊆

V(G) be such that |M| =m≤ t. Then, there exist pairwise disjoint projections H1, . . . ,Hm of G, each
having dimension at least t −m+ 1, such that every v ∈M is in exactly one of these projections.

We will make repeated use of the following simple, but powerful, observation of Lichev [19]
about the degree distribution in a product graph. If G is a product graph in which all base graphs
have maximum degree bounded by C, then for any v,w ∈V(G) we have

|dG(v)− dG(w)| ≤ (C − 1) · distG(v,w). (2)

In particular, if v is a vertex with degree significantly above or below d, then, despite the fact that
G may be quite irregular, vertices close to v will still have degree significantly above or below d,
and the percolated subgraph close to v will look either super- or subcritical, respectively.

Finally, for the proof of Theorem 9, we will utilise the structure, and in particular the
isoperimetric inequalities, of both the Hamming graph and the Johnson graph.

Given positive integers t and s, the Hamming graph H(t, s) is the graph with vertex set [s]t in
which two vertices are adjacent if they differ in a single coordinate. Alternatively, H(t, s) can be
defined as the t-fold Cartesian product of the complete graphs Ks. In particular, it follows from
Theorem 12 that for any non-negative integers z ≤ t,

i(H(t − z, s))≥ 1
2
i(Ks)= s

2
. (3)
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Given positive integers t and z, the Johnson graph J(t, z) is the graph with vertex set
([t]
z
)
in

which two z-sets I and K are adjacent if |I�K| = 2. We note that J(t, z) is the induced subgraph
of the square of Qt on the vertex set of the zth layer,

([t]
z
)
. We will make use of the next vertex-

isoperimetric inequality for Johnson graphs, which follows from the work of Christofides, Ellis
and Keevash [7].

Theorem 14 ([7]). Let t and z be positive integers with z < t and let α ∈ (0, 1). Then there exists a
constant c> 0 such that for any subset A⊆V(J(t, z)) of size |A| = α

(t
z
)

∣∣NJ(t,z)(A)
∣∣≥ c

√
t

z(t − z)
(1− α)|A|.

3. Unbounded degree
Given r = r(t) and s= s(t), recall that S(r, s) is the graph formed by taking a complete graph Kr
on r vertices and adding s leaves to each vertex of Kr . Note that i(S(r, s))= �

( 1
s
)
. Indeed, let

A⊆V(S(r, s)) with |A| ≤ r(s+1)
2 . Let A1 =A∩V(Kr) and let A2 =A \A1. First, suppose that 3r

4 ≤
|A1| ≤ r. Then at least, say, |A1|

10 of the vertices of A1 have at least s
10 leaves outside of A, and thus

|N(A)| = �(rs)= �(|A|). Now, if 0< |A1| < 3r
4 , then |N(A)| ≥ r − |A1| = �

( |A|
s

)
. Finally ifA1 =

∅, then clearly |N(A)| ≥ |A|
s . In either case, we have that |N(A)| = �

( |A|
s

)
, and thus i(S(r, s))=

�
( 1
s
)
.

Let G(j) =K2 for 1≤ j< t, let G(t) = S(r, s) and let G=�t
i=1G(i). Observe that

|V(G)| = 2t−1|S(r, s)| = 2t−1(r + rs)= 2t−1r(s+ 1),

and, as long as r = ω(st),

|E(G)| = 1
2
2t−1r (s+ r − 1+ (t − 1)) + 1

2
2t−1rs (1+ (t − 1))

= 1
2
2t−1

(
r(r + s+ t − 2)+ rs (1+ (t − 1))

)
= (1+ o(1))2t−2r2,

and so, if s= ω(1), we have that d = (1+ o(1)) r2
r(s+1) = (1+ o(1)) rs .

In order to prove Theorem 7, we will show that typically, when p≤ 1
4st , almost all the vertices

of Gp are isolated vertices.

Lemma 15. If p≤ 1
4st , then whp at least 2t−1rs

(
1− 1

s
)
vertices of Gp are isolated vertices.

Proof. Let {zi : i ∈ [r]} ⊆V(S(r, s)) be the vertex set of the complete graph Kr and let {�i,j : j ∈ [s]}
be the set of leaves adjacent to the vertex zi for each i ∈ [r]. Let

L= {x ∈V(G) : xt = �i,j for some i ∈ [r], j ∈ [s]}.
Note that dG(x)= t for every v ∈ L and that |L| = 2t−1rs.

Let XL be the number of edges in Gp which are incident with a vertex in L. Clearly XL is
stochastically dominated by Bin(|L|t, p) and hence, by Chebyshev’s inequality, whp

XL ≤ 2|L|tp≤ |L|
2s

.
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Therefore, whp, the number of isolated vertices in L is at least

|L|
(
1− 1

s

)
≥ 2t−1rs

(
1− 1

s

)
.

�
The proof of Theorem 7 will now be a fairly straightforward corollary of Lemma 15.

Proof of Theorem 7. Since |G| = 2t−1r(s+ 1) and by Lemma 15 whp there are at least
2t−1rs

(
1− 1

2s
)
isolated vertices inGp, it follows thatwhp the number of vertices in any non-trivial

component is at most

2t−1r(s+ 1)− 2t−1rs
(
1− 1

s

)
= |G|

(
1−

(
1− 1

s+ 1

)(
1− 1

s

))
= 2|G|

s+ 1
≤ 2|G|

s
.

�

4. Irregular graphs of bounded degree
In many standard proofs of the existence of a phase transition in percolation models, for example
in [1, 4, 9, 11, 19] and many more, in order to show the existence of a linear sized component
in the supercritical regime, one first shows that whp a positive proportion of the vertices in the
host graph G are contained in big components, that is, components of size at least k for some
appropriately chosen threshold k. One then completes the proof by using a sprinkling argument
to show that whp almost all of these big components merge into a single, giant component.

More concretely, the first part of the argument is normally shown by bounding from below
the probability that a fixed vertex is contained in a big component, together with some concen-
tration result. In most cases, at least on a heuristic level, this is done by comparing a component
exploration process near a vertex v to some supercritical branching process.

In some ways, (2) allows us to say that, in product graphs, the vertex degree is almost constant
locally. Hence, the threshold probability above which it is likely that v will lie in a big component
will depend not on the global parameters of the graph, but rather just locally on the degree of the
vertex v.

We will use this observation in two ways. Firstly, when the base graphs have bounded maximal
degree, typical concentration bounds will imply that almost all the vertices have degree very close
to the average degree of the graph, and so these methods will allow us to estimate the proportion
of vertices which are typically contained in big components, and hence eventually the giant com-
ponent, in the proof of Theorem 8. The second way, which is perhaps more unusual, will be to
apply this reasoning to the vertices in the host graph whose degrees are significantly higher than
the average degree, to see that whp many of these vertices are contained in big components even
in the subcritical regime, which we will use in the proof of Theorem 9.

We thus begin with the following lemma, utilising the tools developed in [9, Lemma 4.2], which
provides a lower bound on the probability that a vertex v belongs to a big component, provided
that the percolation probability is significantly larger than 1

dG(v) . However, since it will be essential
for us to be able to grow components of order super-polynomially large in t in order to prove
Theorem 8, unlike in the proof of [9, Lemma 4.2], we will need to run our inductive argument
for ω(1) steps, which will necessitate a more careful and explicit handling of the error terms and
probability bounds in the proof.

Lemma 16. Let C > 1 be a constant and let ε > 0 be sufficiently small. Let G(1), . . . ,G(t) be graphs
such that 1≤ �

(
G(i))≤ C for all i ∈ [t]. Let G=�t

i=1G(i). Let v ∈V(G) be such that d := dG(v)=
ω(1). Let k= k(t)= o

(
d1/3

)
be an integer and let mk(d)= d

k
6 . Then, for any p≥ 1+ε

d there exists
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c= c(ε, d, k)≥ ( ε
5
)k such that

P
[|Cv(Gp)| ≥ cmk

]≥ y− o(1),

where y := y(ε) is as defined in (1).

Proof. We argue by induction on k, over all possible values ofC, d, small enough ε and all possible
choices of G(1), . . . ,G(t).

For k= 1, we run the BFS algorithm (as described in Section 2.1) on Gp starting from v with a
slight alteration: we terminate the algorithm once min

(
|Cv(Gp)|, d 1

2
)
vertices are in S∪Q. Note

that at every point in the algorithm we have |S∪Q| ≤ d
1
2 . Therefore, since at each point in the

modified algorithm S∪Q spans a connected set, by (2), at each point in the algorithm the first ver-
tex u in the queue has degree at least d − Cd

1
2 inG, and thus has at least d − (C + 1)d

1
2 neighbours

(in G) in T.
Hence, we can couple the tree B1 built by this truncated BFS algorithm with a Galton-Watson

tree B2 rooted at v with offspring distribution Bin
(
d − (C + 1)d

1
2 , p
)
such that B1 ⊆ B2 as long as

|B1| ≤ d
1
2 . Therefore, since

(
d − (C + 1)d

1
2
)

· p≥
(1+ ε)

(
d − (C + 1)d

1
2
)

d

≥ (1+ ε)
(
1− (C + 1)d− 1

2
)

≥ 1+ ε − 2Cd− 1
2 ,

standard results imply that B2 grows infinitely large with probability at least y
(
ε − 2Cd− 1

2
)

− o(1)
(see, for example, [10, Theorem 4.3.12]). Thus, by the above and by (1), with probability at least
y− o(1) we have that |Cv(Gp)| ≥ d

1
2 . Since c(ε, d, 1)≤ 1, it follows that the statement holds for

k= 1, for all C, d, small enough ε and all possible choices of G(1), . . . ,G(t).

Let k≥ 2 and assume the statement holds with c(ε′, d, k− 1)=
(

ε
′
5

)k−1
for all C, d, small

enough ε′ and all possible choices of G(1), . . . ,G(t). We argue via a two-round exposure. Set
p2 = d− 4

3 and p1 = p−p2
1−p2 so that (1− p1)(1− p2)= 1− p. Note that Gp has the same distribution

as Gp1 ∪Gp2 , and that p1 = 1+ε
′

d with ε′ ≥ ε − d− 1
3 . In fact, we will not expose either Gp1 or Gp2

all at once, but in several stages, each time considering only some subset of the edges.
We begin in a manner similar to k= 1. We run the BFS algorithm on Gp1 , starting from v,

and we terminate the exploration once min
(
|Cv(Gp1 )|, d

1
2
)
vertices are in S∪Q. Once again, by

standard arguments, we have that |Cv(Gp1 )| ≥ d
1
2 with probability at least y(ε′ − 2Cd− 1

2 )− o(1)=
y− o(1) (where the last equality is by (1)).

Let W0 ⊆ Cv(Gp1 ) be the set of vertices explored in this process, and let A1 be the event that
|W0| = d

1
2 , whereby the above

P[A1]≥ y− o(1). (4)

We assume in what follows that A1 holds. Let us writeW0 = {v1, . . . , vd 1
2
}, and note that v ∈W0

is one of the vi. Using Lemma 13, we can find pairwise disjoint projections H1, . . . ,Hd
1
2
of G,

each having dimension at least t − d
1
2 , such that each vi ∈W0 is in exactly one of the Hi (see the
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10 S. Diskin et al.

Figure 1. The induction step in Lemma 16.

first and second steps in Figure 1). Note that d ≤ �(G)≤ Ct, and so d
1
2 ≤ t, thus we can apply

Lemma 13.
Thus, it follows from observation (2) that, for all i ∈

[
d

1
2
]
, we have

|dG(v)− dG(vi)| ≤ (C − 1) · distG(v, vi)≤ Cd
1
2 ,

and therefore
dHi(vi)≥ dG(vi)− Cd

1
2 ≥ dG(v)− 2Cd

1
2 .

LetW =⋃
i∈
[
d
1
2
] NHi(vi). Then,W ⊆NG(W0) and, since theHi are pairwise disjoint, by the above

|W| ≥ d
3
2 − 2Cd.

We now expose the edges between W0 and W in Gp2 (see the third step in Figure 1). Let us
denote the vertices in W that are connected with W0 in Gp2 by W′. Then, |W′| stochastically
dominates

Bin
(
d

3
2 − 2Cd, p2

)
.

Thus, if we letA2 be the event that |W′| ≥ d
1
6
3 and |W′| ≤ d

1
2 , then by Lemma 10 we have that

P[A2|A1]≥ 1− exp

(
−d

1
6

15

)
. (5)

We assume in what follows thatA2 also holds.
LetWi′ =W′ ∩V(Hi), and note that the vertices inW′ are neighbours inG of vi. Now, for each

i, we apply once again Lemma 13 to find a family of |W′i| := �i ≤ d
1
2 pairwise disjoint projections

of Hi, which we denote by Hi,1, . . . ,Hi,�i , such that every vertex ofW′i is in exactly one of the Hi,j,
and each of theHi,j is of dimension at least t − 2d

1
2 (see the fourth step in Figure 1). Furthermore,

we denote by vi,j the unique vertex ofWi′ that is in Hi,j (note that, by the above, vi,j is a neighbour
of vi in G). Again, by (2), for all i, j

dHi,j(vi,j)≥ dG(vi,j)− 2Cd
1
2 ≥ dG(vi)− 2Cd

1
2 − C ≥ dG(v)− 4Cd

1
2 ,

where we used that, by (2), dG(vi)− dG(vi,j)≤ C · distG(vi, vi,j)= C.
Crucially, note that when we ran the BFS algorithm on Gp1 , we did not query any of the edges

in any of the Hi,j. Indeed, we only queried edges in W0 and between W0 and its neighbourhood,
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and by construction E(Hi,j)∩ E (W0 ∪NG(W0)) =∅. Noting that

p1 · dHi,j(vi,j)≥
1+ ε − d− 1

3

d

(
d − 4Cd

1
2
)

≥ 1+ ε − 2d− 1
3 ,

we may thus apply the induction hypothesis to vi,j in Gp1 ∩Hi,j and conclude that

P

[
|Cvi,j

(
Gp1 ∩Hi,j

) | ≥ c
(
ε − 2d− 1

3 , dHi,j(vi,j), k− 1
)
mk−1

(
dHi,j(vi,j)

)]
≥ y
(
ε − 2d− 1

3
)

− o(1)

≥ y− o(1),
where the first inequality follows from the induction hypothesis, and the second inequality follows
from (1). Furthermore, these events are independent for each Hi,j (see the fifth step in Figure 1).

Let us define the following indicator random variables

I(vi,j) :=
⎧⎨
⎩1 if |Cvi,j(Gp1 ∩Hi,j)| ≥ c

(
ε − 2d− 1

3 , dHi,j(vi,j), k− 1
)
mk−1

(
dHi,j(vi,j)

)
;

0 otherwise,

and letA3 be the event that ∑
vi,j∈W′

I(vi,j)≥ yd
1
6

4
.

Then, by Lemma 10 and by (1),

P [A3|A2,A1]≥ 1− exp

(
−yd

1
6

20

)
≥ 1− exp

(
−εd

1
6

20

)
. (6)

In particular, by (4), (5) and (6),

P[A1 ∪A2 ∪A3]≥ y− o(1)− exp

(
−εd

1
6

20

)
− exp

(
−d

1
6

15

)
= y− o(1). (7)

However, we note that

c
(
ε − 2d− 1

3 , dHi,j(vi,j), k− 1
)
mk−1 ≥

(
1− 1

2εd
1
3

)k−1 (ε

5

)k−1
mk−1

(
dHi,j(vi,j)

)

≥ (1− o(1))
(ε

5

)k−1
mk−1

(
dHi,j(vi,j)

)
,

where the last inequality follows since k= o
(
d1/3

)
. Hence, ifA3 holds, then by (1)

|Cv(Gp)| ≥
⎛
⎜⎝ ∑

vi,j∈W′
I(vi,j)

⎞
⎟⎠ · c

(
ε − 2d− 1

3 , dHi,j(vi,j), k− 1
)
mk−1

(
dHi,j(vi,j)

)

≥
( y
4
d

1
6
)

· (1− o(1))
(ε

5

)k−1
(d − 4Cd

1
2 )

k−1
6

≥
(ε

5

)k
mk,

and so the induction step holds by (7). �
Figure 1 illustrates the induction step in the above Lemma.
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We note that the choice of p2 = d− 4
3 in the proof of Lemma 16 was relatively arbitrary, and

we could take p2 = d−γ for any 1< γ < 3
2 , which would lead to a similar statement for all k=

o
(
dγ−1), with

c=
(ε

5

)k
and mk = d

(
3
2−γ

)
k.

In particular, this lemma can be utilised similarly for components almost as large as dd
1
2 , by taking

γ arbitrarily close to 3
2 and choosing k appropriately.

In G(d + 1, p), isoperimetric considerations alone are enough to guarantee that typically all the
big components merge after a sprinkling step. In many other cases, for example in the percolated
hypercube Qd

p , isoperimetric considerations alone will not suffice, and a key step to proving that
the big components likely merge into a giant component is to show that the vertices in the big
components are in someway ’densely’ spread throughout the host graphG. In an irregular product
graph this might not be true, but the following lemma, which is a generalised version of [9, Lemma
4.5], shows that at the very least the big components are typically well-distributed around the
vertices of large degree.

Lemma 17. Let C > 1 be a constant and let ε > 0 be a small enough constant. Let G(1), . . . ,G(t) be
graphs such that for all i ∈ [t], 1≤ �

(
G(i))≤ C. Let d = d(t)= ω(1) and let p≥ 1+ε

d . Then, whp,
there are at most exp (− d

3
2 )|G| vertices v ∈V(G) such that dG(v)≥ d and all components of Gp of

order at least dd
1
3 are at distance (in G) greater than two from v.

Proof. Let ε be a small enough constant. Fix v ∈V(G) with dG(v)≥ d, and let us write v=
(v1, . . . , vt) such that ∀i ∈ [t], vi ∈V

(
G(i)). Denote by wi an arbitrarily chosen neighbour of vi

in G(i). Furthermore, for any �,m such that 1≤ � �=m≤ ε2d we define⎧⎪⎪⎪⎨
⎪⎪⎪⎩
H(i)

�,m = {vi} when 1≤ i≤ ε2d, i /∈ {�,m} ;
H(i)

�,m = {wi} when i ∈ {�,m} ; and,
H(i)

�,m =G(i) when i> ε2d.

Let H�,m =�t
i=1H

(i)
�,m.

We defined in this manner
(
ε2d
2
)≥ ε4d2

3 pairwise disjoint projections H�,m, each of dimension
t − ε2d, such that each H�,m has a vertex at distance 2 (in G) from v, which we denote by w�,m.
Observe that by (2), for ε > 0 sufficiently small,

dH�,m(w�,m)≥ dG(v)− Cε2d − 2(C − 1)≥ (1− 2Cε2)d ≥
(
1− ε

2

)
d.

Thus, by Lemma 16, with an appropriate choice of k, we have that w�,m belongs to a component

of
(
H�,m

)
p of order d

d
1
3 with probability at least y

(
ε
3
)− o(1)> ε

3 . Since theH�,m are pairwise dis-
joint, these events are independent for different w�,m. Thus, by Lemma 10, there is some c′(ε)> 0

such that at least one of thew�,m belongs to a component whose order is at least dd
1
3 with probabil-

ity at least 1− exp (− c′d2). Hence, the expected number of vertices v ∈V(G) such that dG(v)≥ d

and v is not distance at most 2 from a component of order dd
1
3 is at most exp (− c′d2)|G|.

Therefore, by Markov’s inequality, whp there are at most exp (− d
3
2 )|G| such vertices. �

Note, in particular, that since d = �(t), if the orders of the base graphs G(i), |G(i)|, are growing
sufficiently slowly, then exp (− d

3
2 )|G| = o(1), and so whp all the vertices of G of large order will

be close to a big component.
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Such a ‘density lemma’ can then be used in graphs with sufficiently good isoperimetric inequal-
ities to show that the big components in the percolated subgraph are typically so well connected
that, after a sprinkling step, they all merge whp. More concretely, one often shows that between
any suitable partition of the big components, the host graph will typically contain a large family of
short edge-disjoint paths between the two sides of this partition. If the number and length of these
paths is sufficiently large/small, respectively, compared to the size of the big components, we can
conclude that after sprinkling whp a large proportion of these components merge. Since we will
use a variant of this argument in the proof of both Theorems 8 and 9, let us state a very general
version of it.

Given graphs H ⊆G and a subset X ⊆V(G), we say a partition X =A∪ B is (H-)component
respecting if for every component K of H, K ∩ X is fully contained in either A or B.

Lemma 18. Let p ∈ (0, 1), let c ∈ (0, 12) and let m ∈N. Assume k= ω
(
rp−m). Let H ⊆G be graphs

and let X ⊆V(G) be a subset such that

(C1) for every component K of H which meets X, we have that |X ∩K| ≥ k;
(C2) for any partition X =A∪ B with |A|, |B| ≥ c|X| that is H-component respecting there is a

family of at least |X|
r edge-disjoint A− B paths of length at most m in G.

Then whp H ∪Gp contains a component with at least (1− c)|X| vertices of X.
Proof. If there is no component in H ∪Gp which contains at least (1− c)|X| vertices of X, then
there is some H-component respecting partition X =A∪ B with |A|, |B| ≥ c|X| such that there is
no path between A and B in Gp.

By (C2), for each suchH-component respecting partition X =A∪ B there is a family of at least
|X|
r many edge-disjoint A− B paths of length at most m in G. The probability that none of these
paths are in Gp is at most

(1− pm)
|X|
r ≤ exp

(
−|X|pm

r

)
.

On the other hand, by (C1), for every componentK ofH whichmeetsX, we have that |X ∩K| ≥
k. Hence, the total number of H-component respecting partitions X =A∪ B with |A|, |B| ≥ c|X|
is at most 2

|X|
k .

Therefore, by the union bound, the probability that H ∪Gp does not contain a component of
order at least (1− c)|X| is at most

2
|X|
k exp

(
−|X|pm

r

)
= exp

(
−�

(
k

rp−m

))
= o(1),

where the first equality is because |X| ≥ |X ∩K| ≥ k by (C1), and the second inequality follows
from our assumption that k= ω

(
rp−m). �

In the remainder of this section, we prove Theorems 8 and 9.

4.1. Proof of Theorem 8

Proof of Theorem 8. Note that, since all of the G(i) are non-trivial, we have t ≤ d ≤ Ct and |G| ≥
2t , and therefore,

tt
1
4 = o

(
dd

3
10
)

= o(|G|).
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We argue via a two-round exposure. Set p2 = 1
d log d and p1 = p−p2

1−p2 , so that (1− p1)(1− p2)=
1− p. Note that Gp has the same distribution as Gp1 ∪Gp2 and that p1 = 1+ε−o(1)

d .
Set I :=

[(
1− 1

log d

)
d,
(
1+ 1

log d

)
d
]
, and denote the set of vertices whose degree in G lies

in the interval I by V1 ⊆V(G). Note that the degree of a uniformly chosen vertex in G is dis-
tributed as the sum of t random variables, each of which is bounded by C. Since the expected
degree of a uniformly chosen vertex is the average degree d, we have by Lemma 11 that |V \V1| ≤
4 exp

(
− d

log2 d

)
|G|.

Let W be the set of vertices belonging to components of order at least dd
3
10 in Gp1 . Since for

every v ∈V1 we have that dG(v) · p1 = 1+ ε − o(1), we have by Lemma 16 that

every v ∈V1 belongs toW with probability at least y(ε)− o(1). (8)

We assume henceforth that the above stated whp statements of Gp1 hold. Note furthermore that
by adding or deleting an edge from Gp1 we can change the number of vertices in W by at most

2dd
3
10 = o

( |G|
d

)
. Hence, by Lemma 11 applied to the edge-exposure martingale on Gp1 of length

|G|d
2 , we see that whp |W| = (y(ε)+ o(1)

) |G|. Note that, by Lemma 17, whp there are at most
exp

(
−d

3
2
)

|G| vertices at distance (in G) greater than 2 fromW.

Let A∪ B be a partition of W into two parts, A and B, with |A| ≤ |B| and |A| ≥ |W|
t . Let A′ be

the set of vertices in A together with all vertices in V(G) \ B at distance at most 2 from A, and let
B′ be the set of vertices in B together with all vertices in V(G) \A′ at distance at most 2 from A.
By Lemma 8, we have

i(G)≥ 1
2
min
j∈[t]

i
(
G(j)
)

≥ 1
2
t−t

1
4 .

Let E′ := E(A′, (A′)C). We thus have that

|E′| = e(A′, (A′)C)≥ |W|
t

· 1
2
t−t

1
4 = |W|

2
t−t

1
4 −1 = �

(
exp

(
−t

1
4 log t

)
|G|
)
. (9)

Recall that whp |V(G) \V1| ≤ 4 exp
(
− d

log2 d

)
|G| and |V(G) \N2

G(W)| ≤ exp
(
−d

3
2
)

|G|, where
N2
G(W) is the set of vertices at distance at most two fromW. Thus, whp

|V(G) \ (V1 ∩ (A′ ∪ B′)) | ≤ 5 exp
(

− d
log2 d

)
|G|.

Therefore, whp the number of edges in E′ which do not meet B′ is at most

2�(G) · 5 exp
(

− d
log2 d

)
|G| ≤ 10Ct exp

(
− d
log2 d

)
|G| = o(|E′|).

Hence, whp at least |E′|
2 of the edges in E′ have their end-vertices in B′.

Since each vertex in A′ is at distance at most 2 from A, and similarly every vertex in B′ is at
distance at most 2 from B, we can extend these edges to a family of |E′|

2 paths of length at most
5 between A and B. Since every edge participates in at most 5�(G)4 paths of length 5, we can
greedily thin this family to a set of

|E′|
50�(G)4

≥ |W|t−t
1
4 −6
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edge-disjoint paths of length at most 5, where the inequality follows from (9) and the fact that
�(G)≤ Ct.

We can thus apply Lemma 18, with H =Gp1 , c= 1
t , X =W, p= p2, k= dd

3
10 , r = tt

1
4 +6, and

m= 5. Indeed, by our assumptions on Gp1 , we have that whp both conditions in Lemma 18 hold,
and

rp−m = tt
1
4 +6p−5

2 ≤ tt
1
4 +6 (d log d)5 = o

(
dd

3
10
)

= o(k).

Hence, whp Gp contains a component L1 with at least
(
1− 1

t
) |W| = (y(ε)− o(1))|G| vertices

fromW.
As for the remaining components, observe that by (2) we can couple the first

√
d steps of a

BFS exploration process in Gp starting from v ∈V1 from above by a Galton-Watson branching
process with offspring distribution Bin

((
1+ 1

log d

)
d + C

√
d, p
)
. Then, by standard results on

Galton-Watson trees (see, for example, [10, Theorem 4.3.12]), we have that

∀v ∈V1 : P
[
|Cv(Gp)| ≥

√
d
]
≤ y(ε)+ o(1). (10)

LetW′ be the set of vertices of V1 which lie in components of order larger than
√
d in Gp, noting

thatW ⊆W′.
Then, by (10), E|W′| ≤ (y(ε)+ o(1)

) |V1|. Furthermore, by (8), E(|W′|)≥E(|W|)≥(
y(ε)− o(1)

) |V1|, and so E|W′| = (y(ε)+ o(1)
) |V1|. Hence, by a similar argument as before, by

Lemma 11 we have that whp |W′| = (y(ε)+ o(1))|V1|.
In particular, every component of Gp apart from L1 either meets V1 \W′, and so has order at

most
√
d = o(|G|), or is contained in (V(G) \V1)∪ (W′ \ L1), and so has order at most

|V(G) \V1| + |W′ \ L1| = o(|G|),
as required. �

4.2. Proof of Theorem 9
Throughout the section, we let G be the t-fold Cartesian product of the star S(1, s) with s leaves.
Observe that the vertex degrees in G are not very well-distributed, in the following sense: whilst
it is easy to see that the average degree d := d(G)= 2st

s+1 ≈ 2t for large enough s, the number of
vertices v such that dG(v)≥ 1+ε

p is polynomially large in |G| for any choice of 1
3t < p≤ 1−ε

d , and is
in fact of order |G|1−os(1). In particular, for such values of p, even though we are in the subcritical
regime, for many of the vertices the percolated graph Gp looks locally supercritical. We note that
in order to make the calculations and explanations cleaner and more transparent, we will in fact
restrict our attention to a smaller set of vertices, whose degree in G is much larger than (1+ ε)3t.
To give some intuition to our statements and proof, observe that as with the hypercube Qt , we
can think of G= (S(1, s))t as consisting of a number of layers, M0,M1, . . . ,Mt , where the zth
layer, Mz, consists of the set of vertices in G such that exactly z of their coordinates are centres
of stars, and so their other t − z coordinates are leaves (indeed, comparing to the t-dimensional
hypercube, one can have the zth layer there as the layer with z coordinates being one and the other
t − z coordinates being zero). It is easy to see then that the degrees of the vertices in each fixed
layer are the same; explicitly,

dG(v)= zs+ (t − z) for all v ∈Mz,
and that the edges of G are only between ‘adjacent’ layers, that is, between Mz and Mz−1, and
between Mz and Mz+1. Let �z be the induced subgraph of G between the layers Mz and Mz−1.
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Observe that this graph is bipartite and biregular, such that any vertex in the zth layer, u ∈Mz, has
degree d�z (u)= zs, and any vertex in the (z − 1)th layer, v ∈Mz−1 has degree d�z (v)= t − z + 1.

Whilst these graphs �z are not product graphs, they are subgraphs of the product graph G,
and so many of the tools we developed earlier in the paper can be adjusted and applied here. In
particular, for a fixed subcritical p> 1

3t , for large enough r, the percolation process around the
vertices in Mz looks locally supercritical. In fact, this phenomenon is so pronounced, that even
if we restrict ourselves to the subgraph �z in which the degrees of the vertices in Mz−1 are much
smaller than in G, we still expect the percolation clusters around the vertices inMz to grow quite
large, and in particular to containmany vertices inMz.

Explicitly, taking z to be, say, z = t√
s , we can see that the number of paths of length two (in �z),

starting from a fixed v ∈Mz and ending inMz is at least

st√
s

(
1− 1√

s

)
t = (1− os(1))

√
st2,

and so, naively, if we look in the second neighbourhood of v in (�z)p, we expect to find
�
(
p2

√
st2
)= �(

√
s)> 1 vertices in Mz, for large enough s. Hence, we expect the early stages

of a ‘two-step’ exploration process in (�z)p, to stochastically dominate a supercritical branching
process, and so to grow to a large size, say

√
t, with probability bounded away from zero.

Then, using the fact that �z is contained in a product graph G, we can refine the proof of
Lemma 16 and use projections in order to apply this argument inductively to build a large
connected set, of polynomial size in t, which contains many vertices inMz.

Let us now formalise the above heuristics.

Lemma 19. Let s be a large enough integer, let ε, δ > 0 be sufficiently small constants, and let k be
an integer. Let 1−ε

3t ≤ p≤ 1
t . Let z be such that 1+δ

10
√
sp ≤ z ≤ t√

s . Let Mz be the set of vertices with
z centre coordinates in G, and let v ∈Mz. Then, there exist positive constants c1 = c(z, k, ε, δ) and
c2 = (z, k, ε, δ) such that with probability at least c1, there is a set of vertices W such that v ∈W, W
is connected in Gp and |W ∩Mz| ≥ c2t

k
6 .

Before proving the lemma, let us note that p= 1
3t and z = t√

s , for s large enough, satisfy the
requirements of the lemma.

Proof of Lemma 19. Throughout the proof, we will use ideas similar to those of Lemma 16, while
refining them to our particular setting. LetMz−1 be the set of vertices with z − 1 centre coordinates
in G. Let � := �z be the bipartite biregular induced subgraph of G between the layers Mz and
Mz−1. Throughout the proof, we will in fact consider the percolated graph �p ⊆Gp.

We prove by induction on k, over all relevant values of z, ε and δ.
For k= 1, let us first describe the following variant of the BFS algorithm. Here, we maintain

the following sets of vertices:

• Q, the vertices are currently exploring, kept in a queue;
• S1 ∪ S2, the vertices already processed in the exploration process;
• T1 ∪ T2, the unvisited vertices.

We begin withQ= {v}, S1, S2 = ∅ and T1 =Mz \ {v}, T2 =Mz−1. At each iteration, we proceed
as follows. We consider the first vertex u ∈Q, and explore its neighbourhood in T2 in Gp, that is,
NGp(u, T2). For each vertex x ∈NGp(u, T2) in turn, we do the following:

- We move x to S2;
- We expose the neighbours of x in T1 in Gp, that is, NGp(x, T1);
- We move the vertices y ∈NGp(x, T1) from T1 to Q one by one.
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Figure 2. The vertex u ∈ Q and its exposed neighbourhood in T2, and a vertex x ∈ T2 and its exposed neighbourhood in
T1. Note that in the course of the exploration process, all the vertices in NGp (x, T2) move from T1 to Q, the vertex x (and,
subsequently, all the vertices from NGp (u, T2)) move to S2, and, finally, the vertex umoves to S1.

Finally, after exploring all relevant vertices x ∈NGp(u, T2), wemove u fromQ to S1. See Figure 2
for an illustration. Note that, by taking an edge from the vertex u to each vertex x ∈NGp(u, T2) and
an edge from each vertex x ∈NGp(u, T2) to each vertex y ∈NGp(x, T1) discovered in this way, we
can think of this process as building a tree B1 ⊆Gp which spans S1 ∪ S2 ∪Q at each stage of the
process.

We run the algorithm until either Q is empty, or |S1 ∪ S2 ∪Q| = √
t. Let us first note that at all

times, Q∪ S1 ∪ T1 ⊆Mz, and S2 ∪ T2 ⊆Mz−1.
Observe that, since at all times |S1 ∪ S2 ∪Q| ≤ √

t, we have that for every u ∈Q, d(u, T2)≥
zs− √

t ≥ zs
2

(
since z ≥ 1+δ

10
√
sp ≥ (1+δ)t

10
√
s

)
, and for every w ∈ T2, d(w, T1)≥ t − z + 1− √

t ≥ 2t
3

(since z ≤ t√
s and s is large enough). We can thus couple the tree B1 constructed in our truncated

algorithm with a Galton-Watson tree B2 rooted at v, such that for all i, the offspring distribu-
tion at the 2ith generation (where we start at generation 0, with v) is Bin

( zs
2 , p
)
, and at the

(2i+ 1)th generation is Bin
( 2t
3 , p
)
, such that B2 is isomorphic to a subgraph of B1 as long as

|B1| ≤
√
t.

Let us denote by Zi be the number of vertices at depth i in B2 (where Z0 = 1, and the vertex in
the 0th depth is v). We then have by the above and by Lemma 10 that, for large enough s,

P

[
Z2(i+1) ≤ zs

2
3 x

10t
| Z2i = x

]
≤ P

[
Z2i+1 ≤ zs

2
3 x
t

| Z2i = x

]
+ P

[
Z2(i+1) ≤ zs

2
3 x

10t
| Z2i+1 ≥ zs

2
3 x
t

]

≤ P

[
Bin
(zsx

2
, p
)

≤ zs
2
3 x
t

]
+ P

[
Bin

(
2zs

2
3 x
3

, p

)
≤ zs

2
3 x

10t

]

≤ exp (−2x) + exp
(

−3x
16

)
≤ exp

(
− x
100

)
,

where the penultimate inequality follows since p≥ 1−ε
3t and zsp≥ (1+δ)

√
s

10 . Hence, we obtain:
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P

⎡
⎣∃i such that Z2i ≤

(
zs

2
3

10t

)i⎤⎦≤
∞∑
i=1

P

⎡
⎣Z2i ≤

(
zs

2
3

10t

)i

| Z2(2i−1) ≥
(
zs

2
3

10t

)i−1⎤⎦

≤
∞∑
i=1

exp

⎛
⎝− 1

100
·
(
zs

2
3

10t

)i⎞⎠≤ exp
(

− 1
200

)
,

where the last inequality follows since p≤ 1
t , and z ≥ (1+δ)

10
√
sp ≥ (1+δ)t

10
√
s , and we take s to be large

enough. In particular, zs
2
3

10t > 1, and hence the Galton-Watson tree grows to infinity with probabil-
ity at least exp

(− 1
200
)
, and therefore with probability at least exp

(− 1
200
)
we have that |B2| =

√
t

and hence |S1 ∪ S2 ∪Q| = √
t at some point. We thus have that with the same probability, we

have a connected set W such that v ∈W, W is connected in Gp, and |W| = √
t. Let us argue fur-

ther that, in fact, |W ∩ (S1 ∪Q) | ≥
√
t

22 . Consider any vertex w ∈ S2. Crucially, observe that by the
construction of the exploration process, unless w is the last vertex we have moved such that now
|B1| =

√
t, after wemovew from T2 to S2 we expose the neighbourhood ofw in T1 (see Figure 2). If

|NGp(w, T1)| ≥ 1, then we added at least one child ofw to B1. The probability that |NGp(w, T1)| = 0
is at most

(1− p)
2t
3 −√

t ≤
(
1− 1− ε

3t

) t
2 ≤ exp

(
−1− ε

6

)
≤ 9

10
.

Hence the number of w ∈ S2 which does not have at least one child, stochastically dominates 1+
Bin
(√

t, 9
10
)
(where we use the fact that |B1| ≤

√
t and our stochastic domination on the number

of neighbours). Hence, by Lemma 11, the number of vertices w ∈ T2 which do not have at least
one child in T1 in B1 (that afterwards moves toQ1 and perhaps subsequently to S1) is whp at most
10

√
t

11 . Therefore, there are at most 10
√
t

11 vertices in S2 which do not have a child in B1. Since B1
is a tree, these children are distinct for distinct w, and they all lie in S1 or Q. It follows that whp
|S1 ∪Q| ≥ |S2| − 10

√
t

11 , and hence with probability at least c> 0, we have that |S1 ∪Q| ≥
√
t

22 , and
hence |W ∩Mz| ≥

√
t

22 , completing the case of k= 1.
We proceed in a manner somewhat similar to the proof of Lemma 16. Let k≥ 2 and assume the

statement holds with c1(z′, k− 1, ε′, δ′) and c2(z′, k− 1, ε′, δ′) for all relevant values of z′, ε′ and δ′.
We argue via a two-stage exposure, with p2 = 1

t log t and p1 = p−p2
1−p2 so that (1− p1)(1− p2)= 1− p.

Note that Gp has the same distribution as Gp1 ∪Gp2 , and that p1 ≥ (1− ot(1))p≥ 1−ε1
3t for some

ε1 > 0 constant. Similarly, z ≥ 1+δ
10

√
sp ≥ 1+δ1

10
√
sp1

, and we can thus begin in the samemanner as k= 1,
and find with probability at least c> 0, a setW0 such that v ∈W0,W0 is connected in Gp, |W0| =√
t and |W0 ∩Mz| ≥

√
t

22 . We further note that W0 ⊆V(�). We proceed under the assumption
that indeed |W0| =

√
t. Let us enumerate the vertices in W0 ∩Mz as {v1, . . . , v�}, where � ≥

√
t

22
and � ≤ √

t (since |W0| =
√
t).

Using Lemma 13, we can find pairwise disjoint projections H1, . . . ,H� of G, each having
dimension at least t − √

t, such that each vi ∈W0 is in exactly one of Hi’s.
We now intend to find pairwise disjoint projection of G, each with a vertex inMz, to which we

can apply our induction hypothesis. Note that, in an arbitrary projection H′ of G with dimension
t′, the setMz ∩V(H′) will still be a layer of H′. However, for the vertices in this layer, the number
of ‘active’ coordinates in H′ which are centres of stars will be some number between z and z −
(t − t′). Our approach here is then almost identical to that of the proof of Lemma 16, with the
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slight difference that we want our vertices to be in Mz, and have z′ centre coordinates inside the
projected subgraph, for some z′ such that z′ ≥ 1+δ

′
10

√
sp1

for some δ′ > 0.
In order to obtain that, we begin by exposing some carefully chosen sets of edges with

probability p2. Observe that for each vi ∈W0 ∩Mz, we have that

|NHi∩�(vi)| ≥ |N�(vi)| − s · √t ≥ zs
3
,

where the first inequality follows since the dimension of Hi is at least t −
√
t and the maximum

degree of the base graphs is s. We further note that NHi∩�(vi)⊆Mz−1. Let

W1 =
⋃

i∈
[√

�
]NHi∩�(vi)⊆Mz−1.

Then, recalling that the Hi’s are pairwise disjoint, we have that

|W1| ≥
√
t

25
· zs
3

≥
√
t(1+ δ)

√
s

750p
≥ t

3
2 ,

where we used our assumption that z ≥ 1+δ
10

√
sp and that s is large enough.

We now expose the edges between W0 and W1 in Gp2 . Let us denote the set of vertices in W1

that are connected with W0 in Gp2 by W1
′. Then, |W1

′| stochastically dominates Bin
(
t
3
2 , p2

)
.

Thus, by Lemma 10, we have that whp |W1
′| ≥

√
t

10 log t . We assume in what follows that this
property holds.

We now expose the edges in Gp2 between W1
′ and Mz \W0, recalling that by our assumption

|W0| =
√
t. Note that for every wi ∈W1

′, we have that

|NHi∩�(wi)∩ (Mz \W0)| ≥ |N�(w1)| − 2s · √t ≥ t
3
,

and NHi∩�(wi)∩ (Mz \W0)⊆Mz. Let

W2 =
⋃
i∈[�]

NHi∩�(wi)∩ (Mz \W0)⊆Mz,

where we note that by the projection Lemma (lemma 13) and our construction, these neighbour-
hoods are disjoint. Then whp |W2| ≥ t

3 ·
√
t

10 log t .
Let W2

′ ⊆Mz be the set of vertices in W2 that are connected with W1
′ in Gp2 . Then, |W2

′|
stochastically dominates Bin

(
t
3
2

10 log t , p2
)
. Thus, by Lemma 10, we have thatwhp |W2

′| ≥
√
t

20 log2 t

and |W2′| ≤ √
t. We assume henceforth that these two properties hold.

The subsequent part of the proof is almost identical to that of the proof of Lemma 16, where
here we only need to run the inductive step constantly many times (as opposed to ω(1) times),
allowing us to analyse it in a more straightforward manner.

Indeed, let W2,i′ =W2
′ ∩V(Hi)⊆Mz. We thus have now our set of vertices in Mz. Now, for

each i, we apply once again Lemma 13 to find a family of |W2,i′| := �i ≤
√
t pairwise disjoint

projections of Hi, which we denote by Hi,1, . . . ,Hi,�i , such that every vertex of W2,i′ ⊆Mz is in
exactly one of the Hi,j, and each of the Hi,j is of dimension at least t − 2

√
t. We have that for all

i, j, the number of centre coordinates of vi,j in Hi,j, denote it by zi,j, is at least z − 2s
√
t. Recall that
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p1 ≥ 1−ε1
3t , and note that

zi,j ≥ z − 2s
√
t ≥ 1+ δ

10
√
sp

− 2s
√
t ≥ 1+ δ2

10
√
sp

≥ 1+ δ3
10

√
sp1

for some δ2, δ3 > 0, where we used p≤ 1
t and p1 = (1− o(1))p. Altogether, the vi,j (that is, their

corresponding zi,j) together with p1 satisfy the conditions of the induction hypothesis for some
εi,j, δi,j > 0.

As in the proof of Lemma 16, note that when we ran the algorithm on Gp1 , we did not query
any of the edges inside any of the Hi,j. By the above inequality we can apply the induction
hypothesis to vi,j in Gp1 ∩Hi,j and conclude that with probability at least c1(zi,j, k− 1, εi,j, δi,j),
there exists a connected set Wi,j such that vi,j is Wi,j, |Wi,j ∩Mz| ≥ c2(zi,j, k− 1, εi,j, δi,j)t

k−1
6 .

Let c′1 =mini,j c1(zi,j, k− 1, εi,j, δi,j) and c′2 =mini,j c2(zi,j, k− 1, εi,j, δi,j). Noting that the above
described events are independent for every Hi,j, we obtain by Lemma 10 that whp, at least c′1

√
t

40 log2 t

of the Hi,j have that |Wi,j ∩Mz| ≥ c′2t
k−1
6 . Thus, with probability at least c′1 + o(1) := c1, we have

found a connected setW such that v is inW, and there is some c2 > 0 such that

|W ∩Mz| ≥ c′1
√
t

40 log2 t
· c′2t k−1

6 > c2t
k
6 ,

completing the induction step. �
We now turn to show that whp many of the vertices with z := t√

s centre coordinates are
contained in big connected sets in Gp.

Lemma 20. Let s be a large enough integer. Let p≥ 1
3t and let k> 0 be an integer. Let z := t√

s . Let
Mz be the set of vertices with z centre coordinates in G and let W ⊆Mz be the set of vertices in Mz
that belong to components with at least tk vertices in Mz in Gp. Then, there exists a constant ρ > 0
such that whp,

|W| ≥ ρ|Mz| ≥ |G|1−s−
1
5 .

Proof. Observe that in order to choose a vertex in Mz we have
(t
z
)
choices for the z-set of coor-

dinates which are the centre of a star, and then we have st−z choices for the leaf coordinates. It
follows that

|Mz| =
(
t
z

)
st−z ≥ (√s

) t√
s s
(
1− 1√

s

)
t ≥ (s+ 1)

(
1−s−

1
3
)
t = |G|1−s−

1
3 ,

where the penultimate inequality holds for any s large enough.
By Lemma 19, there is some constant c′ > 0 such that every v ∈Mz belongs to a connected set

of order tk with probability at least c′ > 0. We thus have that

E[|W|]≥ c′|Mz| ≥ c′|G|1−s−
1
3 .

Consider the edge-exposure martingale on Gp. It has length |E(G)| = st
s+1 |G| ≤ 2t|G|, and the

addition or deletion of an edge can change the value of |W| by at most 2tk. Therefore, by Lemma
11, we have for ρ = c′

2 > 0 that

P [|W| ≤ ρ|Mz|]≤ P

[
|W| ≤ E|W|

2

]
≤ 2 exp

⎛
⎝− |G|2−2s−

1
3

16|G|t2k+1

⎞
⎠≤ 2 exp

(
−|G|1−s−

1
4
)

= o(1),
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as long as s is large enough. It follows that whp

|W| ≥ ρ|Mz| ≥ c′

2
|G|1−s−

1
4 ≥ |G|1−s−

1
5 .

�
We note that while Mz, where z = t√

s , takes a polynomial fraction of the vertices, this set of
vertices still only amounts to o(|G|). Thus, we cannot use global isoperimetric properties of G to
find typically sufficiently many short paths between relevant (respecting) partitions of Mz, as we
do in the proof of Theorem 8. Instead, we need to look at local isoperimetric properties ofMz, such
as the isoperimetric property of its two-neighbourhood in G, in order to show that whp many of
the large connected sets in Gp ∩Mz in fact belong to the same connected component in Gp.

Proof of Theorem 9. Assume that all the conditions in Theorem 9 hold.
Once again, we argue via a two-round exposure. Let ε be a small enough constant, such that

p2 = ε
3t , p1 = 1

3t and (1− p1)(1− p2)= 1− p, noting that Gp1 ∪Gp2 has the same distribution as
Gp.

Let z := t√
s . LetMz be the set of vertices with z centre coordinates in G, and letW ⊆Mz be the

set of vertices in Mz belonging to a component with at least t15 vertices in Mz in Gp1 . Then, by
Lemma 20 with k= 15, we have that there exists a constant ρ > 0 such that whp,

|W| ≥ ρ|Mz| ≥ |G|1−s−
1
5 . (11)

We note further that, since the average degree t = �( log |G|), by a similar argument as in
Lemma 17 applied to the vertices with z centre coordinates in G, we claim that whp

every vertex inMz is at distance at most 2 fromW. (12)

To see why, observe that given a vertex v ∈Mz, we can form t
4
3 pairwise disjoint projections of G,

each isomorphic to the product of (1− o(1))t copies of S(1, s) and each containing a vertex with z
centre coordinates at distance 2 from v. Indeed, since the number z of coordinates of v which are
the centre of star satisfies t

2
3 ≤ z ≤ t − t

2
3 , we can assume without loss of generality that the first

t
2
3 coordinates of v are the centres of stars, and the second t

2
3 coordinates are leaves.

Given a pair of coordinates 1≤ i≤ t
2
3 < j≤ 2t

2
3 , let Hi,j be the projection of G to the first 2t

2
3

coordinates where the first 2t
2
3 coordinates agree with v, except that the ith coordinate is some

arbitrary leaf and the jth coordinate is the centre of the star.
Then, the graphs Hi,j form a collection of t

4
3 pairwise disjoint projections of G, each isomor-

phic to the product of (1− o(1))t copies of S(1, s) and each containing a vertex with z centre
coordinates in G at distance 2 from v.

Since p will still be ‘supercritical’ at these vertices in eachHi,j, an argument as in Lemma 17 will
imply that the expected number of vertices inMz which are not at distance at most 2 from a vertex
in W is at most exp

(
−�

(
t
4
3
))

|G| = o(1), and so the claim follows by Markov’s inequality. We
assume in the following that claim (12) holds.

Let A∪ B be a Gp1 -respecting partition of W into two parts, A and B, such that |A| ≤ |B| and
|A| ≥ |W|

3 . Let A′ be the set of vertices in A together with all vertices in Mz \ B that are within
distance 2 to A, and let B′ be the set of vertices in B together with all vertices in Mz \A′ that are
within distance 2 to B, so thatMz =A′ ∪ B′. We require the following claim, whose proof we defer
to the end of this proof:

Claim 21. Whp, there are at least |W|
t2 paths of length 2 in G between A′ and B′.
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Figure 3. An extension of a partition A∪ B ofW to a partition A′ ∪ B′ ofMz . Each A′ − B′ two-path (solid) can be extended into
an A− B six-path (solid and dashed). Note that some vertices in these paths may lie outside ofMz .

We can extend these paths to a family of A− B paths of length at most 6 (see Figure 3) and
then, very crudely, since �(G)= st, we can greedily thin this family to a set of |W|

36s6t8 edge-disjoint
A− B paths of length at most 6.

We can now apply Lemma 18 with H =Gp1 , c= 1
3 , X =W, p= p2 = ε

3t =O(t−1), k= t15, r =
36s6t8 and m= 6. Indeed, by our assumptions on Gp1 and by Lemma 19, we have that whp both
conditions in Lemma 18 hold, and

rp−m = 36s6t8p−6
2 =O

(
t14
)= o

(
t15
)= o(k).

As a consequence of Lemma 18, we have that whp Gp =Gp1 ∪Gp2 contains a component which

contains at least 2
3 |W| vertices of W. Combining this with the bound |W| ≥ |G|1−s−

1
5 from (11),

we have that whp the largest component of Gp is of order at least 2
3 |G|1−s−

1
5 ≥ |G|1−s−

1
6 .

We finish this section with the proof of the above claim.

Proof of Claim 21. Let z = t√
s be the number of coordinates of v which correspond to a centre

of a star. Recall that, by Lemma 20, there is a constant ρ > 0 such that whp |W| ≥ ρ|Mz|. The
following two constants will be useful throughout the proof:

α := ρ

4
, β := ρ

3(4− ρ)
.

Note that β + (1− β)α = ρ
3(4−ρ) + ρ

4

(
1− ρ

3(4−ρ)

)
= ρ

3 .
We are interested in the structure of the graph G2[Mz]. Suppose that v,w ∈Mz, and denote by

I,K ∈ [t]z (respectively) the set of coordinates corresponding to centres of stars. Then v and w are
at distance 2 in G if either

(T1) I =K and they disagree on a single coordinate of a leaf outside I; or
(T2) |I�K| = 2 and they agree on all the (leaf) coordinates outside I ∪K.

Hence, we can see thatG2[Mz] can be built in the followingmanner (see also Figure 4) – we start
with the Johnson graph J := J(t, z), which represents the z-set of coordinates which are centres of
stars, and we replace each vertex with a copy of H := H(t − z, s), which represents the set of leaf
coordinates. There is a natural map f :Mz →V(J)×V(H) which maps a vertex v ∈Mz to the pair
(I, x) where I is the z-set of coordinates of v which are centres of stars and x is the restriction of v
to the coordinates which are leaves.

The edges of G2[Mz] then come in two types. Those of type (T1) give rise to a copy of H on
I ×V(H) for each I ∈V(J), whereas those of type (T2) give rise to a matching between I ×V(H)
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Figure 4. A visualisation of the graph G2[Mz] in the case t= 4, z= 2 and s= 2. Here, each circle is a copy of H(t− z, s) and the
black tubes represent the edges of J(t, z). A pair of copies of H(t− z, s) have been displayed, where the vertices of Mz inside
each copy have been coloured according towhether they lie in A′ (blue) orB′ (orange). Inside the black tube corresponding to
the edge of J(t, z) between this pair of vertices there is somematching, represented by the dashed (purple) edges. Note that
this matching may not respect the structure of the H copies in each circle. Each vertex I of J(t, z) is then coloured according
to whether it is A′-dominated (blue), B′-dominated (orange) or evenly balanced (green), corresponding to χ (I)= 1, 2, and 3,
respectively.

and K ×V(H) for each (I,K) ∈ E(J), where a vertex (I, x) is matched to a vertex (K, y) if and only
if f−1(I, x) and f−1(K, y) agree on all coordinates outside I ∪ J. Note that this is similar to, but not
quite the same as, the Cartesian product of J and H.

We use the partitionMz =A′ ∪ B′ to define a colouringχ :V(J)→ [3] in the followingmanner.
We say that a copy of H given by I ×V(H) is evenly-split if

α|H| ≤ |f−1(I ×V(H))∩A′| ≤ (1− α) |H|.
Note that, sinceMz =A′ ∪ B′ is a partition, if I ×V(H) is evenly-split then it also satisfies

α|H| ≤ |f−1 (I ×V(H)) ∩ B′| ≤ (1− α) |H|.
If I ×V(H) is not evenly-split then we say it is either A′-dominated or B′-dominated if

|f−1(I ×V(H))∩A′| ≥ (1− α) |H| or |f−1(I ×V(H))∩ B′| ≥ (1− α) |H|,
respectively. We then let χ(I)= 1 if I ×V(H) is A′-dominated, χ(I)= 2 if I ×V(H) is B′-
dominated, and χ(I)= 3 if I ×V(H) is evenly-split (see Figure 4).

Let us suppose first that |χ−1(3)| ≥ |J|
ρt2 . In this case, at least |J|

ρt2 of the copies of H are evenly-
split. As mentioned in Section 2.2, since H(t − z, s) is the product of t − z copies of the complete
graph Ks, using (3), we have that

i(H(t − z, s))≥ 1
2
i(Ks)= s

2
.

In particular, each copy of H which is evenly-split must contain at least αs|H|
2 many edges from A′

to B′, and so it follows that there are at least
|J|
ρt2

· αs|H|
2

≥ ρ|Mz|
t2

≥ |W|
t2

paths of length 2 between A′ and B′.

https://doi.org/10.1017/S0963548323000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000469


24 S. Diskin et al.

So, let us assume that |χ−1(3)| < |J|
ρt2 , and so the vast majority of copies of H are either A′-

dominated or B′-dominated. Furthermore, since

|A| ≥ |W|
3

≥ ρ|Mz|
3

= ρ

3
|J| · |H|,

it follows that |χ−1(1)|, |χ−1(2)| ≤ (1− β) |J|. Indeed, if |χ−1(1)| > (1− β)|J|, then we would
have that

|B| ≤ |B′| < β|J| · |H| + (1− β) α|J| · |H|

= ρ

3
|J| · |H| = ρ|Mz|

3
≤ |A|,

that is, |B| < |A|, contradicting our assumption that |B| ≥ |A|. Similarly, if |χ−1(2)| > (1− β)|J|,
we would have that |A| < |A|, a contradiction.

Hence, we may restrict our attention to the case where |χ−1(1)|, |χ−1(2)| ≤ (1− β)|J| and
|χ−1(3)| < |J|

ρt2 . Since, by definition, |χ−1(1)| + |χ−1(2)| + |χ−1(3)| = |J|, we have that

|χ−1(1)|, |χ−1(2)| ≥ |J| − (1− β)|J| − |J|
ρt2

≥ β

2
|J|.

Hence, by Theorem 14, there is a constant c> 0 such that there are c
√

t
z(t−z)

(
1− β

2

)
β|J|
2 ≥ |J|

t
edges of J which go between a vertex with colour 1 and a vertex with colour 2. Each of these edges
represents an A′-dominated copy ofH (which we call the first copy ofH) which is adjacent in J to
a B′-dominated copy ofH (which we call the second copy ofH). Since at most α|H| of the vertices
in the first copy are in B′ and at most α|H| of the vertices in the second copy are in A′, it follows
that the number of vertices in the first copy which are in A′ and are matched to vertices in B′ in
the second copy is at least

(1− 2α)|H| =
(
1− ρ

2

)
|H| ≥ |H|

2
,

since ρ ≤ 1.
In particular, there are at least

|J|
t

· |H|
2

= |Mz|
2t

≥ |W|
2t

many edges in G2[Mz] between A′ and B′ and hence |W|
2t ≥ |W|

t2 many paths of length 2 between A′
and B′ in G. �

We note that, in terms of showing that the Erdős-Rényi component phenomenon does not
hold in irregular product graphs, a simple application of Lemma 16 is sufficient. Indeed, if the
G(i) are all irregular and of bounded order, then it is not hard to show that there is some ε(C)>
0 such that G must contain a vertex of degree at least (1+ 2ε)d, and hence by Lemma 16 at a
subcritical probability p= 1−ε

d , with positive probability Gp will contain a component of order dk
for any fixed integer k> 0, and so not all components in Gp have linear order (in d) throughout
the subcritical regime. However, Theorem 9 shows that in the particular case of a product of many
stars much more is true – in parts of the subcritical regimewhpGp will even contain a component
of order |G|1−os(1).

5. Discussion
In what follows we will use G to refer to the product graph, t for its dimension, d for its aver-
age degree, δ for its minimum degree and C for the maximum degree of the base graphs. Let us
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briefly summarise the results on the typical component structure of percolated product graphs
with probability close to p= 1

d which follow from Theorems 3 and 6, and Theorems 7, 8 and 9.
There are three main assumptions which we work with:

(BO) The base graphs have bounded order;
(BD) The base graphs have bounded maximum degree;
(R) The base graphs are regular.

Note that clearly (BO) implies (BD).
Lichev [19] showed that (BD), together with somemild isoperimetric assumptions, is sufficient

to show the existence of a linear sized component in the supercritical regime, and to bound the
order of the largest component in the subcritical regime. Whilst this bound on the order of the
largest component in the subcritical regime was only polynomial in the size of the host graph, we
note that Theorem 9 implies that this bound is in fact close to optimal.

Indeed, whilst Theorem 3 implies that when p= 1−ε
d whp the largest component of Gp has

order at most exp
(
− ε2t

9C2

)
|G|, by Theorem 9, there is a choice of G such that whp Gp contains

a component of order at least exp (−�(t)) |G|. In particular, (BD) alone is not sufficient to show
that the percolated subgraph exhibits the Erdős-Rényi component phenomenon in the subcritical
regime (which requires that the largest component in the subcritical regime is of logarithmic order
in |G|).

Furthermore, Theorem 8 further strengthens Lichev’s results in [19] by greatly weakening the
isoperimetric assumptions and showing that at least in the supercritical regime the order of the
largest component does behave quantitatively similar to the Erdős-Rényi random graph. As for
the order of the second-largest component, Theorem 8 implies it is o(|G|).
Question 22. Is there an example of a product graph G which satisfies (BD), and some mild
isoperimetric assumptions, for which the second-largest component in the supercritical regime has
polynomial order in |G|?

As demonstrated by Theorem 6, (BO) and (R) are sufficient to guarantee that the percolated
subgraph exhibits the Erdős-Rényi component phenomenon, and Theorem 9 shows that (R) is
necessary, in the sense that (BO) without the regularity assumption does not suffice to imply
that the Erdős-Rényi component phenomenon holds. However, it remains an interesting open
question as to whether (BD) and (R), together with some mild isoperimetric assumptions, are
themselves sufficient. For example, the following question is still open.

Question 23. Let C > 1 be a constant, let α > 0 be a constant and let G=�t
j=1G(j) be a product

graph where G(i) is regular, 1≤ ∣∣d (G(i))∣∣≤ C for each i ∈ [t] and i(G)≥ α. Does the phase transition
that Gp undergoes around p= 1

d exhibit the Erdős-Rényi component phenomenon?

Note that Theorem 7 shows that at the very least (BD) is necessary to show the existence of a
linear sized component in the supercritical regime, even under some quite strong isoperimetric
constraints. It is perhaps interesting to ask what the limit of this pathological behaviour is. Indeed,
the problem here seems to be an abundance of vertices of low degree (where the percolation is
locally subcritical), which would suggest that at the very least a probability significantly larger
than p= 1

δ
would be sufficient to show the existence of a linear sized component.

Conjecture 24. Let G be a high-dimensional product graph whose isoperimetric constant is at least
inverse polynomial in the dimension, let ε > 0, let δ := δ(G) be the minimum degree of G and let
p= 1+ε

δ
. Then whp Gp contains a component of size at least (y(ε)− o(1))|G|, where y(ε) is defined

according to (1).
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Figure 5. A summary of the typical component structure of percolated high-dimensional product graphs.

Finally, in the case of G(d + 1, p), Theorem 1 can be sharpened to show that, between the sub-
critical and the supercritical phases, there is a phase when the largest two components are both of
polynomial order |G|γ for some γ ≤ 2

3 , and then a phase when the largest component has order
|G|γ for some γ > 2

3 and the second-largest component has order at most |G| 23 , although this
whole transition happens in a very small window around 1

d (see, for example, [14]).
It would be interesting to know how the component structure of the graph in Theorem 9 devel-

ops as p increases, and in particular at what point typically a unique giant component emerges,
and when a linear sized component emerges.

Question 25. Let s be a sufficiently large integer and let ε > 0 be a sufficiently small constant, let
G(i) = S(1, s) for every 1≤ i≤ t and let G=�t

i=1G(i). Let us write L1 and L2 for the largest and
second-largest component, respectively, of Gp.

• For which p is it true that whp |L2| = o(|L1|)?
• For which p is it true that whp |L1| = �(|G|)?
• Does there exist a probability p and a constant γ > 2

3 such that whp both |L1| and |L2| have
order at least |G|γ ?

Furthermore, as mentioned after the proof of Theorem 9, for any family of bounded-order
irregular base graphs, the percolated product graph will not exhibit the Erdős-Rényi phenomenon
in the subcritical regime, containing a component of order at least a superlinear polynomial (in
d) for certain subcritical values of p. However, in the particular case of Theorem 9, we in fact
show that the largest component throughout some part of the sparse subcritical regime, where p=
�( 1d ), is of polynomial order in |G|. It would be interesting to know if this behaviour is universal
in high-dimensional products of bounded-order irregular graphs.

Question 26. For all i ∈ [t], let G(i) be an irregular connected graph of order at most C > 0. Let
G=�t

i=1G(i). Let ε > 0 be a small enough constant, let d := d(G) be the average degree of G and
let p= 1−ε

d . Does there exist a c(ε, C) such that whp the largest component in Gp has order at least
|G|c?

The table in Figure 5 summarises what is known about the order of the largest and second-
largest component inGp for various values of p and under various combinations of the assumption
(BD), (BO) and (R), and indicates some combinations of probabilities and assumptions where
open questions remain.
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