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Abstract

Recursion is a mature, well-understood topic in the theory and practice of programming. Yet its dual,
corecursion is underappreciated and still seen as exotic. We aim to put them both on equal footing by
giving a foundation for primitive corecursion based on computation, giving a terminating calculus
analogous to the original computational foundation of recursion. We show how the implementation
details in an abstract machine strengthens their connection, syntactically deriving corecursion from
recursion via logical duality. We also observe the impact of evaluation strategy on the computational
complexity of primitive (co)recursive combinators: call-by-name allows for more efficient recursion,
but call-by-value allows for more efficient corecursion.

1 Introduction

Primitive recursion has a solid foundation in a variety of different fields. In the categorical
setting, it can be seen in the structures of algebras. In the logical setting, it corresponds
to proofs by induction. And in the computational setting, it can be phrased in terms of
languages and type theories with terminating loops, like Gödel’s System T (Gödel, 1980).
The latter viewpoint of computation reveals a fine-grained lens with which we can study
the subtle impact of the primitive combinators that capture different forms of recursion.
For example, the recursive combinators given by Mendler (1987, 1988) yield a computa-
tional complexity for certain programs when compared to encodings in System F (Böhm &
Berarducci, 1985; Girard et al., 1989). Recursive combinators have desirable properties—
like the fact that they always terminate—which make them useful for the design of
well-behaved programs (Meijer et al., 1991; Gibbons, 2003), also for optimizations made
possible by applying those properties and theorems (Malcolm, 1990).

The current treatment of the dual of primitive recursion—primitive corecursion—is not
so fortunate. Being the much less understood of the two, corecursion is usually only viewed
in light of this duality. Consequently, corecursion tends to be relegated to a notion of
coalgebras (Rutten, 2019), because only the language of category theory speaks clearly
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enough about their duality. This can be seen in the study of corecursion schemes, where
coalgebraic “anamorphisms” (Meijer et al., 1991) and “apomorphisms” (Vos, 1995; Vene
& Uustalu, 1998) are the dual counterparts to algebraic “catamorphisms” (Meertens, 1987;
Meijer et al., 1991; Hinze et al., 2013) and “paramorphisms” (Meertens, 1992). Yet the
logical and computational status of corecursion is not so clear. For example, the introduc-
tion of stream objects is sometimes described as the “dual” to the elimination of natural
numbers (Crole, 2003; Sangiorgi, 2011), but how is this so?

The goal of this paper is to provide a purely computational and logical foundation for
primitive corecursion based on classical logic. Specifically, we will express different prin-
ciples of corecursion in a small core calculus, analogous to the canonical computational
presentation of recursion (Gödel, 1980). Much of the early pioneering work in this area
was inspired directly by the duality inherent in (co)algebras and category theory (Hagino,
1987; Cockett & Spencer, 1995). In contrast, we derive the symmetry between recursion
and corecursion through the mechanics of programming language implementations, for-
malized in terms of an abstract machine. This symmetry is encapsulated by the syntactic
and semantic duality (Downen et al., 2015) between data types—defined by the structure
of objects—and codata types—defined by the behavior of objects.

We begin in Section 2 with a review of the formalization of primitive recursion in terms
of a foundational calculus: System T (Gödel, 1980). We point out the impact of evaluation
strategy on different primitive recursion combinators, namely the recursor and the iterator:

• In call-by-value, the recursor is just as (in)efficient as the iterator.
• In call-by-name, the recursor may end early; an asymptotic complexity improvement.

Section 3 presents an abstract machine for both call-by-value and call-by-name evaluation
and unifies both into a single presentation (Ariola et al., 2009; Downen & Ariola, 2018b).
The lower-level nature of the abstract machine explicitly expresses how the recursor of
inductive types, like numbers, accumulates a continuation during evaluation, maintain-
ing the progress of recursion. This is implicit in the operational model of System T. The
machine is shown correct, in the sense that a well-typed program will always terminate
and produce an observable value (Theorem 3.2), which in our case is a number.

Section 4 continues by extending the abstract machine with the primitive corecursor
for streams. The novelty is that this machine is derived by applying syntactic duality,
corresponding to de Morgan duality, to the machine with recursion on natural numbers,
leading us to a classical corecursive combinator with multiple outputs modeled as multi-
ple continuations. This corecursor is classical in the sense that it abstracts binds first-class
continuations using control effects in a way that corresponds to multiple conclusions in
classical logic (à la λμ-calculus (Parigot, 1992) and the classical sequent calculus (Curien
& Herbelin, 2000)). From de Morgan duality in the machine, we can see that the corecursor
relies on a value accumulator; this is logically dual to the recursor’s return continuation.
Like recursion versus iteration, in Section 5 we compare corecursion versus coiteration: co-
recursion can be more efficient than coiteration by letting corecursive processes stop early.
Since corecursion is dual to recursion, and call-by-value is dual to call-by-name (Curien &
Herbelin, 2000; Wadler, 2003), this improvement in algorithmic complexity is only seen
in call-by-value corecursion. Namely:
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Classical (co)recursion: Mechanics 3

• In call-by-name, the corecursor is just as (in)efficient as the coiterator.
• In call-by-value, the corecursor may end early; an asymptotic complexity improve-

ment.

Yet, even though we have added infinite streams, we don’t want to ruin System T’s desir-
able properties. So in Section 6, we give an interpretation of the type system which extends
previous models of finite types (Downen et al., 2020, 2019) with the (co)recursive types
of numbers and streams. The novel key step in reasoning about (co)recursive types is in
reconciling two well-known fixed point constructions—Kleene’s and Knaster-Tarski’s—
which is non-trivial for classical programs with control effects. This lets us show that, even
with infinite streams, our abstract machine is terminating and type safe (Theorem 6.14).

In summary, we make the following contributions to the understanding of (co)recursion
in programs:

• We present a typed uniform abstract machine, with both call-by-name and call-
by-value instances, that can represent functional programs that operate on both an
inductive type (Figs. 4 and 6) and a coinductive type (Figs. 7 to 8).

• In the context of the abstract machine (Section 4.2), we show how the primitive
corecursion combinator for a coinductive type can be formally derived from the
usual recursor of an inductive type using the notion of de Morgan duality in clas-
sical logic. This derivation is made possible by a computational interpretation of
involutive duality inherent to classical logic (Fig. 9 and Theorem 4.2).

• We informally analyze the impact of call-by-value versus call-by-name evaluation
on the algorithmic complexity of different primitive combinators for (co)inductive
types. Dual to the fact that primitive recursion is more efficient than iteration (only)
in call-name (Section 3.5), we show that classical corecursion is more efficient than
intuitionistic coiteration (only) in call-by-value (Section 5).

• The combination of primitive recursion and corecursion is shown to be type safe
and terminating in the abstract machine (Theorem 6.14), even though it can express
infinite streams that do not end. This is proved using an extension of bi-orthogonal
logical relations built on a semantic notion of subtyping (Section 6).

Proofs to all theorems that follow are given in the appendix. For further examples of
how to apply classical corecursion in real-world programming languages, and for an illus-
tration of how classicality adds expressive power to corecursion, see the companion paper
(Downen & Ariola, 2021).

2 Recursion on natural numbers: System T

We start with Gödel’s System T (Gödel, 1980), a core calculus which allows us to define
functions by structural recursion. Its syntax is given in Fig. 1. It is a canonical extension
of the simply typed λ-calculus, whose focus is on functions of type A→ B, with ways to
construct natural numbers of type Nat. The Nat type comes equipped with two constructors
zero and succ, and a built-in recursor, which we write as rec M as {zero→N | succ x→
y.N ′}. This rec-expression analyzes M to determine if it has the shape zero or succ x, and
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4 P. Downen and Z.M. Ariola

Fig. 1. System T: λ-calculus with numbers and recursion.

Fig. 2. Type system of System T.

Fig. 3. Call-by-name and Call-by-value Operational semantics of System T.

the matching branch is returned. In addition to binding the predecessor of M to x in the
succ x branch, the recursive result—calculated by replacing M with its predecessor x—is
bound to y.

The type system of System T is given in Fig. 2. The Var, →I and →E typing rules are
from the simply typed λ-calculus. The two NatI introduction rules give the types of the
constructors of Nat, and the NatE elimination rule types the Nat recursor.

System T’s call-by-name and call-by-value operational semantics are given in Fig. 3.
Both of these evaluation strategies share operational rules of the same form, with β→ being
the well-known β rule of the λ-calculus, and βzero and βsucc defining recursion on the two
Nat constructors. The only difference between call-by-value and call-by-name evaluation
lies in their notion of values V (i.e., those terms which can be substituted for variables) and
evaluation contexts (i.e., the location of the next reduction step to perform). Note that we
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take this notion seriously and never substitute a non-value for a variable. As such, the βsucc

rule does not substitute the recursive computation rec V as {zero→N | succ x→ y.N ′} for
y, since it might not be a value (in call-by-value). The next reduction step depends on the
evaluation strategy. In call-by-name, this next step is indeed to substitute rec V as {zero→
N | succ x→ y.N ′} for y, and so we have:

rec succ M as
{ zero→N
| succ x→ y.N ′}

�→→N ′
⎡
⎣M/x,

⎛
⎝ rec M as

{ zero→N
| succ x→ y.N ′}

⎞
⎠
/

y

⎤
⎦

So call-by-name recursion is computed starting with the current (largest) number first and
ending with the smallest number needed (possibly the base case for zero). If a recursive
result is not needed, then it is not computed at all, allowing for an early end of the recursion.
In contrast, call-by-value must evaluate the recursive result first before it can be substituted
for y. As such, call-by-value recursion always starts by computing the base case for zero
(whether or not it is needed), and the intermediate results are propagated backwards until
the case for the initial number is reached. So call-by-value allows for no opportunity to
end the computation of rec early.

Example 2.1. The common arithmetic functions plus, times, pred, and fact can be written
in System T as follows:

plus= λx.λy. rec x as {zero→ y | succ → z. succ z}
times= λx.λy. rec x as {zero→ zero | succ → z.plus y z}
pred = λx. rec x as {zero→ zero | succ x→ z.x}
fact= λx. rec x as {zero→ succ zero | succ y→ z.times (succ y) z}

Executing pred (succ(succ zero)) in call-by-name proceeds like so:

pred (succ(succ zero))
�→ rec succ(succ zero) as {zero→ zero | succ x→ z.x} (β→)
�→ (λz. succ zero) (rec succ zero as {zero→ zero | succ x→ z.x}) (βsucc)
�→ succ zero (β→)

However, in call-by-value, the predecessor of both succ zero and zero is computed even
though these intermediate results are not needed in the end:

pred (succ(succ zero))
�→ rec succ(succ zero) as {zero→ zero | succ x→ z.x} (β→)
�→ (λz. succ zero) (rec succ zero as {zero→ zero | succ x→ z.x}) (βsucc)
�→ (λz. succ zero) ((λz. zero) (rec zero as {zero→ zero | succ x→ z.x})) (βsucc)
�→ (λz. succ zero) ((λz. zero) zero) (βzero)
�→ (λz. succ zero) zero (β→)
�→ succ zero (β→)

In general, pred is a constant time (O(1)) function over the size of its argument when fol-
lowing the call-by-name semantics, which computes the predecessor of any natural number
in a fixed number of steps. In contrast, pred is a linear time (O(n)) function when follow-
ing the call-by-value semantics, where pred (succn zero) executes with a number of steps
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6 P. Downen and Z.M. Ariola

proportional to the size n of its argument because it requires at least n applications of the
βsucc rule before an answer can be returned.

3 Recursion in an abstract machine

In order to explore the lower-level performance details of recursion, we can use an abstract
machine for modeling an implementation of System T. Unlike the operational semantics
given in Fig. 3, which requires a costly recursive search deep into an expression to find
the next redex at every step, an abstract machine explicitly includes this search in the
computation itself which can immediately resume from the same position as the previous
reduction step. As such, every step of the machine can be applied by matching only on the
top-level form of the machine state, which models the fact that a real implementations in
a machine does not have to recursively search for the next reduction step to perform, but
can identify and jump to the next step in a constant amount of time. Thus, in an abstract
machine instead of working with terms one works with configurations of the form:

〈M ||E〉
where M is a term also called a producer and E is a continuation or evaluation context,
also called a consumer. A state, also called a command, puts together a producer and a
consumer, so that the output of M is given as the input to E. We first present distinct
abstract machines for call-by-name and call-by-value, we then smooth out the differences
in the uniform abstract machine.

3.1 Call-by-name abstract machine

The call-by-name abstract machine for System T is based on the Krivine machine (Krivine,
2007), which is defined in terms of these continuations (representing evaluation contexts,
for example, tp represents the empty, top-level context) and transition rules:1,2

E ::= tp |N · E | rec{zero→M | succ x→ z.N}with E

Refocusing rules:

〈M N ||E〉 �→ 〈M ||N · E〉
〈rec M as{. . . }||E〉 �→ 〈M ||rec{. . . }with E〉

Reduction rules:

〈λx.M ||N · E〉 �→ 〈M[N/x]||E〉〈
zero

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→N
| succ x→ y.N ′}

with E

〉
�→ 〈N ||E〉

1 Our primary interest in abstract machines here is in the accumulation and use of continuations. For simplicity,
we leave out other common details sometimes specified by abstract machines, such as modeling a concrete
representation of substitution and environments.

2 Note that the rule 〈rec M as{. . . }||E〉 �→ 〈M ||rec{. . . }with E〉 has an ellipsis “. . . ” which matches the same
syntactic form on both sides of the transition rule. In general, we will use this pattern of matching ellipsis to
elide a repeated syntactic fragment on two sides of a transition rule to simplify the presentation of examples.
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〈
succ M

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→N
| succ x→ y.N ′}

with E

〉
�→
〈
N ′
[

M
/

x , rec M as { zero→N
| succ x→ y.N ′}

/
y

]∣∣∣∣
∣∣∣∣E
〉

The first two rules are refocusing rules that move the attention of the machine closer
to the next reduction building a larger continuation: N · E corresponds to the context
E[� N], and the continuation rec{zero→N | succ x→ y.N ′}with E corresponds to the
context E[rec � as{zero→N | succ x→ y.N ′}]. The latter three rules are reduction rules
which correspond to steps of the operational semantics in Fig. 3. While the distinction
between refocusing and reduction rules is just a mere classification now, the difference
will become an important tool for generalizing the abstract machine into a more uniform
presentation later in Section 3.3.

3.2 Call-by-value abstract machine

A CEK-style (Felleisen & Friedman, 1986), call-by-value abstract machine for System
T—which evaluates applications M1 M2 . . . Mn left-to-right to match the call-by-value
semantics in Fig. 3—is given by these continuations E and transition rules:

E ::= tp | n · E | V ◦ E | succ ◦E | rec{zero→M | succ x→ y.N}with E

Refocusing rules:

〈M N ||E〉 �→ 〈M ||N · E〉
〈V ||R · E〉 �→ 〈R||V ◦ E〉
〈V ||V ′ ◦ E〉 �→ 〈V ′||V · E〉

〈rec M as{. . . }||E〉 �→ 〈M ||rec{. . . }with E〉
〈succ R||E〉 �→ 〈R||succ ◦E〉
〈V ||succ ◦E〉 �→ 〈succ V ||E〉

Reduction rules:

〈λx.M ||V · E〉 �→ 〈M[V/x]||E〉〈
zero

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→N
| succ x→ y.N ′}

with E

〉
�→ 〈N ||E〉

〈
succ V

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→N
| succ x→ y.N ′}

with E

〉
�→
〈

V

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→N
| succ x→ y.N ′}

with ((λy.N ′) ◦ E)

〉

where R stands for a non-value term. Since the call-by-value operational semantics has
more forms of evaluation contexts, this machine has additional refocusing rules for
accumulating more forms of continuations including applications of functions (V ◦ E corre-
sponding to E[V �]) and the successor constructor (succ ◦E corresponding to E[succ �]).
Also note that the final reduction rule for the succ case of recursion is different, accounting
for the fact that recursion in call-by-value follows a different order than in call-by-name.
Indeed, the recursor must explicitly accumulate and build upon a continuation, “adding to”
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8 P. Downen and Z.M. Ariola

Fig. 4. Uniform, recursive abstract machine for System T.

the place it returns to with every recursive call. But otherwise, the reduction rules are the
same.3

3.3 Uniform abstract machine

We now unite both evaluation strategies with a common abstract machine, shown in Fig. 4.
As before, machine configurations are of the form

〈v||e〉
which put together a term v and a continuation e (often referred to as a coterm). However,
both terms and continuations are more general than before. Our uniform abstract machine
is based on the sequent calculus, a symmetric language reflecting many dualities of clas-
sical logic (Curien & Herbelin, 2000; Wadler, 2003). An advantage of this sequent-based
system is that the explicit symmetry inherent in its syntax gives us a language to express
and understand the implicit symmetries that are hiding in computations and types. This

3 The astute reader might notice that, when given a value, the continuation (λx.M) ◦ E always leads the same
sequence of two transitions: 〈V ||(λx.M) ◦ E〉 �→ 〈λx.M ||V · E〉 �→ 〈M[V/x]||E〉. Their next thought might be to
merge these two steps together, to transition directly with the combined rule 〈V ||(λx.M) ◦ E〉 �→ 〈M[V/x]||E〉
that “saves” a step in the reduction sequence. However, our main motivation for showing the call-by-name and
call-by-value abstract machines is to lead to the uniform abstract machine coming next in Section 3.3. Leaving
these two steps separate more clearly illustrates the common ground of the two machines which makes it
possible to combine them into a common definition.
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utility of a symmetric language is one of the key insights of our approach, which will let
us syntactically derive a notion of corecursion which is dual to recursion.

Unlike the previous machines, continuations go beyond evaluation contexts and include
μ̃x.〈v||e〉, which is a continuation that binds its input value to x and then steps to the
machine state 〈v||e〉. This new form allows us to express the additional call-by-value eval-
uation contexts: V ◦ E becomes μ̃x.〈V ||x · E〉, and succ ◦E is μ̃x.〈succ x||E〉. Evaluation
contexts are also more restrictive than before; only values can be pushed on the calling
stack. We represent the application continuation M · E with a non-value argument M by
naming its partner—the generic value V—with y: μ̃y.〈M ||μ̃x.〈y||x · E〉〉.4

The refocusing rules can be subsumed all together by extending terms with a dual form
of μ̃-binding. The μ-abstraction expression μα.〈v||e〉 binds its continuation to α and then
steps to the machine state 〈v||e〉. With μ-bindings, all the refocusing rules for call-by-name
and call-by-value can be encoded in terms of μ and μ̃.5 It is also not necessary to do
these steps at run-time, but can all be done before execution through a compilation step.
The target language of this compilation step becomes the syntax of the uniform abstract
machine, as shown in Fig. 4. This language does not include anymore applications M N
and the recursive term rec M as{. . . }. Also, unlike System T, the syntax of terms and co-
terms depends on the definition of values and covalues; succ V , rec{. . . }with E, and call
stacks V · E are valid in both call-by-name and call-by-value, just with different definitions
of V and E. Yet, all System T terms can still be translated to the smaller language of the
machine, as shown in Fig. 5. General terms also include the μ- and μ̃-binders described
above: μα.c is not a value in call-by-value, and μ̃x.c is not a covalue in call-by-name. So
for example, succ(μα.c) is not a legal term in call-by-value, but can be translated instead
to μβ.〈μα.c||μ̃x.〈succ x||β〉〉 following Fig. 5. Similarly x · μ̃y.c is not a legal call stack in
call-by-name, but it can be rewritten to μ̃z.〈μα.〈z||x · α〉||μ̃y.c〉.

As with System T, the notions of values and covalues drive the reduction rules in Fig. 4.
In particular, the μ and μ̃ rules will only substitute a value for a variable or a covalue
for a covariable, respectively. Likewise, the β→ rule implements function calls, but tak-
ing the next argument value off of a call stack and plugging it into the function. The
only remaining rules are βzero and βsucc for reducing a recursor when given a number
constructed by zero or succ. While the βzero is exactly the same as it was previously in
both specialized machine, notice how βsucc is different. Rather than committing to one

4 We choose to restrict certain continuations by expanding them into a μ̃ in order to reduce the number
of reduction rules that we have to consider in the abstract machine. Alternatively, we could accept R · E
with a non-value R as a valid continuation, but this requires another rule to perform the expansion which
“lifts” out the argument R to the top-level during execution like so: 〈V ||R · E〉 �→ 〈V ||μ̃y.〈R||μ̃x.〈y||x · E〉〉〉 �→
〈R||μ̃x.〈V ||x · E〉〉. This family of “lifting” rules appeared as the ς rules of Wadler (2003). The choice to per-
form ς reduction at “run-time” while the machine executes as in Wadler (2003) versus rewriting the code
using analogous ς expansions at “compile-time” as we do here leads to an equivalent system. See Downen &
Ariola (2018b) for more details on this choice and how it relates to proof theory.

5 The μ-abstraction provides a form of control effects first-class continuations, analogous to the abstraction of
the same name in the λμ-calculus (Parigot, 1992). The reason why μ is so useful in the abstract machine is that
it lets us expand out all elimination forms, like function application and numeric recursion, into its continuation
form, thereby eliminating the redundant syntax we would have to consider. For example, the refocusing rule
for function application, 〈M N ||α〉 �→ 〈M ||N · α〉 rewrites M N on the term side to N · α on the continuation side
at run-time, for any starting continuation α. Instead, we can replace this step at compile-time by abstracting
over the α with the program transformation M N =μα.〈M ||N · E〉. The same can be done by transforming rec
as an expression to rec as a continuation using μ. In this way, μ-abstractions reduce the number of reduction
rules and syntactic forms needed by the uniform abstract machine.

https://doi.org/10.1017/S0956796822000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000168


10 P. Downen and Z.M. Ariola

Fig. 5. The translation from System T to the uniform abstract machine.

evaluation order or the other, βsucc is neutral: the recursive predecessor (expressed as the
term μα.〈V ||rec{. . . }with α〉 on the right-hand side) is neither given precedence (at the
top of the command) nor delayed (by substituting it for y). Instead, this recursive prede-
cessor is bound to y with a μ̃-abstraction. This way, the correct evaluation order can be
decided in the next step by either an application of μ or μ̃ reduction.

Notice one more advantage of translating System T at “compile-time” into a smaller
language in the abstract machine. In the same way that the λ-calculus supports both a
deterministic operational semantics along with a rewriting system that allows for optimiza-
tions that apply reductions to any sub-expression, so too does the syntax of this uniform
abstract machine allow for optimizations that reduce sub-expressions in advance of the
usual execution order. For example, consider the term let f = (λx.(λy.y) x) in M .6 Its next
step is to substitute the abstraction (λx.(λy.y) x) for f in M , and every time M calls (f V )
we must repeat the steps (λx.(λy.y) x) V �→ (λy.y) V �→ V again. But applying a β reduc-
tion under the λ bound to f , we can instead optimize this expression to let f = (λx.x) in M .
With this optimization, when M calls (f V ) it reduces as (λx.x) V �→ V in one step. This
same approach applies to the uniform abstract machine, too, because all elimination forms
like � N and rec � as{. . . } have been compiled to continuations of the form N · α and
rec{. . . }with α that we can use to apply machine reductions. For example, the transla-
tion of let f = (λx.(λy.y) x) in M is quite large, but we can optimize away several μ and
μ̃ reductions—which are responsible for the administrative duty of directing information
and control flow—in advance inside sub-expressions to simplify the translation to:7

�let f = (λx.(λy.y) x) in M� →→μμ̃ μα.〈λx.μβ.〈λy.y||x · β〉||μ̃f .〈�M�||α〉〉
where →→ denotes zero or more reduction steps �→ applied inside any context. From there,
we can further optimize the program by simplifying the application of λy.y in advance, by
applying the β→ rule inside the μs binding α and β and the λ binding x like so:

μα.〈λx.μβ.〈λy.y||x · β〉||μ̃f .〈�M�||α〉〉→β→ μα.〈λx.μβ.〈x||β〉||μ̃f .〈�M�||α〉〉
This way, we are able to still optimize the program even after compilation to the abstract
machine language, the same as if we were optimizing the original λ-calculus source code.

6 Where we use the usual syntactic sugar let x=M in N defined as (λx.N) M .
7 The μ and μ̃ reductions that we simplify here are analogous to administrative reductions in continuation-

passing style translations (Sabry & Felleisen, 1993). They explicitly direct the information flow and control
flow of the program in terms of μ̃- and μ-bindings, but can sometimes make it harder to read example code. We
don’t formally distinguish between administrative and ordinary reductions in this paper, but we may selectively
(and explicitly) reduce away these more administrative bindings in order to make examples easier to read.
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Intermezzo 3.1. We can now summarize how some basic concepts of recursion are directly
modeled in our syntactic framework:

– With inductive data types, values are constructed and the consumer is a recursive
process that uses the data. Natural numbers are terms or producers, and their use is
a process which is triggered when the term becomes a value.

– Construction of data is finite and its consumption is (potentially) infinite, in the sense
that there must be no limit to the size of the data that a consumer can process. We
can only build values from a finite number of constructor applications. However, the
consumer does not know how big of an input it will be given, so it has to be ready to
handle data structures of any size. In the end, termination is preserved because only
finite values are consumed.

– Recursion uses the data, rather than producing it. rec is a coterm, not a term.
– Recursion starts big and potentially reduces down to a base case. As shown in the

reduction rules, the recursor breaks down the data structure and might end when the
base case is reached.

– The values of a data structures are all independent from each other but the results
of the recursion potentially depend on each other. In the reduction rule for the
successor case, the result at a number n might depend on the result at n− 1.

3.4 Examples of recursion

Restricting the μ and μ̃ rules to only binding (co)values effectively implements the chosen
evaluation strategy. For example, consider the application (λz. succ zero) ((λx.x) zero).
Call-by-name evaluation will reduce the outer application first and return succ zero right
away, whereas call-by-value evaluation will first reduce the inner application ((λx.x) zero).
How is this different order of evaluation made explicit in the abstract machine, which uses
the same set of rules in both cases? First, consider the translation of �(λz.x) ((λx.x) y)�:

�(λz.x) ((λx.x) y)� :=μα.〈λz.x||μ̃f .〈μβ.〈λx.x||μ̃g.〈y||μ̃y.〈g||y · β〉〉〉||μ̃z′.〈f ||z′ · α〉〉〉
This is quite a large term for such a simple source expression. To make the example clearer,
let us first simplify the administrative-style μ̃-bindings out of the way (using applications
of μ̃ rules for to substitute λ-abstractions and variables in a way that is valid for both
call-by-name and call-by-value) to get the shorter term:

�(λz.x) ((λx.x) y)� →→μ̃ μα.〈μβ.〈λx.x||y · β〉||μ̃z.〈λz.x||z · α〉〉
To execute it, we need to put it in interaction with an actual context. In our case, we can

simply use a covariable α. Call-by-name execution then proceeds from the simplified as:

〈μα.〈μβ.〈λx.x||y · β〉||μ̃z.〈λz.x||z · α〉〉||α〉 �→ 〈μβ.〈λx.x||y · β〉||μ̃z.〈λz.x||z · α〉〉 (μ)
�→ 〈λz.x||μβ.〈λx.x||y · β〉 · α〉 (μ̃∗)
�→ 〈x||α〉 (β→)

And call-by-value execution of the simplified proceeds as:

〈μα.〈μβ.〈λx.x||y · β〉||μ̃z.〈λz.x||z · α〉〉||α〉 �→ 〈μβ.〈λx.x||y · β〉||μ̃z.〈λz.x||z · α〉〉 (μ)
�→ 〈λx.x||y · μ̃z.〈λz.x||z · α〉〉 (μ∗)
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�→ 〈y||μ̃z.〈λz.x||z · α〉〉 (β→)
�→ 〈λz.x||y · α〉 (μ̃)
�→ 〈x||α〉 (β→)

The first two steps are the same for either evaluation strategy. Where the two begin to
diverge is in the third step (marked by a ∗), which is an interaction between a μ- and
a μ̃-binder. In call-by-name, the μ̃ rule takes precedence (because a μ̃-coterm is not a
covalue), leading to the next step which throws away the first argument, unevaluated. In
call-by-value, the μ rule takes precedence (because a μ-term is not a value), leading to the
next step which evaluates the first argument, producing y to bind to z that eventually gets
thrown away.

Consider the System T definition of plus from Example 2.1, which is expressed by the
machine term

plus= λx.λy.μβ.〈x||rec{zero→ y | succ → z. succ z}with β〉
The application plus 2 3 is then expressed as μα.〈plus||2 · 3 · α〉, which is obtained by

reducing some μ- and μ̃-bindings in advance. Putting this term in the context α, in call-by-
value it executes (eliding the branches of the rec continuation, which are the same in every
following step) like so:

〈μα.〈plus||2 · 3 · α〉||α〉
�→ 〈plus||2 · 3 · α〉
�→ 〈λy.μβ.〈2||rec{zero→ y | succ → z. succ z}with β〉||3 · α〉 (β→)
�→ 〈μβ.〈2||rec{zero→ 3 | succ → z. succ z}with β〉||α〉 (β→)
�→ 〈succ(succ zero)||rec{zero→ 3 | succ → z. succ z}with α〉 (μ)
�→ 〈μβ.〈succ zero||rec{. . . }with β〉||μ̃z.〈succ z||α〉〉 (βsucc)
�→ 〈succ zero||rec{. . . }with μ̃z.〈succ z||α〉〉 (μ)
�→ 〈μβ.〈zero||rec{. . . }with β〉||μ̃z′.〈succ z′||μ̃z.〈succ z||α〉〉〉 (βsucc)
�→ 〈zero||rec{. . . }with μ̃z′.〈succ z′||μ̃z.〈succ z||α〉〉〉 (μ)
�→ 〈3||μ̃z′.〈succ z′||μ̃z.〈succ z||α〉〉〉 (βzero)
�→ 〈succ 3||μ̃z.〈succ z||α〉〉 (μ̃)
�→ 〈succ(succ 3)||α〉 (μ̃)

Notice how this execution shows how, during the recursive traversal of the data structure,
the return continuation of the recursor is updated (in blue) to keep track of the growing
context of pending operations, which must be fully processed before the final value of
5 (succ(succ 3)) can be returned to the original caller (α). This update is implicit in the λ-
calculus-based System T, but becomes explicit in the abstract machine. In contrast, call-by-
name only computes numbers as far as they are needed, otherwise stopping at the outermost
constructor. The call-by-name execution of the above command proceeds as follows, after
fast-forwarding to the first application of βsucc:

〈μα.〈plus||2 · 3 · α〉||α〉
�→→ 〈succ(succ zero)||rec{zero→ 3 | succ → z. succ z}with α〉 (μ)
�→ 〈μβ.〈succ zero||rec{zero→ 3 | succ → z. succ z}with β〉||μ̃z.〈succ z||α〉〉 (βsucc)
�→ 〈succ(μβ.〈succ zero||rec{zero→ 3 | succ → z. succ z}with β〉)||α〉 (μ̃)
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Unless α demands to know something about the predecessor of this number, the term
μβ.〈succ zero||rec{. . . }with β〉 will not be computed.

Now consider pred (succ(succ zero)), which can be expressed in the machine as:

μα.〈pred||succ(succ zero) · α〉
pred = λx.μβ.〈x||rec{zero→ zero | succ x→ z.x}with β〉

In call-by-name, it executes with respect to α like so:

〈μα.〈pred||succ(succ zero) · α〉||α〉
�→ 〈pred||succ(succ zero) · α〉 (μ)
�→ 〈μβ.〈succ(succ zero)||rec{zero→ zero | succ x→ z.x}with β〉||α〉 (β→)
�→ 〈succ(succ zero)||rec{zero→ zero | succ x→ z.x}with α〉 (μ)
�→ 〈μβ.〈succ zero||rec{zero→ zero | succ x→ z.x}with β〉||μ̃z.〈succ zero||α〉〉 (βsucc)
�→ 〈succ zero||α〉 (μ̃)

Notice how, after the first application of βsucc, the computation finishes in just one μ̃ step,
even though we began recursing on the number 2. In call-by-value instead, we have to
continue with the recursion even though its result is not needed. Fast-forwarding to the
first application of the βsucc rule, we have:

〈succ(succ zero)||rec{zero→ zero | succ x→ z.x}with α〉
�→ 〈μβ.〈succ zero||rec{. . . }with β〉||μ̃z.〈succ zero||α〉〉 (βsucc)
�→ 〈succ zero||rec{. . . }with μ̃z.〈succ zero||α〉〉 (μ)
�→ 〈μβ.〈zero||rec{. . . }with β〉||μ̃z.〈zero||μ̃z.〈succ zero||α〉〉〉 (βsucc)
�→ 〈zero||rec{. . . }with μ̃z.〈succ zero||μ̃z.〈succ zero||α〉〉〉 (μ)
�→ 〈zero||μ̃z.〈succ zero||μ̃z.〈succ zero||α〉〉〉 (βzero)
�→→ 〈succ zero||α〉 (μ̃)

3.5 Recursion versus iteration: Expressiveness and efficiency

Recall how the recursor performs two jobs at the same time: finding the predecessor of a
natural number as well as calculating the recursive result given for the predecessor. These
two functionalities can be captured separately by continuations that perform shallow case
analysis and iteration, respectively. Rather than including them as primitives, both can
be expressed as syntactic sugar in the form of macro-expansions in the language of the
abstract machine like so:

case { zero → v

| succ x→w}
with E

:=
rec { zero → v

| succ x→ .w}
with E

iter { zero → v

| succ→ x.w}
with E

:=
rec { zero → v

| succ → x.w}
with E

The only cost of this encoding of case and iter is an unused variable binding, which is
easily optimized away. In practice, this encoding of iteration will perform exactly the same
as if we had taken iteration as a primitive.

While it is less obvious, going the other way is still possible. It is well known that
primitive recursion can be encoded as a macro-expansion of iteration using pairs. The
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usual macro-expansion in System T is:

rec M as

{ zero →N
| succ x→ y.N ′}

:=
snd (iter M as

{ zero→ (zero, N)
| succ → (x, y). (succ x, N ′)})

The trick to this encoding is to use iter to compute both a reconstruction of the number
being iterated upon (the first component of the iterative result) alongside the desired result
(the second component). Doing both at once gives access to the predecessor in the succ
case, which can be extracted from the first component of the previous result (given by the
variable x in the pattern match (x, y)).

To express this encoding in the abstract machine, we need to extend it with pairs, which
look like (Wadler, 2003):

〈(v, w)||fst E〉 �→ 〈v||E〉 〈(v, w)||snd E〉 �→ 〈w||E〉 (β×)

In the syntax of the abstract machine, the analogous encoding of a rec continuation as a
macro-expansion looks like this:

rec { zero → v

| succ x→ y.w}
with E

:=
iter { zero → (zero, v)

| succ→ (x, y).(succ x, w)}
with snd E

Since the inductive case w might refer to both the predecessor x and the recursive result
for the predecessor (named y), the two parts must be extracted from the pair returned
from iteration. Here we express this extraction in the form of pattern matching, which is
shorthand for:

(x, y).(v1, v2) := z.μα.〈z||fst(μ̃x.〈z||snd(μ̃y.〈(v1, v2)||α〉)〉)〉
Note that the recursor continuation is tasked with passing its final result to E once it has
finished. In order to give this same result to E, the encoding has to extract the second
component of the final pair before passing it to E, which is exactly what snd E expresses.

Unfortunately, this encoding of recursion is not always as efficient as the original. If the
recursive parameter y is never used (such as in the pred function), then rec can provide an
answer without computing the recursive result. However, when encoding rec with iter, the
result of the recursive value must always be computed before an answer is seen, regardless
of whether or not y is needed. As such, redefining pred using iter in this way changes it
from a constant time (O(1)) to a linear time (O(n)) function. Notice that this difference in
cost is only apparent in call-by-name, which can be asymptotically more efficient when
the recursive y is not needed to compute N ′, as in pred. In call-by-value, the recursor must
descend to the base case anyway before the incremental recursive steps are propagated
backward. That is to say, the call-by-value rec has the same asymptotic complexity as its
encoding via iter.

3.6 Types and correctness

We can also give a type system directly for the abstract machine, as shown in Fig. 6. This
system has judgments for assigning types to terms as usual: � 
 v : A says v produces
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Fig. 6. Type system for the uniform, recursive abstract machine.

an output of type A. In addition, there are also judgments for assigning types to coterms
(� 
 e÷ A says e consumes an input of type A) and commands (� 
 c says c is safe to
compute, and does not produce or consume anything).

This type system ensures that the machine itself is type safe: well-typed, executable com-
mands don’t get stuck while in the process of computing a final state. For our purposes, we
will consider “programs” to be commands c with just one free covariable (say α), represent-
ing the initial, top-level continuation expecting a natural number as the final answer. Thus,
well-typed executable commands will satisfy α÷Nat
 c. The only final states of these
programs have the form 〈zero||α〉, which sends 0 to the final continuation α, or 〈succ V ||α〉,
which sends the successor of some V to α. But the type system ensures more than just type
safety: all well-typed programs will eventually terminate. That’s because rec-expressions,
which are the only form of recursion in the language, always decrement their input by 1
on each recursive step. So together, every well-typed executable command will eventually
(termination) reach a valid final state (type safety).

Theorem 3.2 (Type safety & Termination of Programs). For any command c of the
recursive abstract machine, if α ÷Nat
 c then c �→→ 〈zero||α〉 or c �→→ 〈succ V ||α〉 for
some V.

The truth of this theorem follows directly from the latter development in Section 6, since
it is a special case of Theorem 6.14.

Intermezzo 3.3. Since our abstract machine is based on the logic of Gentzen’s sequent
calculus (Gentzen, 1935), the type system in Fig. 6 too can be viewed as a term assignment
for a particular sequent calculus. In particular, the statement v : A corresponds to a proof
that A is true. Dually e÷ A corresponds to a proof that A is false, and hence the notation,
which can be understood as a built-in negation− in e :−A. As such, the built-in negation in
every e÷ A (or α÷ A) can be removed by swapping between the left- and right-hand sides
of the turnstyle (
), so that e÷ A on the right becomes e : A on the left, and α÷ A on the left
becomes α : A on the right. Doing so gives a conventional two-sided sequent calculus as in
(Ariola et al., 2009; Downen & Ariola, 2018b), where the rules labeled L with conclusions
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Fig. 7. Typing rules for streams in the uniform, (co)recursive abstract machine.

of the form xi : Bi, αj ÷Cj 
 e÷ A correspond to left rules of the form xi : Bi | e : A
 αj : Cj

in the sequent calculus. In general, the three forms of two-sided sequents correspond to
these three different typing judgments used here (with � rearranged for uniformity):

• xi : Bi, i. . ., αj ÷Cj, j. . .
 v : A corresponds to xi : Bi, i. . .
 v : A | αj : Cj, j. . ..
• xi : Bi, i. . ., αj ÷Cj, j. . .
 e÷ A corresponds to xi : Bi, i. . . | e : A
 αj : Cj, j. . ..
• xi : Bi, i. . ., αj ÷Cj, j. . .
 c corresponds to c : (xi : Bi, i. . .
 αj : Cj, j. . .).

4 Corecursion in an abstract machine

Instead of coming up with an extension of System T with corecursion and then define an
abstract machine, we start directly with the abstract machine which we obtain by applying
duality. As a prototypical example of a coinductive type, we consider infinite streams of
values, chosen for their familiarity (other coinductive types work just as well), which we
represent by the type Stream A, as given in Fig. 7.

The intention is that Stream A is roughly dual to Nat, and so we will flip the roles of terms
and coterms belonging to streams. In contrast with Nat, which has constructors for building
values, Stream A has two destructors for building covalues. First, the covalue head E (the
base case dual to zero) projects out the first element of its given stream and passes its
value to E. Second, the covalue tail E (the coinductive case dual to succ V ) discards the
first element of the stream and passes the remainder of the stream to E. The corecursor is
defined by dualizing the recursor, whose general form is:

rec {base case→ v | inductive case→ y.w} with E

corec {base case → e | coinductive case→ γ .f }with V

Notice how the internal seed V corresponds to the return continuation E. In the base case
of the recursor, term v is sent to the current value of the continuation E. Dually, in the
base case of the corecursor, the coterm e receives the current value of the internal seed
V . In the recursor’s inductive case, y receives the result of the next recursive step (i.e.,
the predecessor of the current one), whereas in the corecursor’s coinductive case, γ sends
the updated seed to the next corecursive step (i.e., the tail of the current one). The two
cases of the recursor match the patterns zero (the base case) and succ x (the inductive case).
Analogously, the corecursor matches against the two possible copatterns: the base case is
head α, and the coinductive case is tail β. So the full form of the stream corecursor is:

corec {head α→ e | tail β → γ .f }with V
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Fig. 8. Uniform, (co)recursive abstract machine.

The uniform abstract machine is given in Fig. 8, where we highlight the extensions. Note
how the corecursor generates (on the fly) the values of the stream using V as an incremental
accumulator or seed, saving the progress made through the stream so far. In particular, the
base case head α→ e matching the head projection just passes the accumulator to e, which
(may) compute the current element and send it to α. The corecursive case tail β → γ .f
also passes the accumulator to f , which may return an updated accumulator (through γ )
or circumvent further corecursion by returning another stream directly to the remaining
projection (via β). As with the syntax, the operational semantics is roughly symmetric to
the rules for natural numbers, where roles of terms and coterms have been flipped.

Intermezzo 4.1. We review how the basic concepts of corecursion are reflected in our
syntactic framework. Note how these observations are dual to the basic concepts of
recursion.

– With coinductive data types, covalues are constructed and the producer is a process
that generates the data. Observers of streams are constructed via the head and tail
projections, and their construction is a process.
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– Use of codata is finite and its creation is (potentially) infinite in the sense that there
must be no limit to the size of the codata that a producer can process. We can
only build covalues from a finite number of destructor applications. However, the
producer does not know how big of a request it will be given, so it has to be ready
to handle codata structures of any size. In the end, termination is preserved because
only finite covalues are consumed.

– Corecursion produces the data, rather than using it. corec is a term, not a coterm.
– Corecursion starts from a seed and potentially produces bigger and bigger internal

states; the corecursor brakes down the codata structure and might end when the base
case is reached.

– The values of a codata structure potentially depend on each other. The n-th value of
a stream might depend on the value at the index n-1.

4.1 Examples of corecursion

The infinite streams x, x, x, x, . . . and x, f x, f (f x), . . . , which are written in Haskell as

always x= x : always x repeat f x= x : repeat f (f x)

can be calculated by the abstract machine terms

always x= corec { head α→ α

| tail _→ γ .γ }
with x

repeat f x= corec { head α→ α

| tail _→ γ .μ̃x.〈f ||x · γ 〉}
with x

So when an observer asks always x (repeat f x) for its head element (matching the copattern
head α), always x (repeat f x) returns (to α) the current value of the seed x. Otherwise,
when an observer asks for its tail (matching the copattern tail β), always x (repeat f x)
continues corecursing with the same seed x (μγ .〈f ||x · γ 〉).

The infinite streams containing all zeroes, and the infinite stream of all natural numbers
counting up from 0, are then represented as:

zeroes=μα.〈always||zero ·α〉
nats=μα.〈repeat||succ · zero ·α〉

where succ is defined as λx.μα.〈succ x||α〉.
To better understand execution, let’s trace how computation works in both call-by-name

and call-by-value. Asking for the third element of zeroes proceeds with the follow-
ing calculation in call-by-value (we let alwaysx stand for the stream with x being the
seed):

〈zeroes||tail(tail(head α))〉
�→ 〈always||zero · tail(tail(head α))〉 (μ)
�→ 〈alwayszero||tail(tail(head α))〉 (β→)
�→ 〈μγ .〈zero||γ 〉||μ̃x.〈alwaysx||tail(head α)〉〉 (βtail)
�→ 〈zero||μ̃x.〈alwaysx||tail(head α)〉〉 (μ)
�→ 〈alwayszero||tail(head α)〉 (μ̃)
�→→ 〈alwayszero||head α〉 (βtailμμ̃)
�→ 〈zero||α〉 (βhead)
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In contrast, notice how the same calculation in call-by-name builds up a delayed
computation in the seed:

〈zeroes||tail(tail(head α))〉
�→→ 〈alwayszero||tail(tail(head α))〉 (μβ→)
�→ 〈μγ .〈zero||γ 〉||μ̃x.〈alwaysx||tail(head α)〉〉 (βtail)
�→ 〈alwaysμγ .〈zero||γ 〉||tail(head α)〉 (μ̃)

�→→ 〈alwaysμγ ′.〈μγ .〈zero||γ 〉||γ ′〉||head α〉 (βtailμ̃)

�→ 〈μγ ′.〈μγ .〈zero||γ 〉||γ ′〉||α〉 (βhead)
�→ 〈μγ .〈zero||γ 〉||α〉 (μ)
�→ 〈zero||α〉 (μ)

Consider the function that produces a stream that counts down from some initial number
n to 0, and then staying at 0. Informally, this function can be understood as:

countDown : Nat→ Stream Nat
countDown n= n, n− 1, n− 2, . . . , 3, 2, 1, 0, 0, 0, . . .

which corresponds to the Haskell function

countDown 0= zeroes

countDown n= n : countDown (n− 1)

It is formally defined in the abstract machine like so:

countDown n= corec { head α→ α

| tail _→ γ . rec { zero→ zero
| succ n→ n}with γ }

with n

This definition of countDown can be understood as follows:

• If the head of the stream is requested (matching the copattern head α), then the
current value x of the seed is returned (to α) as-is.

• Otherwise, if the tail is requested (matching the copattern tail _), then the current
value of the seed is inspected: if it is 0, then 0 is used again as the seed; otherwise,
the seed is the successor of some y, in which case y is given as the updated seed.

The previous definition of countDown is not very efficient; once n reaches zero, one
can safely returns the zeroes stream thus avoiding the test for each question. This can be
avoided with the power of the corecursor as so:

countDown′ n= corec { head α→ α

| tail β → γ . rec { zero→μ_.〈zeroes||β〉
| succ n→ γ .n}with γ }

with n

Note that in the coinductive step, the decision on which continuation is taken (the observer
of the tail β or the continuation of corecursion γ ) depends on the current value of the seed.
If the seed reaches 0 the corecursion is stopped and the stream of zeros is returned instead.
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Another example of this “switching” behavior, where one corecursive loop (like
countDown′ 0) ends and switches to another corecursive loop (like zeroes) is the switch0
function informally written as

switch0 (x0, x1, . . . , 0, xi+1, . . . ) (y0, y1, . . . )= x0, x1, . . . , 0, y0, y1, . . . (if ∀j < i.xj �= 0)

switch0 (x0, x1, . . . ) (y0, y1, . . . )= x0, x1, . . . (if ∀j.xj �= 0)

which corresponds to the Haskell code:

switch0 (0 : xs) ys= 0 : ys

switch0 (x : xs) ys= x : switch0 xs ys

Intuitively, switch0 xs ys will generate the stream produced by xs until a 0 is reached; at
that point, the switch0 loop ends by returning 0 followed by the whole stream ys as-is. This
example is more interesting than countDown because there is no inductive argument (like
a number or a list) that the function can inspect in advance to predict when the switch will
occur. Instead, switch0 must generate its elements on demand only when they are requested,
and the switch to ys will only happen if an observer decides to look deep enough into the
stream to hit an 0 inside xs, which might never even happen. switch0 can be efficiently
implemented in the abstract machine using both continuations provided by the corecursor
like so:

switch0 xs ys= corec{head α→ α

| tail β → γ .μ̃xs.〈xs||head rec{zero→ ys
| succ n→μ_.〈xs||tail γ 〉}
with β〉}

with xs

The internal state to this corecursive loop contains the remainder of xs that hasn’t been seen
yet. While the switch0 corec loop is active, it will always generate the head of the current
remainder of xs as its own head element. When the tail is requested, this loop checks the
head of the xs remainder to decide what to do:

• if it is zero, then the whole stream ys gets returned to β, which is the original caller
who requested the tail of the stream, otherwise

• if it is succ n, the corec loop inside switch0 will continue by returning the tail of the
remaining xs to the continuation γ which will update the internal state of the loop
with one fewer element that has not yet been seen.

4.2 Properly de Morgan Dual (co)recursive types

Although we derived corecursion from recursion using duality, our prototypical examples
of natural numbers and streams were not perfectly dual to one another. While the (co)-
recursive case of tail E looks similar enough to succ V , the base cases of head E and zero
don’t exactly line up, because head takes a parameter but zero does not.

One way to perfect the duality is to generalize Nat to Numbered A which represents
a value of type A labeled with a natural number (also known as Burroni naturals).
Numbered A has two constructors: the base case zero : A→Numbered A labels an A value

https://doi.org/10.1017/S0956796822000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000168


Classical (co)recursion: Mechanics 21

with the number 0, and succ : Numbered A→Numbered A increments the numeric label
while leaving the A value alone, as shown by the following rules:

� 
 V : A
� 
 zero V : Numbered A

� 
 V : Numbered A
� 
 succ V : Numbered A

In order to match the generalized zero constructor, the base case of the recursor
needs to be likewise generalized with an extra parameter. In System T, this looks
like rec M as {zero x→N | succ y→ z.N ′}, while in the abstract machine we get the
generalized continuation rec {zero x→ v | succ y→ z.w}with E. The typing rule for this
continuation is:

�, x : A
 v : B �, y : Numbered A, z : B
w : B � 
 E÷ B
� 
 rec {zero x→ v | succ y→ z.w}with E÷Numbered A

It turns out that Numbered A is the proper de Morgan dual to Stream A. Notice how
the two constructors zero V and succ W exactly mirror the two destructors head E and
tail F when we swap the roles of values and covalues. The recursor continuation of the
form rec {zero x→ v | succ y→ z.w}with E is the perfect mirror image of the stream co-
recursor corec {head α→ e | tail β → γ .f }with V when we likewise swap variables with
covariables in the (co)patterns. In more detail, we can write the duality relation between
values and covalues as ∼. Assuming that V ∼ E, we have the following duality between
the constructors and destructors of these two types:

zero V ∼ head E succ V ∼ tail E

For (co)recursion, we have the following dualities, assuming v ∼ e (under x∼ α) w∼ f
(under y∼ β and z∼ γ ), and V ∼ E:

corec{head α→ e | tail β → γ .f }with V ∼ rec{zero x→ v | succ y→ z.w}with E

We could also express the proper de Morgan duality by restricting streams instead
of generalizing numbers. In terms of the type defined above, Nat is isomorphic to
Numbered�, where � represents the usual unit type with a single value (often written
as ()). Since � corresponds to logical truth, its dual is the ⊥ type corresponding to logical
falsehood with no (closed) values, and a single covalue that represents an empty continu-
ation. With this in mind, the type Nat is properly dual to Stream⊥, i.e., an infinite stream
of computations which cannot return any value to their observer.8

In order to fully realize this de Morgan duality in an interesting way that can talk about
functions, we need to refer to the duals of those functions. Logically, the dual to the func-
tion type A→ B (classical equivalent to (¬A)∨ B and ¬(A∧ (¬B)), whose continuations
V · E contain an argument V of type A paired with a consumer E of Bs) is a subtraction
type B− A (classically equivalent to B∧ (¬A) for typing a pair E · V of a value V of type B
and a continuation E expecting As). Following (Curien & Herbelin, 2000), this subtraction
type, along with the units � and ⊥, can be added to our uniform abstract machine with
the following extended syntax of (co)values, reduction rule β− for when a subtraction pair
E · V interacts with the continuation abstraction λ̃α.e, and typing rules:

8 Considering polarity in programming languages (Zeilberger, 2009; Munch-Maccagnoni, 2013), the � type for
truth we use in “Numbered�” should be interpreted as a positive type (written as 1 in linear logic (Girard,
1987)). Dually, the ⊥ type for falsehood in “Stream⊥” is a negative type (also called ⊥ in linear logic).
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Fig. 9. Duality of types, (co)terms, and commands in the uniform abstract machine.

V ::= · · · | () | V · E e ::= · · · | [] | λ̃α.e 〈E · V ||λ̃α.e〉 �→ 〈V ||e[E/α]〉 (β−)

� 
 () :� �R
� 
 []÷⊥ ⊥L

� 
 V : A � 
 E÷ B
� 
 E · V : A− B

−R
�, α ÷ B
 e÷ A

� 
 λ̃α.e÷ A− B
−L

Extending the uniform abstract machine with these new rules, lets us formally define
a de Morgan duality transformation, shown in Fig. 9, that converts any term v producing
type A into the coterm v⊥ consuming type A⊥, converts any coterm e expecting type A
to a term e⊥ giving type A⊥, and converts a command c to its dual command c⊥. The
duality transformation assumes a bijection between variables and covariables (so that x⊥

denotes a unique covariable α such that α⊥ = x, and vice versa), which makes the whole
transformation involutive (e.g., c⊥⊥ = c and A⊥⊥ = A) by definition. This generalizes the
previous duality theorems for the classical sequent calculus (Curien & Herbelin, 2000;
Wadler, 2003)—namely that involutive duality inverts typing and operational semantics in
a meaningful way—to also incorporate (co)recursion on numbers and streams.

Theorem 4.2 (Duality). In the fully dual abstract machine (the uniform abstract machine
extended with subtraction A− B and units � and ⊥), the following symmetries hold:

1. � 
 v : A is derivable if and only if �⊥ 
 v⊥ ÷ A⊥ is.
2. � 
 c is derivable if and only if �⊥ 
 c⊥ is.
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3. v is a call-by-value value if and only if e⊥ is a call-by-name covalue.
4. c �→ c′ in call-by-name if and only if c⊥ �→ c′⊥ in call-by-value.

The proof of Theorem 4.2 just follows by induction on the given typing derivation or
reduction rule and is an application of the duality theorem of general data and codata types
(Downen, 2017), extended with the new form of primitive (co)recursor.

Intermezzo 4.3. The reader already familiar with other work on streams and duality, who
has heard that finite lists are “dual” to (possibly) infinite streams, might be surprised to
see the statement in Fig. 9 and Theorem 4.2 that streams are dual to (a generalization of)
natural numbers. How can this be? The conflict is in two different meanings of the word
“dual.”

The meaning of “dual” we use here corresponds exactly to the usual notion of de Morgan
duality from classical logic. De Morgan duality flips between “true” (�) and “false” (⊥),
and between “and” (A× B) and “or” (A+ B), so that the dual of a proposition A is A⊥

(logically equivalent to ¬A) defined like so:

�⊥ :=⊥ ⊥⊥ :=� (A+ B)⊥ := (A⊥)× (B⊥) (A× B)⊥ := (A⊥)+ (B⊥)

Importantly, notice how the duality transformation is deep: A⊥ does not just flip the top
connective, it flips all the connectives down to the leaves. For example, the proposition
dual to (�+⊥)×� (which is tautologically true) is ((�+⊥)×�)⊥ = (⊥×�)+⊥
(which denotes a falsehood, the dual to truth) and not the erroneous illogical inequality
((�+⊥)×�)⊥ �= (�+⊥)+� (which still tautology true, and not the dual).

Previous work (Curien & Herbelin, 2000; Wadler, 2003) has showed how this duality
of propositions in a logic can naturally extend to a duality of types in a programming lan-
guage based on the classical sequent calculus. Because we are interested in (co)inductive
types here, we also need to consider how this relates to recursion in types. As usual, induc-
tive types like Nat are modeled as a least fixed point, that we write as LFP X .A, whereas
coinductive types like Stream A are modeled as a greatest fixed point, that we write as
GFP X .A.9 A key aspect of this paper is to effectively generalize the classical de Morgan
duality of Curien & Herbelin (2000); Wadler (2003) to the known dualities of least and
greatest fixed points:

(LFP X .A)⊥ :=GFP X .(A⊥) (GFP X .A)⊥ := LFP X .(A⊥)

The Stream A, Nat, and Numbered A types we have seen thus far are isomorphic (denoted
as ≈) to these usual encodings in terms of greatest and least fixed points built on top of
basic type constructors like + and ×:

Stream A≈GFP X . A× X Nat≈ LFP X . �+ X Numbered A≈ LFP X . A+ X

By applying the usual de Morgan duality of classical logic along with the duality of greatest
and least fixed points above, we can calculate these duals of streams and natural numbers:

(Stream A)⊥ ≈ LFP X . A⊥ + X ≈Numbered(A⊥) Nat⊥ ≈GFP X . ⊥× X ≈ Stream⊥
9 Traditionally, the least fixed point of a type function F is denoted by a μ as in μX .F(X ), and the greatest fixed

point of a type function F is commonly denoted by a ν as in νX .F(X ). Because we have already reserved μ to
denote the binder for continuations in a term, à la (Curien & Herbelin, 2000), we will use the more cumbersome
notation LFP and GFP for the purposes of this short intermezzo to avoid confusion.
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Contrastingly, other work on (co)inductive types instead calls two types “duals” by just
flipping between the greatest or fixed point at the top of the top, but leaving everything else
alone. In other words, this other literature says that the dual of LFP X .A is just GFP X .A,
instead of GFP X .(A⊥). In comparison, this is a shallow notion of duality that does not
look deeper into the type. The typical working example of this notion of duality is that the
inductive type of lists (List A) is dual to the coinductive type of possibly infinite or finite
lists (InfList A), modeled like so:

List A≈ LFP X . �+ (A× X ) InfList A≈GFP X . �+ (A× X )

This other notion of duality, which only swaps a greatest for a list fixed point, is closest
to the work on corecursion in lazy functional languages like Haskell, where InfList A rep-
resents Haskell’s usual list type [a]. The work has undoubtedly been very productive in
showing how to solve practical programming problems involving infinite data in the con-
text of lazy functional languages, but covers different ground than our main objective. For
example, shallow duality that just swaps the top-most fixed point—and ignores the rest of
the underlying type—fails at providing an involutive duality of types and computation like
the one shown in Theorem 4.2 and Fig. 9. Intuitively, (List A)⊥ �= InfList A because a finite
list of As looks nothing like the continuation expecting a (possibly infinite) list of A, and
vice versa!

5 Corecursion versus coiteration: Expressiveness and efficiency

Similar to recursion, we can define two special cases of corecursion which only use part
of its functionality by just ignoring a parameter in the corecursive branch. We derive the
encodings for the creation of streams by applying the syntactic duality to the encodings
presented in Section 3.5:

cocase
{ head α→ e
| tail β → f }

with V

:=
corec
{ head α→ e
| tail β → .f }

with V

coiter
{ head α→ e
| tail → γ .f }

with V

:=
corec
{ head α→ e
| tail → γ .f }

with V

Specifically, cocase simply matches on the shape of its projection, which has the form
head α or tail β, without corecursing at all. In contrast, coiter always corecurses by pro-
viding an updated accumulator in the tail β case without ever referring to β. We have
seen already several examples of coiteration. Indeed, all examples given in the previous
section, except countDown′, are examples of coiteration, as indicated by the absence of
the rest of the continuation (named _). From the perspective of logic, coiteration can be
seen as intuitionistic because it only ever involves one continuation (corresponding to one
conclusion) at a time. In contrast, the most general form of the corecursor is inherently
classical because the corecursive step tail β → γ .f introduces two continuations β and γ

(corresponding to two different conclusion) at the same time.
Recall from Section 2 that recursion in call-by-name versus call-by-value have dif-

ferent algorithmic complexities. The same holds for corecursion, with the benefit going
instead to call-by-value. Indeed, in call-by-value the simple cocase continuation avoids the
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corecursive step entirely in two steps:

〈cocase{head α→ e | tail β → f }with V ||tail E〉
:= 〈corec{head α→ e | tail β → .f }with V ||tail E〉
�→ 〈μ .〈V ||f [E/β]〉||μ̃x.〈cocase{head α→ e | tail β → f }with x||E〉〉 (βtail)

�→ 〈V ||f [E/β]〉 (μ)

whereas cocase continues corecursing in call-by-name, despite the fact that this work will
ultimately be thrown away once any element is requested via head:

〈cocase{head α→ e | tail β → f }with V ||tail E〉
:= 〈corec{head α→ e | tail β → .f }with V ||tail E〉
�→ 〈μ .〈V ||f [E/β]〉||μ̃x.〈cocase{head α→ e | tail β → f }with x||E〉〉 (βtail)

�→ 〈cocase{head α→ e | tail β → f }with μ .〈V ||f [E/β]〉||E〉 (μ̃)

As an example of cocase, consider the following stream:

scons x (y1, y2, . . . )= x, y1, y2, . . .

scons x s appends a new element x on top of the stream s. This informal definition can be
formalized in terms of cocase like so:

scons := λx.λs. cocase{head α→ α | tail β → μ̃_.〈s||β〉}with x

Ideally, scons should not leave a lingering effect on the underlying stream. That is to
say, the tail of scons x s should just be s. This happens directly in call-by-value. Consider
indexing the n+ 1th element of scons in call-by-value, where we write tailn E to mean the
n-fold application of tail over E (i.e., tail0 E= E and tailn+1 E= tail(tailn E)):

〈scons||x · s · tailn+1(head α)〉
�→→ 〈cocase{head α→ α | tail β → μ̃ .〈s||β〉}with x}||tail(tailn(head α))〉 (β→)

�→→ 〈x||μ̃ .〈s||tailn(head α)〉〉 (βtailμ)

�→ 〈s||tailn(head α)〉 (μ̃)

Notice how, after the first tail is resolved, the computation incurred by scons has com-
pletely vanished. In contrast, the computation of scons continues to linger in call-by-name:

〈scons||x · s · tailn+1(head α)〉
�→→ 〈cocase{head α→ α | tail β → μ̃ .〈s||β〉}with x}||tail(tailn(head α))〉 (β→)

�→→ 〈cocase{. . . }with μ .〈x||μ̃ .〈s||tailn(head α)〉〉||tailn(head α)〉 (βtailμ̃)

Here, we will spend time over the next n tail projections to build up an ever larger accu-
mulator until the head is reached, even though the result will inevitably just backtrack to
directly ask s for tailn E.

However, one question remains: how do we accurately measure the cost of a stream?
The answer is more subtle than the cost of numeric loops, because streams more closely
resemble functions. With functions, it is not good enough to just count the steps it takes
to calculate the closure. We also need to count the steps taken in the body of the function
when it is called, i.e., what happens when the function is used. The same issue occurs
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with streams, where we also need to count what happens when the stream is used, i.e., the
number of steps taken inside the stream in response to a projection. Of course, the internal
number of steps in both cases can depend on the “size” of the input. For functions, this
is the size of its argument; in the simple case of Nat→Nat, this size is just the value n
of the numeric argument succn zero itself. For streams, the input is the stream projection
of the form tailn(head α), whose size is proportional to the number n of tail projections.
Therefore, the computational complexity of a stream value s—perhaps defined by a corec
term—is expressed as some O(f (n)), where n denotes the depth of the projection given by
the number of tails.

Now, let us consider the asymptotic cost of scons under both call-by-value and call-by-
name evaluation. In general, the difference in performance between 〈scons||x · s · E〉 and
〈s||E〉 in call-by-value is just a constant time (O(1)) overhead. So, given that the cost of s is
O(f (n)), then the cost of 〈scons||x · s · E〉 will also be O(f (n)). In contrast, the call-by-name
evaluation of scons incurs an additional linear time (O(n)) overhead based on depth of the
projection: 〈scons||x · s · tailn+1(head E)〉 takes an additional number of steps proportional
to n compared to the cost of executing 〈s||tailn(head E)〉. As a consequence, the call-by-
name cost of 〈scons||x · s · E〉 is O(n+ f (n)), given that the cost of s is O(f (n)). So the
efficiency of corecursion is better in call-by-value than in call-by-name.

To make the analysis more concrete, let’s look at an application of scons to a specific
underlying stream. Recall the countDown function from Section 4.1 which produces a
stream counting down from a given n: n, n− 1, . . . , 2, 1, 0, 0, . . . . This function (and the
similar countDown′) is defined to immediately return a stream value that captures the start-
ing number n, and then incrementally counts down one at a time with each tail projection.
An alternative method of generating this same stream is to do all the counting up-front:
recurse right away on the starting number and use scons to piece together the stream
from each step towards zero. This algorithm can be expressed in terms of System T-style
recursion like so:

countNow n= rec n as { zero→ zeroes
| succ x→ xs. scons (succ x) xs}

So that the translation of countNow to the abstract machine language is:

countNow= λn.μα.

〈
n

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→ zeroes
| succ x→ xs.μβ.〈scons||succ x · xs · β〉}

with α

〉

What is the cost of countNow? First, the up-front cost of calling the function with the
argument succn zero is unsurprisingly O(n), due to the use of the recursor. But this doesn’t
capture the full cost; what is the efficiency of using the stream value returned by countNow?
To understand the efficiency of the stream, we have to consider both the initial numeric
argument as well as the depth of the projection: 〈countNow||succn zero · tailm(head α)〉 in
the abstract machine language, which corresponds to head(tailm(countNow (succn zero)))
in a functional style. In the base case, we have the stream zeroes, whose cost is O(m)
because it must traverse past all m tail projections before it can return a 0 to the head
projection. On top of this, we apply n applications of scons. Recall that in call-by-value,
we said that the cost of scons is the same as the underlying stream. Thus, the call-by-value
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efficiency of the stream returned by 〈countNow||succn zero · tailm(head α)〉 is just O(m). In
call-by-name in contrast, scons adds an additional linear time overhead to the underlying
stream. Since there are n applications of scons and the projection is m elements deep, the
call-by-name efficiency of the stream returned by 〈countNow||succn zero · tailm(head α)〉 is
O(m(n+ 1)). If the count n and depth m are roughly proportional to each other (so that
n≈m), the difference between call-by-value and call-by-name evaluation of countNow’s
stream is a jump between a linear time and quadratic time computation.

5.1 Corecursion in terms of coiteration

Recall in Section 3.5 that we were able to encode rec in terms of iter, though at an
increased computational cost. Applying syntactic duality, we can write a similar encod-
ing of corec as a macro-expansion in terms of coiter. Doing so requires the dual of pairs:
sum types. Sum types in the abstract machine look like (Wadler, 2003):

〈left V ||[e1, e2]〉 �→ 〈V ||e1〉 〈right V ||[e1, e2]〉 �→ 〈V ||e2〉 (β+)

The macro-expansion for encoding corec as coiter derived from duality is:

corec { head α→ e
| tail β → γ .f }

with V

:=
coiter { head α→ [head α, e]

| tail → [β, γ ].[tail β, f ]}
with right V

Note how the coinductive step of coiter has access to both an option to update the internal
seed, or to return some other, fully formed stream as its tail. So dually to the encoding of
the recursor, this encoding keeps both options open by reconstructing the original contin-
uation alongside the continuation which uses its internal seed. In the base case matching
head α, it rebuilds the observation head α and pairs it up with the original response e to the
base case. In the coinductive case matching tail β, the projection tail β is combined with
the continuation f which can update the internal seed via γ . Since f might refer to one
or both of β and γ , we need to “extract” the two parts from the corecursive tail observa-
tion. Above, we express this extraction as copattern matching (Abel et al., 2013), which is
shorthand for

[β, γ ].[e, f ] := α.μ̃x.〈left μβ.〈right μγ .〈x||[e, f ]〉||α〉||α〉
Because this encoding is building up a pair of two continuations, the internal seed which
is passed to them needs to be a value of the appropriately matching sum type. Thus, the
encoding has two modes:

• If the seed has the form right x, then the coiter is simulating the original corec
process with the seed x. This is because the right continuations for the base and
coinductive steps are exactly those of the encoded recursor (e and f , respectively)
which get applied to x.

• If the seed has the form left s, containing some stream s, then the coiter is mimicking
s as-is. This is because the left continuations for the base and coinductive steps
exactly mimic the original observations (head α and tail β, respectively) which get
applied to the stream s.
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To start the corecursive process off, we begin with right V , which corresponds to the orig-
inal seed V given to the corecursor. Then in the coinductive step, if f updates the seed to
V ′ via γ , the seed is really updated to right V ′, continuing the simulation of corecursion.
Otherwise, if f returns some other stream s to β, the seed gets updated to left s, and the
coiteration continues but instead mimics s at each step.

As with recursion, encoding corec in terms of coiter forces a performance penalty for
functions like scons which can return a stream directly in the coinductive case instead
of updating the accumulator. Recall how call-by-value execution was more efficient than
call-by-name. Yet, the above encoding results in this same inefficient execution even in
call-by-value, as in this command which accesses the (n+ 2)th element:

〈scons||x · s · tailn+2(head α)〉

�→→
〈 corec { head α→ α

| tail β → .μ̃ .〈s||β〉}
with x

∣∣∣∣∣∣
∣∣∣∣∣∣tailn+2(head α)

〉
(β→)

:=
〈 coiter { head α→ [head α, α]

| tail→ [β, ].[tail β, μ̃ .〈s||β〉]}
with right x

∣∣∣∣∣∣
∣∣∣∣∣∣tail(tailn+1(head α))

〉

�→→ 〈right x||[tail μ̃y.〈left y||γ 〉, μ̃ .〈s||μ̃y.〈left y||γ 〉〉]〉 (βtail, . . . )
where γ = μ̃z.〈coiter{. . . }with z||tailn+1(head α)〉

�→ 〈x||μ̃ .〈s||μ̃y.〈left y||μ̃z.〈coiter{. . . }with z||tailn+1(head α)〉〉〉〉 (β+)
�→→ 〈coiter{. . . }with left s||tailn+1(head α)〉 (μ̃)
�→→ 〈left s||[tail μ̃y.〈left y||γ 〉, μ̃ .〈s||μ̃y.〈left y||γ 〉〉]〉 (βtail, . . . )

where γ = μ̃z.〈coiter{. . . }with z||tailn(head α)〉
�→ 〈s||tail μ̃y.〈left y||μ̃z.〈coiter{. . . }with z||tailn(head α)〉〉〉 (β+)

Notice how the internal seed (in blue) changes through this computation. To begin, the seed
is right x. The first tail projection (triggering the βtail rule) leads to the decision point (by
β+) which chooses to update the seed with left s. From that point on, each tail projection to
follow will trigger the next step of this coiteration (and another βtail rule). Each time, this
will end up asking s for its tail, s1, which will be then used to build the next seed, left s1.

In order to continue, we need to know something about s, specifically, how it responds
to a tail projection. For simplicity, assume that the tail of s is s1, i.e., 〈s||tail E〉 �→→ 〈s1||E〉.
And then for each following si, assume its tail is si+1. Under this assumption, execution
will proceed to the base case head projection like so:

〈s||tail μ̃y.〈left y||μ̃z.〈coiter{. . . }with z||tailn(head α)〉〉〉
�→→ 〈coiter{. . . }with left s1||tailn(head α)〉 (tail s �→→ s1)

�→→ 〈coiter{. . . }with left s2||tailn−1(head α)〉 (tail s1 �→→ s2)

�→→ . . . (tail si �→→ si+1)

�→→ 〈coiter{. . . }with left sn+1||head α〉 (tail sn �→→ sn+1)

�→ 〈left sn+1||[head α, α]〉 (βhead)

�→ 〈s||head α〉 (β+)
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In total, this computation incurs additional βtail steps linearly proportional to n+ 2, on top
of any additional work needed to compute the same number of tail projections for each
〈si||tail E〉 �→→ 〈si+1||E〉 along the way.

6 Safety and termination

Just like System T Theorem 3.2, the (co)recursive abstract machine is both type safe (mean-
ing that well-typed commands never get stuck) and terminating (meaning that well-typed
commands always cannot execute forever). In order to prove this fact, we can build a
model of type safety and termination rooted in the idea of Girard’s reducibility candidates
(Girard et al., 1989), but which matches closer to the structure of the abstract machine. In
particular, we will use a model from Downen et al. (2020, 2019) which first identifies a set
of commands that are safe to execute (in our case, commands which terminate on a valid
final configuration). From there, types are modeled as a combination of terms and coterms
that embed this safety property of executable commands.

6.1 Safety and candidates

To begin, we derive our notion of safety from the conclusion of Theorem 3.2. Ultimately
we will only run commands that are closed, save for one free covariable α taking a Nat, so
we expect all such safe commands to eventually finish execution in a valid final state that
provides that α with a Nat construction: either a zero or successor.

Definition 6.1 (Safety). The set of safe commands, ‚, is:

‚ := {c | ∃c′ ∈ Final. c �→→ c′}
Final := {〈zero||α〉 | α ∈CoVar} ∪ {〈succ V ||α〉 | V ∈ Value, α ∈CoVar}

From here, we will model types as collections of terms and coterms that work well
together. A sensible place to start is to demand soundness: all of these terms and coterms
can only form safe commands (i.e., ones found in ‚). However, we will quickly find that
we also need completeness: any terms and coterms that do not break safety are included.

Definition 6.2 (Candidates). A pre-candidate is any pair A= (A+, A−) where A
+ is a set

of terms, and A
− is a set of coterms, i.e., A ∈℘(Term)×℘(CoTerm).

A sound (pre-)candidate satisfies this additional requirement:

• Soundness: for all v ∈A
+ and e ∈A

−, the command 〈v||e〉 is safe (i.e., 〈v||e〉 ∈‚).

A complete (pre-)candidate satisfies these two completeness requirements:

• Positive completeness: if 〈v||E〉 is safe (i.e., 〈v||E〉 ∈‚) for all E ∈A
− then v ∈A

+.
• Negative completeness: if 〈V ||e〉 is safe (i.e., 〈V ||e〉 ∈‚) for all V ∈A

+ then e ∈A
−.

A reducibility candidate is any sound and complete (pre-)candidate. PC denotes the set
of all pre-candidates, S C denotes the set of sound ones, C C the set of complete ones,
and RC denotes the set of all reducibility candidates.
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As notation, given any pre-candidate A, we will always write A+ to denote the first com-
ponent of A (the term set π1(A)) and A

− to denote the second one (the coterm set π2(A)).
As shorthand, given a reducibility candidate A= (A+, A−), we write v ∈A to mean v ∈A

+

and likewise e ∈A to mean e ∈A
−. Given a set of terms A

+, we will occasionally write
the pre-candidate (A+, {}) as just A+ when the difference is clear from context. Likewise,
we will occasionally write the pre-candidate ({}, A−) as just the coterm set A

− when
unambiguous.

The motivation behind soundness may seem straightforward. It ensures that the Cut rule
is safe. But soundness is not enough, because the type system does much more than Cut:
it makes many promises that several terms and coterms inhabit the different types. For
example, the function type contains λ-abstractions and call stacks, and every type contains
μ- and μ̃-abstractions over free (co)variables of the type. Yet, there is nothing in soundness
that keeps these promises. For example, the trivial pre-candidate ({}, {}) is sound but it
contains nothing, even though ActR and ActL promise many μ- and μ̃-abstractions that
are left out! So to fully reflect the rules of the type system, we require a more informative
model.

Completeness ensures that every reducibility candidate has “enough” (co)terms that
are promised by the type system. For example, the completeness requirements given
in Definition 6.2 are enough to guarantee every complete candidate contains all the
appropriate μ- and μ̃-abstractions that always step to safe commands for any allowed
binding.

Lemma 6.3 (Activation). For any complete candidate A:

1. If c[E/α] ∈‚ for all E ∈A, then μα.c ∈A.
2. If c[V/x] ∈‚ for all V ∈A, then μ̃x.c ∈A.

Proof Consider the first fact (the second is perfectly dual to it and follows analogously)
and assume that c[E/α] ∈‚ for all E ∈A. In other words, the definition of c[E/α] ∈‚
says c[E/α] �→→ c′ for some valid command c′ ∈ Final. For any specific E ∈A, we have:

〈μα.c||E〉 �→ c[E/α] �→→ c′ ∈ Final

By definition of ‚ (Definition 6.1) and transitivity of reduction, 〈μα.c||E〉 ∈‚ as
well for any E ∈A. Thus, A must contain μα.c, as required by positive completeness
(Definition 6.2). �

Notice that the restriction to values and covalues in the definition of completeness
(Definition 6.2) is crucial in proving Lemma 6.3. We can easily show that the μ-abstraction
steps to a safe command for every given (co)value, but if we needed to say the same for
every (co)term we would be stuck in call-by-name evaluation where the μ-rule might not
fire. Dually, it is always easy to show that the μ̃ safely steps for every value, but we can-
not say the same for every term in call-by-value. The pattern in Lemma 6.3 of reasoning
about commands based on the ways they reduce is a crucial key to proving properties of
particular (co)terms of interest. The very definition of safe commands ‚ is closed under
expansion of the machine’s operational semantics.
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Property 6.4 (Expansion). If c �→ c′ ∈‚ then c ∈‚.

Proof Follows from the definition of ‚ (Definition 6.1) and transitivity of reduction. �

This property is the key step used to conclude the proof Lemma 6.3 and can be used
to argue that other (co)terms are in specific reducibility candidates due to the way they
reduce.

6.2 Subtyping and completion

Before we delve into the interpretations of types as reducibility candidates, we first need to
introduce another important concept that the model revolves around: subtyping. The type
system (Figs. 6 and 7) for the abstract machine has no rules for subtyping, but nevertheless,
a semantic notion of subtyping is useful for organizing and building reducibility candidates.
More specifically, notice that there are exactly two basic ways to order pre-candidates
based on the inclusion of their underlying sets:

Definition 6.5 (Refinement and Subtype Order). The refinement order (A�B) and
subtype order (A≤B) between pre-candidates is:

(A+, A−)� (B+, B−) := (A+ ⊆B
+) and (A− ⊆B

−)

(A+, A−)≤ (B+, B−) := (A+ ⊆B
+) and (A− ⊇B

−)

The reverse extension order A�B is defined as B�A, and supertype order A≥B is
B≤A.

Refinement just expresses basic inclusion: A refines B when everything in A (both term
and coterm) is contained within B. With subtyping, the underlying set orderings go in
opposite directions! If A is a subtype of B, then A can have fewer terms and more coterms
than B. While this ordering may seem counter-intuitive, it closely captures the understand-
ing of sound candidates where coterms are tests on terms. If ‚ expresses which terms pass
which tests (i.e., coterms), the soundness requires that all of its terms passes each of its
tests. If a sound candidate has fewer terms, then it might be able to safely include more
tests which were failed by the removed terms. But if a sound candidate has more terms, it
might be required to remove some tests that the new terms don’t pass.

This semantics for subtyping formalizes Liskov’s substitution principle (Liskov, 1987):
if A is a subtype of B, then terms of A are also terms of B because they can be safely
used in any context expecting inputs from B (i.e., with any coterm of B). Interestingly, our
symmetric model lets us express the logical dual of this substitution principle: if A is a
subtype of B, then the coterms of B (i.e., contexts expecting inputs of B) are coterms of A
because they can be safely given any input from A. These two principles lead to a natural
subtype ordering of reducibility candidates, based on the sets of (co)terms they include.

The usefulness of this semantic, dual notion of subtyping comes from the way it gives
us a complete lattice, which makes it possible to combine and build new candidates from
other simpler ones.
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Definition 6.6 (Subtype Lattice). There is a complete lattice of pre-candidates in PC with
respect to subtyping order, where the binary intersection (A∧B, a.k.a meet or greatest
lower bound) and union (A∨B, a.k.a join or least upper bound) are defined as:

A∧B := (A+ ∩B
+, A− ∪B

−) A∨B := (A+ ∪B
+, A− ∩B

−)

Moreover, these generalize to the intersection (
∧

A , a.k.a infimum) and union (
∨

A ,
a.k.a supremum) of any set A ⊆PC of pre-candidates∧

A :=
(⋂

{A+ |A ∈A },
⋃
{A− |A ∈A }

)
∨

A :=
(⋃

{A+ |A ∈A },
⋂
{A− |A ∈A }

)

The binary least upper bounds and greatest lower bounds have these standard properties:

A∧B≤A, B≤A∨B C≤A, B =⇒ C≤A∧B A, B≤C =⇒ A∨B≤C

In the general case for the bounds on an entire set of pre-candidates, we know:

∀A ∈A .
(∧

A ≤A
)

(∀A ∈A . C≤A) =⇒ C≤∧A

∀A ∈A .
(
A≤∨A

)
(∀A ∈A . A≤C) =⇒ ∨

A ≤C

These intersections and unions both preserve soundness, and so they form a lattice of
sound candidates in S C as well. However, they do not preserve completeness in general,
so they do not form a lattice of reducibility candidates, i.e., sound and complete pre-
candidates. Completeness is not preserved because A∨B might be missing some terms
(such as μs) which could be soundly included, and dually A∧B might be missing some co-
terms (such as μ̃s). So because all reducibility candidates are sound pre-candidates, A∨B

and A∧B are well-defined, but their results will only be sound candidates (not another
reducibility candidate).10

What we need is a way to extend arbitrary sound candidates, adding “just enough” to
make them full-fledged reducibility candidates. Since there are two possible ways to do this
(add the missing terms or add the missing coterms), there are two completions which go in
different directions. Also, since the completeness of which (co)terms are guaranteed to be
in reducibility candidates is specified up to (co)values, we cannot be sure that absolutely
everything ends up in the completed candidate. Instead, we can only ensure that the (co)-
values that started in the pre-candidate are contained in its completion. This restriction to
just the (co)values of a pre-candidate, written A

v and defined as

(A+, A−)v := ({V | V ∈A
+}, {E | E ∈A

−})
becomes a pivotal part of the semantics of types. With this in mind, it follows there are
exactly two “ideal” completions, the positive and negative ones, which give a reducibility
candidate that is the closest possible to the starting point.

10 The refinement lattice, on the other hand, interacts very differently with soundness and completeness. The
refinement union A �B := (A+ ∪B

+, A− ∪B
−) preserves completeness, but might break soundness by

putting together a term of A which is incompatible with a (co)term of B, or vice versa. Dually, the refine-
ment intersection of two pre-candidates, A  B := (A+ ∩B

+, A− ∩B
−), preserves soundness but can break

completeness if a safe term or coterm is left out of the underlying intersections. So while refinement may
admit a complete lattice for pre-candidates in PC , we only get two dual refinement semi-lattices for sound
candidates in S C and complete candidates in C C .

https://doi.org/10.1017/S0956796822000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000168


Classical (co)recursion: Mechanics 33

Lemma 6.7 (Positive & Negative Completion). There are two completions, Pos and Neg,
of any sound candidate A with these three properties:

1. They are reducibility candidates: Pos(A) and Neg(A) are both sound and complete.
2. They are (co)value extensions: Every (co)value of A is included in Pos(A) and

Neg(A).

A
v � Pos(A) A

v �Neg(A)

3. They are the least/greatest such candidates: Any reducibility candidate that extends
the (co)values of A lies between Pos(A) and Neg(A), with Pos(A) being smaller and
Neg(A) being greater. In other words, given any reducibility candidate C such that
A

v �C:

Pos(A)≤C≤Neg(A)

The full proof of these completions (and proofs of the other remaining propositions not
given in this section) is given in Appendix 1. We refer to Pos(A) as the positive completion
of A because it is based entirely on the values of A (i.e., its positive components): Pos(A)
collects the complete set of coterms that are safe with A’s values and then collects the
terms that are safe with the covalues from the previous step, and so on until a fixed point
is reached (taking three rounds total). As such, the covalues included in A can’t influence
the result of Pos(A). Dually, Neg(A) is the negative completion of A because it is based
entirely on A’s covalues in the same manner.

Lemma 6.8 (Positive & Negative Invariance). For any sound candidates A and B:

• If the values of A and B are the same, then Pos(A)= Pos(B).
• If the covalues of A and B are the same, then Neg(A)=Neg(B).

This extra fact gives us another powerful completeness property. We can reason about
covalues in the positive candidate Pos(A) purely in terms of how they interact with A’s
values, ignoring the rest of Pos(A). Dually, we can reason about values in the negative
candidate Neg(A) purely based on of A’s covalues.

Corollary 6.9 (Strong Positive & Negative Completeness). For any sound candidate A:

• E ∈ Pos(A) if and only if 〈V ||E〉 ∈‚ for all V ∈A.
• V ∈Neg(A) if and only if 〈V ||E〉 ∈‚ for all E ∈A.

Proof Follows directly from Lemmas 6.7 and 6.8. �

Now that we know how to turn sound pre-candidates A into reducibility candidates
Pos(A) or Neg(A)—Pos and Neg take anything sound and deliver something sound and
complete—we can spell out precisely the subtype-based lattice of reducibility candidates.

Theorem 6.10 (Reducibility Subtype Lattice). There is a complete lattice of reducibility
candidates in RC with respect to subtyping order, with this binary intersection A�B and
union A�B
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Fig. 10. Model of termination and safety of the abstract machine.

A�B :=Neg(A∧B) A�B := Pos(A∨B)

and this intersection (
�

A ) and union (
�

A ) of any set A ⊆RC of reducibility
candidates �

A :=Neg
(∧

A
) �

A := Pos
(∨

A
)

6.3 Interpretation and adequacy

Using the subtyping lattice, we have enough infrastructure to define an interpretation of
types and type-checking judgments as given in Fig. 10. Each type is interpreted as a
reducibility candidate. Even though we are dealing with recursive types (Nat and Stream),
the candidates for them are defined in a non-recursive way based on Knaster-Tarski’s fixed
point construction (Knaster, 1928; Tarski, 1955) and can be read with these intuitions:

• �A→ B� is the negatively complete candidate containing all the call stacks built
from �A� arguments and �B� return continuations. Note that this is the same thing
(via Lemmas 6.7 and 6.8) as largest candidate containing those call stacks.

• �Nat� is the smallest candidate containing zero and closed successor constructors.
• �Stream A� is the largest candidate containing head projections expecting an �A�

element and closed under tail projections.

Typing environments (�) are interpreted as the set of valid substitutions ρ which map
variables x to values and covariables α to covalues. The interpretation of the typing environ-
ment �, x : A places an additional requirement on these substitutions: a valid substitution
ρ ∈ ��, x : A� must substitute a value of �A� for the variable x, i.e., x[ρ] ∈ �A�. Dually, a
valid substitution ρ ∈ ��, α ÷ A� must substitute a covalue of �A� for α, i.e., α[ρ] ∈ �A�.
Finally, typing judgments (e.g., � 
 c) are interpreted as statements which assert that the
command or (co)term belongs to the safe set ‚ or the assigned reducibility candidate for
any substitution allowed by the environment. The key lemma is that typing derivations of
a judgment ensure that the statement they correspond to holds true.
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Lemma 6.11 (Adequacy).

1. If � 
 c is derivable then �� 
 c� is true.
2. If � 
 v : A is derivable then �� 
 v : A� is true.
3. If � 
 e÷ A is derivable then �� 
 e÷ A� is true.

In order to prove adequacy (Lemma 6.11), we need to know something more about
which (co)terms are in the interpretation of types. For example, how do we know that the
well-typed call stacks and λ-abstractions given by the rules in Fig. 6 end up in �A→ B�?
Intuitively, function types themselves are non-recursive. In Fig. 10, the union over the
possible candidates C defining �A→ B� requires that certain call stacks must be in each
C, but it does not quantify over the (co)values already in C to build upon them. Because
of this, �A→ B� is equivalent to the negative candidate Neg{V · E | V ∈ �A�, E ∈ �B�}, as
noted in Fig. 10. It follows from Corollary 6.9 that �A→ B� must contain any value which
is compatible with just these call stacks, regardless of whatever else might be in �A→ B�.
This means we can use expansion (Property 6.4) to prove that �A→ B� contains all λ-
abstractions that, when given one of these call stacks, step via β→ reduction to a safe
command.

Lemma 6.12 (Function Abstraction). If v[V/x] ∈ �B� for all V∈�A�, then λx.v ∈ �A→B�.

Proof Observe that, for any V ∈ �A� and E ∈ �B�:

〈λx.v||V · E〉 �→ 〈v[V/x]||E〉 ∈‚
where 〈v[V/x]||E〉 ∈‚ is guaranteed due to soundness for the reducibility candidate
�B�. By expansion (Property 6.4), we know that 〈λx.v||V · E〉 ∈‚ as well. So from
Corollary 6.9:

λx.v ∈Neg{V · E | V ∈ �A�, E ∈ �B�} = �A→ B�
�

But what about �Nat� and �Stream A�? The interpretations of (co)inductive types are
not exactly instances of Pos or Neg as written, because unlike �A→ B�, they quantify over
elements in the possible Cs they are made from. This lets us say these Cs are closed under
succ or tail, but it means that we cannot identify a priori a set of (co)values that generate
the candidate independent of each C.

A solution to this conundrum is to instead describe these (co)inductive types incre-
mentally, building them step-by-step instead of all-at once à la Kleene’s fixed point
construction (Kleene, 1952). For example, the set of the natural numbers can be defined
incrementally from a series of finite approximations by beginning with the empty set, and
then at each step adding the number 0 and the successor of the previous set:

N0 := {} Ni+1 := {0} ∪ {n+ 1 | n ∈Ni} N :=
∞⋃

i=0

{Ni}

So that each Ni contains only the numbers less than i. The final set of all natural numbers,
N, is then the union of each approximation Ni along the way. Likewise, we can do a similar
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incremental definition of finite approximations of �Nat� like so:

�Nat�0 := Pos{} =
�

RC =
�
{}

�Nat�i+1 := Pos({zero} ∨ {succ V | V ∈ �Nat�i})
The starting approximation �Nat�0 is the smallest reducibility candidate, which is given by
Pos{}. From there, the next approximations are given by the positive candidate containing
at least zero and the successor of every value of their predecessor. This construction mimics
the approximations Ni, where we start with the smallest possible base and incrementally
build larger and larger reducibility candidates that more accurately approximate the limit.

The typical incremental coinductive definition is usually presented in the reverse direc-
tion: start out with the “biggest” set (whatever that is), and trim it down step-by-step.
Instead, the coinductive construction of reducibility candidates is much more concrete,
since they form a complete lattice (with respect to subtyping). There is a specific biggest
candidate

�
RC (equal to

�{}) containing every term possible and the fewest coterms
allowed. From there, we can add explicitly more coterms to each successive approxima-
tion, which shrinks the candidate by ruling out some terms that do not run safely with them.
Thus, the incremental approximations of �Stream A� are defined negatively as:

�Stream A�0 :=Neg{} =
�

RC =
�
{}

�Stream A�i+1 :=Neg({head E | E ∈ �A�} ∧ {tail E | E ∈ �Stream A�i})
We start with the biggest possible candidate given by Neg{}. From there, the next approxi-
mations are given by the negative candidate containing at least head E (for any E expecting
an element of type �A�) and the tail of every covalue in the previous approximation. The
net effect is that �Stream A�i definitely contains all continuations built from (at most) i
head and tail destructors. As with �Nat�i, the goal is to show that �Stream A� is the limit of
�Stream A�i, i.e., that it is the intersection of all finite approximations.

Lemma 6.13 ((Co)Induction Inversion).

�Nat� =
∞�

i=0

�Nat�i �Stream A� =
∞�

i=0

�Stream A�i

This fact makes it possible to use expansion (Property 6.4) and strong completeness
(Corollary 6.9) to prove that the recursor belongs to each of the approximations �Nat�i;
and thus also to

�∞
i=0 �Nat�i = �Nat� by induction on i. Dually, the corecursor belongs to

each approximation �Stream A�i, so it is included in
�∞

i=0 �Stream A�i = �Stream A�. This
proof of safety for (co)recursion is the final step in proving overall adequacy (Lemma 6.11).
In turn, the ultimate type safety and termination property we are after is a special case of
a more general notion of observable safety and termination, which follows directly from
adequacy for certain typing environments.

Theorem 6.14 (Type safety & Termination of Programs). If α ÷Nat
 c in the (co)-
recursive abstract machine then c �→→ 〈zero||α〉 or c �→→ 〈succ V ||α〉 for some V.
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Proof From Lemma 6.11, we have �α÷Nat
 c�. That is, for all E ∈ �Nat�, c[E/α] ∈‚.
Note that both 〈zero||α〉 ∈‚ and 〈succ V ||α〉 ∈‚ (for any V whatsoever) by definition of
‚ (Definition 6.1). So by Corollary 6.9, α itself is a member of �Nat�, i.e., α ∈ �Nat�. Thus,
c[α/α]= c ∈‚, and the necessary reduction follows from the definition of ‚. �

Intermezzo 6.15. The wordings of Theorems 3.2 and 6.14 are meant to reflect the typical
statement of type safety for functional and λ-calculus-based languages. In a λ-based lan-
guage, type safety (and notably the “progress” half of a progress and preservation proof)
is limited to closed programs which return some basic, observable data type like a boolean
value, string, number, or list. For example, type safety might ensure that a term M never
gets stuck when • 
M : Nat. In our typed abstract machine, commands are the unit of exe-
cution rather than terms. So instead of a closed term • 
 v : Nat, we state type safety and
termination for a starting command like α÷Nat
 〈v||α〉, where v is the closed “source
program” and α represents an initial continuation or empty context waiting for the final
result, which is expected to be a natural number.

The fact that the safe command described by Theorems 3.2 and 6.14 is not closed,11

but has a free covariable, raises the question: can safety and termination be generalized to
cover other open commands with additional variables or covariables? And what might we
require of those open commands in general to still ensure termination?

It turns out, very little of the proof methodology depends the specifics of our particu-
lar notion of safety captured by the sets of commands ‚ and Final from Definition 6.1.
Rather, the only property of these sets that is pervasively used is the Property 6.4 that ‚ is
closed under expansion (c �→ c′ ∈‚ implies c ∈‚). In fact, there is only one place in the
proof that requires another fact about ‚, which is showing that �Nat� =�∞

i=0 �Nat�i for
Lemma 6.13; this step uses the fact that there is at least one command, namely 〈zero||α〉,
in ‚. However, this choice of example inhabitant of ‚ is arbitrary, and could be replaced
with any other choice of 〈V0||E0〉 ∈‚ without otherwise changing the proof.

This independence of the general proof methodology from the notion of safety (captured
by ‚) makes it a rather straightforward exercise to generalize to other results by just
redefining the set ‚ of safe commands. For example, we could consider additional
examples of Final commands which also includes stopping with any variable x observed
by a destructor head E, tail E, or V · E, letting us observe a larger collection of safe
commands ‚.

Definition 6.16 (Observable Safety). The set of observably safe commands, ‚, is:

‚ := {c | ∃c′ ∈ Final.c �→→ c′}
Final := {〈zero||α〉 | α ∈CoVar} ∪ {〈succ V ||α〉 | V ∈ Value, α ∈CoVar}

∪ {〈x||head E〉 | x ∈ Var, E ∈CoValue} ∪ {〈x||tail E〉 | x ∈ Var, E ∈CoValue}
∪ {〈x||V · E〉 | x ∈ Var, V ∈ Value, E ∈CoValue}

The same theorems still hold, up to and including adequacy (Lemma 6.11) and the
specific lemmas about the nature of function and (co)inductive types (Lemmas 6.12

11 In fact, there is no well-typed, closed command of the uniform abstract machine language (Downen, 2017)!
This corresponds to the notion of logical consistency, which says that a consistent logic cannot derive a con-
tradiction. In the connection between the logic of the sequent calculus and the abstract machine, a closed
command represents a logical contradiction.
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and 6.13), after replacing Definition 6.1 with Definition 6.16. As a consequence, we
can use this bigger definition of ‚ to meaningfully observe a larger collection of safe
commands than before.

Definition 6.17 (Observable Typing Environment). A typing environment � is observable
when every covariable in � has the type Nat, and every variable in � has the type A→ B
or Stream A for some type(s) A and B.

Theorem 6.18 (Observable Safety & Termination). Given any observable typing envi-
ronment �, if � 
 c in the (co)recursive abstract machine then c �→→ c′ ∈ Final, as per
Definition 6.16.

Proof First, note that the interpretations of specific types are guaranteed to contain
variables or covariables as follows:

1. α ∈ �Nat�. This is because 〈zero||α〉 ∈ Final⊇‚ and 〈succ V ||α〉 ∈ Final⊇‚
for any V whatsoever by definition of ‚ (Definition 6.16). So by the updated
Corollary 6.9, α itself is a member of �Nat�.

2. x ∈ �Stream A�. This is because 〈x||head E〉 ∈ Final⊇‚ and 〈x||tail E〉 ∈ Final⊇‚
for any E by definition of ‚ (Definition 6.16), so x is a member of �Stream A� for
any A by the updated Corollary 6.9.

3. x ∈ �A→ B�. This is because 〈x||V · E〉 ∈ Final⊇‚ for any V and E by definition
of ‚ (Definition 6.16), so x is a member of �A→ B� for any A and B by the updated
Corollary 6.9.

It follows that for any observable typing environment �, there is id� ∈ ��� where the
identity substitution id� is defined as:

id�(x)= x (if (x : A) ∈ �) id�(α)= α (if (α÷ A) ∈ �)

Now, updated adequacy (Lemma 6.11) ensures �� 
 c�. That is, for all ρ ∈ ���,
c[ρ] ∈‚. Since � is observable, id� ∈ ���, and thus c[id�]= c ∈‚. So by definition of
‚ (Definition 6.16), c �→→ c′ ∈ Final. �

]

7 Related work

The corecursor presented here is a computational interpretation of the categorical model
of corecursion in a coalgebra. A coalgebra for a functor F is defined by a morphism
α : A→ F(A), and it is (strongly) terminal if there always exists a unique morphism from
any other coalgebra of F into it, satisfying the usual commutation properties (i.e., the co-
algebra given by α : A→ F(A) is the terminal object in the category of F-coalgebras). As
a way to characterize the difference between coiteration and corecursion, Geuvers (1992)
relaxes this usual requirement to weakly terminal coalgebras, for which there might be sev-
eral non-unique morphisms with the correct properties into the weakly terminal coalgebra.
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A corecursive coalgebra extends this idea by ensuring commutation with other morphisms
of the form X → F(A+ X ), rather than just another F-coalgebra X → F(X ).

The dual notion to Geuvers (1992)’s corecursive F-coalgebra is (therein) called a recur-
sive F-algebra: an algebra α : F(A)→ A that is only weakly initial—there is always a
morphism from α to any other F-algebra, but it need not be unique—such that it com-
mutes with every morphism of the form F(A× X )→ X , not just F-algebras F(X )→ X .
Computationally speaking, the generalization to F(A× X )→ X corresponds to the dif-
ference between the System T recursor and iterator: the A× X corresponds to the two
inputs in the successor case of the recursor (with A being the immediate predecessor and
X being the solution on the predecessor), in comparison to the single input for the suc-
cessor case of the iterator (who is only given the solution on the predecessor, but not the
predecessor itself). Analogously, the A+ X in the commutation with X → F(A+ X ) for a
corecursive coalgebra is interpreted as an (intuitionistic) sum type in the pure (i.e., side-
effect free) λ-calculus model by Geuvers (1992): X + A stands for the ordinary data type
with two constructors for injecting either of X or A into the sum. Here, we use an interpre-
tation of A+ X as expressing the classical disjunction of multiple conclusions, represented
in the calculus by multiple continuations passed simultaneously to one term. The multi-
continuation interpretation of a classical disjunction gives improved generality, and can
express some corecursive algorithms that the intuitionistic interpretation cannot (Downen
& Ariola, 2021).

The coiterator, which we define as the restriction of the corecursor to never short-cut
corecursion, corresponds exactly to the Harper’s strgen (Harper, 2016). In this sense,
the corecursor is a conservative extension of the purely functional coiterator. Coiteration
with control operators is considered in Barthe & Uustalu (2002), which gives a call-by-
name CPS translation for a stream coiterator and constructor, corresponding to coiter and
cocase, but not for corec. Here, the use of an abstract machine serves a similar role as
CPS—making explicit information and control flow—but allows us to use the same trans-
lation for both call-by-value and call-by-name. An alternative approach to (co)recursive
combinators is sized types (Hughes et al., 1996; Abel, 2006), which give the programmer
control over recursion while still ensuring termination, and have been used for both purely
functional (Abel & Pientka, 2013) and classical (Downen et al., 2015) coinductive types.
Both of these approaches express (co)recursive algorithms directly in terms of (co)pattern
matching.

In the context of more practical programming, Charity (Fukushima & Cockett, 1992)
is a total functional programming language whose design is based closely on categorical
semantics, which can express the duality between inductive and coinductive types. As
such, it included primitives for iteration and coiteration, as well as case and cocase, similar
to coiter and cocase primitives in the calculus shown here. More recently, the OCaml
language has been extended with copatterns (Regis-Gianas & Laforgue, 2017) as well as an
explicit corec form Jeannin et al. (2017) to allow for corecursive functional programming.
In other programming paradigms, applications of corecursion have been studied in the
context of object-oriented programming (Ancona & Zucca, 2013, 2012a,b)—with a focus
on modeling finite structures with cycles via regular corecursion—and logic programming
(Ancona, 2013; Dagnino et al., 2020; Dagnino, 2020) with non-well-founded structures in
terms of coaxioms that are applied at “infinite” depth in an proof tree.

https://doi.org/10.1017/S0956796822000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000168


40 P. Downen and Z.M. Ariola

Our investigation on evaluation strategy showed the (dual) impact of call-by-value ver-
sus call-by-name evaluation (Curien & Herbelin, 2000; Wadler, 2003) on the efficiency of
(co)recursion. In contrast to having a monolithic evaluation strategy, another approach is
to use a hybrid evaluation strategy as done by call-by-push-value (Levy, 2001) or polar-
ized languages (Zeilberger, 2009; Munch-Maccagnoni, 2013). With a hybrid approach,
we could define one language which has the efficient version of both the recursor and
corecursor. Polarity also allows for incorporating other evaluation strategies, such as call-
by-need which shares the work of computations (Downen & Ariola, 2018a; McDermott &
Mycroft, 2019). We leave the investigation of a polarized version of corecursion to future
work.

8 Conclusion

This paper provides a foundational calculus for (co)recursion in programs phrased in
terms of an abstract machine language. The impact of evaluation strategy is also illus-
trated, where call-by-value and call-by-name have (opposite) advantages for the efficiency
of corecursion and recursion, respectively. These (co)recursion schemes are captured by
(co)data types whose duality is made apparent by the language of the abstract machine.
In particular, inductive data types, like numbers, revolve around constructing concrete,
finite values, so that observations on numbers may be abstract and unbounded. Dually,
coinductive codata types, like streams, revolve around concrete, finite observations, so
that values may be abstract and unbounded objects. The computational interpretation of
this duality lets us bring out hidden connections underlying the implementation of recur-
sion and corecursion. For example, the explicit “seed” or accumulator usually used to
generate infinite streams is, in fact, dual to the implicitly growing evaluation context of
recursive calls. To show that the combination of primitive recursion and corecursion is
well-behaved—that is, every program safely terminates with an answer—we interpreted
the type system as a form of classical (bi)orthogonality model capable of handling first-
class control effects, and extended with (co)inductive reducibility candidates. Our model
reveals how the incremental Kleene-style and wholesale Knaster-Tarski-style construc-
tions of greatest and least fixed points have different advantages for reasoning about
program behavior. By showing the two fixed point constructions are the same—a non-
trivial task for types of effectful computation—we get a complete picture of the mechanics
of classical (co)recursion.
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1 Proof of type safety and termination

Here we give the full details to the proof of the main result, Theorem 6.14, ensuring both
safety and termination for all well-typed, executable commands. We use a proof technique
suitable for abstract machines based on (Downen et al., 2020, 2019), which we extend
with the inductive type Nat and the coinductive type Stream A. To begin in Appendices 1.1
to 1.3, we give a self-contained introduction and summary of the fundamental concepts
and results from Downen et al. (2020, 2019). Appendix 1.2 in particular gives a new
account of positive and negative completion which simplifies the sections that follow.
From there, Appendix 1.4 establishes the definition and properties of the (co)inductive
types Nat and Stream A in this model, which lets us prove the fundamental adequacy
lemma in Appendix 1.5.

1.1 Orthogonal fixed point candidates

Our proof technique revolves around pre-candidates (Definition 6.2) and their more
informative siblings reducibility candidates. The first, and most important, operation on
pre-candidates is orthogonality. Intuitively, on the one side orthogonality identifies all the
terms that are safe with everything in a given set of coterms, and on the other side, it
identifies the coterms that are safe with a set of terms. These two dual operations convert-
ing back and forth between terms and coterms naturally extend to a single operation on
pre-candidates.

Definition 1.1 (Orthogonality). The orthogonal of any set of terms, A+, written A
+‚, is

the set of coterms that form safe commands (i.e., in ‚) with all of A+:

A
+‚ := {e | ∀v ∈A

+. 〈v||e〉 ∈‚}
Dually, the orthogonal of any set of coterms A−, also written A

−‚ and disambiguated by
context, is the set of terms that form safe commands with all of A−:

A
−‚ := {v | ∀e ∈A

−. 〈v||e〉 ∈‚}
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Finally, the orthogonal of any pre-candidate A= (A+, A−) is:

(A+, A−)‚ := (A−‚, A+‚)

As a shorthand for mapping over sets, given any set of pre-candidates A ⊆PC , we
write A ‚∗ for the set of orthogonals to each pre-candidate in A :

A ‚∗ := {A‚ |A‚ ∈A }
We use the same notation for the orthogonals of any set of term-sets (A ⊆℘(Term)) or
coterm-sets (A ⊆℘(CoTerm)), individually.

Orthogonality is interesting primarily because of the logical structure it creates among
pre-candidates. In particular, orthogonality behaves very much like intuitionistic nega-
tion (¬). Intuitionistic logic rejects double negation elimination (¬¬A ⇐⇒ A) in favor
of the weaker principle of double negation introduction (A =⇒ ¬¬A). This fundamental
property of intuitionistic negation is mimicked by pre-candidate orthogonality.

Property 1.2 (Orthogonal Negation). The following holds for any pre-candidates A

and B:

1. Contrapositive (i.e., antitonicity): A�B implies B‚ �A
‚.

2. Double orthogonal introduction (DOI): A�A
‚‚.

3. Triple orthogonal elimination (TOE): A‚‚‚ =A
‚.

Proof

1. Contrapositive: Let v ∈B
‚ and e ∈A. We know e ∈B (because A�B implies

A
− ⊆B

−) and thus 〈v||e〉 ∈‚ (because v ∈B
−‚). Therefore, e ∈A

‚ by definition
of orthogonality (Definition 1.1). Dually, given any e ∈B

‚ and v ∈A, we know
v ∈B and thus 〈v||e〉 ∈‚, so e ∈B

‚ as well.
2. DOI : Suppose v ∈A. For any e ∈A

‚, we know 〈v||e〉 ∈‚ by definition of orthog-
onality (Definition 1.1). Therefore, v ∈A

‚‚ also by definition of orthogonality.
Dually, every e ∈A yields 〈v||e〉 ∈‚ for all v ∈A

‚, so e ∈A
‚‚ as well.

3. TOE: Note that A�A
‚‚ is an instance of double orthogonal introduction above

for A, so by contrapositive, A‚‚‚ �A
‚. Another instance of double orthogonal

introduction for A‚ is A‚ �A
‚‚‚. Thus, the two pre-candidates are equal.

�

The second operation on pre-candidates is the (co)value restriction. This just limits a
given pre-candidate to only the values and covalues contained within it and gives us a way
to handle the chosen evaluation strategy (here, call-by-name or call-by-value) in the model.
In particular, the (co)value restriction is useful for capturing the completeness requirement
of reducibility candidates (Definition 6.2), which only tests (co)terms with respect to the
(co)values already in the candidate.
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Definition 1.3 ((Co)value Restriction). The (co)value restriction of a set of terms A+, set
of coterms A−, and pre-candidates A= (A+, A−) is:

A
+v := {V | V ∈A

+} A
−v := {E | E ∈A

−} (A+, A−)v := (A+v , A−v)

As another shorthand, given any set of pre-candidates A , we will occasionally write A v∗

to be the set of (co)value restrictions of each pre-candidate in A :

A v∗ := {Av |A ∈A }
We use the same notation for the (co)value restriction of any set of term-sets or coterm-sets.

Property 1.4 (Monotonicity). Given any pre-candidates A and B,

1. A≤B implies A‚ ≤B
‚, and

2. A≤B implies Av ≤B
v .

3. A�B implies Av �B
v .

Proof Subtype monotonicity of orthogonality follows from contrapositive (Property 1.2)
and the opposed definitions of refinement versus subtyping. Specifically, A≤B means
the same thing as (A+, B−)� (B+, A−), which contrapositive (Property 1.2) turns into
(B+, A−)‚ = (A−‚, B+‚)� (B−‚, A+‚)= (A+, B−)‚ which is equivalent to A

‚ ≤
B
‚. Monotonicity of the (co)value restriction with respect to both subtyping and refine-

ment follows directly from its definition. �

Putting the two operations together, (co)value restricted orthogonality (Av‚) becomes
our primary way of handling reducibility candidates. This combined operation shares
essentially the same negation-inspired properties of plain orthogonality (Property 1.2), but
is restricted to just (co)values rather than general (co)terms.

Property 1.5 (Restricted Orthogonal Negation). Given any pre-candidate A:

1. Restriction idempotency: Avv =A
v �A

2. Restricted orthogonal: A‚ �A
v‚

3. Restricted double orthogonal introduction (DOI): Av �A
v‚v‚v .

4. Restricted triple orthogonal elimination (TOE): Av‚v‚v‚v =A
v‚v .

Proof

1. Because V ∈A if and only if V ∈A
v (and symmetrically for covalues).

2. Follows from contrapositive (Property 1.2) of the above fact that Av �A.
3. Double orthogonal introduction (Property 1.2) on A

v gives A
v �A

v‚‚. The
restricted orthogonal (above) of A

v‚ implies A
v‚‚ �A

v‚v‚. Thus from mono-
tonicity (Property 1.4) and restriction idempotency, we have: A

v �A
v‚‚v �

A
v‚v‚v .

4. Follows similarly to triple orthogonal elimination in (Property 1.2). Av �A
v‚v‚v is

an instance of restricted double orthogonal introduction above, and by contrapositive
(Property 1.2) and monotonicity (Property 1.4), Av‚v‚v �A

v‚v . Another instance
of restricted double orthogonal introduction on A

v‚v is Av‚v �A
v‚v‚v . Thus, the

two sets are equal. �
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With these restricted logical properties, we can recast the soundness and complete-
ness properties of reducibility candidates (Definition 6.2) in terms of orthogonality to
show reducibility candidates are exactly the same as fixed points of (co)value restricted
orthogonality.

Lemma 1.6 (Fixed Point Candidates).

1. A pre-candidate A is sound if and only if A�A
‚.

2. A pre-candidate A is complete if and only if Av‚ �A.
3. A pre-candidate A is a reducibility candidate if and only if A=A

v‚.
4. Every reducibility candidate is a fixed point of orthogonality: A ∈RC implies

A=A
‚.

Proof Unfolding the definitions of orthogonality (Definition 1.1) and the (co)-value
restriction (Definition 1.3) shows that the first two refinements are equivalent to soundness
and completeness from Definition 6.2.

For the last fact, first recall A‚ �A
v‚ (Property 1.5). So if a pre-candidate A is both

sound and complete, A=A
v‚ =A

‚ because

A
‚ �A

v‚ �A�A
‚ �A

v‚

Going the other way, suppose that A=A
v‚. Completeness is guaranteed by definition,

but what of soundness? Suppose that v and e come from the fixed point pre-candidate
A=A

v‚ = (A−v‚, A+v‚). The reason why A=A
v‚ forces 〈v||e〉 ∈‚ depends on the

evaluation strategy.

• Call-by-value, where every coterm is a covalue. Thus, the positive requirement on
terms of reducibility candidates is equivalent to: v ∈A

+ if and only if, for all e ∈A
−,

〈v||e〉 ∈‚.
• Call-by-name, where every term is a value. Thus, the negative requirement on

coterms of reducibility candidates is equivalent to: e ∈A
− if and only if, for all

v ∈A
+, 〈v||e〉 ∈‚.

In either case, 〈v||e〉 ∈‚ for one of the above reasons, since v, e ∈A=A
v‚. �

1.2 Positive and negative completion

Now that we know reducibility candidates are the same thing as fixed points of (co)value
restricted orthogonality ( v‚), we have a direct method to define the completion of a sound
pre-candidate into a sound and complete one. To complete some A, there are two opposite
points of view: (Pos) start with the terms of A and build everything else around those, or
(Neg) start with the coterms of A and build around them. Both of these definitions satisfy
all the defining criteria promised by Lemmas 6.7 to 6.8 due to the logical properties of
orthogonality (Property 1.5).
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Definition 1.7 (Positive & Negative Reducibility Candidates). For any sound candidate
A ∈S C , the positive (Pos(A)) and the negative (Neg(A)) completion of A are:

Pos(A)= (A+, A+v‚)v‚v‚ = (A+v‚v‚, A+v‚v‚v‚)

Neg(A)= (A−v‚, A−)v‚v‚ = (A−v‚v‚v‚, A−v‚v‚)

Lemma 6.7 (Positive & Negative Completion). There are two completions, Pos and Neg,
of any sound candidate A with these three properties:

1. They are reducibility candidates: Pos(A) and Neg(A) are both sound and complete.
2. They are (co)value extensions: Every (co)value of A is included in Pos(A) and

Neg(A).

A
v � Pos(A) A

v �Neg(A)

3. They are the least/greatest such candidates: Any reducibility candidate that extends
the (co)values of A lies between Pos(A) and Neg(A), with Pos(A) being smaller and
Neg(A) being greater. In other words, given any reducibility candidate C such that
A

v �C:

Pos(A)≤C≤Neg(A)

Proof The definitions given in Definition 1.7 satisfy all three requirements:

1. They are reducibility candidates: Observe that by restricted triple orthogonal elim-
ination (Property 1.5), Pos(A) and Neg(A) are reducibility candidates because they
are fixed points of v‚ (Lemma 1.6):

(Pos(A))v‚ (Neg(A))v‚

= (A+v‚v‚, A+v‚v‚v‚)v‚ = (A−v‚v‚v‚, A−v‚v‚)v‚ (Definition 1.7)

= (A+v‚v‚v‚v‚, A+v‚v‚v‚) = (A−v‚v‚v‚, A−v‚v‚v‚v‚) (Definition 1.1)

= (A+v‚v‚, A+v‚v‚v‚) = (A−v‚v‚v‚, A−v‚v‚) (Property 1.5)

= Pos(A) =Neg(A) (Definition 1.7)

2. They are (co)value extensions: First, note that

A
+v ⊆A

+v‚v‚v = Pos(A)+v ⊆ Pos(A)+

A
−v ⊆A

−v‚v‚v =Neg(A)−v ⊆Neg(A)−

by restricted double orthogonal introduction (Property 1.5). Furthermore, soundness
of A means A�A

‚ (i.e., A+ ⊆A
−‚ and A

− ⊆A
+‚), so again by Property 1.5:

A
−v ⊆A

+‚v ⊆A
+v‚v ⊆A

+v‚v‚v‚v = Pos(A)−v ⊆ Pos(A)−

A
+v ⊆A

−‚v ⊆A
−v‚v ⊆A

−v‚v‚v‚v =Neg(A)+v ⊆Neg(A)+

3. They are the least/greatest such candidates: Suppose there is a reducibility candi-
date C such that Av �C. Because C is a fixed point of v‚ (Lemma 1.6), iterating
contrapositive (Property 1.2) on this refinement gives:

C=C
v‚ �A

vv‚ =A
v‚

A
v‚v‚ �C

v‚ =C C=C
v‚ �A

v‚v‚v‚
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Expanding the definition of Pos, Neg, and refinement, this means:

Pos(A)+ =A
+v‚v‚ ⊆C Pos(A)− =A

+v‚v‚v‚ ⊇C

Neg(A)+ =A
−v‚v‚v‚ ⊇C Neg(A)− =A

−v‚v‚ ⊆C

Or in other words, Pos(A)≤C≤Neg(A).

�

Lemma 6.8 (Positive & Negative Invariance). For any sound candidates A and B:

• If the values of A and B are the same, then Pos(A)= Pos(B).
• If the covalues of A and B are the same, then Neg(A)=Neg(B).

Proof Because the definition of Pos(A) depends only on A
+ and not A−, and dually the

definition of Neg(A) depends only on A
−. �

In addition to these defining properties of Pos and Neg, the two completions are also
idempotent (i.e., they are closure operations, because multiple applications are the same
as just one) and monotonic (i.e., they preserve the subtyping order, by converting any two
sound subtype candidates to two sound and complete subtype reducibility candidates).

Corollary 1.8 (Idempotency). For all reducibility candidates A, Pos(A)=A=Neg(A).
It follows that, for all sound candidates A:

Pos(Pos(A))= Pos(A) Neg(Neg(A))=Neg(A)

Proof Pos(A)=A=Neg(A) follows from Definition 1.7 because the reducibility can-
didate A is a fixed point of v‚ (Lemma 1.6). The idempotency of Pos and Neg is
then immediate from the fact that they produce reducibility candidates from any sound
candidate. �

Lemma 1.9 (Monotonicity). Given any sound candidates A≤B: 1. Pos(A)≤ Pos(B),
and 2. Neg(A)≤Neg(B).

Proof Given A≤B, Lemmas 6.7 to 6.8 imply that

Pos(A)= Pos(A+, {})≤ Pos(B+, {})= Pos(B)

Neg(A)=Neg({}, A−)≤Neg({}, B−)=Neg(B)

because A
v ≤B

v (Property 1.4), which means A+v ⊆B
+v and A

−v ⊇B
−v by definition of

subtyping. Thus from Lemma 6.7, we know that (A+v , {})� (B+v , {})� Pos(B+, {}) and
Pos(A+, {}) is the least one to do so, forcing Pos(A+, {})≤ Pos(B+, {}). Likewise from
Lemma 6.7, we know that ({}, B−v)� ({}, Av−)�Neg({}, A−v) and Neg(B−, {}) is the
greatest one to do so, forcing Neg({}, A−)≤Neg({}, B−). �
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1.3 Refinement and subtyping lattices

Because pre-candidates have two different orderings (Definition 6.5), they also have two
very different lattice structures. We are primarily interested in the subtyping lattice because
it is compatible with both soundness and completeness in both directions. In particular,
the naïve subtype lattice as-is always preserves soundness, and combined with the dual
completions (Pos and Neg) the subtype lattice preserves completeness as well. This gives
us a direct way to assemble complex reducibility candidates from simpler ones.

Theorem 1.10 (Sound Subtype Lattice). The subtype intersection
∧

and union
∨

forms
a complete semi-lattice over sound candidates in S C .

Proof Let A ⊆S C be a set of sound candidates, and suppose v, e ∈∧A . By definition:

• for all A ∈A , v ∈A, and
• there exists an A ∈A such that e ∈A.

Therefore, we know that v ∈A for the particular sound candidate that e inhabits and thus
〈v||e〉 by soundness of A. Soundness of

∨
A follows dually, because v, e ∈∨A implies:

• there exists an A ∈A such that v ∈A, and
• for all A ∈A , e ∈A.

�

Theorem 6.10 (Reducibility Subtype Lattice). There is a complete lattice of reducibility
candidates in RC with respect to subtyping order, with this binary intersection A�B and
union A�B

A�B :=Neg(A∧B) A�B := Pos(A∨B)

and this intersection (
�

A ) and union (
�

A ) of any set A ⊆RC of reducibility
candidates �

A :=Neg
(∧

A
) �

A := Pos
(∨

A
)

Proof Let A ⊆RC be any set of reducibility candidates. First, note that
∧

A and
∨

A

are sound (Theorem 1.10) because every reducibility candidate is sound. Thus, for all A ∈
A , monotonicity (Lemma 1.9) and idempotency (Corollary 1.8) of Pos and Neg implies:∧

A ≤A

∨
A ≤A�

A = Pos
∧

A ≤ Pos(A)=A

�
A =Neg

∨
A ≤Neg(A)=A

Lemma 1.9 and Corollary 1.8 also imply that these are the tightest such bounds. Suppose
there are reducibility candidates B and C such that

∀A ∈A . B≤A ∀A ∈A . A≤C
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From the lattice properties of
∧

and
∨

, monotonicity, and idempotency, we have:

B≤
∧

A
∨

A ≤C

B= Pos(B)≤ Pos
∧

A =
�

A
�

A =Neg
∨

A ≤Neg(C)=C

�

The other lattice is based on refinement, instead of subtyping. In contrast, the refinement
lattice has a opposing relationship with soundness and completeness: one direction of the
lattice preserves only soundness, and the other one preserves only completeness.

Definition 1.11 (Refinement Lattice). There is a complete lattice of pre-candidates in PC

with respect to refinement order, where the binary intersection (A  B a.k.a meet) and
union (A  B, a.k.a join) are defined as:

A  B := (A+ ∩B
+, A− ∩B

−) A �B := (A+ ∪B
+, A− ∪B

−)

Moreover, these generalize to the intersection (
�

A, a.k.a infimum) and union (
⊔

A, a.k.a
supremum) of any set A ∈PC of pre-candidates

	
A :=

(⋂
{A+ |A ∈A },

⋂
{A− |A ∈A }

)
⊔

A :=
(⋃

{A+ |A ∈A },
⋃
{A− |A ∈A }

)

Theorem 1.12 (Sound and Complete Refinement Semi-Lattices). The refinement intersec-
tion

�
forms a meet semi-lattice over sound candidates in S C , and the refinement union⊔

forms a join semi-lattice over complete candidates in C C .

Proof Let A ∈S C be a set of sound candidates, i.e., for all A ∈A , we know A�A
‚.

In the refinement lattice on pre-candidates, de Morgan duality (Property 1.13) implies:

∀A ∈A .
	

A �A�A
‚ �

⊔
(A ‚∗)�

(	
A
)‚

So that
�

A is also sound.
Let A ∈C C be a set of complete candidates, i.e., for all A ∈A , we know A

v‚ �A.
In the refinement lattice on pre-candidates, de Morgan duality (Property 1.13) and the fact
that the (co)value restriction v distributes over unions implies:

∀A ∈A .
⊔

A �A�A
v‚ �

	
(A v∗‚∗)=

⊔
(A )v‚

So that
⊔

A is also complete. �

Because soundness and completeness are each broken by different directions of this
refinement lattice, it doesn’t give us a complete lattice for assembling new reducibility
candidates. However, what it does give us is additional insight into the logical properties
of orthogonality. That is, while orthogonality behaves like intuitionistic negation, the inter-
sections (

�
) and unions (

⊔
) act like conjunction and disjunction, respectively. Together,

these give us properties similar to the familiar de Morgan laws of duality intuitionistic
logic.
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Property 1.13 (Orthogonal de Morgan). Given any pre-candidates A and B:

1. (A �B)‚ = (A‚)  (B‚).
2. (A  B)‚ � (A‚) � (B‚).
3. (A‚  B

‚)‚‚ = (A‚)  (B‚)= (A �B)‚ = (A‚‚ �B
‚‚)‚.

Furthermore, given any set of pre-candidates A ⊆PC :

1. (
⋃

A )‚ =⋂(A ‚∗).
2. (
⋂

A )‚ �⋃(A ‚∗).
3. (
⋂

(A ‚∗))‚‚ =⋂(A ‚∗)= (⋃A
)‚ = (⋃A ‚∗‚∗)‚ .

Proof We will show only the de Morgan properties for union and intersection over any
sets of pre-candidate A ; the binary versions are special cases of these. Note that the union
and intersection of the refinement lattice on pre-candidates have these lattice properties:

∀A ∈A . A�
⊔

A (∀A ∈A . A�C) =⇒
⊔

A �C

∀A ∈A .
	

A �A (∀A ∈A . C�A) =⇒ C�
	

A

Taking the contrapositive (Property 1.2) to the facts on the left, and instantiating the facts
on the right to A ‚∗, gives:

∀A ∈A .
(⊔

A
)‚ �A

‚ (∀A ∈A . A‚ �C) =⇒
⊔

(A ‚∗)�C

∀A ∈A . A‚ �
(	

A
)‚

(∀A ∈A . C�A
‚) =⇒ C�

	
(A ‚∗)

1. We know (
⊔

A )‚ �A
‚ (for each A

‚ ∈A ), so (
⊔

A )‚ ��
(A ‚∗). In the

reverse direction, suppose v ∈�
(A ‚∗). For every e ∈⊔A , we know there is (at

least) one A ∈A such that e ∈A. So since v ∈�
(A ‚∗)�A

‚, we know 〈v||e〉 ∈‚
by definition of orthogonality (Definition 1.1). Therefore, v ∈ (

⊔
A )‚ as well.

Dually, for every e ∈�
(A ‚∗) and v ∈⊔A , there it at least one v ∈A ∈A , forc-

ing 〈v||e〉 ∈‚ and thus e ∈ (
⊔

A )‚. So in general
�

(A ‚∗)� (
⊔

A )‚, making
the two sets equal.

2. We know A
‚ � (

�
A )‚ (for each A

‚ ∈A ), so
⊔

(A ‚∗)� (
�

A )‚. But the
reverse direction may not be true: (

�
A )‚ ��⊔(A ‚∗). Suppose that e ∈ (

�
A )‚.

Consider the possibility that each A ∈A might contain a term vA incompatible
with e (i.e., 〈vA||e〉 /∈‚), and yet each such vA might not end up in the intersec-
tion of A (vA /∈�

A ). In this case, e is still orthogonal to every term in
�

A , but
there is no individual A ∈A such that e ∈A

‚ because each one has an associated
counter-example vA ruling it out.

3. The last fact follows from the above and triple orthogonal elimination (Property 1.2).(	
(A ‚∗)

)‚‚ =
(⊔

A
)‚‚‚ =

(⊔
A
)‚ =

	
(A ‚∗)(⊔

(A ‚∗‚∗)
)‚ =

	
(A ‚∗‚∗‚∗)=

	
(A ‚∗)=

(⊔
A
)‚

�
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Take note that the missing direction in the asymmetric property (2) ((A  B)‚ �� (A‚) �
(B‚)) exactly corresponds to the direction of the de Morgan laws which is rejected by
intuitionistic logic (the negation of a conjunction does not imply the disjunction of the
negations). Instead, we have a weakened version of (2) presented in (3), adding additional
applications of orthogonality to restore the symmetric equality rather than an asymmetric
refinement. As with other properties like triple orthogonal elimination, this also has a (co)-
value restricted variant.

Lemma 1.14 (Restricted de Morgan). For any set of pre-candidates A ⊆PC :(	
(A v∗‚∗v∗)

)‚v‚v =
	

(A v∗‚∗v∗)=
(⊔

A
)v‚v =

(⊔
(A v∗‚∗v∗‚∗)

)v‚v

Proof Follows from the de Morgan laws (Property 1.13), restricted triple orthogonal
elimination (Property 1.5), and the fact that the (co)value restriction v distributes over
intersection and unions:(	

(A v∗‚∗v∗)
)‚v‚v =

(⊔
A
)v‚v‚v‚v =

(⊔
A
)v‚v =

	
(A v∗‚∗v∗)(⊔

(A v∗‚∗v∗‚∗)
)v‚v =

	
(A v∗‚∗v∗‚∗v∗‚∗v∗)=

	
(A v∗‚∗v)=

(⊔
A
)v‚v

�

With these de Morgan properties of intersection and union, we can be more specific
about how the subtype lattice operations

∧
and
∨

on pre-candidates are lifted into the
complete versions

�
and

�
that form the subtype lattice among reducibility candidates.

Lemma 1.15. Let A ⊆RC be any set of reducibility candidates.

�
A =

(∧
A
)v‚v‚ =

((⋂
{A+ |A ∈A }

)v‚v‚
,
(⋂

{A+ |A ∈A }
)v‚)

�
A =

(∨
A
)v‚v‚ =

((⋂
{A− |A ∈A }

)v‚
,
(⋂

{A− |A ∈A }
)v‚v‚)

Proof Follows from de Morgan duality (Property 1.13 and Lemma 1.14) and the fact that
reducibility candidates are fixed points of v‚ (Lemma 1.6). Let A + = {A+ |A ∈A } and
A − = {A− |A ∈A } in the following:
�

A = Neg
∧

A
�

A = Pos
∨

A

= ((
⋃

A −)v‚v‚v‚, (
⋃

A −)v‚v‚) = ((
⋃

A +)v‚v‚, (
⋃

A +)v‚v‚v‚)

= ((
⋂

A −v∗‚∗)v‚v‚, (
⋂

A −v∗‚∗)v‚) = ((
⋂

A +v∗‚∗)v‚, (
⋂

A +v∗‚∗)v‚v‚)

= ((
⋂

A +)v‚v‚, (
⋂

A +)v‚) = ((
⋂

A −)v‚, (
⋂

A −)v‚v‚)

= ((
⋂

A +)v‚v‚, (
⋂

A −v∗‚∗)v‚) = ((
⋂

A +v∗‚∗)v‚, (
⋂

A −)v‚v‚)

= ((
⋂

A +)v‚v‚, (
⋃

A −)v‚v‚) = ((
⋃

A +)v‚v‚, (
⋂

A −)v‚v‚)

= (
∧

A )v‚v‚ = (
∨

A )v‚v‚

�
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1.4 (Co)induction and (Co)recursion

We now examine how the (co)inductive types Nat and Stream A are properly defined as
reducibility candidates in this orthogonality-based, symmetric model. As shorthand, we
will use these two functions on reducibility candidates

N : RC →RC S : RC →RC →RC

N(C) := Pos({zero} ∨ succ(C)) SA(C) :=Neg(head(A)∧ tail(C))

defined in terms of these operations that lift constructors and destructors onto candidates:

succ(C) := {succ V | V ∈C} tail(C) := {tail E | E ∈C} head(A) := {head E | E ∈A}
These capture the (co)inductive steps for the iterative definitions of �Nat�i and �Stream A�i:

�Nat�i+1 =N(�Nat�i) �Stream A�i+1 = S�A� (�Stream A�i)

They also capture the all-at-once definitions of �Nat� and �Stream A� as

�Nat� =�
{C ∈RC |N(C)≤C} �Stream A� =�

{C ∈RC |C≤ S�A� (C)}
due to the fact that their closure conditions (under zero, succ, and head, tail, respectively)
are equivalent to these subtyping conditions.

Lemma 1.16. For all reducibility candidates C

1. N(C)≤C if and only if zero ∈C and succ V ∈C (for all V ∈C).
2. C≤ SA(C) if and only if head E ∈C (for all E ∈A) and tail E ∈C (for all E ∈C).

Proof The “only if” directions follow directly from Lemma 6.7 by the definitions of N ,
SA, and subtyping. That is, we know that zero ∈N(C) and succ V ∈N(C) (for all V ∈C) by
definition of N in terms of Pos, and thus, they must be in C≥N(C) by subtyping. Similarly,
head E, tail F ∈ SA(C)≤C (for all E ∈A and F ∈C) by subtyping and the definition of S
in terms of Neg.

The “if” direction follows from the universal properties of Pos and Neg (Lemma 6.7):
for any reducibility candidate C�B

v Pos(B)≤C≤Neg(B). Now note that

N(C)= Pos({zero} ∪ {succ V | V ∈C}, {})
SA(C)=Neg({}, {head E | E ∈A} ∪ {tail F | F ∈C})

Therefore, if zero ∈C and succ V ∈C (for all V ∈C) then

N(C)≤C� ({zero} ∪ {succ V | V ∈C}, {})
Likewise if head E ∈C and tail F ∈C (for all E ∈A and F ∈C) then

({}, {head E | E ∈A} ∪ {tail F | F ∈C})�C≤ SA(C)

�

First, consider the model of the Nat type in terms of the infinite union of approximations:�∞
i=0 �Nat�i. This reducibility candidate should contain safe instances of the recursor. The

reason it does is because the presence of a recursor is preserved by the N stepping operation
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on reducibility candidates, and so it must remain in the final union
�∞

i=0 �Nat�i because it
is in each approximation �Nat�i.

Lemma 1.17 (Nat Recursion Step). For any reducibility candidates B and C,

rec{zero→ v | succ x→ y.w}with E ∈N(C)

for all E ∈B whenever the following conditions hold:

• v ∈B,
• w[V/x, W/y] ∈B for all V ∈C and W ∈B, and
• rec{zero→ v | succ x→ y.w}with E ∈C for all E ∈B.

Proof Note that the accumulator continuation E changes during the successor step, so
we will need to generalize over it. As shorthand, let Erec

E′ := rec{zero→ v | succ x→
y.w}with E′ where E′ stands for the given continuation accumulator. It suffices to show
(via Corollary 6.9) that for all E′ ∈B, 〈zero||Erec

E′ 〉 and 〈succ V ||Erec
E′ 〉 (for all V ∈C).

Observe that, given any E′ ∈B and V ∈C, we have these two possible reductions:

〈zero||Erec
E′ 〉 �→ 〈v||E′〉 〈succ V ||Erec

E′ 〉 �→ 〈μα.〈V ||Erec
α 〉||μ̃y.〈w[V/x]||E′〉〉

Now, we note the following series facts:

1. 〈v||E′〉 ∈‚ because v, E′ ∈B by assumption.
2. w[V/x, W/y] ∈B for all W ∈B because V ∈C.
3. 〈w[V/x, W/y]||E′〉 ∈‚ for all W ∈B.
4. μ̃y.〈w[V/x]||E′〉 ∈B by activation (Lemma 6.3).
5. 〈V ||Erec

E′ 〉 ∈‚ for all E′ ∈B by the assumption V , Erec
E′ ∈C.

6. μα.〈V ||Erec
α 〉 ∈B by activation (Lemma 6.3).

7. 〈μα.〈V ||Erec
α 〉||μ̃y.〈w[V/x]||E′〉〉 ∈‚.

Therefore, 〈V ||Erec
E′ 〉 reduces to a command in ‚ for any V ∈N(C). It follows from

Property 6.4 and Corollary 6.9 that Erec
E′ ∈N(C). �

Lemma 1.18 (Nat Recursion). For any reducibility candidate B, if

• v ∈B,
• w[V/x, W/y] ∈B for all V ∈�∞

i=0 �Nat�i and W ∈B, and
• E ∈B,

then rec{zero→ v | succ x→ y.w}with E ∈�∞
i=0 �Nat�i.

Proof By induction on i, rec{zero→ v | succ x→ y.w}with E′ ∈ �Nat�i for all E′ ∈B:

• (0) �Nat�0 = Pos{} is the least reducibility candidate w.r.t subtyping, i.e., with
the fewest terms and the most coterms, so rec{zero→ v | succ x→ y.w}with E′ ∈
�Nat�0 trivially.
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• (i+ 1) Assume the inductive hypothesis: rec{zero→ v | succ x→ y.w}with E′ ∈
�Nat�i for all E′ ∈B. Applying Lemma 1.17 to �Nat�i, we have (for all E′ ∈B):

rec{zero→ v | succ x→ y.w}with E′ ∈N(�Nat�i+1)= �Nat�i+1

Thus, we know that the least upper bound of all �Nat�i in the subtype lattice (Theorem 6.10)
contains the instance of this recursor with E′ = E ∈B because it is a covalue (Lemma 6.7):

rec{zero→ v | succ x→ y.w}with E ∈
∞�

i=0

�Nat�i

�

Showing that the union
�∞

i=0 �Nat�i is closed under the succ constructor is more difficult.
The simple union

∨∞
i=0 �Nat�i is clearly closed under succ: every value in

∨∞
i=0 �Nat�i

must come from some individual approximation �Nat�n, so its successor is in the next
one �Nat�n+1. However,

�∞
i=0 �Nat�i is not just a simple union; it has been completed

by Pos, so it might—hypothetically—contain more terms which do not come from any
individual �Nat�n. Thankfully, this does not happen. It turns out the two unions are one
in the same—the Pos completion cannot add anything more because of infinite recursors
which can inspect numbers of any size—which lets us show that

�∞
i=0 �Nat�i is indeed

closed under succ.

Lemma 1.19 (Nat Choice).
�∞

i=0 �Nat�i =
∨∞

i=0 �Nat�i.

Proof We already know that
∨∞

i=0 �Nat�i ≤
�∞

i=0 �Nat�i by definition (since all reducibil-
ity candidates are pre-candidates), so it suffices to show the reverse:

�∞
i=0 �Nat�i ≤∨∞

i=0 �Nat�i.
Note from Lemma 1.15 that

�∞
i=0 �Nat�i =

(∨∞
i=0 �Nat�i

)v‚v‚ =
((∨∞

i=0 �Nat�i

)−v‚
,
(∨∞

i=0 �Nat�i

)−v‚v‚)
We will proceed by showing there is an E ∈∨∞

i=0 �Nat�i such that 〈V ||E〉 ∈‚ forces V ∈∨∞
i=0 �Nat�i. Since we know that every V ∈�∞

i=0 �Nat�i and E ∈∨∞
i=0 �Nat�i forms a safe

command 〈V ||E〉 ∈‚, this proves the result.
First, observe that

�∞
i=0 �Nat�i contains the following instance of the recursor

(Lemma 1.18):

rec∞ := rec{zero→ zero | succ → x.x}with α ∈
∞�

i=0

�Nat�i

which has these reductions with zero and succ:

〈zero||rec∞〉 �→ 〈zero||α〉 〈succ V ||rec∞〉 �→ 〈μα.〈V ||rec∞〉||μ̃x.〈x||α〉〉
The reason why this covalue forces values of

�∞
i=0 �Nat�i into values of

∨∞
i=0 �Nat�i

depends on the evaluation strategy.
In call-by-value, the first successor reduction proceeds as:

〈succ V ||rec∞〉 �→→ 〈V ||rec∞[μ̃x.〈x||α〉/α]〉
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where the continuation accumulator has been μ̃-expanded. In general, an arbitrary step in
this reduction sequence looks like:

〈succ V ||rec∞[E/α]〉 �→→ 〈V ||rec∞[μ̃x.〈x||E〉/α]〉
The only values (in call-by-value) which do not get stuck with rec∞ (i.e., values V such
that 〈V ||rec∞〉 �→→ c ∈ Final) have the form succn zero which is in �Nat�n+1 ≤

∨∞
i=0 �Nat�i.

In call-by-name, the successor reduction proceeds as:

〈succ V ||rec∞〉 �→→ 〈V ||rec∞〉
Call-by-name includes another form of value, μβ.c, which is not immediately stuck with
rec∞. We now need to show that 〈V ||rec∞〉 ∈‚, i.e., 〈V ||rec∞〉 �→→ c ∈ Final, forces
V ∈ �Nat�n for some n. Let’s examine this reduction more closely and check the inter-
mediate results by abstracting out rec∞ with a fresh covariable β: 〈V ||rec∞〉 �→→ c ∈ Final
because 〈V ||rec∞〉 �→→ c′[rec∞/β] for some 〈V ||β〉 �→→ c′ � �→ and then c′[rec∞/β] �→→ c ∈
Final. We now proceed by (strong) induction on the length of the remaining reduction
sequence (i.e., the number of steps in c′[rec∞/β] �→→ c) and by cases on the shape of the
intermediate c′:

• c′ �= 〈W ||β〉. Then, c′[rec∞/β] ∈ Final already. In this case, 〈W ||E〉 ∈‚ for any E
whatsoever by expansion (Property 6.4), and so W ∈ �Nat�0 = Pos{}.

• c′ = 〈W ||β〉. Then we know that c′[rec∞/β]= 〈W [rec∞/β]||rec∞〉 �→→ c ∈ Final.
Since 〈W ||β〉 � �→ we know W [rec∞/β] is not a μ-abstraction. The only other possi-
bilities for W [rec∞/β], given the known reduction to c, are zero or succ V ′ for some
V ′. zero ∈ �Nat�1 by definition. In the case of succ V ′, we have the (non-reflexive)
reduction sequence c′[rec∞/β]= 〈succ V ′||rec∞〉 �→→ 〈V ′||rec∞〉 �→→ c. The induc-
tive hypothesis on the smaller reduction 〈V ′||rec∞〉 �→→ c ensures V ′ ∈ �Nat�n for
some n, so that succ V ′ ∈ �Nat�n+1 by definition, and thus V ∈ �Nat�n+1 as well by
expansion.

So in both call-by-value and call-by-name, we have
(⋂∞

i=0 �Nat�−i
)v‚ ⊆⋃∞

i=0 �Nat�+i .

De Morgan duality (Lemma 1.6) ensures the reverse, so
(⋂∞

i=0 �Nat�−i
)v‚ =⋃∞

i=0 �Nat�+i .
Finally, because all reducibility candidates are fixed points of v‚ (Lemma 1.6), de
Morgan duality further implies:

�∞
i=0 �Nat�i =

((⋂∞
i=0 �Nat�−i

)v‚
,
(⋂∞

i=0 �Nat�−i
)v‚v‚)= (⋃∞

i=0 �Nat�+i ,
(⋃∞

i=0 �Nat�+i
)v‚)

=
(⋃∞

i=0 �Nat�+i ,
⋂∞

i=0 �Nat�+v‚
i

)
= (⋃∞

i=0 �Nat�+i ,
⋂∞

i=0 �Nat�−i
)=∨∞

i=0 �Nat�i

�

Due to the symmetry of the model, the story for Stream A is very much the same as
Nat. We can show that the intersection of approximations—

�∞
i=0 �Stream A�i—contains

safe instances of the corecursor because its presence is preserved by the stepping function
S. The task of showing that this intersection is closed under the tail destructor is more
challenging in the same way as succ closure. We solve it with the dual method: the presence
of corecursors which “inspect” stream continuations of any size ensures that there are no
new surprises that are not already found in one of the approximations �Stream A�n.
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Lemma 1.20 (Stream Corecursion Step). For any reducibility candidates A, B and C,

corec{head α→ e | tail β → γ .f }with V ∈ SA(C)

for all V ∈B whenever the following conditions hold:

• e[E/α] ∈B for all E ∈A,
• f [E/β, F/γ ] ∈B for all E ∈C and F ∈B, and
• corec{head α→ e | tail β → γ .f }with V ∈C for all V ∈B.

Proof Since the value accumulator V will change in the tail step, we have to generalize
over it. Let V corec

V := corec{head α→ e | tail β → γ .f }with V , where V stands for a given
value from B. It suffices to show (via Corollary 6.9) that for all V ∈B, 〈V corec

V ||head E〉 (for
all E ∈A) and 〈V corec

V ||tail E′〉 (for all E′ ∈C). We have these two possible reductions:

〈V corec
V ||head E〉 �→ 〈V ||e[E/α]〉
〈V corec

V ||tail E′〉 �→ 〈μγ .〈V ||f [E′/β]〉||μ̃x.〈V corec
x ||E′〉〉

Now, we note the following series of facts

1. e[E/α] ∈B by assumption because E ∈A.
2. 〈V ||e[E/α]〉 ∈‚ because V , e[E/α] ∈B by assumption.
3. f [E′/β, F/γ ] ∈B for all F ∈B by because E′ ∈C.
4. 〈V ||f [E′/β, F/γ ]〉 ∈‚ for all F ∈B.
5. μγ .〈V ||f [E′/β]〉 ∈B by activation (Lemma 6.3).
6. 〈V corec

V ′ ||E′〉 ∈‚ for all V ′ ∈B by the inductive hypothesis since E′ ∈ �Stream A�i.
7. μ̃x.〈V corec

x ||E′〉 ∈B by activation (Lemma 6.3).
8. 〈μγ .〈V ||f [E′/β]〉||μ̃x.〈V corec

x ||E′〉〉 ∈‚.

Therefore, both 〈V corec
V ||head E〉 and 〈V corec

V ||tail E′〉 reduce to a command in ‚ for any
E ∈A and E′ ∈C. It follows from Property 6.4 and Corollary 6.9 that V corec

V ′ ∈ SA(C). �

Lemma 1.21 (Stream Corecursion). For any reducibility candidate B, if

• e[E/α] ∈B for all E ∈ �A�,
• f [E/β, F/γ ] ∈B for all E ∈�∞

i=0 �Stream A�i and F ∈B, and
• V ∈B,

then corec{head α→ e | tail β → γ .f }with V ∈�∞
i=0 �Stream A�i.

Proof By induction on i, corec{head α→ e | tail β → γ .f }with V ′ ∈ �Stream A�i for all
V ′ ∈B:

• (0) �Stream A�0 =Neg{} is the greatest reducibility candidate w.r.t subtyping, i.e.,
with the most terms, so corec{head α→ e | tail β → γ .f }with V ′ ∈ �Stream A�0

trivially.

https://doi.org/10.1017/S0956796822000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000168


58 P. Downen and Z.M. Ariola

• (i+ 1) Assume corec{head α→ e | tail β → γ .f }with V ′ ∈ �Stream A�i for all V ′ ∈
B. Applying Lemma 1.20 to Stream Ai, we have (for all V ′ ∈B):

corec{head α→ e | tail β → γ .f }with V ′ ∈ S�A� (tail �Stream A�i)= �Stream A�i+1

Thus, we know that in the greatest lower bound of all �Stream A�i in the subtype lat-
tice (Theorem 6.10) contains this corecursor with V ′ = V ∈B because it is a value
(Lemma 6.7):

corec{head α→ e | tail β → γ .f }with V =
∞�

i=0

�Stream A�i

�

Lemma 1.22 (Stream Choice).
�∞

i=0 �Stream A�i =
∧∞

i=0 �Stream A�i

Proof In the special case that �A� is somehow completely empty of values, it must be the
least candidate (w.r.t. subtyping), which also makes each �Stream A�i the least candidate as
well, forcing

�∞
i=0 �Stream A�i and

∧∞
i=0 �Stream A�i to both be equal to the least candidate

and thus equal to each other. Otherwise, we may assume that �A� contains at least one
value.

Note from Lemma 1.15 that
�∞

i=0 �Stream A� i =
(∧∞

i=0 �Stream A� i

)v‚v‚ =
((∧∞

i=0 �Stream� i

)+v‚v‚
,
(∧∞

i=0 �Stream� i

)+v‚)
We will proceed by showing there is a V ∈∧∞

i=0 �Stream A�i such that 〈V ||E〉 ∈‚
forces E ∈∧∞

i=0 �Stream A�i. Since we know that every E ∈�∞
i=0 �Stream A�i and V ∈∧∞

i=0 �Stream A�i forms a safe command 〈V ||E〉 ∈‚, this proves the result.
First, we define the following corecursive term:

corec∞[V ] := corec{head α→ α→ tail → γ .γ }with V

and observe that corec∞[V ] ∈�∞
i=0 �Stream A�i (Lemma 1.21) for all V ∈ �A�. In general,

corec∞[V ] has these reductions with head and tail:

〈corec∞[V ]||head E〉 �→ 〈V ||E〉 〈corec∞[V ]||tail E〉 �→ 〈μγ .〈V ||γ 〉||μ̃x.〈corec∞[x]||E〉〉
The reason why this value forces covalues of

�∞
i=0 �Stream A�i into covalues of∧∞

i=0 �Stream A�i depends on the evaluation strategy.
In call-by-name, the tail reduction proceeds as:

〈corec∞[V ]||tail E〉 �→→ 〈corec∞[μγ .〈V ||γ 〉]||E〉
where the value accumulator has been μ-expanded. The only covalues (in call-by-name)
which do not get stuck with corec∞ (i.e., covalues E such that 〈corec∞[V ]||E〉 �→→
c ∈ Final) have the form tailn(head E) with E ∈ �A�, which is in �Stream A�n+1 ≥�∞

i=0 �Stream A�i.
In call-by-value, the tail reduction proceeds as:

〈corec∞[V ]||tail E〉 �→→ 〈corec∞[V ]||E〉
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Call-by-value includes another form of covalue, μ̃y.c, which is not immediately stuck
with corec∞. We now need to show that if V ∈ �A� then 〈corec∞[V ]||E〉 ∈‚, i.e.,
〈corec∞[V ]||E〉 �→→ c ∈ Final, forces E ∈ �Stream A�n for some n. Let’s look at the inter-
mediate results of this reduction sequence by abstracting out corec∞ with a fresh
variable y: 〈corec∞[V ]||E〉 �→→ c because 〈corec∞[V ]||E〉 �→→ c′[corec∞[V ]/y] for some
〈y||E〉 �→→ c′ � �→ and then c′[corec∞[V ]/y] �→→ c ∈ Final. We now proceed by (strong)
induction on the length of the remain reduction sequence (i.e., the number of steps in
c′[corec∞[V ]/y] �→→ c) and by cases on the shape of the intermediate c′:

• c′ �= 〈y||F〉. Then, c′[corec∞[V ]/y] ∈ Final already. In this case, 〈W ||F〉 ∈‚ for any
W whatsoever by expansion (Property 6.4), and so F ∈ �Stream A�0 =Neg{}.

• c′ = 〈y||F〉. Then, c′[corec∞[V ]/y]= 〈corec∞[V ]||F[corec∞[V ]/y]〉 �→→ c ∈ Final.
Since 〈y||F〉 � �→, we know F[corec∞[V ]/y] is not a μ̃-abstraction. The only other
possibilities for F[corec∞[V ]/y], given the known reduction to c, are head F′

or tail E′. In the first case, we have 〈corec∞[V ]||head F′〉 �→ 〈V ||F′〉 ∈‚ for all
V ∈ �A�; so F′ ∈ �A� by completion of �A� and thus head F′ ∈ �Stream A�1. In the
second case, we have the (non-reflexive) reduction sequence c′[corec∞[V ]/y]=
〈corec∞[V ]||tail E′〉 �→→ 〈corec∞[V ]||E′〉 �→→ c The inductive hypothesis on the
smaller reduction 〈corec∞[V ]||E′〉 �→→ c ensures E′ ∈ �Stream A�n for some n, so
that head E′ ∈ �Stream A�n+1 by definition, and thus E ∈ �Stream A�n+1 as well by
expansion.

So in both call-by-name and call-by-value, we have
(⋂∞

i=0 �Stream A�+i
)v‚ ⊆⋃∞

i=0 �Stream A�−i . De Morgan duality (Lemma 1.6) ensures
(⋂∞

i=0 �Stream A�+i
)v‚ =⋃∞

i=0 �Stream A�−i . Finally, because all reducibility candidates are fixed points of v‚
(Lemma 1.6), de Morgan duality further implies:

�∞
i=0 �Stream A�i =

((⋂∞
i=0 �Stream A�+i

)v‚v‚
,
(⋂∞

i=0 �Stream A�+i
)v‚)

=
((⋃∞

i=0 �Stream A�−i
)v‚

,
⋃∞

i=0 �Stream A�−i
)

=
(⋂∞

i=0 �Stream A�−v‚
i ,

⋃∞
i=0 �Stream A�−i

)
= (⋂∞

i=0 �Stream A�+i ,
⋃∞

i=0 �Stream A�−i
)=∧∞

i=0 �Stream A�i

�

Now that we know that the iterative interpretations of Nat and Stream A contain all the
expected parts—the (de)constructors and (co)recursors—we are ready to show that they
are the same as the all-at-once definition given in Fig. 10. More specifically, the iterative�∞

i=0 �Nat�i and
�∞

i=0 �Stream A�i correspond to the Kleene notion of (least and greatest,
respectively) fixed points. Instead, the all-at-once �Nat� and �Stream A� correspond to the
Knaster-Tarski fixed point definitions. These two correspond because the generating func-
tions N and S are monotonic, and due to the fact that we can choose which approximation
each value of

�∞
i=0 �Nat�i and covalue of

�∞
i=0 �Stream A�i comes from (Lemmas 1.19

and 1.22).
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Lemma 1.23 (Monotonicity). Given reducibility candidates A, B, and C, if B≤C then
N(B)≤N(C) and SA(B)≤ SA(C).

Proof Because each of the (de)constructors, {zero}, succ(C), head(A), and succ(C) are
monotonic w.r.t subtyping, as are unions, intersections, Pos, and Neg (Lemma 1.9). �

Lemma 6.13 ((Co)Induction Inversion).

�Nat� =
∞�

i=0

�Nat�i �Stream A� =
∞�

i=0

�Stream A�i

Proof First note that the values of
�∞

i=0 �Nat�i is closed under zero a and succ:

• zero ∈ �Nat�1 ≤
�∞

i=0 �Nat�i by definition.
• Given V ∈�∞

i=0 �Nat�i, we know V ∈∨∞
i=0 �Nat�i (Lemma 1.19), and thus V ∈

�Nat�n for some n. So succ V ∈ �Nat�n+1 ≤
�∞

i=0 �Nat�i by definition.

Similarly, the covalues of
�∞

i=0 �Stream A�i is closed under head and tail:

• For all E ∈ �A�, head E ∈ �Stream A�1 ≤
�∞

i=0 �Stream A�i by definition.
• Given E ∈�∞

i=0 �Stream A�i, we know E ∈∧∞
i=0 �Stream A�i (Lemma 1.22), and

thus E ∈ �Stream A�n for some n. So tail E ∈ �Stream A�n+1 ≤
�∞

i=0 �Stream A�i by
definition.

Because of these closure facts, we know from the definition of
�

and
�

, respectively, that

∞�
i=0

�Nat�i ≥
�
{C | (zero ∈C) and (∀V ∈C. succ V ∈C)} = �Nat�

∞�
i=0

�Stream A�i ≤
�
{C | (∀E ∈ �A�. head E ∈C) and (∀E ∈C. tail E ∈C)} = �Stream A�

Going the other way, it we need to show that each approximation �Nat�i is a subtype of
the Cs that make up �Nat�, and dually that each approximation �Stream A�i is a supertype
of the Cs that make up �Stream A�. Suppose that C is any reducibility candidate such that
N(C)≤C. Then �Nat�i ≤C follows by induction on i:

• (0) �Nat�0 = Pos{} is the least reducibility candidate w.r.t subtyping, so �Nat�0 ≤C.
• (i+ 1) Assume that �Nat�i ≤C. The next approximation is �Nat�i+1 =N(�Nat�i).

Therefore, �Nat�i+1 =N(�Nat�i)≤N(C)≤C by monotonicity of N (Lemma 1.23).

Similarly, suppose that C is any reducibility candidate such that S�A� (C)≥C. Then,
�Stream A�i ≥C follows by induction on i:

• (0) �Stream A�0 =Neg{} is the greatest reducibility candidate w.r.t subtyping, so
�Stream A�0 ≥C trivially.
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• (i+ 1) Assume that �Stream A�i ≥C. The next approximation is �Stream A�i+1 =
S�A� (�Stream A�i). Therefore, �Stream A�i+1 = S�A� (�Stream A�i)≥ S�A� (C)≥C by
monotonicity of S�A� (Lemma 1.23).

In other words, we know that every C≥N(C) is an upper bound of all approximations
�Nat�i, and every C≤ S�A� (C) is a lower bound of all approximations �Stream A�i. So
because

�
is the least upper bound and

�
is the greatest lower bound, we have

∞�
i=0

�Nat�i ≤C (if C≥N(C)) C≤
∞�

i=0

Stream Ai (if C≤ S�A� (C))

In other words,
�∞

i=0 �Nat�i is a lower bound of the Cs that make up �Nat� and�∞
i=0 Stream Ai is an upper bound of the Cs that make up �Stream A� (Lemma 1.16). Again,

since
�

is the greatest lower bound and
�

is the least upper bound, we have

∞�
i=0

�Nat�i ≤
�
{C |C≥N(C)} = �Nat�

∞�
i=0

Stream Ai ≥
�
{C |C≤ S�A� (C)} = �Stream A�

�

1.5 Adequacy

To conclude, we give the full proof of adequacy (Lemma 6.11) here. With the lemmas
that precede in Appendix 1.4, the remaining details are now totally standard. Soundness
ensures the safety of the Cut rule and completeness ensures that the terms of each type are
included in their interpretations as reducibility candidates. The main role of adequacy is to
show that the guarantees given by the premises of each typing rule are strong enough to
prove their conclusion and that the notion of substitution corresponds to the interpretation
of typing environments.

Lemma 6.11 (Adequacy).

1. If � 
 c is derivable then �� 
 c� is true.
2. If � 
 v : A is derivable then �� 
 v : A� is true.
3. If � 
 e÷ A is derivable then �� 
 e÷ A� is true.

Proof By (mutual) induction on the given typing derivation for the command or (co)term:

• (Cut) Inductive Hypothesis: �� 
 v : A� and �� 
 e÷ A�.
Let ρ ∈ ���, so v[ρ] ∈ �A� and e[ρ] ∈ �A� by the inductive hypothesis. Observe that
〈v||e〉[ρ]= 〈v[ρ]||e[ρ]〉 ∈‚ because all reducibility candidates are sound. In other
words, �� 
 〈v||e〉�.

• (VarR and VarL) x[ρ] ∈ �A� for any ρ ∈ ��, x : A� by definition. Dually, α[ρ] ∈
�A� for any ρ ∈ ��, α ÷ A� by definition. In other words, ��, x : A
 x : A� and
��, α÷ A
 α÷ A�.

• (ActR) Inductive Hypothesis: ��, α÷ A
 c�.
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Let ρ ∈ ���, so that for all E ∈ �A�, E/α, ρ ∈ ��, α ÷ A� by definition and
c[ρ][E/α]= c[ρ, E/α] ∈‚ by the inductive hypothesis. Thus, (μα.c)[ρ]=
μα.(c[ρ]) ∈ �A� by activation (Lemma 6.3). In other words, �� 
μα.c : A�.

• (ActL) Dual to ActR above.
• (→R) Inductive Hypothesis: ��, x : A
 v : B�.

Let ρ ∈ ���, so for all W ∈ �A�, W/x, ρ ∈ ��, x : A� by definition and v[ρ][W/x]=
v[ρ, W/x] ∈ �B� by the inductive hypothesis. Thus, (λx.v)[ρ]= λx.(v[ρ]) ∈
�A→ B� by Lemma 6.12. In other words �� 
 λx.v : A→ B�.

• (→L) Inductive Hypothesis: �� 
 V : A� and �� 
 E÷ B�.
Let ρ ∈ ���, so V [ρ] ∈ �A� and E[ρ] ∈ �B� by the inductive hypothesis. Thus, (V ·
E)[ρ]= V [ρ] · E[ρ] ∈ �A→ B� by definition of �A→ B� and Lemma 6.7. In other
words, �� 
 V · E÷ A→ B�.

• (NatRzero): For any substitution ρ, zero[ρ]= zero ∈ �Nat� by Lemma 6.7. In other
words, �� 
 zero : Nat�.

• (NatRsucc) Inductive Hypothesis: �� 
 V : Nat�.
Let ρ ∈ ���, so that V [ρ] ∈ �Nat� by the inductive hypothesis. Thus, (succ V )[ρ]=
succ(V [ρ]) ∈ �Nat� by Lemma 6.7. In other words, �� 
 succ V : Nat�.

• (NatL) Inductive Hypothesis: �� 
 v : A�, ��, x : Nat, y : A
w : A�, and
�� 
 E÷ A�.
Let ρ ∈ ���, so that by the inductive hypothesis:

– E[ρ] ∈ �A�,
– v[ρ] ∈ �A�, and
– w[ρ][V/x, W/y]=w[ρ, V/x, W/y] ∈ �A� for all V ∈ �Nat� and W ∈ �A�.

Thus,

rec{zero→ v[ρ] | succ x→ y.w[ρ]}with E[ρ]

= (rec{zero→ v | succ x→ y.w}with E)[ρ] ∈
∞�

i=0

�Nat�i = �Nat�

by Lemmas 6.13 and 1.18. In other words,

�� 
 rec{zero→ v | succ x→ y.w}with E÷Nat�
• (StreamR) Inductive Hypothesis: �� 
 E÷ A�.

Let ρ ∈ ���, so that E[ρ] ∈ �A� by the inductive hypothesis. Thus, (head E)[ρ]=
head(E[ρ]) ∈ �Stream A� by Lemma 6.7. In other words, �� 
 head E÷ Stream A�.

• (StreamLhead) Inductive Hypothesis: �� 
 E÷ Stream A�.
Let ρ ∈ ���, so that E[ρ] ∈ �Stream A� by the inductive hypothesis.
Thus, (tail E)[ρ]= tail(E[ρ]) ∈ �Stream A� by Lemma 6.7. In other words,
�� 
 tail E÷ Stream A�.

• (StreamLtail) Inductive Hypothesis: ��, α ÷ A
 e÷ B�,
��, β ÷ Stream A, γ ÷ B
 f ÷ B�, and �� 
 V : B�.
Let ρ ∈ ���, so that by the inductive hypothesis:

– V [ρ] ∈ �B�,
– e[ρ][E/α]= e[ρ, E/α] ∈ �B� for all E ∈ �A�, and
– f [ρ][E/β, F/γ ]= f [ρ, E/β, F/γ ] ∈ �B� for all E ∈ �Stream A� and F ∈ �B�.
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Thus,

corec{head α→ e[ρ] | tail β → γ .f [ρ]}with V [ρ]

= (corec{head α→ e | tail β → γ .f }with V )[ρ] ∈
∞�

i=0

�Stream A�i = �Stream A�

by Lemmas 6.13 and 1.21. In other words

�� 
 corec{head α→ e | tail β → γ .f }with V : Stream A�
�
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