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Dirac equation

Electrons are light, with a rest mass of
mec® = 0.5110 MeV (10.1)

For the energies of interest here, electrons must be treated relativistically.
Fortunately, for leptons, one knows how to do this with the Dirac equation
[Bj65, Sc68]

(ca-p+Pmctyy = ih%‘f
p = ?V (10.2)

Here vy is a 4-component column vector and « and f§ are 4 x 4 hermitian
matrices satisfying the relations

Box +oufp = 0 k=1,2,3
ooy + ooy = 20k
g =1 (10.3)
A specific (standard) representation of the Dirac matrices is given in 2 X 2
form by
0 o 1 0
oc=<o_0> ﬁ=<0_1) (10.4)
Introduce
y = iaf
4 = B (10.5)
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46 Part 2 General analysis

It follows that these new matrices are also hermitian and satisfy the
following algebra

Vv TNV = 20

o= cp=1,...,4 (10.6)
In the standard representation, the gamma matrices are given by
0 —io 1 0
7:(1‘0 0 ) y4=<0 —1) (107)

Multiplication on the left by y4 and division by fic leads to the covariant
form of the Dirac equation

0 mycC
(“fﬂaxﬂ?)w =0
u
T = (,74)
x, = (x,ict 10.8
u (x,ict) (10.8)

Repeated Greek indices are summed from 1 to 4.
To include an electromagnetic field one makes the gauge invariant re-
placement p, — p, — (e/c)A, or

0 0 ie
N _ <
0xy ox, e K
Ay = (Ai0) (10.9)

This yields the Dirac equation

0 ie moc
(o ren) + 5 oo o

The equivalent Dirac hamiltonian is obtained by working backwards

H = ca- (p—iA)—Fﬁmocz—Fe(D

Hy + Hy
H = —ea-A+ed (10.11)
Here e = —|e| = —e¢, is the charge on the electron.

The Dirac equation for the adjoint field is obtained from Eq. (10.10) by
taking the adjoint and multiplying on the right with y4

_ 5 ie moc
o) 5] -0

px) = v (10.12)
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10 Dirac equation 47

The Dirac electromagnetic current is given by

. 1 T .
ejy = e ;UJ acy, 'y
= e P(x)y.p(x) (10.13)

It then follows by direct differentiation and use of the equations of motion
that the Dirac current is conserved
O

= 10.14
=0 (10.14)

Note that this relation holds in the presence of the electromagnetic field,
as it must.

One obtains stationary state, plane wave solutions to the free Dirac
equation upon substitution of the form

p = e IE/RGPx/I (10.15)

The resulting equations only have solutions for eigenvalues of the energy.
We denote these eigenvalues and the corresponding eigenfunctions by

E = +E, ; solution u(p)
E = —E, ; solution v(p)

E, = \/p2c2+mic* (10.16)

That it yield the correct relativistic energy—momentum relation is one of
the requirements used to derive the Dirac equation. A little algebra shows
that the four eigenfunctions (uq, us,v1,v2) can be exhibited explicitly as the
columns of the following modal matrix, again expressed in 2 x 2 form,

1 ___Cop _
1/2 E, + moc?
E 2 P 0
= [ Bt moc (10.17)
2E, cop 1
E,+ m002
They satisfy the orthonormality conditions
wuj = vlo; = &y
wv; = vflu; =0 (10.18)

Evidently, from the Dirac equation, these solutions satisfy
(i'))upu +mocju(p) = 0

(iyupy — moc)v(—p) 0
P = (PiEy/c) (10.19)
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48 Part 2 General analysis

Fig. 10.1. Promotion of particle from a negative energy to a positive energy
state in Dirac’s hole theory.

Now p is the momentum eigenvalue. Note that the second equation is
written for v(—p). This solution can be interpreted with the aid of Dirac’s
hole theory.

A heuristic understanding of the role of the negative energy states was
given by Dirac. Since particles in the positive energy states could just keep
cascading down endlessly, he invoked the Pauli Exclusion Principle and
assumed that in the vacuum the negative energy states are all filled. One
always measures quantities with respect to the vacuum and the constant
contribution of the filled states has no consequence for this theory.

This picture does have implications. A particle in one of the filled
negative energy states can be promoted by some mechanism to one of
the positive energy states as illustrated in Fig. 10.1. Since if one fills the
negative energy state one recovers the vacuum, the hole (absence of a
particle) must have the opposite properties of the particle. Dirac called
these antiparticles. The antiparticle of the electron is the positron. If
v(—p, 4) is the negative energy solution of a particle with charge e = —|e|,
momentum —p and helicity A with respect to —p, then it represents a
positron with charge +|e|, momentum +p and helicity A with respect
to +p. (Since the spin also reverses, the helicity, or component of spin
along the momentum, is unchanged.) Another immediate consequence of
Dirac hole theory is that the vacuum becomes a dynamical quantity; it is
polarizable for example, and relativistic quantum mechanics immediately
confronts one with the relativistic quantum many-body problem.

The solutions in Eq. (10.17) can be combined to yield the projection

operators
_ moc? — Iyupuc
Z u(pas)a“(p,s)ﬁ = <2E>
spins, E>0 p ofs
2 .
~ —moc” — iy,puc
> v(—p.s)B(—ps)p = <2E””> (10.20)
spins, E<0 p af

The relativistic quantum field for a free electron can be expanded
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10 Dirac equation 49

in terms of the normal-model solutions to the Dirac equation obtained
above. The coefficients in the expansion become creation and destruction
operators satisfying canonical anti-commutation relations (for fermions).
After a canonical transformation to particles and holes, the field in the
Schrodinger representation takes the form [Bj65, Fe71]

W(x) = f Z [ak;u kA)e™X 4 b v(—kz)e X (10.21)

We again quantize in a big box of volume Q and use periodic boundary
conditions. The Dirac current is given in terms of the field by

Ju(x) = ip(X)yp(x) (10.22)

The hamiltonian in first quantization for a Dirac particle in an ex-
ternal, time-dependent field AZ’“(X, t) is given by Eq. (10.11). In second
quantization this hamiltonian takes the form [Bj65, Fe71]

H= /@T(x) {coc . {p — SAC’“(X, t)} + Bmoc? + e®(x, t)} P(x)d*x
(10.23)

Here ¢ (x) and {7(x) are field operators in the Schrodinger picture satis-
fying canonical anti-commutation relations [Eq. (10.21) provides a conve-
nient representation]. The interaction hamiltonian in the external electro-
magnetic field is evidently

HY = —e j(x) A5 (x, 1) (10.24)

This hamiltonian can be used to determine the relativistic, quantum behav-
ior of an electron in an arbitrary, time-dependent external electromagnetic
field. It also governs pair production processes.

There are several readily established relations on the traces of the
gamma matrices which are useful in the calculation of rates and cross
sections [Bj65].

tracey, = 0
tracey,py = 404
tracey, vy, = 0
trace Y )vypYe = HOuw0ps — 0upOvs + 0ugdyp) (10.25)

Other relations are given in appendix D.

Since /i and ¢ have now served their purpose, and we know where all
the factors are, it is convenient to go over to a more common set of units
used in nuclear and particle physics where

h=c=1 (10.26)
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50 Part 2 General analysis

This simplifies the algebra considerably, and we shall henceforth assume
this to be the case. All momenta and energies now become inverse lengths
with the conversion factor

hic = 197.3 MeV fm (10.27)

We shall take care to ensure that all final results are written in transparent
and dimensionally correct form.
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