63.35 The twenty-fifth (known) perfect number

The discovery of the 25 th Mersenne prime by L. Nickel and C. Noll now means that the number $2^{21700}\left(2^{21701}-1\right)$ may be shown to be perfect. Indeed, all that is required to verify that this is perfect-that is, equal to the sum of its divisors

$$
1,2,2^{2}, \ldots, 2^{21700}, p, 2 p, 2^{2} p, \ldots, 2^{21699} p \quad\left(\text { where } p=2^{21701}-1\right)
$$

-is the ability to sum geometric progressions. Also, by recalling that all even perfect numbers are of the form $2^{n-1}\left(2^{n}-1\right)$, where $2^{n}-1$ is prime (the proof of this result being a worthwhile exercise for any young mathematician) and that no odd perfect number has yet been discovered it thus follows that $2^{21700}\left(2^{21701}-1\right)$ is the 25 th known perfect number.

HARRY V. SMITH

School of Mathematics and Computing, The Polytechnic, Leeds

Editorial note. The Editor is grateful to the 10 readers who wrote to draw his attention to the following extract from the Times for 17 November 1978: "Two 18 -year-old American students have discovered with the help of a computer at California State University the biggest known prime number, the number two to the 21,701st power." (A correction was published in a later issue.) D.A.Q.

Correspondence

The circle and the golden pyramid

Dear Editor,
Re: "An approximate relation between π and the golden ratio" by J. M. H. Peters in the October Gazette, pp. 197-198. A better relation is $\pi \approx 6 \tau^{2} / 5$, giving $3.141592654 \approx$ $3 \cdot 141640787$, with an accuracy of about 15 parts per million. This approximation occurs in a work on the Great Pyramid with no justification whatsoever. Perhaps the author simply discovered it numerically.

> Yours sincerely, DAVID SINGMASTER

Polytechnic of the South Bank, Borough Road, London SE1 OAA

[^0]
[^0]: Don't contradict the professor
 "SIR-Prof. J. C. Higgins is sadly in error in stating the odds beaten by the Australian cricket captain in winning 8 tosses out of 9 .
 There are only 10 possible results from 9 tosses-lose all and win any number from 1 to 9. The odds are 9:1.
 Odds of 511:1 apply to the number of sequences of wins or losses achievable from 9 tosses."
 From a letter to the Daily Telegraph, 24 February 1979 (per Frank Budden).

