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NON-DEGENERATE REAL HYPERSURFACES IN COMPLEX

MANIFOLDS ADMITTING LARGE GROUPS OF PSEUDO-

CONFORMAL TRANSFORMATIONS II

KEIZO YAMAGUCHI

Introduction

This is the continuation of our previous paper [3], and will complete,
without homogeneity assumption, the classification of non-degenerate real
hypersurfaces S of complex manifolds M for which the groups A(S) of
pseudo-conformal transformations of S have either the largest dimension
n2 + 2n or the second largest dimension.

Our result is stated as follows

THEOREM 3.4. Let M be a complex manifold of dimension n, let S be

a connected non-degenerate (index r) hypersurface of M (θ < r < \n~~~ n .

Assume that A(S) attains the second largest dimension, then we have the
following classificationtable:

(n,r) ^ \ ^

tι = 3 & r — 1

%=5&r=2

n>2&r=0

otherwise

dim A(S)

11(= n2 + 2)

2β(= n* + 1)

S

homogeneous

Qi*(D

Q*(2) or Q*

Qo*

Q*

inhomogeneous

Q2\{δ}

Qr\{0}

Qr = Uzt, •• ,zn)e
I.

Q* = {(zo, - ,zn)e

+ Σ
i

0} ,

J

Received April 3, 1976.

https://doi.org/10.1017/S002776300001792X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001792X


10 KEIZO YAMAGUCHI

π * ( 2 ) = ί(z ••• £ ) β 0 |# I + |# # I + |# # I =̂= 0}

δ = (0, -, 0,1) G Q r ,

where Pn(C) is the complex protective space of dimension n with its

homogeneous coordinate (zQ, ,zn).

This combined with Theorem 7.4 [3] gives the desired classification.

Section I is devoted to the classification of proper graded subalgebras

of g(r) of the minimum codimension (The result of this section is already

announced in Proposition 4.7 [3]). In section II we study the null ideals

(cf. Definition 2.1) of g°(r) and g**(r, r). In particular we will see that

they are characteristic ideals. With these preparations we will prove

Theorem 3.4 in III.

The author is grateful to Prof. N. Tanaka for his constant encourage-

ment during the preparation of this paper.

Preliminary remarks

Throughout this paper we always assume the differentiability of

class Cω. We use the same notations and terminology in our previous

paper [3].

I. Graded subalgebras of g(r) (cf. IV [3])

In this section we will determine the graded subalgebras ϊ of g(r)

of the minimum codimension without the homogeneity assumption (i.e.

ΐ_2 == Q_2(r) and ϊ_i = g_iθ")).

First recall the following which is purely computational: For

ί-π 0 0\
a e g_2(r), ξt e g_j(r) (ί = 1,2), Xo = 0 v 0 e go(r), wi e &(r) (i = 1,2)

\ 0 0 u)
and b e g2(r), we have

(1.1) [fi, 6] = bξ1 (resp. [w19a] = awj) ,

(1.2) [ξu | 2 ] == — Im <f!, f2> (resp. [wu w2] = Im (w19 w2}) ,

(1.3) [Zo, f J = v(ξd + ΰξι (resp. [XQ, w,] =

(1.4) [w^w, fj] = - </=l<wu w1yξ1

Now we will consider a graded subalgebra ϊ = Σp=-2Ϊp of g(r).
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NON-DEGENERATE REAL HYPERSURFACES 11

LEMMA 1.1. // ϊ_2 = ϊ2 = {0}, then we have codim t >2n (i.e. dim ϊ

<n2).

Proof. From (1.2) we see that the bracket operation g_i(r) x g_i(r)

B (Sif £2) ^ [f i> £2] e g_2(r) is non-degenerate. Hence we have dim ϊ_j

< \ dim g_j(r) = w — 1. Similarly we have dim lλ<\ dim gx(r) = n — 1.

These facts show the above. Q.E.D.

We now consider the following three cases separately (Note that

dim g_2(r) = dim g2(r) = 1).

Case 1. ϊ_2 = Q-2(τ) and ϊ2 = {0},

Case 2. ΐ_2 = g_2(r) and ϊ2 = g2(r),

Case 3. L 2 = {0} and ϊ2 = g2(r).

Case 1. First we have

LEMMA 1.2 (cf. Lemma 4.1 [3]). For any w19 w2 e ϊlf we have (wl9 w2}

= 0.

Proof. Since ϊ_2 = g_2(̂ )> we get from (1.1) that

w e ϊ_i for any w e lx .

Hence from (1.2) and (1.4) we have

[w, [w[w, w]]] = — 6 ^ v ^ 2 e ϊ2 .

Since ϊ2 = {0} we get

ζw9 wy = 0 for any w e ix .

Let w19 w2 e ϊ lβ Then from

i + w2 = w?! + w2 e ϊ, ,

i, w2] = v ^ l « w 2 , W!> - <>!, w 2» e ϊ 2 ,

we have ζwx + w29 wx + w2} = 0 and ζw19 w2} = <^;2, Wj>. Hence we get

<Wi,w2> = 0. Q.E.D.

Next we consider the complexification ϊj of I1# More precisely we

consider the complex vector subspace kc of Cn~ι spanned by the vectors

in k = ί^Kϊi) (i.e. kc = k + Λ^lfc), where ^ r rC7""1 s w^w e gx(r). We set

ΐj = ^^fc6). Then we have

LEMMA 1.3 (cf. Lemma 4.3 [3]).
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12 KEIZO YAMAGUCHI

( i ) ϊ{ is an abelian subalgebra of g(r).

( i i ) δ~Kϊ() is a complex isotropic subspace of (C7 2"1, <( ,)) .

[ϊ0, m c ΪI

Proof, (i) and (ii) are obvious from (1.2) and Lemma 1.2. (iii) fol-

lows from (1.3).

We set ϊo = { I e qo(r) | ad (X)(ϊί) c ϊj}. Then obviously we have

ϊ c g_2(r) Θ a.xCr) Θ ! 0 Θ ϊί .

Hence from Proposition 4.6 [3], we have

PROPOSITION 1.4. Let I be a graded subalgebra of g(r) satisfying

l_2 = g_2(r) αweZ ϊ2 = {0}. Then there exists τ e G'(r) such that Ad (r)

preserves the grading of g(r) α̂ cZ Ad (τ)(ϊ) c g*(r, s), where 2s = dim ϊf.

Therefore in this case Proposition 4.7 [3] gives the list of the graded

subalgebras of the minimum codimension.

Case 2. Let <5r be a linear isomorphism of Cn~ι onto g_i(r) defined

by δr(ξ) = ξ9ξeCn-K

LEMMA 1.5. We have [ϊ_2, ϊ j = ϊ_i and [ϊ2, i_J = ϊλ. In particular

Proof. Obviously we have [ϊ_2, ϊ j c ϊ_j and [ϊ2, ϊ_J c ϊ lβ On the other

hand we have [!_2, ϊ2] = [g_2W, g2W] = REOy where Eo is the element of

Q0(r) which defines the grading of g(r) (cf. 1.3 [3]). Hence we get

Therefore we have [ϊ2, ϊ_J = ϊlβ Similarly we have [ϊ_2, ΪJ = ϊ_x.

Q.E.D.

We set Cn~ι^k = δrKΌ = δ^Kϊ-i)- Since we are classifying ϊ under

the group of automorphisms of the graded Lie algebra g(r), we have

only to classify k as a (real) subspace of (C71'1, <, >) (cf. the proof of

Lemma 4.4 [3]).

LEMMA 1.6.

(i) // there exists woek such that ζw0, woy ^ 0, then k is a complex

vector subspace of Cn~ι.

(ii) Otherwise, we have
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NON-DEGENERATE REAL HYPERSURFACES 13

Re ζwl9 w2y = 0 for w19 w2ek .

In particular we have dim k < 2r.

Proof, (i) From (1.4), we have [wo[wo, w0]] = — SV— l(w09woyw0

e ΐi. Hence we get V^T.w0 e k. Moreover we have

Q9 w]] = — Λ/^Ϊ(W09 WO}W — 2^Π-

for w e k. Therefore we get 4^Λw e k for any w e k.
(ii) We have <w, w) = 0 for any w ek. Hence we have

(w1 + w2, wx + w2} = (wlf w2y + <w2, w^} = 0 for wl9 w2ek .

This shows Re (w19 w2y = 0. Note that Re (w19 w2y defines an indefinite

inner product of C Λ " 1 (= i?2(w-υ) of type (2r92(n - r - 1)). Q.E.D.

In particular we note that k is necessarily a complex vector subspace

in case r = 0.

Now we consider the complexification &c of k (i.e. &c = fc + V — lk).

And we study the following two cases separately.

Case 2.1. kc = C71"1 and Case 2.2 dimc /c
c = s < n - 1

Case 2.1. First we have

LEMMA 1.7. If k = kc(= Cn~λ)9 then ϊ = g(r).

Proof, k = C""1 means Ϊ! = g^r) and ϊ_i = q^(r). Hence the asser-

tion follows immediately from Lemma 4.1 [3]. Q.E.D.

Hence we further suppose k Q kc in the following. Then k cannot

be an arbitrary (real) subspace of C71'1 as Lemma 1.6 shows.

Let {e^tzn^ be the natural base of Cn~\ We set vt = -j=Jfii — en_ί)

and Wt = ~ (gj + e^.^) (i = 1,2, , r). Let &(r) be the 2r-dimensional

real vector subspace of Cn~ι spanned by the 2r vectors v19 ,v r 9w 1 9 ,

wr. Then we have

M 1

LEMMA 1.8. // k c kc = Cn~\ then we have r = - — - ( n : odd integer)

and dim k — 2r ~ n — 1. Moreover there exists a e U(Ir) such that σ(k)
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14 KEIZO YAMAGUCHI

Proof. From Lemma 1.6, we have dim k < 2r < 2ί"-^"—j. On the

other hand we have Cn~ι = kc — k + v — Ik. Hence we have r = and

2

dim k = 2r. In particular fc is a real form of kc = C71"1. Though the

last assertion follows immediately using the Witt's theorem, we briefly

sketch the proof of it. Let ζ1 be an arbitrary element of k. Since <, >

is non-degenerate, there exists ηxek such that <d,^i> = v ^ Ί . Let kx

be the real vector subspace of k spanned by ζ1 and ηx. Then k{ is a

non-degenerate subspace of Cn~\ Hence we have

Cn~ι = k\ Θ (fcί)-1 (direct sum) .

We easily see that (&ί)x = (kf)L, where is the conjugation with respect

to the real form k of Cn~ι. Hence there exists a subspace k[ of k such

that (&D1 = (&ί)c. Then we have

k — kx@k[ (direct sum) .

For an arbitrary ζ2 e k1 we repeat the above procedure for (fcί)c. Then

we get the base {ζiy ^}i<^r of k which satisfies <ζ€, ζ̂ > = <^ ,̂ vdy, (ζίf η^

= <yu Wj}, and (τ]iy η^} == < ^ , wy> (i, / = 1, 2, . ., r). Then we have only

to define σ by σ(ζt) = ^ί and σ(^) = ^ (i = 1,2, r). Q.E.D.

We set U - fcKKr)), f i = ί r " W ) , f0 - {^ e βo(r) | ad (Z)(f,) c f, (i = - 1 ,

1)}, and f(r) - g_2(r) Θ f_x Θ f0 Θ ft Θ β2(r).

From Lemma 1.8, we get

PROPOSITION 1.9. Let ϊ be a graded siώalgebra of g(r) satisfying
v i

ϊ-2 = §-z(r), l2 = 62(^)9 & = C71""1, cm<# &c 2 fc. Γ/tβ^ we have r = - — - (n :

odd number), and there exists τ e G'(r) such that Ad (τ) preserves the

grading of g(r) αnc? Ad(τ)ϊcf(r).

/n particular dim ϊ < dim f(r) = (2r + l)(r + 3) < ti2 + 1.

The proof is quite similar to that of Lemmas 4.4 and 4.5 [3], hence

is omitted. Note that dimf(r) = n2 + 1 if and only if n = 3 (and r = 1).

2.2. We set ϊ i 1 - fcW), ΪJ - ^XfcO, ! 0 - {X e go(r) | ad (Z)(© c ϊj

(i = _ i , i)}? a n d ! = ϊ_2 e Six Θ ϊ0 Θ ξ Θ ϊ2. Then obviously we have (cf.

(iii) of Lemma 1.3)
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LEMMA 1.10. ! is a proper graded subalgebra of g(r) such that

ϊc!.

Hence we will classify such ϊ under the group of automorphisms

of g(r). Note that ! is completely determined by kc c C71'1. Therefore

in order to classify ϊ, we have only to classify kc under the group U(Ir)

(cf. the proofs of Lemmas 4.4 and 4.5 [3]). However this is attained

by the Witt's theorem as in the following.

Let s,a and δ be natural numbers satisfying a + b < s <n — 1,

s — a < n — r and s — b < r. Let {eji<^w_i be the natural base of Cn~\

We set ζ, = -7=<>* + «»-<) (i = 1,2, , s - (α + 6)). And let fc (α, δ)

be the complex vector subspace of Cn~ι spanned by the s vectors &,•••,

ζ s_ ( α + δ ), e5+1_(α+δ), , e,_δ, e r + 1, , e r + δ. Then fcs(α, 6) is an s-dimensional

subspace of Cn~ι and the restriction to ks(a, b) of the hermitian inner

product of Cn~ι defined by Ir is a (possibly degenerate) hermitian inner

product of type (a, b) (cf. 1.3 [3]). We say that the complex vector sub-

space of (Cn~\Ir) is of type (a, b) if the induced hermitian inner product

from (Cn-\Ir) is of type (α,6).

LEMMA B (WITT'S THEOREM). // dimck
c = s < n — 1 and kc is a

subspace of type (α, δ), then there exists a e U(Ir) such that σ(kc) =

ks(a, 6).

We set b;\s, a, b) = δr{ks(a, 6)), b^s, α, b) = ^r(fes(α, 6)), er(s, α, 6)

= {Zego(r) I ad (Z)(bO c b« (i = -1,1)} and g°r(s,α,&) = g

Θ g2W. Then we have

PROPOSITION 1.11. Let I be a graded subalgebra of g(r) satisfying

ϊ_2 = g_2(r), ϊ2 = g2(f) αtid dim c k c — s <n — 1. Then there exists τe G\r)

such that Ad (r) preserves the grading of g(r) and Ad (r)ϊ c g°(s, α, 6),

where (a, b) is the type of kc in (C7 1"1,/ r). /^ particular dim ϊ <

dim g°r(s, α, δ) = (a + b - s)2 + 2s2 - 2s(n - 3) + (n - I)2 + 3 < n2 + 1.

The proof is quite similar to that of Lemmas 4.4 and 4.5 [3], hence

is omitted. Note that dim g°r(α, δ) = n2 + 1 if and only if s — n — 2,

a = r — 1 and δ = n — r — 2. We will write g°(π — 2, r — 1, ti — r — 2)

simply as g°(r) (cf. Remark 4.8 [3]).

Case 3 can be treated quite similarly as Case 1.

And we obtain
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16 KEIZO YAMAGUCHI

PROPOSITION 1.12. Let ϊ be a graded subalgebra of g(r) satisfying

ϊ_2 = {0} and ϊ2 = g2(r). Tfcen ίfeerβ e#isίs r e G'(r) such that Ad (τ)

preserves the grading of g(r) cmd Ad (τ)(ϊ) c g**(r, s), where 2s = dim ϊij.

g**(r, s) = c*(r) Θ δ*(r) Θ &(r) φ g2(r) .

Here

cf(r) = {ξ e g.Xr) | f e cs(r)}

and

Bf(r) = {Ze βo(r) | ad (Z)(c*(r)) c c*(r)} ( =

Summarizing the above discussion we obtain the classification of the

graded subalgebras of g(r) of the minimum codimension.

PROPOSITION 1.13 (cf. Proposition 4.9 [3]). Let ϊ be a proper graded

subalgebra of g(r).

(1) The case n = 3 and r = 1. dim ϊ < w2 + 2 = 11.

equality holds if and only if there exists τ e Gr(l) such that Ad (τ)

preserves the grading of g(l)

Ad (τ)ϊ - g*(l, 1) or β **(l, 1) .

(2) T&e case w == 5 and r = 2. dim ϊ < ^ 2 + 1 = 26.

equality holds if and only if there exists τ e G7(2) ŝ cfe that Ad (τ)

preserves the grading of g(2)

Ad(τ)I = β*(2,2), g**(2,2), g*(2) , β'(2) or g°(2).

(3) The case n > 2 and r = 0. dim I < n2 + 1

The equality holds if and only if there exists τ e G'(0) such that Ad (τ)

preserves the grading of g(0) and

Ad (τ)ϊ = 8*(0) or ^(0) .

(4) Otherwise, dim ϊ < n2 + 1.

T/̂ e equality holds if and only if there exists τ e G'(r) such that Ad (r)

preserves the grading of g(r) and

Ad (τ)ϊ = e*(r) , g7(r) or g°(r) .
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NON-DEGENERATE REAL HYPERSURFACES 17

Π. Radicals and null ideals of g°(r) and g**(r, r)

In this section we will seek the explicit form of the radicals and the

null ideals (cf. Definition 2.1) of g°(r)(r > 1) and $**(r,r)(r = ^ ^ V

DEFINITION 2.1. Let g = ΣP QP be a graded Lie algebra, and set

g/ = ΣP^O βp Then we call an ideal n the null ideal of g if it is the

maximal ideal of g contained in g'.

Let n° be the null ideal of g°(r) = g_2(r) Θ b'Kr) Θ e(r) Θ b W + g2(r).

Then we have

LEMMA 2.2. n° = {X e e(r) | ad (Z)(g.2(r)) = ad COGrW) = 0}. /^

particular dim n° = 1.

Proof, Since g°(r) contains £70 e e(r), which defines the grading of

g°(r), it is easily seen that any ideal of g°(r) is a graded ideal of g°(r).

Hence we have n° = nl®nl® nj, where nj = n° Π e(r), n? = n° Π bι(r), and

n§ = n° Π g2(r). From [g_2(r),tι°] c n°, we get

[9-2W, n§] = 0 , [g_2(r), n3 = 0 , and [g.2(r), [g_2(r), n§]] = 0 .

On the other hand we have [g_2W> 92O0] = ##0 and the map b\r) s w

H-> [a,w] eb'Kr) is injective for α^Oeg_ 2 ( r) . Hence we have n° = nj = 0

(i.e. n° c e(r)). Moreover from [b^OO, n°] c n°, we get [b"1^), n°] = 0.

Hence n° c 9K = {Z e e(r) | ad (Z)(g_2(r)) = ad (ZXb-^r)) = 0}. It is easy

to see that m is an ideal of e(r), [2K, b1^)] = 0 and [SK, g2(r)] = 0. There-

fore SK is an ideal of g°(r). The maximality of n° implies n° = 271. The

last assertion follows from the explicit matrix representation of n°.

Q.E.D.

Next we will study the radical x° = Σ?p—*^p o f 9°(r> ( N o t e t h a t x° i s

a graded ideal).

LEMMA 2.3. x°_2 = t° = 0

Proof. Since g°(r)/r° = g_2(r)/x°_2 Θb'Kr)/^Θe(r)/xgΘb1^)/^Θg2(r)/r^

is a semi-simple graded Lie algebra, it is well known that dim Q-2(χ)/τt2

= dim g2(r)/t2. Hence if x°_2 ̂  0 (i.e. x°_2 = β-̂ OΌ)* then we have x2 = g2(r).

On the other hand we have [g-2(r), g2(r)] = REQ. Setting s = x°_2 + [x°-2> tj]

+ x2, we get §Cx° and [3,3] = £. This contradiction proves the Lemma.

Q.E.D.
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Let {β<}î ί̂ n_i be the natural base of Cn~\ We set ζx = -η=(e,ι + en-i)
V 2

and η1 == —=^(e1 — en_^). Let D(r) be the (n — 2)-dimensional subspace
V Δ

of C w - 1 spanned by the (n — 2) vectors e2, •••, ew_2 and ζι(D(r)

= kn~2(r — 1, ti — r — 1) in the notation of I). Hence by definition ΰ(r)

= ^ ( ί r W ) = ^ W W ) . We set D-Hr) = {w eD(r)\<w,ξ> = 0 for any £

e jD(r)}. Then obviously we have DL{τ) = Cd.

LEMMA 2.4. ^ ( x ^ ) = ^-α(x;) c D-Hr)

Proo/. From [g.2(r),r3 c t0., and feMfJctJ, we get [g_2(r),roj

= xii and [g2θ")>£-i] = £? similarly as in Lemma 1.5. Hence we have

δ;ι(^-ι) = ^'W). Let f e D(r) and w e δΓ^tϊ). From [b\r), xj] c r§ = {0},

we get [f, w] = 0 and [V^ϊξ, w] = 0. Then from (1.2) we obtain <£, w>

— ζw9ζ)> = 0 and <V — If, w) — <w, V —1?> = 0. Hence we have (g,wy

= 0. Q.E.D.

We set r_, - ^ ( ^ ( r ) ) , x1 = ^ Φ ^ W ) , r0 - {Z € e(r) | ad (Z)(g_2(r)) = 0

and ad CXXir^r)) c r_J, and r = x _ i 0 t o θ x i . Then we have

LEMMA 2.5. t° = x

Proof. Obviously we have x° c x. It is also easy to see that x is an

ideal of g°(r). Hence we have only to show that x is solvable. For this

purpose we take a base {eif ζl9 7]i}2<i^n~2 of Cn~ι explained before Lemma 2.4,

and represent elements of x0 as matrices with respect to this base. Note that

0

(which we several times denoted by u(/r)). Hence in this proof we identify

ζ0 with u(/r). With respect to the base {βί,ζ1,^1}2<ί<n_2, Ir is represented

as a matrix of the following form:

/'* ° °\ ί F O X
0 0 1 where /* = (~JS>r-1 υ ) .

Then from (1.3), D(r) = <e2, , en.2, O c and 5~\τ_ύ = Cζlt we get
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NON-DEGENERATE REAL HYPERSURFACES 19

, a e C,w
/ °

= -ιwl*
\ 0

0
a
0

w

— a

On the other hand for f e g_x(r) we have [&, V ^ ζ J = [V^Ci, CJ = 0

(cf. (

Hence a direct calculation shows

®x = [x, x] = r_! + to + Xi and S2x = [®x, 3>x\ = xόr

where XQ = {Z e x01a = 0} and x" = {X e xo\a = w = 0}. Therefore we get

®\ = {0}. Q.E.D.

In the above proof we note that x" = n°. Hence we obtain

PROPOSITION 2.6. n° = ^2x°. /n particular n° is α characteristic ideal

of 9°(r).

We add the following which is needed in III.

LEMMA 2.7. Let X ^ 0 e n°. For Y e m(r) = g_2(r) φ g_j(r),

[Z Γ] = 0 if and only if Y e g_2(r) Θ b~\r).

Remark 2.8. As we will show in III, g°(r) is isomorphic with g*(r)

= Σp<;o9ί>(r) (r ^ 0). On the other hand we have an obvious Levi decom-

position of g*(r) as follows Let 3 be the center of ζ0 = u(/r) (as in the

proof of Lemma 2.5 we identify ζ0 with u(/r)). We set x* = e_20O θ 8-1OO

φj f j ? o θ8 Then x* is obviously a solvable ideal. Hence a decomposi-

tion

B*(r) = x* + Mir)

gives a Levi decomposition of g*(r). In this connection n° of g°(r)

corresponds to g_2(r) of g*(r).

Now we will turn to the case of g**(r,r). First recall the following;

$**(r,r) = c*(r)ΘB*(r)Θfli(r)Θfl2(r), where ^^c?^)) = Cr(r) (=fer(0,0) in

the notation of I.) and

K*(r) = {X€ go(r)|ad (X)(c*(r)) c c*(r)} (cf. Remark 4.8 [3]) .

We set no = { I e 6*(r) | ad (X)(c*(r)) = 0} and n, = {w e gx(r) | ad (w)

(c*(r)) c n0}.

https://doi.org/10.1017/S002776300001792X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001792X


20 KEIZO YAMAGUCHI

LEMMA 2.9. (i) n1 = {we gt(r) | w e (Cr(r))L}9

(ii) [n0, gx(r)] c nx.

Proof, (i) By definition w e g/r) is in nx if and only if [[w,fjf2]

= 0 for ξ19 ξ2 e Cr(r). On the other hand we have [[w, f J, | 2 ] = V — l(w9 ξ2yξι

+ V — l<w,?i>?2 (i) follows immediately from these facts.

f-ΰ 0 0\
(ii) Let X = 0 v 0 e n0. Then from (1.3) [X, f] = i;(£) + ft£ = 0

\ 0 0 u) ^ — '

for f e Cr(r). For w e gx(r) we have [X9 ϊΰ] = ^(w) — m#. On the other

hand (v(w) — uw,ξ} = — <w,v(f) + ̂ f> = 0 for feC f (r) . Hence from

(i) we get [X, w] e nle Q.E.D.

Let n** be the null ideal of g**(r,r). Then n** is a graded ideal

since g**(r, r) contains £70eδ*(r), which defines the grading of g**(r,r).

We set n = π0 Θ nL Θ g2(r). Then it is easily seen from Lemma 2.9 that

n is an ideal of g**(r, r) (Note Cr(r) c (C^r))1). Hence we obtain

LEMMA 2.10. n** = n.

Next we will study the radical x** = ΣJ«_1r** o;E fl**(Λ^) (Note
that x** is a graded ideal.)

LEMMA 2.11. r*f = 0

Proof. Assume the contrary, then we get xϊf = c*(r) since b* acts

irreducibly on c*(r). Considering the semi-simple graded Lie algebra

$**(r9r)/x**9 we obtain xf* =s gx(r) and x^* = g2(r) (cf. the proof of Lem-

ma 2.3). On the other hand for | 0 Φ 0 e c*(r), we can find w0 e g^r) such

that <f0, ̂ 0> = v^11! and <w0> wo> = 0 (Note <f0, f0> = 0). Then it is easily

seen that the subspace 3 of x** spanned by the three elements | 0 , w09

[foy Wo\ = Eo (cf. (4.2) [3]) forms a subalgebra satisfying [̂ , g] = §. This

contradicts the solvability of x**. Q.E.D.

Hence we get x** c n**. More precisely we have

PROPOSITION 2.12. If r = n ~ 1

9 then n** = x**. In particular n**

is a characteristic ideal of g**(r, r).

Proof. We have only to show n** is solvable provided r = —^—.
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However since n** = txo0n10g2W> it is sufficient to show n0 is solvable.
For this purpose we take a suitable base {/Ji^^-i of Cn~ι such that
{fi}ι<,i<.τ forms a base of Cr(r) and that /r is represented as a matrix of
the following form

r 0/\E
\LJ r

Then each X enQ is represented as follows

i-a 0 0\

Hence n0 is obviously solvable. Q.E.D.

Remark 2.13. In the case n = 5 and r = 2, we get dimx0 = 11 and
dimt** = 10 from Lemmas 2.5 and 2.10. Hence g°(2) and 8**(2,2) are
not isomorphic.

Finally we add the following which is needed in III.

LEMMA 2.14. Assume r = VLHI. Let Z e n * * such that

n**]. Then for Y e m(r) = g_2(r) 0 g-i(r), exp ad (X)(Y) = Y (mod.

= Σ^o BW) if and only if Y e c*(r).

Proof. From the proof of Proposition 2.12 it is easily seen that

[π0,82O*)] = &(r), [n0, nj = Πi and

[no,no] = \X = \0 v 0 en,
\o 0 0/

-0-4
Hence X = X0 + w + be n** is not in [n**, n**] if and only if a Φ 0,

where

' - α 0

Let Y = c + I e m(r). Then the g_2(r)-component of exp ad (-X)(Y) is equal
to exp ad (Z0)(c) = e2ac. Hence if exp ad (X)(Y) = Y (mod. Q'(r)), we
have c = 0. Moreover the m(r)-component of exp ad (Z)(§) is equal to
exp ad (Z0)(f). Hence if exp ad (Z)(f) = f (mod. g'(r)), we have exp ad (Z0)(f)
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= f, i.e. [X0,ξ] = 0. On the other hand we have [Xo, ξ] = vo(ξ) + aξ.

If we represent ξ as ξ = (y j (f < e C r ΐ = 1, 2) with respect to the base

given in the proof of Proposition 2.12, we have vQ(ξ) + aξ=( o 1). Hence

from [X0,ξ] = 0 w e get ξ2 == 0 (i.e. f e c*(r)). The converse is trivial since

[c*(r),n**] c n**. Q.E.D.

III. The proof of the main theorem

In this section we use the same notation as in V [3],

Throughout this section we assume that S is a connected non-degen-

erate (index r) hyper surf ace. Let (P, ω, ϊ) be the normal pseudo-conformal

connection over S with the projection π. Let A(S) be the group of all

the pseudo-conformal transformations of S. We set a(P) = {X e S£(P) \ LΣω

= 0, Ra*X r r l f o r α e Gr(f) and X is complete}, (cf. Proposition 5.6 [3])

Recall that a(P) is isomorphic with α(S), the Lie algebra of A(S) (cf. II

[3]).

From Proposition 1.13, Lemmas 2.3 and 5.5 [3], and Proposition 5.6

[3], we easily obtain

PROPOSITION 3.1 (cf. Theorem 5.8 [3]). Let M be a complex manifold

of dimension n. Let S be a connected non-degenerate {index r) hyper-

surface of M, and let p0 be an arbitrary point of S. Assume that

dim A(S) < n2 + 2n

(1) The case n = 3 and r = 1. dim A(S) <n2 + 2 — ±l. The equality

holds if and only if there exists z0 e π~\pQ) such that —ωZo is a Lie algebra

isomorphism of a(P) onto g*(l, 1) or g**(l, 1).

(2) The case n = 5 and r — 2. dim A(S) < n2 + 1 = 26. The equality

holds if and only if there exists z0 e π~\p^) such that —ωZQ is a Lie algebra

isomorphism of a(P) onto β*(2,2), β**(2,2), β*(2), g;(2) or g°(2).

(3) The case n > 2 and r = 0. dim A(S) < n2 + 1. Tfee equality

holds if and only if there exists zQeπ~ι{p^) such that —ω2o is a Lie

algebra isomorphism of a(P) onto g*(0) or g;(0).

(4) Otherwise, dim A(S) < n2 + 1. Tfoe equality holds if and only

if there exists zoeπ~1(pQ) such that —ωZo is a Lie algebra isomorphism

of a(P) onto g*(r), gr(r) or g°(r).

Now we will study again the model spaces given in VI [3]. Let G*(r, r)
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and G*(r) be the analytic subgroups of G(r) with the Lie algebra g*(r, r)

and g*(r) respectively. Then Qr has the orbital decomposition by these

groups as follows (cf. Remark 6.3 [3]).

Qr = Qf(r) U R\(r) by G**(r,r)

Qo = Q* u {0} by G*(0)

Qr = Q* U Λa

r(0) U {6} by G*(r) (r > 1)

Recall that R\(r) is a compact submanifold of dimension 2r and i?J(O) is

a (regular) submanifold of dimension 2n — 3 (cf. the proof (3) of Proposi-

tion 6.6 [3]). We naturally identify (G(r),ωr) with the normal pseudo-

conformal connection over Qr9 where ωr is the Maurer-Cartan form on

G(r) (cf. Proposition 6.4 [3]). Note that a(G{r)) coincides with the Lie

algebra of all the right invariant vector fields on G(r).

Then for the Lie algebras obtained in Proposition 3.1, we have

PROPOSITION 3.2. (1) The case n = 3 and r = 1. g*(l, 1) and β**(l, 1)

are conjugate under an element of G(l).

(2) The case n = 5 and r = 2. g*(2,2) and g**(2,2) are conjugate

under an element of G(2). g*(2), g7(2) and g°(2) are mutually conjugate

under elements of G(2). Moreover g*(2,2) and g*(2) are noί isomorphic.

(3) Γfee case n > 2 and r = 0. g*(0) and g7(0) are conjugate under

elements of G(0).

(4) Otherwise. g*(r), g;(r) and g°(r) are mutually conjugate under

elements of G(r).

Here we say that two subalgebras gx and g2 of g(r) are conjugate

under τ e G(r) if Ad ( τ ^ = g2-

Proo/ o/ Proposition 3.2. We consider the subalgebra a(G) of α(G(r))

induced by G ( = G*(r,r) or G*(r)), i.e. each Zeα(G) is a right invariant

vector field on Gir) induced by the 1-parameter subgroup a(t) e G such

that α(0) = Xe9 where e is the unit of G(r). Note that πr*X is an infi-

nitesimal pseudo-conformal transformation of Qr induced by the action of

a(t) on Qr, and that — ωr

e is a Lie algebra isomorphism of α(G) onto g,

the Lie algebra of G. Let σeG(r) and set Ijσ = — ωr

σ(a(G)). Then ζff is

a filtered subalgebra of g(r) = cSf̂ 2(r) (cf. Proposition 2.4 [3]). Let a(G)

be the associated graded Lie algebra of a(G), and set f)σ = p,(δ(G)) (cf.
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Lemma 2.5 [3]).

We will only prove the case (2). The others can be proved similarly.

First we consider the case G — G*(2,2). Then Q2 has the orbital decom-

position by G*(2,2)

Q2 - Q?(2) U R\(2) .

Take an arbitrary point pQeRl(2). Let σeπς\pQ) (i.e. σ(o) = p0). Since

R\{2) is a 4-dimensional orbit of G*(2,2), we have dimζff/(ήff)0 = dim((ζσ)_2

© §σ)_λ) = 4. On the other hand we have dim % = dim g*(2,2) = 26.

Hence from Proposition 1.13, %a must be isomorphic with g**(2,2). (Note

that dim (g_2(2) Θ g_1(2)) - 9, dim c*(2) = 4 and dim (g_2(2) Θ b-χ(2)) - 7).

In other words there exists σ0 e ^(Po) such that ϊ}σQ — g**(2.2). Then the

composite (—ωσo)o(—c^)"1 is a Lie algebra isomorphism of g*(2,2) onto

fl**(2,2). Let Aeα(G*(2,2)) and set X = -ωe(A) e g*(2,2), Y - -ω,0(A)

e g**(2,2). Since A is a right invariant vector field we get Y

= -ωσQ(RσQAe) = -B*ω,0(Aβ) = -Ad(σo-
ι)ωβ(Aβ) - A d f o 1 ) ® . Therefore

Next we consider the case G = G*(2). Then Q2 has the orbital de-

composition by G*(2)

Q2 = Q* U 121(0) U {6} .

Take an arbitrary point p1eR2

2(0). Since 121(0) is a 7-dimensional orbit

of G*(2). We can conclude similarly as above that there exists σx e π^Kpd

such that ϊ)σi = g°(2). Hence we have g°(2) = Ad (σΓ1)g*(2). Take the point

δ 6 Q2. Then since δ is a common fixed point of G*(2), we get similarly

Q;(2) — Ad ((7~1)g*(2) for any σeπ^Kδ). The last assertion follows imme-

diately from Remark 2.13. Q.E.D.

Now we will mention about the "canonical metric" for the normal

pseudo-conformal connection (P,α>), following I. Naruki [1], which is

necessary for the proof of Theorem 3.4. Let us fix a positive definite

inner product ( ,) on g(r). Since ω defines an absolute parallelism on

P, it defines a Riemannian metric g of P by

gp(X, Y) - (ωp(X), ωpiY)) X, Y e TP(P)

g is called the "canonical metric" for (P,α>). We denote by dP the dis-

tance function of P with respect to the canonical metric for (P, ω). Note

that each right translation Rσ(σ e G'(r)) is uniformly continuous with
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respect to dP (cf. Lemma 1.4 [1]). We consider the completion P of P

for the metric dP. We call (P,άp) the completion of (P, ω). Then P is

an open dense subset of P and the right action of G'(r) on P extends

uniquely to that of A In general P is not a manifold, nor P is a prin-

cipal G'(r)-bundle.

Next we consider a closed submanifold R of S such that dimR

< dim S — 2. Then S\R is a connected open submanifold of S. Hence

(π~\S\R), ωB) is the normal pseudo-conformal connection over S\R, where

ωR is the restriction of ω to π~KS\R) = P\π~1(i2). Note that TΓ^CR) is a

closed submanifold of P such that dim π~\R) < dim P — 2. Then the

completion of (π~1(S\R),ωR) coincides with that of (P, ω) (cf. Lemma 1.1

[1]).

Now we study the normal pseudo-conformal connection over Q* and

Q*(r). Let πr be the projection of G(r) onto Qr (i.e. r̂(<j) = σ(o) for

ffe6(r)). We set P*(r) = ^(Q?) and P*(r) - TΓ^Q W ) . Then (P*(r),

ωr|P*(r)) (resp. (P*(r),ωr|P*(r))) is the normal pseudo-conformal connection

over Q* (resp. Q*(r)). Note that dimi?2

r(0) = 2n - 3 = dim Qr - 2 and

dim /2*(r) = 2r < dim Qr — 2. Hence from the above argument we have

P%r) = G ^ O V ^ ) = G(r) and P*(r) = G(r). On the other hand the

canonical metric for (G(r), ωr) is nothing but the left invariant metric on

G(r). Hence G(r) is a homogeneous Riemannian manifold with respect

to the canonical metric. In particular G(r) is complete, i.e. ~G(r) = G(r).

Therefore we obtain

LEMMA 3.3. P*{r) = P*{r) = G(r)

Now we will prove the main theorem of this paper

THEOREM 3.4. Let M be a complex manifold of dimension n. Let S be

a connected non-degenerate (index r) hypersurface of M(θ<r< \n~~ \\

Assume that dim A(S) < n2 + 2n,

(1) The case n = 3 and r = 1. dim A(S) < n2 + 2 = 11. The equal-

ity holds if and only if S is pseudo-conformally equivalent to Qf(ϊ).

(2) The case n = 5 and r = 2. dim A(S) < n2 + 1 = 26. The equal-

ity holds if and only if S is pseudo-conf ormally equivalent to Q*(2), Qf

or Q2\{δ).

(3) The case n>2 and r = 0. dim A(S) < n2 + 1. The equality
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holds if and only if S is pseudo-conformally equivalent to the hyperconic

Qΐ.

(4) Otherwise, dim A(S) < n2 + 1. The equality holds if and only

if S is pseudo-conformally equivalent to Q* or Qr\{δ}.

Q*(r) and Q* are homogeneous hypersurfaces of Pn(C), whereas

Qr\{δ} (r > 1) is an inhomogeneous hyper surf ace of Pn(C) for which

A(Qr\{δ}) coincides with A(Q*) as a group of protective transformations

(cf. Proposition 6.5 [3]).

Proof of Theorem 3.4. We will only prove the case (4). Others can

be proved similarly. Let S be a connected non-degenerate (index r)

hypersurface such that dim A(S) = n2 + 1. Let p be an arbitrary point

of S. Then from Proposition 3.1, there exists zeπ~\p) such that -~ωz

is a Lie algebra isomorphism of a(P) onto g*(r), g'(r) or g°(r). (Note that

from Proposition 3.2 (2), in the case (2), we have two cases (a) and (b)

for a given S;

(a) -ω f(α(P)) = β*(2,2) or 8**(2,2)

(b) -ωMP)) = β*(2), 9;(2) or g°(2).

Now the proof is divided into several lemmas. Let a(S) be the Lie

algebra of infinitesimal pseudo-conformal transformations which generate

(global) 1-parameter subgroups of A(S). Then α(S) is naturally isomorphic

with the Lie algebra of A(S) and π* is an isomorphism of a(P) onto a(S).

Hence we have

LEMMA 3.5. ( i ) — ωz(a(P)) — g*(r) if and only if p belongs to an

open orbit of A°(S).

(ii) — ωz(a(P)) = g'(r) ΐ/ α^ώ onίτ/ i'/ p is a common fixed point of

A\S).

(iii) —ωz(a(P)) = g°(r) i/ αt̂ cί o îτ/ 7̂ p belongs to a (2n — 3)-dimen-

sional orbit of A°(S).

Now we claim

LEMMA 3.6. There exists an open orbit SQ of A%S). Moreover So

is pseudO'Conformaΐly equivalent to Q*.

Proof, Assume the contrary. Then the case (i) of Lemma 3.5 never

occurs. Let N be the analytic subgroup of A\S) corresponding to
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of a(S), where ^2r(S) is the second derived algebra of the radical x(S)

of a(S). Then from Proposition 2.6 and Lemma 3.5, N acts trivially on

S. Since A°(S) acts effectively on S, this contradiction shows the exist-

ence of an open orbit SQ. Let σ e A°(S). Then σ induces an automorphism

a of (P, ώ). From σ(S0) = So, we have aOc'KS^I) = T Γ " 1 ^ ) . ( T Γ " 1 ^ ) , α>|.-1(*0)))

is the normal pseudo-conformal connection over So. Hence if σ\So = idSo,

l̂«-i(5o> — ίdff-1(^o). Since a is an automorphism of the absolute parallel-

ism defined by ω, we get a = idP, i.e. σ = id^. Hence A°0S) acts effec-

tively on So. Then So is a connected non-degenerate (index r) homoge-

neous hypersurface such that dim A(SQ) = w2 + 1. Therefore from Theo-

rem 7.2 [3], So is pseudo-conformally equivalent to Q*. Q.E.D.

In the cases (1) and (a) of (2), we can prove the analogous assertion

using Proposition 2.12 in place of Proposition 2.6.

Next we will show the regularity of singular orbits. First we have

LEMMA 3.7. Let M be α manifold, and let N be a submanifold of

M. Let f be a dίffeomorphism of M onto M satisfying the following;

(1) f(x) — x for x e N

(2) For X e TX(M), xeN,

f*(X) =X if and only if Xe TX(N) .

Then N is a regular submanifold of M. Moreover for each xeN,

there exists an open neighbourhood U of M at x such that f has no

fixed point in U\N.

Proof. Take an arbitrary point x0 of N. From the implicit func-

tion theorem there exist a coordinate neighbourhood V of N at x0 with

the coordinate (y1, , yn) and a coordinate neighbourhood U of M at x0

with the coordinate (x1, , xm) such that y* = xι o t (i = 1,2, « , n) and

for x = (y\ •• , f ) e F , we have c(x) = (y1, , yn, 0, , 0), and c(x0) =

(0, , 0), where n = dimΛΓ, m = dimM and t is the inclusion of N into

M. Moreover if we take V and U sufficiently small we may assume e(V) =

{x e U\ xι(x) = 0 (ί = tι + 1, , m)}. Now we will show that if we take U

sufficiently small / has no fixed point in U\c(V). Then the assertion follows

immediately. We set /* = #*©/ (ϊ = 1,2, ,m). From (1) we have

f/Ca?, ,»», 0, . -,0) = a?«
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If we represent /* — idΓΛ(Λf) with respect to the coordinate base, we

have

dx / χ ^ v > J ^ '"• r\

0 pL-

\ TO"7 /n + l<i,j<,rn

Since <—-1 forms a base of TX(N), (2) is rewritten as follows
Vdιh

(2)' {da;* — d/'}w+1^{<m are linearly independent at xec(V).

Hence if we take U sufficiently small we may assume that {άx* —

are independent on U. We set

V = {x e U\x%x) = f\x) « = n + 1, . ,m)} and F = {x e U\f(x) = a:} .

Then T77 is an %-dimensional closed submanifold of U. Obviously we have

c(V) aNnUaFaV. On the other hand c(V) is an ^-dimensional

closed submanifold of [7. Hence the connected component Vo of c(V)

containing x0 must coincide with that of V. Therefore if we take an

open subset Uo of U such that [ / f l n F = Vo, we get N Π UQ = F Π C70 = 70,

i.e. / has no fixed point in U0\e(V). Q.E.D.

Let peS and zeπ~Kp) be as in (ii) or (iii) of Lemma 3.5. Let

A°P(S) be the isotropy subgroup of A°(S) at p. We consider the linear

isotropy representation of A°P(S) at p. Let ez be the imbedding of A°(S)

into P defined by cz(σ) = σ(^), where σ is the automorphism of (P, ω) in-

duced by σeA°(S). Then cz induces an injective homomorphism pz of

A°P(S) into G\r), i.e. φ) = z-pJίσ) for σeAJ(S). (cf. Lemma 3.1 [3]).

Note that pe*(ap(S)) = 87(r) (resp. e(r) 0 b!(r) 0 g2(r)) in case (ii) (resp. in

case (iii)) (cf. Lemma 3.1 [3] and the remark before Proposition 3.4 [3]).

Let az be a linear isomorphism of TP(S) onto m(r) = 2 ί,<0 Qp(r) defined

by the following commutative diagram.

TZ(P) - ^ > β(r)

TP(S) - % m(r)

where p is the projection corresponding to the decomposition g(r) = m(r)
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0 g'(r). Let & G'(r) —• GL(m(r)) be the linear isotropy representation of

G'(r) (cf. 1.4 [3]). Then we have

LEMMA 3.8. For σ e A°P(S), <** ° σ* = £(pa(σ)) oαβ.

Proof, This is a direct consequence of the following commutative

diagram and σ*ω — ω.

where a = pz(σ). Q.E.D.

Now we have

LEMMA 3.9. // there are common fixed points of A°(S), they form

a O-dimensίonal regular submanίfold F of S.

In other words each fixed point of A°(S), if there is, is isolated from

others.

Proof. Let p be a fixed point of A°(S), and z e π~\p) be as in (ii)

of Lemma 3.5. From Lemma 3.8 and pz(A\S)) = Go(r), the identity

component of G'(r), it is easily seen that there exists σ0 e A%S) such that

σo+(Z) = X if and only if X = 0, Z e ΓP(S) (e.g. <70 = p; 1 (exp ^ 0 )) . Then

from Lemma 3.7, p is an isolated fixed point of A\S). Q.E.D.

LEMMA 3.10. If there are (2n — 3)-dimensίonal orbits of A\S), they

form a (2n — 3)-dimensional regular submanifold T of S.

This can be proved quite similarly as above using Lemma 2.7, hence

the proof is omitted.

In the cases (1) and (a) of (2), we can prove the analogous asser-

tion using Lemma 2.14 in place of Lemma 2.7.

Now we consider the completion P of (P,ω). With the aid of P we

will imbedd S pseudo-conformally into Qr. Note that S\(T U F) is con-

nected (cf. VI Proposition D [3]). Hence So = S\(T U F).

From Lemma 3.6 there exists a pseudo-conformal homeomorphism

of SQ onto Q*. We set P o = π~\S0). Then φ induces a bundle isomor-

phism φ of P o onto P*{r) satisfying φ*ωr — ω. Hence ψ is an isometry
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of P o onto P*(r). Then ψ is extended uniquely to a distance preserving

map ψ of Po onto P*(r). On the other hand from Lemmas 3.9 and 3.10

we have PQ — P\π~\F) = P. Moreover from Lemma 3.3 we have P*(r)

= G(r). Hence φ is a distance preserving map of P onto G(r). Since

ψ is a bundle map and P is an open dense subset of P, φ commutes with

the right action of G'(r). Then P* = φ{P) is an open dense subset of

G(r) which is invariant under the right action of G\r). We set Q

= ττr(P*). Then Q is an open subset of Qr and (P*,ωr\P*) is the normal

pseudo-conformal connection over Q. Since φ is a distance preserving

map of P onto P* and P* is an open dense subset of G(r), 0 is an iso-

metry of P onto P* with respect to the canonical metrics for (P, ώ) and

(P*,ω r |P*). Moreover since Po (resp. JP*(r)) is an open dense subset of

P (resp. P*) and £>*ωr = ω on Po, we get φ*of — ω on P. Hence 0 in-

duces a pseudo-conformal homeomorphism ψ of S onto Q such that ψ\So

= <p. On the other hand via φ:S0—> Q*, each (7ΘA°(AS) gives rise to a

unique τ e G*(r) (i.e. τ = ^o^o^- 1). Recall that r is a (global) projective

transformation leaving Qr invariant. Hence we must have τ — ψoaoψ-1

on Q. Therefore Q is invariant by the action of the subgroup G*(r) of

G(r). Hence from the orbital decomposition of Qr by G*(r), we must

have Q = Q*,Qr\{δ} or Qr. However if Q = Qr, we get dimA(S) = ?ι2

+ 2n. This contradiction shows that Q = Q* or Qr\{o}. Thus we have

proved (4). Q.E.D.

Remark 3.11. In view of [2], our theorems are really the classifica-

tions of almost PC-manifolds admitting large groups of PC-automor-

phisms. In fact we don't use essentially the real analyticity in our proofs

and the integrability condition Ω_ι = 0 for the normal connection is re-

dundant (Note in the proof of Proposition 5.6 [3], the condition Ω_λ = 0

is not needed). In C^-category, one must replace "pseudo-conformally

equivalent" by "PC-equivalent" in the sense of [2], Moreover in Theo-

rem 7.4, one must assume that S is everywhere non-degenerate. How-

ever in Tanaka's "Fundamental theorem" (cf. Remark 1.2 [3]) and in

Corollary 7.5 [3], the real analyticity assumption is indispensable.
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