ON TENSOR PRODUCT GRAPHS

E. SAMPATHKUMAR

(Received 4 January 1973; revised 2 January 1974)
Communicated by G. Szekeres

Abstract

The tensor product $G \oplus H$ of graphs G and H is the graph with point set $V(G) \times V(H)$ where (u_{1}, v_{1}) adj (u_{2}, v_{2}) if, and only if, u_{1} adj u_{2} and v_{1} adj v_{2}. We obtain a characterization of graphs of the form $G \oplus H$ where G or H is K_{2}.

1. Notation and preliminary results

As usual, let K_{p} denote the complete graph on p points, C_{n} a cycle of length n. For a connected graph $G, n G$ is the graph with n components each being isomorphic to G.

Remark. The tensor product $G \oplus H$ is also called conjunction (Harary (1969)), and Kronecker product (Weichsel 1963)).

Weichsel (1963) has proved Theorem 1 and Corollary 1.1.
Theorem 1. (Weichsel). For connected graphs G and H the product $G \oplus H$ is connected if and only if either G or H contains an odd cycle.

Corollary 1.1. (Weichsel). If G and H are connected graphs with no odd cycles then $G \oplus H$ has exactly two components.

We now prove
Corollary 1.2. For a connected graph G with no odd cycles, $G \oplus K_{2}=2 G$.
Proof. Let $\left\{a_{i}\right\}$ be the point set of G and K_{2} be the line $b_{1} b_{2}$. By Corollary 1.1, $G \oplus K_{2}$ has exactly two components, say G_{1} and G_{2}. If for some point a_{i} in $G,\left(a_{i_{o}}, b_{1}\right) \in G_{1}$ then $\left(a_{i_{o}}, b_{2}\right) \in G_{2}$. For, if there is a path $\left(a_{i_{o}}, b_{1}\right)\left(a_{i_{1}}, b_{2}\right) \ldots$ $\left(a_{i_{k}}, b_{1}\right)\left(a_{i_{n}}, b_{2}\right)$ then k is even and G has the odd cycle $a_{i_{o}} a_{i_{1}} \cdots a_{i_{k}} a_{i_{o}}$, provided the points $a_{i r}, r=0,1, \cdots, k$ are all distinct. Suppose $a_{i r}=a_{i,}$ for some r and s, and $r<s$. Let s be the smallest such integer. Clearly, if r is even (odd) then s is odd (even) and G has an odd cycle $a_{i_{n}} a_{i_{r+1}} \cdots a_{i_{s-1}} a_{i_{r}}$. Now, the function $f: G \rightarrow G_{1}$ defined by

$$
\begin{aligned}
f\left(a_{i}\right) & =\left(a_{i}, b_{1}\right) \quad \text { if } \quad\left(a_{i}, b_{1}\right) \in G_{1} \\
& =\left(a_{i}, b_{2}\right) \quad \text { if }\left(a_{i}, b_{1}\right) \notin G_{1}
\end{aligned}
$$

is clearly an isomorphism. Similarly, $G \cong G_{2}$.
Theorem 2. For a graph $G, G=H \otimes K_{2}$ if and only if the following conditions I-IV are true.
I. G has an even number of points and lines.
II. G has no odd cycles.
III. If G is connected, the following should hold.
(a) G has a cycle, say
$C_{2 n}: x_{1} x_{2} \cdots x_{2 n} x_{1}$ where $n>1$ is odd.
(b) Let G_{1} be the graph obtained from G by removing all lines of $C_{2 n}$. The components of G_{1} should be of the following two types only.

Type I. Components E such that for $1 \leqq r \leqq n$ the point x_{r} of $C_{2 n}$ belongs to E if and only if the point x_{n+r} belongs to a component $E^{\prime}(\neq E)$ isomorphic to E.

Type II. Components F such that for $1 \leqq r \leqq n$ the point x_{r} of $C_{2 n}$ belongs to F if and only if $x_{n+r} \in F$. Further, F should satisfy $I, I I$ and III. That is, F should have an even number of points and lines, and should contain a cycle $C_{2 m}$ where $m>1$ is odd, etc.
IV. Suppose G is disconnected. Then the components of G which are not of the form mentioned in III should be in isomorphic pairs.

Proof. Let $G=H \otimes K_{2}, V(H)=\left\{a_{i}\right\}$ and K_{2} be the line $b_{1} b_{2}$. Clearly condition I is true. We observe that points of G are labeled alternately with the elements of the sets $V_{1}=\left\{a_{i}\right\} \times\left\{b_{1}\right\}$ and $V_{2}=\left\{a_{i}\right\} \times\left\{b_{2}\right\}$. This will not be possible if G has odd cycles, and thus II is true.

Let G be connected. Then by Theorem $1, H$ is connected and contains an odd cycle say, $C_{n}=a_{1} a_{2}, \cdots, a_{n} a_{1}$. This implies that G contains the cycle,

$$
C_{2 n}=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\left(a_{3}, b_{1}\right) \cdots\left(a_{n}, b_{1}\right)\left(a_{1}, b_{2}\right) \cdots\left(a_{n}, b_{2}\right)\left(a_{1}, b_{1}\right) .
$$

Consider the graph G_{1} obtained from G by removing all lines of $C_{2 n}$. In a relabeling of the points of $C_{2 n}$ as $x_{1} x_{2} \cdots x_{2 n} x_{1}$ we find that if $\left(a_{r}, b_{1}\right)$ is labeled as x_{r} then $\left(a_{r}, b_{2}\right)$ is labeled as x_{n+r} (we make use of this fact in our proof without any further reference). Let E be a component of G_{1} and $x_{r}=\left(a_{r}, b_{1}\right)$ be a point of $C_{2 n}$ such that $x_{r} \in E$ and $x_{n+r}=\left(a_{r}, b_{2}\right)$ belongs to a different component E^{\prime} of G_{1}. We now show that (i) a point $\left(a_{i}, b_{1}\right)$ (not necessarily on $C_{2 n}$) belongs to E if and only if (a_{i}, b_{2}) belongs to E^{\prime}, and (ii) $E \cong E^{\prime}$.

Let $\left(a_{i}, b_{1}\right) \in E$. Then in E there is a path

$$
\left(a_{i}, b_{1}\right)\left(a_{i_{1}}, b_{2}\right)\left(a_{i_{2}}, b_{1}\right) \cdots\left(a_{i_{k}}, b_{2}\right)\left(a_{r}, b_{1}\right)
$$

This implies that there is a path

$$
\left(a_{i}, b_{2}\right)\left(a_{i_{1}}, b_{1}\right)\left(a_{i_{2}}, b_{2}\right) \cdots\left(a_{i_{k}}, b_{1}\right)\left(a_{r}, b_{2}\right)
$$

and hence $\left(a_{i}, b_{2}\right) \in E^{\prime}$, since $\left(a_{r}, b_{2}\right) \in E^{\prime}$. Likewise, $\left(a_{j}, b_{1}\right) \in E^{\prime}$ implies $\left(a_{j}, b_{2}\right) \in E$. Clearly, the function $f: E \rightarrow E^{\prime}$ defined by

$$
\begin{array}{ll}
f\left(a_{i}, b_{1}\right)=\left(a_{i}, b_{2}\right) & \text { if } \quad\left(a_{i}, b_{1}\right) \in E \\
f\left(a_{i}, b_{2}\right)=\left(a_{i}, b_{1}\right) & \text { if }\left(a_{i}, b_{2}\right) \in E
\end{array}
$$

is an isomorphism.
Suppose now F is a component of G_{1} and $x_{r}=\left(a_{r}, b_{1}\right)$ is a point of $C_{2 n}$ such that both x_{r} and $x_{n+r}=\left(a_{r}, b_{2}\right)$ belong to F. We show that in general, a point $\left(a_{i}, b_{1}\right)$ (not necessarily on $C_{2 n}$) belongs to F if and only if $\left(a_{i}, b_{2}\right) \in F$. Let $\left(a_{i}, b_{1}\right) \in F$. Then there is a path

$$
\left(a_{r}, b_{1}\right)\left(a_{i_{1}}, b_{2}\right) \cdots\left(a_{i_{k}}, b_{2}\right)\left(a_{i}, b_{1}\right)
$$

This implies that there is a path

$$
\left(a_{r}, b_{2}\right)\left(a_{i_{1}}, b_{1}\right) \cdots\left(a_{i_{k}}, b_{1}\right)\left(a_{i}, b_{2}\right)
$$

and since $\left(a_{r}, b_{2}\right) \in F,\left(a_{i}, b_{2}\right) \in F$. Likewise, $\left(a_{j}, b_{2}\right) \in F$ implies $\left(a_{j}, b_{1}\right) \in F$. It follows now that $F=H_{1} \oplus K_{2}$ where H_{1} is the subgraph of H induced by the points $V\left(H_{1}\right)=\left\{a_{i}:\left(a_{i}, b_{1}\right) \in F\right\}$, and hence F should satisfy I, II and III. This proves that G_{1} can have only two types of components as mentioned in III. If G is disconnected, a component G_{i} of G which is not of the form mentioned in III corresponds to a component H_{i} of H which does not have an odd cycle and so $H_{i} \oplus K_{2}=2 H_{i}=2 G_{i}$ by Corollary 1.2. Thus G should have such components in pairs and such components are even in number.

Conversely, let the conditions I-IV hold good for a graph G having $2 m$ points. Let $A=\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$. We label the points of G with $2 m$ elements of $A \times B$ such that
(i) no two elements of $A \times\left\{b_{1}\right\}$ or $A \times\left\{b_{2}\right\}$ are adjacent, and
(ii) the function $f: G \rightarrow G$ defined by

$$
\begin{aligned}
& f\left(a_{i}, b_{1}\right)=\left(a_{i}, b_{2}\right) \\
& f\left(a_{i}, b_{2}\right)=\left(a_{i}, b_{1}\right)
\end{aligned}
$$

is an isomorphism. The given conditions I-IV ensure that this is indeed possible. Suppose now G is connected. By hypothesis it contains a cycle $C_{2 n}$ where n is odd. We label the points of this cycle successively with the $2 n$ elements

$$
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\left(a_{3}, b_{1}\right) \cdots\left(a_{n}, b_{1}\right)\left(a_{1}, b_{2}\right) \cdots\left(a_{n}, b_{2}\right)
$$

The above isomorphism takes the cycle into itself and the subgraph G_{1} described
in III into itself. In case G_{1} is disconnected the isomorphism maps a component of type I into an isomorphic component of the same type, while a component of type II is mapped onto itself. The labeling of the points of G is illustrated in Figure 1, where for convenience we write i for a_{i} and i^{\prime} for b_{i}. In this labeling we observe that $\left(a_{i}, b_{1}\right)$ is adjacent to $\left(a_{j}, b_{2}\right)$ if and only if $\left(a_{i}, b_{2}\right)$ is adjacent to $\left(a_{j}, b_{1}\right)$. Now, consider the graph H constructed on the points set A as follows. In H, a_{i} adj a_{j} if and only if $\left(a_{i}, b_{1}\right)$ adj $\left(a_{j}, b_{2}\right)$. It follows now that $G=H \oplus K_{2}$. The graph G in Figure 1 is the tensor product of H and K_{2} in Figure 3. If G is disconnected and if a component G_{i} of G is of the form mentioned in III, then $G_{i}=H_{i} \oplus K_{2}$ for some graph H_{i} as above. If a component G_{j} of G is not of this form then by hypothesis they are in isomorphic pairs and $G_{j} \oplus K_{2}=2 G_{j}$ by Corollary 1.2. This completes the proof of the Theorem.

Fig. 1

Fig. 2

K :

Fig. 3
For any two graphs G_{1} and G_{2} we have

$$
G_{1} \oplus G_{2}=G_{1} \oplus \bigcup_{i} e_{i}=\bigcup_{i} G_{1} \oplus e_{i}
$$

where $\left\{e_{i}\right\}$ is the set of lines of G_{2}. Each product graph $G_{1} \oplus e_{i}$ is isomorphic to $G_{1} \times K_{2}$. Also, the graphs $G_{1} \oplus e_{i}$ are line disjoint and the number of common
points (if any) between any two of these graphs is equal to that in G_{1}. These observations lead to

Theorem 3. A necessary condition for a graph G to be the tensor product of two graphs is that G is the line disjoint union of a number of graphs of the form $H \oplus K_{2}$ for some graph H, and the number of common points (if any) between any two of these graphs must be that in H.

For example, the graph G in Figure 4 is the line disjoint union of $K_{1.3} \otimes K_{2}$ and $K_{1.3} \oplus K_{2}$ as illustrated. The number of common points between these two graphs is that in $K_{1,3}$, namely 4 and $G=K_{1,3} \otimes P_{3}$, where P_{3} is a path of length 2 .

Thanks are due to the referee for his suggestions.

References

F. Harary, Graph Theory (Addision-Wesley Publishing Company, Reading Mass. 1969).
P. M. Weichsel (1963), 'The Kronecker product of graphs'. Proc. Amer. Math. Soc. 13, 47-52.

Department of Mathematics
Karnatak University
Dharwar - 58003
Karnatak (India)

