ON TENSOR PRODUCT GRAPHS

E. SAMPATHKUMAR

(Received 4 January 1973; revised 2 January 1974)

Communicated by G. Szekeres

Abstract

The tensor product $G \oplus H$ of graphs G and H is the graph with point set $V(G) \times V(H)$ where (u_1, v_1) adj (u_2, v_2) if, and only if, u_1 adj u_2 and v_1 adj v_2 . We obtain a characterization of graphs of the form $G \oplus H$ where G or H is K_2 .

1. Notation and preliminary results

As usual, let K_p denote the complete graph on p points, C_n a cycle of length n. For a connected graph G, nG is the graph with n components each being isomorphic to G.

REMARK. The tensor product $G \oplus H$ is also called *conjunction* (Harary (1969)), and *Kronecker product* (Weichsel 1963)).

Weichsel (1963) has proved Theorem 1 and Corollary 1.1.

THEOREM 1. (Weichsel). For connected graphs G and H the product $G \oplus H$ is connected if and only if either G or H contains an odd cycle.

COROLLARY 1.1. (Weichsel). If G and H are connected graphs with no odd cycles then $G \oplus H$ has exactly two components.

We now prove

COROLLARY 1.2. For a connected graph G with no odd cycles, $G \oplus K_2 = 2G$.

PROOF. Let $\{a_i\}$ be the point set of G and K_2 be the line b_1b_2 . By Corollary 1.1, $G \oplus K_2$ has exactly two components, say G_1 and G_2 . If for some point a_{i_o} in G, $(a_{i_o}, b_1) \in G_1$ then $(a_{i_o}, b_2) \in G_2$. For, if there is a path $(a_{i_o}, b_1)(a_{i_1}, b_2) \cdots$ $(a_{i_k}, b_1)(a_{i_o}, b_2)$ then k is even and G has the odd cycle $a_{i_o}a_{i_1} \cdots a_{i_k}a_{i_o}$, provided the points a_{i_r} , $r = 0, 1, \dots, k$ are all distinct. Suppose $a_{i_r} = a_{i_s}$ for some r and s, and r < s. Let s be the smallest such integer. Clearly, if r is even (odd) then s is odd (even) and G has an odd cycle $a_{i_r}a_{i_{r+1}} \cdots a_{i_{s-1}}a_{i_r}$. Now, the function $f: G \to G_1$ defined by

268

$$f(a_i) = (a_i, b_1) \text{ if } (a_i, b_1) \in G_1$$

= $(a_i, b_2) \text{ if } (a_i, b_1) \notin G_1$

is clearly an isomorphism. Similarly, $G \cong G_2$.

THEOREM 2. For a graph G, $G = H \otimes K_2$ if and only if the following conditions I-IV are true.

- I. G has an even number of points and lines.
- II. G has no odd cycles.
- III. If G is connected, the following should hold.
- (a) G has a cycle, say
 - C_{2n} : $x_1 x_2 \cdots x_{2n} x_1$ where n > 1 is odd.

(b) Let G_1 be the graph obtained from G by removing all lines of C_{2n} . The components of G_1 should be of the following two types only.

Type I. Components E such that for $1 \leq r \leq n$ the point x_r of C_{2n} belongs to E if and only if the point x_{n+r} belongs to a component E' ($\neq E$) isomorphic to E.

Type II. Components F such that for $1 \le r \le n$ the point x_r of C_{2n} belongs to F if and only if $x_{n+r} \in F$. Further, F should satisfy I, II and III. That is, F should have an even number of points and lines, and should contain a cycle C_{2m} where m > 1 is odd, etc.

IV. Suppose G is disconnected. Then the components of G which are not of the form mentioned in III should be in isomorphic pairs.

PROOF. Let $G = H \otimes K_2$, $V(H) = \{a_i\}$ and K_2 be the line b_1b_2 . Clearly condition I is true. We observe that points of G are labeled alternately with the elements of the sets $V_1 = \{a_i\} \times \{b_1\}$ and $V_2 = \{a_i\} \times \{b_2\}$. This will not be possible if G has odd cycles, and thus II is true.

Let G be connected. Then by Theorem 1, H is connected and contains an odd cycle say, $C_n = a_1 a_2, \dots, a_n a_1$. This implies that G contains the cycle,

$$C_{2n} = (a_1, b_1)(a_2, b_2)(a_3, b_1) \cdots (a_n, b_1)(a_1, b_2) \cdots (a_n, b_2)(a_1, b_1).$$

Consider the graph G_1 obtained from G by removing all lines of C_{2n} . In a relabeling of the points of C_{2n} as $x_1x_2 \cdots x_{2n}x_1$ we find that if (a_r, b_1) is labeled as x_r then (a_r, b_2) is labeled as x_{n+r} (we make use of this fact in our proof without any further reference). Let E be a component of G_1 and $x_r = (a_r, b_1)$ be a point of C_{2n} such that $x_r \in E$ and $x_{n+r} = (a_r, b_2)$ belongs to a different component E' of G_1 . We now show that (i) a point (a_i, b_1) (not necessarily on C_{2n}) belongs to E if and only if (a_i, b_2) belongs to E', and (ii) $E \cong E'$.

Let $(a_i, b_1) \in E$. Then in E there is a path

$$(a_{i}, b_{1})(a_{i_{1}}, b_{2})(a_{i_{2}}, b_{1}) \cdots (a_{i_{k}}, b_{2})(a_{r}, b_{1}).$$

This implies that there is a path

$$(a_i, b_2)(a_{i_1}, b_1)(a_{i_2}, b_2) \cdots (a_{i_k}, b_1)(a_r, b_2)$$

and hence $(a_i, b_2) \in E'$, since $(a_r, b_2) \in E'$. Likewise, $(a_j, b_1) \in E'$ implies $(a_j, b_2) \in E$. Clearly, the function $f: E \to E'$ defined by

$$f(a_i, b_1) = (a_i, b_2) \text{ if } (a_i, b_1) \in E$$

$$f(a_i, b_2) = (a_i, b_1) \text{ if } (a_i, b_2) \in E$$

is an isomorphism.

Suppose now F is a component of G_1 and $x_r = (a_r, b_1)$ is a point of C_{2n} such that both x_r and $x_{n+r} = (a_r, b_2)$ belong to F. We show that in general, a point (a_i, b_1) (not necessarily on C_{2n}) belongs to F if and only if $(a_i, b_2) \in F$. Let $(a_i, b_1) \in F$. Then there is a path

$$(a_r, b_1)(a_{i_1}, b_2) \cdots (a_{i_k}, b_2)(a_i, b_1).$$

This implies that there is a path

$$(a_r, b_2)(a_{i_1}, b_1) \cdots (a_{i_k}, b_1)(a_i, b_2)$$

and since $(a_r, b_2) \in F$, $(a_i, b_2) \in F$. Likewise, $(a_j, b_2) \in F$ implies $(a_j, b_1) \in F$. It follows now that $F = H_1 \oplus K_2$ where H_1 is the subgraph of H induced by the points $V(H_1) = \{a_i: (a_i, b_1) \in F\}$, and hence F should satisfy I, II and III. This proves that G_1 can have only two types of components as mentioned in III. If G is disconnected, a component G_i of G which is not of the form mentioned in III corresponds to a component H_i of H which does not have an odd cycle and so $H_i \oplus K_2 = 2H_i = 2G_i$ by Corollary 1.2. Thus G should have such components in pairs and such components are even in number.

Conversely, let the conditions I-IV hold good for a graph G having 2m points. Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2\}$. We label the points of G with 2m elements of $A \times B$ such that

- (i) no two elements of $A \times \{b_1\}$ or $A \times \{b_2\}$ are adjacent, and
- (ii) the function $f: G \to G$ defined by

$$f(a_i, b_1) = (a_i, b_2)$$
$$f(a_i, b_2) = (a_i, b_1)$$

is an isomorphism. The given conditions I-IV ensure that this is indeed possible. Suppose now G is connected. By hypothesis it contains a cycle C_{2n} where n is odd. We label the points of this cycle successively with the 2n elements

$$(a_1, b_1)(a_2, b_2)(a_3, b_1) \cdots (a_n, b_1)(a_1, b_2) \cdots (a_n, b_2).$$

The above isomorphism takes the cycle into itself and the subgraph G_1 described

Tensor product graphs

in III into itself. In case G_1 is disconnected the isomorphism maps a component of type I into an isomorphic component of the same type, while a component of type II is mapped onto itself. The labeling of the points of G is illustrated in Figure 1, where for convenience we write *i* for a_i and *i'* for b_i . In this labeling we observe that (a_i, b_1) is adjacent to (a_j, b_2) if and only if (a_i, b_2) is adjacent to (a_j, b_1) . Now, consider the graph H constructed on the points set A as follows. In H, a_i adj a_j if and only if (a_i, b_1) adj (a_j, b_2) . It follows now that $G = H \oplus K_2$. The graph G in Figure 1 is the tensor product of H and K_2 in Figure 3. If G is disconnected and if a component G_i of G is of the form mentioned in III, then $G_i = H_i \oplus K_2$ for some graph H_i as above. If a component G_j of G is not of this form then by hypothesis they are in isomorphic pairs and $G_j \oplus K_2 = 2G_j$ by Corollary 1.2. This completes the proof of the Theorem.

[5]

For any two graphs G_1 and G_2 we have

 $G_1 \oplus G_2 = G_1 \oplus \bigcup_i e_i = \bigcup_i G_1 \oplus e_i$

where $\{e_i\}$ is the set of lines of G_2 . Each product graph $G_1 \oplus e_i$ is isomorphic to $G_1 \times K_2$. Also, the graphs $G_1 \oplus e_i$ are line disjoint and the number of common

points (if any) between any two of these graphs is equal to that in G_1 . These observations lead to

THEOREM 3. A necessary condition for a graph G to be the tensor product of two graphs is that G is the line disjoint union of a number of graphs of the form $H \oplus K_2$ for some graph H, and the number of common points (if any) between any two of these graphs must be that in H.

For example, the graph G in Figure 4 is the line disjoint union of $K_{1,3} \otimes K_2$ and $K_{1,3} \oplus K_2$ as illustrated. The number of common points between these two graphs is that in $K_{1,3}$, namely 4 and $G = K_{1,3} \otimes P_3$, where P_3 is a path of length 2.

Fig. 4

Thanks are due to the referee for his suggestions.

References

F. Harary, Graph Theory (Addision-Wesley Publishing Company, Reading Mass. 1969). P. M. Weichsel (1963), 'The Kronecker product of graphs'. Proc. Amer. Math. Soc. 13, 47-52.

Department of Mathematics Karnatak University Dharwar - 58003 Karnatak (India)