
F. Dillen and L. Vrancken
Nagoya Math. J.
Vol. 124 (1991), 41-53

3-DIMENSIONAL AFFINE HYPERSURFACES IN R4

WITH PARALLEL CUBIC FORM

FRANKI DILLEN1 AND LUC VRANCKEN2

§ 1. Introduction

In this paper, we study 3-dimensional locally strongly convex affine
hypersurfaces in R4. Since the publication of Blaschke's book [B] in the
early twenties, it is well-known that on a nondegenerate affine hyper-
surface M there exists a canonical transversal vector field called the affine
normal. The second fundamental form associated to the affine normal is
called the affine metric. In the special case that M is locally strongly
convex, this affine metric is a Riemannian metric. Also, using the affine
normal, by the Gauss formula one can introduce an affine connection on
M, called the induced connection V. So on M, we can consider two
connections, namely the induced affine connection V and the Levi Civita
connection F of the affine metric h.

The cubic form C is defined by C = Vh. The classical Berwald
theorem states that the cubic form vanishes identically if and only if M
is an open part of a nondegenerate quadric. Here, we will consider
the condition that the cubic form is parallel with respect to Levi Civita
connection of the affine metric, i.e. PC = 0. For surfaces, this condition
has been studied by M. Magid and K. Nomizu in [MN]. There, they
proved the following theorem.

THEOREM [MN]. Let M be a Blaschke surface in R3 with PC = 0.
Then either M is an open part of a nondegenerate quadric (i.e. C = 0) or
M is affine equivalent to an open part of one of the following surfaces:

( i ) xyz = 1,
(ii) x ( / + z2) = l,
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(iii) z = xy -\ / , (the Cayley surface).
ό

A generalization of this theorem to higher order derivatives of the

cubic form is given in [V2]. In this paper, we will extend this theorem

to 3-dimensional affine locally strongly convex hypersurfaces. The Main

Theorem that we prove is the following.

MAIN THEOREM. Let M be a ^-dimensional affine locally strongly convex

hypersurface in R4 with FC = 0. Then either M is an open part of a

locally strongly convex quadric (i.e. C = 0) or M is affine equivalent to an

open part of one of the following two hypersurfaces:

(i) xyzw = 1,

(ii) (/ - z1 - wjx2 == 1.

The condition that C is parallel with respect to the induced affine

connection V is treated in [NP2], for surfaces, and in [VI] for 3-dimensional

affine hypersurfaces. A partial classification of higher order parallel

surfaces, i.e. surfaces which satisfy VnC = 0, for some integer number n,

can be found in [DV].

Finally, the authors would like to thank Professor K. Nomizu, for

many valuable lectures and discussions on affine differential geometry.

Nomizu's lecture notes [N] are a modern approach to affine differential

geometry. We mostly follow his notations. We also thank the referee

for his valuable comments.

§ 2. Preliminaries

Let / : M3 —> R4 be an immersion of a connected differentiate 3-

dimensional manifold into the affine space R4 equipped with its usual flat

connection D and a parallel volume element ω and let ξ be an arbitrary

local transversal vector field to /(M3). For any vector fields X, Y, Xί9 X2,

XZ9 we write

(2.1) DXUY) = U(FXY) + h(X, Y)ξ ,

(2.2) Θ(X1, X2, Xt) = ω{UXu UX2, /*X3, ί ) ,

thus defining an affine connection F, a symmetric (0, 2)-type tensor h,

called the second fundamental form, and a volume element θ. We say

that / is nondegenerate if h is nondegenerate (and this condition is

independent of the choice of transversal vector field ξ). In this case, it

is known (see [N], [NP1]) that there is a unique choice (up to sign) of
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transversal vector field such that the induced connection F, the induced

second fundamental form h and the induced volume element θ satisfy the

following conditions:

( i ) Fθ = 0 ,

(ii) θ = ωh,

where ωh is the metric volume element induced by h. We call F the

induced affine connection, ξ the affine normal and h the affine metric.

By combining (i) and (ii), we obtain the apolarity condition which states

that Fωh = 0. A nondegenerate immersion equipped with this special

transversal vector field is called a Blaschke immersion. Throughout this

paper, we will always assume that / is a Blaschke immersion. If h is

positive (or negative) definite, the immersion is called locally strongly

convex. Notice that if h is negative definite, we can always replace ξ

by — ξ> thus making the new affine metric positive definite. Therefore,

if we say that M is locally strongly convex, we will always assume that

ξ is chosen so that h is positive definite.

Condition (i) implies that Dxξ is tangent to f(Mz) for any tangent

vector X to M. Hence, we can define a (1, l)-tensor field S, called the

affine shape operator by

(2.3) Dxξ = - U(SX).

M is called an affine sphere if S = λl. We define the affine mean curva-

ture H by H = 1/n trace(S). The following fundamental equations of Gauss,

Codazzi and Ricci are given by

(2.4) R(X, Y)Z = h(Y, Z)SX - h(X, Z)SY (Equation of Gauss)

(2.5) (ΓΛ)(Z, y, Z) = (Fh)(Y, X, Z) (Equation of Codazzi for h)

(2.6) {VXS)Y = (FVS)X (Equation of Codazzi for S)

(2.7) h(X, SY) = h(SX, Y) (Equation of Ricci).

If dim(M) > 2 and M is an affine sphere, it follows from (2.6) that λ is

constant. If λ Φ 0, we say that M is a proper affine sphere and if λ = 0,

we call M an improper affine sphere. From (2.5) it follows that the cubic

form C(Z, 7, Z) = (Fh)(X, Y, Z) is symmetric in X, Y, Z. The Theorem of

Berwald states that C vanishes identically if and only if M is an open

part of a nondegenerate quadric.

Let F denote the Levi Civita connection of the affine metric h. The

difference tensor K is defined by
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for vector fields X and Y on M. Notice that K is symmetric in X and

Y. We also write KXY = K(X, Y). From [N], we have that

(2.8) h(Kx Y,Z)=-\ C(X, Y, Z)
A

(2.9) R(X, Y)Z = —{h{Y, Z)SX - h(X, Z)SY + h(SY, Z)X - h(SX, Z) Y)

~[KX,KY]Z

where R denotes the curvature tensor of F. Notice also that the apolarity

condition together with (2.8) implies that trace Kx — 0 for every tangent

vector X In the special case that M is an affine sphere, i.e. S = λl,

equation (2.9) becomes

(2.10) R(X, Y)Z = λ(h(Y, Z)X - h(X, Z)Y) - [Kx, KY]Z.

Further, if M is an affine sphere, we have from [N] that

(2.11) (PYK)(X,Z) = (ΓXK)(Y,Z),

where (FYK)(X, Z) = FY(K(X, Z)) - K(FYX, Z) - K(X, VYZ). Finally, we

need the following results from [BNS], [Y].

THEOREM 2.1 [BNS]. Let M be an n-dίmensional Blaschke hypersurface

in R n M . // FC = 0, then M is an affine sphere.

THEOREM 2.2 [Y]. Let M3 be a locally strongly convex affine hypersphere

in R4 such that the affine metric h has constant sectional curvature. Then

M is an open part of a quadric or M is affine equivalent to an open part

of ^^2X3X4 = 1

A generalization of this last theorem to arbitrary dimensions is given

in [VLS].

§ 3. Proof of the theorem

Throughout this section, we will always assume that M is a 3-dimen-

sional, locally strongly convex affine hypersurface in R4 which has parallel

cubic form, i.e. which satisfies FC — 0. Notice that (2.8) implies that this

is equivalent with FK = 0. From Theorem 2.1, we deduce that M is an

affine sphere. First, we remark that if the cubic form C vanishes identi-

cally, then from the Berwald theorem it follows that M is an open part
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of a nondegenerate locally strongly convex quadric. Hence from now on,

we will assume that C does not vanish identically. Since C is parallel

with respect to F, it follows that C vanishes nowhere.

We now choose an orthonormal basis with respect to the affine metric

h at the point p in the following way. Let UMP = {ue TMp\h(u, ύ) = 1}.

Since M is locally strongly convex, UMP is compact. We define a function

/ on UMP by

f(u) = h(Kuu, u),

for u 6 UMP. Notice that because of (2.8), the function / does not vanish

identically. Let ex be an element of UMP at which the function / attains

an absolute maximum. Thus f{ex) > 0. Let v e UMP such that (v, et> = 0.

Then, we define a real function g by g(t) = f(cos(t)eι + sin(t)v). Since g

attains an absolute maximum at t = 0, we have that g'(0) = 0 and g"(0) < 0.

Using (2.8) these equations give

(3.1) h(K€leuv) = 0,

(3.2) h(Keiel9 et) - 2h(Keiv, v) > 0 ,

for all v satisfying (v, e^) — 0. Hence ex is an eigenvector of Kev say with
eigenvalue λx. Then, we choose β2, β3 as the other eigenvectors of Kei with

eigenvalues respectively λ2 and λ3. Using this, (2.8) and the apolarity we

obtain the following formulas for the difference tensor.

Keie2 = λ2e2,

^ β Λ = Agβi - αe2 - be3,

where α, 6 e R and, because of apolarity, ^ + ^2 + 3̂ = 0. Further, since

fie,) > 0, we have λx > 0 and from (3.2) it follows that λγ > 2λu where

/ = 2, 3. Furthermore, by changing the sign of e2 or e3, if necessary, we

may assume that a, b > 0. The next two lemmas will improve further

our choice of orthonormal basis.

LEMMA 3.1. If λ2 = λ3, then we can choose e2 and β3 in such a way

that 6 = 0.
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Proof. If λ2 = Λ> then every u e UMP which is orthogonal to ex is an

eigenvector of Kei with eigenvalue λ2 = λ3. Hence, the choice of e2 and e3,

which we made earlier was not unique. So we can still choose e2 as a

vector in which the function / restricted to B = {ue VMv\h{u,e^) = 0}

attains its maximal value. Finally, we pick e3 such that {eΛ, e2, e3} is an

/ι-orthonormal basis. Since, /, restricted to B, attains a maximal value

in e2 we have h(Ke2e2, β3) = 0. Hence 6 = 0. •

LEMMA 3.2. For i = 1,2, we have λλ > 2λt.

Proof. Let us assume that λx < 2λ2. We will derive a contradiction.

Since then λx = 2λ2, we have Λ3 = — f̂ . Now, we put u = (l/\/Γ2)(—eι — e3).

Then

f(u) = 2 7 T ( ~ / ( β l ) "" 3h(K*&> ^ - M(Kβίe>9 β3) - f(ed

Hence we obtain that f(u) > λx. This contradicts the fact the function /
attains an absolute maximum in eγ.

LEMMA 3.3. Let M3 be a locally strongly convex affine hypersurface in

RA for which VC = 0 but C Φ 0. Then M is a hyperbolic affine sphere,

i.e. S = λl with λ < 0. Furthermore, let {eu β2, β3} be an orthonormal basis

as defined above. Then either one of the following holds:

( i ) K(eu e2) = λ,e, K(ei9 e2) = - ~-λ,e2
Δ

K(eϊ, e2) =-λχ1(e1- <f2et) K(elt e,) = - 1 i,e,
^ 2

K(e3, β,) = - i - ^ e , + /2"e2) X(e2, e3) = -

(ii) ULOJ, e j = λ,e, K(eu e2) = - —

K(e2, e2) = - —λxeλ K(eu e3) = - —

, e8) = 0 ,
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Proof. Since VK = 0, we get Λ if = 0; we obtain for vector fields

X, Y, Z, W that

(3.3) 0 = R(X, Y)K(Z, W) - K(R(X, Y)Z, W) - K(Z, R(X, Y)W).

Applying this formula for X = Z — W = eu Y — eu ί — 2, 3, then gives

(3.4) 0 = R(eu ejλ^ - 2K(R(eu et)el9 et).

By using (2.10), we see that

R(eu et)ex = - λet - [Kei, K^e,

= — λβt — λ\et + λ,λieί

= (-λ - X* + Mdβi.

By substituting this into (3.4) we see that

(X1 - 2 λ 1 ) ( - λ - i ϊ + ί1λi) = 0.

By applying Lemma 3.2 this gives

(3.5) -χ-χ\ + χλχ. = o .

By subtracting the equations obtained for ί = 2, 3, we see that

α - J,)α - λ2 - Xz) = 0.

Since it follows from Lemma 3.2 that Xt — λ2 — λ3 Φ 0, we obtain that

λ2 = λ3. Hence by Lemma 3.1, we may assume that 6 = 0. Since by

apolarity also λγ = — λ2 — λiy (3.5) becomes

(3.6) - λ -—X\ = 0.
4

Since λx Φ 0, we deduce that λ < 0. Hence M is a hyperbolic affine

hypersphere. Moreover it then follows from (3.6) that Xx = 2\/ — X/3.

Using the previous results, we find that

Λ(β2, e3)βi = - [KβΛ, Ke3]eί

= - X*K(e2, ez) + λ2K(ez, e2) = 0

R(eι, e3)e2 = — λe3 — Ke%Ke^e2 + KezKe<ιe2

= ( - X - 2α2 + Λ^3)β3

So if we then substitute X = Z = W = β2 and Y = β3 in (3.3), we get
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0 = R(e2, e,)(λ2eχ + ae2) - 2 ( - λ - 2α2 + ^ I f f e , e8)

= 3 α ( - ^ - 2α2 + ,U3)e3

= 3a(- λ - 2α2 + — λ\\e,

= 3 α ( - 2α2 - — λ)ez.

Hence α = 0 or α = V — 2Λ/3. Π

LEMMA 3.4. 1/ Lemma 3.3 (i) ZioZds αί α point p then all sectional

curvatures (w.r.t. R and h) are zero. Moreover h(K, K) = 6λ2. If Lemma

3.3 (ii) holds at a point p then h(K, K) = (10/3)λ\

Proof. From (2.10) and Lemma 3.1, we obtain that

R(eu e2)e2 = R(el9 e,)ez = R(e2, e,)e, = 0 ,

= R(e2, e,)eί = Λfe, β^^ = 0 .

Linearization then implies that R = 0. The remaining claim follows

straightforwardly from Lemma 3.3. •

Since h(K, K) is different for the cases (i) and (ii), it follows that

Lemma 3.3 (i) holds at every point p of M or Lemma 3.3 (ii) holds at

every point p of M. Notice that if Lemma 3.3 (i) holds at every point p

of M, then from Lemma 3.4 it follows that M has constant zero sectional

curvature. Applying Theorem 2.2 then shows that M is affine equivalent

to an open part of xyzw = 1. So from now on, we will assume that

Lemma 3.3 (ii) holds at every point p of M. The following lemma then

shows that we can extend the basis we found differentiably to a neighbour-

hood.

LEMMA 3.5. Let M be an affine 3-dίmensίonal locally strongly convex

affine hypersurface in R 4 with FC = 0. Assume that Lemma 3.3 (ii) holds

at every point of M. Then around any point, there exists a local basis

{Ex, E2, 2?3}, orthonormal with respect to h, such that

K(EU

K(Eϊ,

K(E%,

E,) =

E3) =
~ ~2 ' '

K(EU

, K(EU

, K(E2i

Eύ =

E,) =

£ 3) =

~ ~2

" "2
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where λλ = 2V - λ/3.

Proof. Let p e M. We take the orthonormal basis {eu e2, β3} given by

Lemma 3.3 (ii). We extend this basis, by parallel translation along geo-

desies (with respect to F) through p to a normal neighbourhood around p.

By the properties of parallel translation this gives an Λ-orthonormal basis

denned on a neighbourhood of p. Since VK — 0, it also follows that K

has the desired form at every point of a normal neighbourhood. •

LEMMA 3.6. Let M be as in Lemma 3.5, let p e M and let {Eu E2, £J3}

be the local orthonormal basis given by Lemma 3.5. Then for any vector

field X on M we have that

VXE, = 0.

Moreover (M, h), considered as a Riemannian manifold, is locally isometric

to R x H, where H is the hyperbolic plane of constant negative curvature

$λ. Also, after identification, the local vector field Eλ is tangent to R.

Proof. Let p e M. We take the Λ-orthonormal basis given by Lemma

3.5. Since VK = 0, we have that

0 = (ϊEtK)(EuE1)

= λ1VEίEί -2K(VEίEuE1),

for £ = 1, 2, 3. Since VE.EX is Λ-orthogonal to El9 this last equation implies

that

In order to show that M is locally isometric to R X H, we define

two local distributions To and T{ by

T0:qι •ToU

Tx:qs > ΓiU = {υeTMq\h(υ, EM) = 0}.

Since PXEX = 0, we have FToT0 c TQ and PTlT0 c To. Since To and 7Ί are

Λ-orthogonal this then implies that also VXTX C Tx for any vector field X

Therefore, it follows from the de Rham decomposition theorem ([KN])

that (M, h) is locally isometric to R X H, where H is a surface. Moreover

since E1 e TQ, after identification E1 is tangent to the R-component.

Finally, we notice from (2.10) and Lemma 3.5 that
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R(E2, E3)Es = — λE2.

Hence H has constant negative curvature f λ and therefore, H is locally

isometric to the hyperbolic plane. •

Finally, we have the following lemma.

LEMMA 3.7. Let M be as in Lemma 3.5. Then, M is affine equivalent

to an open part of the affine hypersurface described by

Proof. By Lemma 3.3, we know that λ < 0. Hence, by applying a

suitable homothetic transformation, we may assume that λ = — 1. Let

p e M and let {Eί9 E2, E3} be the basis given by Lemma 3.5. First, we

notice that if we put U2 — cos ΘE2 + sin ΘEZ and U3 = — sin ΘE2 + cos ΘE3,

then the new /i-orthonormal basis {El9 U2, U3} also satisfies Lemma 3.5.

Further, we will denote the immersion of M into R4 by x. Then,

after applying a translation, we may assume that ξ = x. Next, by Lemma

3.6, we know that M is /ι-isometric to R X H, where H is the hyperbolic

plane with constant negative curvature — f, and Ex is tangent to the

R-component. So, using the standard parametrization of the hypersphere

model of H, we see that there exist local coordinates {u, υ, w) on M, such

that Ei = xw, and such that xu and (llsinh(2l\ΓSu))xvy together with xw

form an Λ-orthonormal basis. So by the remark made in the beginning

of the proof, we may assume that E2 = xu and sinh(2/\ΓWu)E3 — xυ. A

straightforward computation then also shows that

V

So, using the definition of K, we get the following system of differential

equations, where in order to simplify the equations, we have put c — V~3.

c

(3.8) * » « , = - - * « ,
c
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(3.9) xυω= ~ l * e ,
c

(Q |Γ)\ γ l γ I Λl.

c

(3.11) xuυ = Acothf— u
c \ c

1 / / 9 W 2 / 2 \ / 2 \
Λ; == — _L( sinhί — u)) xw — — sinhί — u cosh — w )xuc \ \c // c \c / \c /

(3.12)
+ (sinhί — u)) x .

\ \ c / /

First, we see from (3.7) that there exist vector valued functions Px(u, v)

and P2(u, v) such that

x = P2(u, f)exp( — —w) .
\ c /

From (3.8) and (3.9) it then follows that the vector valued function Pι is

independent of u and v. Hence there exists a constant vector A{ such

that Pi(w, v) = A{. Next it follows from (3.10) that P2 satisfies the following

differential equation:

(P.) ~ -P,

Hcilice we can WΠUΪ

R(iL υ) =

From (3.11), we then deduce that there exists a constant vector A2 such

that Qίiv) = A2. Finally, from (3.12), we get the following differential

equation for Q2:

This last formula implies that there exist constant vectors A^ and

such that

/ 2 \ / 2
Qoίι>) = .43 cos — ϋ) + A4 sin —

\ c / V c

Since M is nondegenerate, M .lies linearly full in R\ Hence Au A2J A3, AA
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are linearly independent vectors. Thus there exist an affine transformation

such that

x = (exp(cw ), coshί — wjexpί w j ,

cosί—i Jsinhί — uJexpί wY sinί — iΛsinhί — ujexpί wj).

So clearly the image of M lies, upto an affine transformation, locally on

(y2 — z2 — w2)3x2 = 1. The analyticity of this last hypersurface then com-

pletes the proof. •

So, by combining this lemma with the previous results we see that a

3-dimensional locally strongly convex hypersurface M in R4 with FC = 0

is either a quadric or else satisfies Lemma 3.3 (i) at every point p or

satisfies Lemma 3.3 (ii) at every point p. In the second case, we see

from Lemma 3.4 that M has constant sectional curvature. So by applying

Theorem 2.2, we see that M is affine equivalent to the affine hypersurface

given by xyzw = 1. Finally, in the last case, Lemma 3.7 completes the

proof.

REFERENCES

[B] W. Blaschke, Vorlesungen ϋber Differentialgeometrie II, Affine Differential-
geometrie, Springer, Berlin, 1923.

[BNS] N. Bokan, K. Nomizu and U. Simon, Affine hypersurfaces with parallel cubic
forms, Tόhoku Math. J., 42 (1990), 101-108.

[DV] F. Dillen and L. Vrancken, Generalized Cayley surfaces, Proceedings of the
Conference on Global Analysis and Global Differential Geometry, Berlin 1990,
Lecture Notes in Mathematics, Springer Verlag, Berlin.

[KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume 1,
Interscience Publishers, New York.

[MN] M. Magid and K. Nomizu, On affine surfaces whose cubic forms are parallel
relative to the affine metric, Proc. Nat. Acad. Sci. Ser. A, 65 (1989), 215-218.

[N] K. Nomizu, Introduction to affine differential geometry, part I, MPI/88-37,
Bonn (1988).

[NP1] K. Nomizu and U. Pinkall, On the geometry of affine immersions, Math. Z., 195
(1987), 165-178.

[NP2] , Cayley surfaces in affine differential geometry, Tόhoku Math. J., 41 (1989),
589-596.

[VI] L. Vrancken, Affine higher order parallel hypersurfaces, Ann. Fac. Sci. Tou-
louse, 9 (1988), 341-353.

[V2] , Affine surfaces with higher order parallel cubic form, Tδhoku Math. J.,
43 (1991),127-139.

[VLS] L. Vrancken, A. M. Li and U. Simon, Affine spheres with constant affine sec-

https://doi.org/10.1017/S0027763000003767 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003767


AFFINE HYPERSURFACES IN R4 53

tional curvature, Math. Z., 206 (1991), 651-658.
[Y] J. H. Yu, Affine hyperspheres with constant sectional curvature in A4, pre-

print, Sichuan University.

Departement Wiskunde
Katholieke Universiteit Leuven
Celestijnenlaan 200 B
B-3001 Leuven
Belgium

https://doi.org/10.1017/S0027763000003767 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003767



