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Introduction and Overview

Software is critical to many aspects of our lives. It comes in many forms. The
applications we install and run on our computers and smart phones are easily
recognized as software. Other software, such as that controlling the amount of
fuel injected into a car’s engine, is not so obvious to its users. Much of the
software we use lacks adequate quality. A report by the National Institute of
Standards and Technology (NIST, 2002) indicated that poor quality software
costs the United States economy more than $60 billion per year. There is no
evidence to support any improvement in software quality in the decade since
that report was written.

Most of us expect our software to fail. We are never surprised and rarely
complain when our e-mail program locks up or the font changes we made to
our word processing document are lost. The typical “solution” to a software
problem of turning the device off and then on again is so encultured that it is
often applied to problems outside of the realm of computers and software. Even
our humor reflects this view of quality. A classic joke is the software executive’s
statement to the auto industry, “If GM had kept up with the computing industry
we would all be driving $25 cars that got 1,000 miles per gallon,” followed
by the car maker’s list of additional features that would come with such a
vehicle:

1. For no apparent reason, your car would crash twice a day.
2. Occasionally, your engine would quit on the highway. You would have to

coast over to the side of the road, close all of the windows, turn off the
ignition, restart the car, and then reopen the windows before you could
continue.

3. Occasionally, executing a maneuver, such as slowing down after comple-
tion of a right turn of exactly 97 degrees, would cause your engine to shut
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2 1 Introduction and Overview

down and refuse to restart, in which case you would have to reinstall the
engine.

4. Occasionally, your car would lock you out and refuse to let you in until
you simultaneously lift the door handle, turn the key, and kick the door
(an operation requiring the use of three of your four limbs).

Why do we not care about quality? The simple answer is that defective
software works “well enough.” We are willing to spend a few hours finding
a work-around to a defect in our software to use those features that do work
correctly. Should the doctor using robotic surgery tools, the pilot flying a fly-
by-wire aircraft, or the operators of a nuclear power plant be satisfied with “well
enough”? In these domains, software quality does matter. These are examples
of high-integrity applications – those in which failure has a high impact on
humans, organizations, or the environment. However, we would argue that
software quality matters in every domain. Everyone wants their software to
work. Perhaps the biggest need for quality today is in the software security
arena. In his newsletter article, Security Changes Everything, Watts Humphrey
(2006b) wrote: “It is now common for software defects to disrupt transportation,
cause utility failures, enable identity theft, and even result in physical injury or
death. The ways that hackers, criminals, and terrorists can exploit the defects
in our software are growing faster than the current patch-and-fix strategy can
handle.”

1.1 Obtaining Software Quality

The classic definition of the quality of a product focuses on the consumer’s
needs, expectations, and preferences. Customer satisfaction depends on a num-
ber of characteristics, some of which contribute very little to the functionality
of the product.

Manufacturers have a different view of product quality. They are concerned
with the design, engineering, and manufacturing of products. Quality is assessed
by conformance to specifications and standards and is improved by removing
defects. In this book, we concentrate on this defect aspect of quality.

This is because the cost and time spent in removing software defects currently con-
sumes such a large proportion of our efforts that it overwhelms everything else, often
even reducing our ability to meet functional needs. To make meaningful improve-
ments in security, usability, maintainability, productivity, predictability, quality, and
almost any other “-ility,” we must reduce the defect problem to manageable pro-
portions. Only then can we devote sufficient resources to other aspects of quality.
(Humphrey, 2006a)
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1.1 Obtaining Software Quality 3

Table 1.1. The software CMM (Paulk, 2009)

Level Focus Characteristics

1, Initial None Ad hoc or chaotic.

2, Repeatable Project Management The necessary process discipline is in place
to repeat earlier successes on projects with
similar applications.

3, Defined Software Engineering The software process for both management
and engineering activities is documented,
standardized, and integrated into a set of
standard software processes for the
organization.

4, Managed Quality Processes Detailed measures of the software process
and product quality are collected. Both the
software process and products are
quantitatively understood and controlled.

5, Optimizing Continuous Improvement Continuous process improvement is
enabled by feedback from the process
and from piloting innovative ideas and
technologies.

1.1.1 Defect Rates

In traditional manufacturing, quality is assured by controlling the manufactur-
ing process. Statistical tools are used to analyze the production process and
predict and correct deviations that may result in unacceptable products. Statis-
tical process control was pioneered by Walter A. Shewhart in 1924 to reduce
the frequency of failures of telephone transmission equipment manufactured
by the Western Electric Company. After World War II, W. Edwards Deming
introduced statistical process control methods to Japanese industry. The result-
ing quality of Japanese-manufactured products remains a benchmark for the
rest of the world.

In 1987, the Software Engineering Institute (SEI), led by the work of Watts
Humphrey, brought forth the notion that statistical process control could be
applied to the software engineering process. SEI defined the Capability Maturity
Model for Software (Software CMM) in 1991.1 The Software CMM defines
the five levels of process maturity described in Table 1.1. Each level provides
a set of process improvement priorities.

There is a good deal of evidence to support the assertion that using better
processes as defined by the Software CMM leads to programs with fewer
defects. Figure 1.1 shows the typical rate of defects delivered in projects as
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Table 1.2. Origin of defects

Design and Requirements and
Study coding specification Other

Beizer (1990) 89% 9% 2%
NIST (2002) 58% 30% 12%
Jones (2012, 2013) 60% 20% 20%

a function of the Software CMM level. The average rate of 1.05 defects per
thousand lines of code (KLOC) obtained by engineers working at CMM level 5
appears to be a low number. However, this rate must be considered in the context
of the large size of most sophisticated projects. It suggests that the typical
million lines of code in an aircraft’s flight management system is delivered
with more than 1,000 defects. A NASA report on Toyota Camry’s unintended
acceleration describes the examination of 280,000 lines of code in the car’s
engine control module (NASA, 2011). Assuming this code was developed
under the highest CMM level, the data in Figure 1.1 suggests that this code
might contain nearly 300 defects. These numbers are too large for high integrity
software.

To prevent or detect and remove defects before a software application is
released, it is useful to understand where defects originate. Table 1.2 shows
the estimates from three studies on the origins of defects in software. This data
indicates that the majority of defects are created during the design and coding
phases of development.

Verification and validation are names given to processes and techniques
commonly used to assure software quality. Software verification is the process
of showing that the software meets its written specification. This definition is
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Figure 1.1. Delivered defects by CMM level (data from Jones [2000] and
Davis and Mullaney [2003]).
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1.1 Obtaining Software Quality 5

commonly illustrated by the question, “Are we building the product right?”
Verification is a means of demonstrating correctness. We use verification to
locate and remove the defects from our design and implementation, the com-
piler, operating systems, and hardware on which we execute our application –
defects that constitute the majority of those classified in Table 1.2.

Software validation is the process of evaluating an application to ensure
that it actually meets the users’ needs – that the specification was correct.
This definition is commonly illustrated by the question, “Are we building the
right product?” Validation is important in showing that we remove the defects
originating in our specification (the third column of Table 1.2).

1.1.2 Software Testing

The verification strategies used to achieve the defect rates shown in Figure 1.1
are typically based on software testing. An in-depth coverage of software testing
is beyond the scope of this book. For additional information, see Ammann
and Offutt (2008), Black (2007), Jorgensen (2008), Kaner, Falk, and Nguyen
(1999), or the classic testing book by Beizer (1990). There are two fundamental
approaches to testing: black-box testing and white-box testing.

Black-box testing is based solely on the behavior of the program without any
knowledge of coding details. It is also called behavioral testing or functional
testing. Test cases are created from requirements given in the specification for
the application. Black-box testing is usually performed on complete systems or
large subsystems. It is often performed by people who did not write the software
under test. These testers frequently have more knowledge of the application
domain than of software engineering. There are many black-box testing tactics,
including Black (2007):

� Equivalence classes and boundary value testing
� Use case, live data, and decision table testing
� State transition table testing
� Domain testing
� Orthogonal array and all pairs testing
� Reactive and exploratory testing

As black-box tests are derived entirely from the specification, they provide
a means of verifying that our design, implementation, compiler, operating
system, and hardware work together to successfully realize the specification.
Black-box testing does not directly provide validation that our specification is
correct. However, the testers’ domain expertise is a valuable resource in finding
errors in the specification during testing.
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6 1 Introduction and Overview

White-box testing is based on the actual instructions within the application. It
is also called glass-box testing or structural testing. White-box tests are created
from the possible sequences of execution of statements in the application.
White-box testing is usually performed by programmers and may be applied
to small units (unit testing) as well as to a combination of units (integration
testing). The two basic tactics of white-box testing are control-flow testing and
data-flow testing.

Control-flow tests are usually designed to achieve a particular level of cov-
erage of the code. Commonly used code coverage tactics include:

� statement coverage;
� condition coverage;
� multicondition coverage;
� multicondition decision coverage;
� modified condition/decision coverage (MC/DC); and
� path coverage.

Data-flow tests add another dimension to control-flow testing. In addition
to testing how control flows through the program, data-flow testing checks the
order in which variables are set and used.

1.1.3 Improving Defect Rates

There are at least three reasons why testing alone cannot meet current and future
quality needs. First, complete testing is almost always impossible. Suppose we
would like to use black-box testing to verify that a function correctly adds two
32-bit integers. Exhaustive testing of this function requires 264 combinations
of two integers – far too many to actually test. With white-box testing, we
would like to test every possible path through the program. As the number of
possible paths through a program increases exponentially with the number of
branch instructions, complete path coverage testing of a small program requires
a huge effort and is impossible for most realistic-size programs. Good testing
is a matter of selecting a subset of possible data for black-box tests and the
determination of the most likely execution paths for white-box testing. That
brings us to the second reason that testing alone cannot achieve the quality we
need. Users always find innovative, unintended ways to use applications. We
probably did not test the data entered or the paths executed by those “creative”
uses of our application. Third, we now face a new category of user: one who is
hostile. Our applications are under attack by criminals, hackers, and terrorists.
These people actively search for untested data and untested execution paths to
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1.1 Obtaining Software Quality 7

exploit. As a result, we find ourselves updating our applications each time a
security vulnerability is discovered and patched.

Watts Humphrey (2004) has suggested four alternative strategies for achiev-
ing defect rates below those obtained at Software CMM level 5.

Clean Room: This process was developed by Harlan Mills, Michael Dyer,
and Richard Linger (1987) at IBM in the mid-1980s with a focus on defect
prevention rather than defect removal. Defect prevention is obtained
through a combination of manually applied formal methods in require-
ments and design followed by statistical testing. Quality results are ten
times better than Software CMM level 5 results.

Team Software Process (TSP): A process-based approach for defect pre-
vention developed by Watts Humphrey (2000). Quality results are more
than ten times better than Software CMM level 5 results.

Correct by Construction (CbyC): A software development process
developed by Praxis Critical Systems (Amey, 2002; Hall and Chapman,
2002). CbyC makes use of formal methods throughout the life cycle and
uses Spark for strong static verification of code. Quality results are 50
to 100 times better than Software CMM level 5 results (Croxford and
Chapman, 2005).

CbyC in a TSP Environment: A process combining the formal methods
of CbyC utilizing Spark with the process improvements of the Team
Software Process.

Both clean room and CbyC are based on formal methods. Formal methods
are mathematically based techniques for the development of software. A formal
specification provides a precise, unambiguous description of an application’s
functionality. Later in the development cycle, the formal specification may be
used to verify its implementation in software. Although there has been much
work over the years, formal methods remain poorly accepted by industrial
practitioners. Reasons cited for this limited use include claims that formal
methods extend the development cycle, require difficult mathematics, and have
limited tool support (Knight et al., 1997).

In this book we introduce you to the Spark programming language and
how it may be used to create high-integrity applications that can be formally
verified. Contrary to the claim that formal methods increase development time,
the use of Spark has been shown to decrease the development cycle by reducing
testing time by 80 percent (Amey, 2002). A goal of this book is to show that
with the tools provided by Spark, the mathematics involved is not beyond the
typical software engineer. We do not attempt to cover formal specification or
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8 1 Introduction and Overview

the software development processes defined by CbyC or TSP in which Spark
can play a critical role in producing high assurance, reliable applications.

1.2 What Is Spark?

Spark is a programming language and a set of verification tools specifically
designed to support the development of software used in high-integrity applica-
tions. Spark was originally designed with formally defined semantics (Marsh
and O’Neill, 1994). Semantics refer to the meaning of instructions in a pro-
gramming language. The semantics of a language describe the behavior that a
computer follows when executing a program in that language. Formally defined
means that Spark’s semantics underwent rigorous mathematical study. Such
study is important in ensuring that the behavior of a Spark program is unam-
biguous. This deterministic behavior allows us to analyze a Spark program
without actually executing it, a process called static verification or formal
verification.

The information provided by the static verification of a Spark program can
range from the detection of simple coding errors such as a failure to properly
initialize a variable to a proof that the program is correct. Correct in this context
means that the program meets its specification. Although such correctness
proofs are invaluable, they provide no validation that a specification is correct.
If the formal requirements erroneously state that our autopilot software shall
keep the aircraft upside down in the southern hemisphere, we can analyze our
Spark program to prove that it will indeed flip our plane as it crosses the equator
on a flight from the United States to Brazil. We still need validation through
testing or other means to show that we are building the right application.

In addition, verification of a Spark program cannot find defects in the com-
piler used to translate it into machine code. Nor will Spark find defects in the
operating system or hardware on which it runs. We still need some verification
testing to show that it runs correctly with the given operating system and
hardware. But with a full analysis of our Spark program, we can eliminate most
of the verification testing for defects in the design and implementation of our
application – the defects that constitute the majority of those listed in Table 1.2.

Spark is based on the Ada programming language. Spark’s designers
selected a restricted, well-defined, unambiguous subset of the Ada language
to eliminate features that cannot be statically analyzed. They extended the
language with a set of assertions to support modular, formal verification.

Spark has evolved substantially over its lifetime. The first three versions,
called Spark 83, Spark 95, and Spark 2005, are based on the corresponding
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Ada SPARK
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(a) Spark 83, Spark 95, and Spark 2005

Ada 2012
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(b) Spark 2014

Figure 1.2. Relationships between Ada and Spark.

versions of Ada (Ada 83, Ada 95, and Ada 2005). This book describes the
current version – Spark 2014 – which is based on Ada 2012.

The complete set of goals for Spark 2014 is available in the SPARK 2014
Reference Manual (Spark Team, 2014a). Some of the more important goals
include the following:

� The Spark 2014 language shall embody the largest subset of Ada 2012 to
which it is currently practical to apply automatic formal verification.
Prior to this version, Spark executable statements were a small subset of Ada
called the Spark kernel. A special non-Ada syntax was used to write anno-
tations – formal statements used for the static verification of the program.
Spark 2014 uses the syntax available in Ada 2012 to write both executable
statements and static verification statements called assertions. Preconditions,
postconditions, and loop invariants are examples of assertions we shall look
at in detail. The two Venn diagrams in Figure 1.2 illustrate the relationships
between Ada and Spark.

� Spark 2014 shall provide counterparts of all language features and analysis
modes provided in Spark 83/95/2005.

� Spark 2014 shall have executable semantics for preconditions, postcondi-
tions, and other assertions. All such expressions may be executed, proven,
or both.

� Spark 2014 shall support verification through a combination of testing and
proof. Our programs can be written as a mix of Spark 2014, unrestricted
Ada 2012, and other languages. We can formally verify or use testing to
verify those parts written in Spark 2014. We must use testing to verify those
parts not written in Spark 2014.

Throughout this book, we use the name Spark to refer to Spark 2014.
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10 1 Introduction and Overview

1.3 Spark Tools

Spark comes with a set of tools for developing Spark programs. A full descrip-
tion of the tools is available in the SPARK 2014 Toolset User’s Guide (Spark
Team, 2014b). In this section we list and provide a very brief summary of these
tools. More detailed descriptions of each tool are given in later chapters when
appropriate.

1.3.1 GNAT Compiler

The GNAT compiler performs the tasks of a typical compiler:

� Checks that the program is in conformance with all of the Ada syntax and
semantic rules.

� Generates the executable code.

The SPARK 2014 Toolset User’s Guide (Spark Team, 2014b) recommends
that our first step in developing a Spark program is to use the GNAT compiler
semantic check tool to ensure that the code is valid Ada. Once we have com-
pleted the formal verification of our Spark program, our final step is to use the
GNAT compiler to generate the executable code.

For testing purposes, we can request that the compiler generate machine code
to check any assertions (preconditions, postconditions, etc.) while the program
is running. Should any assertion be found false, the exception Assertion Error

is raised. This capability allows us to perform tests of our assertions prior to
proving them.

1.3.2 GNATprove

GNATprove is the verification tool for Spark. It may be run in three different
modes:

Check: Checks that a program unit contains only the subset of Ada that is
defined for Spark.

Flow: Performs a flow analysis of Spark code. This analysis consists of two
parts: a data-flow analysis that considers the initialization of variables and
the data dependences of subprograms and an information-flow analysis
that considers the dependencies or couplings between the values being
passed into and out of a subprogram.2

Proof: Performs a formal verification of the Spark code. Formal verifi-
cation will point out any code that might raise a runtime error such as
division by zero, assignment to a variable that is out of range of the type
of the variable, incorrect indexing of arrays, or overflow of an arithmetic
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1.3 Spark Tools 11

expression. If the Spark code contains assertions expressing functional
properties of the code, they are verified.

The assertions in the Spark code that GNATprove verifies are logical state-
ments. A logical statement is a meaningful declarative sentence that is either
true or false. The term logical statement is often shortened to statement. A
statement cannot be true at one point in time and false at another time. Here,
for example, are two simple logical statements, one true and one false:

� Sodium Azide is a poison.
� New York City is the capital of New York state.

Our assertions will often involve existential (there exists) or universal (for
all) quantifiers as in the following examples:

� There exists a human with two heads.
� All men are mortal.

To convince ourselves that the first of these quantified statements is true, we
need to find at least one person with two heads. If we can find one man that
is immortal, we can feel comfortable that the second quantified statement is
false. In later chapters you will learn how to write logical statements for Spark
assertions.

GNATprove analyzes the Spark code and our assertions to produce a number
of logical statements. A theorem is a statement that has been proven (to be true).
The logical statements produced by GNATprove are conjectures – statements
that are believed to be true but not yet proven. Spark calls these conjectures
verification conditions or VCs. We say that a VC is discharged when we have
shown it to be true. If we discharge all the VCs generated by GNATprove, we
can have confidence that our Spark program is correct.

If you took a discrete mathematics course, you studied different approaches
for proving logical statements. It takes skill and time to manually prove a
logical statement. GNATprove produces too many VCs to be proven by hand.
Fortunately, there are a number of proof tools available to perform the necessary
proofs. GNATprove makes use of two proof tools called Alt-Ergo (OCamlPro,
2014) and CVC4 (New York University, 2014). Other tools that GNATprove
may use include YICES (Dutertre, 2014) and Z3 (Bjørner, 2012).

1.3.3 GNATtest

Formal verification provides us with the greatest confidence that our program
meets its specification. However, it is not always possible to formally verify
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12 1 Introduction and Overview

all parts of a program. There are a number of reasons why some subprograms
cannot be formally verified:

� We may not be able to express formally the desired properties of a subpro-
gram. Take, for example, a program that takes in a large amount of seismic
data, performs a set of sophisticated mathematical transformations on that
data, and displays a graphical picture for the geophysicist on the basis of the
results of the transformations. Although we can formally specify the mathe-
matical transformations, it is unlikely we can formally specify the graphical
output.

� We may need to use a programming language feature not amenable to formal
verification. For example, we may need to make use of pointers to solve a
particular subproblem.

� It may not be cost effective to apply formal verification to some components
in our program. We might have a module from a previous project that has
been verified by other means, but we do not have the budget to reverify it.
Sometimes it may be more cost effective to test a simple subprogram than to
formally specify and formally verify it.

Testing is the primary method used to verify subprograms that are not
amenable to formal verification. We also recommend that some testing be
performed on code prior to formal verification with proof tools. In addition to
finding errors in the code, such testing may also reveal errors in the assertions.
GNATtest is a tool based on AUnit that creates unit-test skeletons and test
drivers for valid Ada program units. Test cases for GNATtest may even be
written directly in the Ada code.

Spark was designed to allow engineers to mix formal verification using
GNATprove with testing using GNATtest. Formal verification provides more
confidence at lower cost, while testing allows verification of portions of the code
for which formal specifications are not feasible. Ada contracts on subprograms
provide the mechanism for combining proof and testing.

1.4 Spark Example

To give you a feel for what Spark code looks like, we end this chapter with
an example. Our example is of a Spark implementation of the selection sort
algorithm derived from the Ada code given in Dale and McCormick (2007). Do
not be worried about the details yet – we spend the rest of the book describing
them. We encapsulate all of the details of the selection sort in a package. We
discuss packages in detail in Chapter 3. Spark packages are written in two parts:
a specification that defines what the package contains and a body that contains

https://doi.org/10.1017/CBO9781139629294.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139629294.002


1.4 Spark Example 13

the actual implementation. Here is the specification of a package containing a
sort procedure that sorts an array of integers:

1 pragma Spark Mode (On);

2 package Sorters is

3

4 type Array Type is array ( Positive range <>) of Integer;

5

6 function Perm (A : in Array Type;

7 B : in Array Type) return Boolean

8 −− Returns True if A is a permutation of B

9 with Global => null,

10 Ghost => True,

11 Import => True;

12

13 procedure Selection Sort (Values : in out Array Type)

14 −− Sorts the elements in the array Values in ascending order

15 with Depends => (Values => Values),

16 Pre => Values’Length >= 1 and then

17 Values’Last <= Positive’Last,

18 Post => (for all J in Values’ First .. Values’Last − 1 =>

19 Values (J) <= Values (J + 1)) and then

20 Perm (Values’Old, Values);

21 end Sorters ;

The first line of this specification is a pragma, which is a directive to
the GNAT compiler and GNATprove. In this example, the pragma informs
GNATprove that this package specification should be checked to ensure that it
contains only constructs that are in the Spark subset of Ada. Line 4 defines
an array type that is indexed by positive whole numbers and contains integer
elements. The <> symbol indicates that the first and last index values are not
specified. Such an array type is called an unconstrained array type. We discuss
arrays in detail in Chapter 2.

Spark has two forms of subprograms: the procedure and the function. Lines
13 through 20 specify the selection sort procedure. On line 13 we see that this
procedure takes a single parameter, Values, that is an array of the type defined
in line 4. The notation in out tells us that the array Values is passed into the
procedure (in), possibly modified, and returned back to the caller (out). We
discuss subprograms in detail in Chapter 2.

Lines 15 through 20 are the formal contracts for this procedure. A Spark
contract is a type of assertion and is based on an Ada construct called an
aspect. An aspect describes a property of an entity. In this case the entity is
the procedure Selection Sort . The aspect Depends describes the information
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flow in the procedure. Here, the new array is derived from the information
in the original array. The aspect Pre is a precondition. Here we specify that
the array passed into this subprogram contains at least one value and its last
index is less than the largest possible positive integer. The final aspect, Post,
is a postcondition stating that after the procedure completes its execution, the
values will be in ascending order (each value in the array is less than or equal
to the value that follows it), and the array will be a permutation of the original
array (this ensures that the result contains the same values as the original array).

Lines 6 through 11 specify a function that is given two array parameters,
A and B, and returns True if one array is a permutation of the other and False
otherwise. The notation in tells us that each array is passed into the function
and not modified by it. The aspect Global tells us that this function does not
access any global data. The aspect Ghost indicates that this function will only
be used during static verification of the code; it need not be compiled into
machine code that might be executed. Finally, the aspect Import indicates that
we have not written an implementation of this function. We discuss functions
in Chapter 2 and ghost functions in Chapter 9 and complete the formal proof
of correctness of this selection sort in Section 9.2.

Now let us look at a program that uses our selection sort program. The
following program reads integers from the standard input file, calls the selection
sort procedure, and displays the sorted array.

1 pragma SPARK Mode (Off);

2 with Ada.Text IO;

3 with Ada.Integer Text IO ;

4 with Sorters ;

5 procedure Sort Demo is

6

7 Max : constant Integer := 50;

8 subtype Index Type is Integer range 1 .. Max;

9 subtype Count Type is Integer range 0 .. Max;

10 subtype My Array Type is Sorters .Array Type (Index Type);

11

12 List : My Array Type; −− A list of integers

13 Count : Count Type; −− Number of values in List

14 Value : Integer ; −− One input value

15

16 begin

17 Ada.Text IO.Put Line (Item => ”Enter up to 50 integers , enter 0 to end”);

18 Count := 0; −− Initially , there are no numbers in List

19 loop −− Each iteration, get one number

20 Ada.Integer Text IO .Get (Item => Value);
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21 exit when Value = 0; −− Exit loop on sentinel value

22 Count := Count + 1;

23 List (Count) := Value; −− Put Value into the array List

24 end loop;

25

26 −− Sort the first Count values in the array List

27 Sorters . Selection Sort (Values => List (1 .. Count));

28

29 Ada.Text IO.Put Line (Item => ”Here are the sorted numbers”);

30 for J in 1 .. Count loop

31 Ada.Integer Text IO .Put (Item => List (J),

32 Width => 8);

33 Ada.Text IO.New Line;

34 end loop;

35 end Sort Demo;

The first line of this program is a pragma telling the tools that this code is not
written in the Spark subset of Ada. Thus, although we can formally verify the
selection sort procedure, we will need to verify this code some other way. We
reviewed this code and conducted a number of test runs to convince ourselves
that this code is correct.

Lines 2 through 4 tell what outside resources are needed by this pro-
gram. Here, we need operations from the Ada library to do input and
output with strings (the package Ada.Text IO) and integers (the package
Ada.Integer Text IO). We also need the package Sorters that we specified earlier.

Lines 8 through 10 define three subtypes. Subtypes allow us to derive a
more specialized or restricted domain from an existing type. For example, the
subtype Index Type has a domain limited to whole numbers between 1 and 50.
The subtype My Array Type constrains the array type from the Sorters package
such that the first index is 1 and the last index is 50. We will discuss types and
subtypes in detail in Chapter 2.

Lines 12 through 14 define three variables for the program. List is an array
of 50 integers (indexed from 1 to 50), Count is a whole number between 0 and
50, and Value is a whole number.

Lines 17 through 34 are the executable statements of our program. We will
discuss the details of all these statements in Chapter 2. Even without detailed
knowledge, you can probably follow the three major steps: a sentinel controlled
loop to read integers, a call to the selection sort procedure, and a loop to display
the resulting array.

One task remains. We need to write the Spark code that implements the
selection sort. This code goes into the body of package Sorters . We will com-
plete this body and prove it is correct in Section 9.2.
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16 1 Introduction and Overview

Summary

� High integrity applications are those whose failure has a high impact on
humans, organizations, or the environment. Software quality is extremely
important in such applications.

� Software quality should matter in all applications.
� The conformance of software to specifications and standards is an important,

but not the only, aspect of software quality.
� A software defect is a difference between the behavior of the software and

its specification.
� A correct program has no defects.
� The better the process used to develop software, the lower the defect rate.
� Testing alone is not adequate for developing high integrity software.
� Formal methods provide a means for producing software with fewer defects

than that verified with testing.
� Spark is a programming language specifically designed to support the devel-

opment of software used in high integrity applications. It is an unambiguous
subset of the Ada programming language.

� Static analysis is the examination of software without executing it. Static
verification can only be done on programs written in unambiguous languages
such as Spark.

� The information provided by a static verification of a Spark program can
range from the detection of simple coding errors to a proof that the program
is correct.

� GNATprove is the tool used to carry out the static verification of a Spark
program.

� An Ada compiler is used to translate a Spark program into machine language
instructions.

� Aspects are used to specify properties of entities.
� The Depends aspect describes what values a calculated result depends on.
� The Pre and Post aspects describe preconditions and postconditions.

Exercises

1.1 Describe a defect you have observed in software you use and how you
manage to get around that defect.

1.2 If the Toyota Camry engineers worked at CMM level 3, how many defects
should we expect in the 280,000 lines of code in the car’s engine control
module?
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Exercises 17

1.3 If the typical million lines of code in a flight management system might
contain more than 1,000 defects, why are there not more reports of air-
planes falling from the sky as a result of software failures?

1.4 Which of the software testing techniques described in this chapter have
you used to verify programs you have written?

1.5 What is the difference between software verification and software valida-
tion?

1.6 Why is testing alone not adequate to meet current and future software
quality needs?

1.7 Define the term semantics in relation to software development.

1.8 True or false: Spark is a subset of Ada.

1.9 Name and give a brief description of each of GNATprove’s three modes.

1.10 Define logical statement.

1.11 Give an example of a logical statement that is true. Give an example of a
logical statement that is false.

1.12 Determine whether the following existential statements are true or false:
a. Some men live to be 100 years old.
b. Some women live to be 200 years old.
c. There is some number whose square root is exactly half the value of

the number.

1.13 Determine whether the following universal statements are true or false:
a. All men live to be 100 years old.
b. The square of any number is positive.
c. Every mammal has a tail.

1.14 Define theorem and conjecture.

1.15 Define verification condition (VC).

1.16 What is meant by discharging a VC?

1.17 What is a pragma?

1.18 What is an aspect?

1.19 Define precondition and postcondition.
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