
J. Fluid Mech. (2017), vol. 827, pp. 322–356. c© Cambridge University Press 2017
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2017.464

322

Quantifying wall turbulence via a symmetry
approach: a Lie group theory

Zhen-Su She1,†, Xi Chen1,2 and Fazle Hussain2,1

1State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics,
College of Engineering, Peking University, Beijing 100871, China

2Department of Mechanical Engineering, Texas Tech University, TX 79409-1021, USA

(Received 11 October 2016; revised 25 June 2017; accepted 28 June 2017;
first published online 22 August 2017)

First-principle-based prediction of mean-flow quantities of wall-bounded turbulent
flows (channel, pipe and turbulent boundary layer (TBL)) is of great importance
from both physics and engineering standpoints. Here we present a symmetry-based
approach which yields analytical expressions for the mean-velocity profile (MVP)
from a Lie-group analysis. After verifying the dilatation-group invariance of the
Reynolds averaged Navier–Stokes (RANS) equation in the presence of a wall, we
depart from previous Lie-group studies of wall turbulence by selecting a stress length
function as a similarity variable. We argue that this stress length function characterizes
the symmetry property of wall flows having a simple dilatation-invariant form. Three
kinds of (local) invariant forms of the length function are postulated, a combination
of which yields a multi-layer formula giving its distribution in the entire flow region
normal to the wall and hence also the MVP, using the mean-momentum equation. In
particular, based on this multi-layer formula, we obtain analytical expressions for the
(universal) wall function and separate wake functions for pipe and channel, which
are validated by data from direct numerical simulations (DNS). In conclusion, an
analytical expression for the entire MVP of wall turbulence, beyond the log law or
power law, is developed in this paper and the theory can be used to describe the
mean turbulent kinetic-energy distribution, as well as a variety of boundary conditions
such as pressure gradient, wall roughness, buoyancy, etc. where the dilatation-group
invariance is valid in the wall-normal direction.

Key words: Lie-group analysis, turbulence theory, turbulent wall flows

1. Introduction

Canonical wall-bounded flows (channel, pipe and turbulent boundary layer (TBL))
are widely seen in engineering applications and in nature (Smits & Marusic 2013).
Turbulent channel and pipe are internal flows driven by a pressure gradient,
which fully determines the mean velocity profile (MVP) and hence also the
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friction coefficient. In contrast, the TBL, driven by the freestream, develops a profile
dependent on both x (streamwise) and y (wall-normal) coordinates. These flows are of
great theoretical and practical interest and have been studied for more than a century
(Pope 2000; Wilcox 2006).

A central issue in the study of these flows is to develop viable mathematical
models, in particular, to predict the mean flow properties such as the MVP, mean
kinetic-energy profile (MKP), mean temperature profile (MTP), etc. Despite intensive
efforts, predictions have remained essentially empirical, with the exception of the
log law for MVP in the so-called overlap region. In recent decades, large volumes
of empirical data have been obtained from experimental and numerical studies, but
they have not led to any deep understanding of the principles governing mean flow
properties. Such principles, once discovered, should help to guide the statistical
analysis of detailed data, offered particularly by direct numerical simulations (DNS).
The present work develops new theoretical concepts aiming to discover physical
principles, via an innovative symmetry approach.

The study of turbulence in canonical wall-bounded flows begins by a scaling
analysis focusing on a one-dimensional variation with respect to distance from the
wall (Pope 2000). The analysis identifies friction velocity uτ , wall viscous length
unit δν ≡ ν/uτ and friction Reynolds number (Re) Reτ ≡ uτδ/ν as three fundamental
physical parameters, where δ is wall flow thickness (e.g. half-width of the channel or
radius of the pipe, or thickness of the boundary layer) and ν is kinematic viscosity.
Scaling (dimensional) analysis yields an expression for the mean velocity as

U( y)= uτΦ
(

y
δ
,

y
δν

)
. (1.1)

In the limit y/δ→ 0 (very close to the wall), Φ(y/δ, y/δν)→ Φ1(0, y/δν) = fw(y+),
which is called wall function, first used by Prandtl (1925), and y+ = y/δν , is
the distance in wall units. In the other limit y/δν � 1 (very far from the wall),
Φ(y/δ, y/δν) → Φ1(y/δ,∞) = g(y′) with y′ = y/δ, which is commonly referred to
as the outer function. Until now, the actual forms of fw(y+) and g(y′) are based on
empirical propositions. The most popular model for the wall function is given by
Van Driest (1956), which is believed to be universal for incompressible canonical
wall-bounded flows, whereas the form of the wake function is more varied, depending
on the geometry and other physical conditions. Specifically, a velocity-defect law due
to Von Karman (1930) reads

U+d ( y/δ)=U+c −U+( y/δ)= FD( y/δ), (1.2)

where U+d is the mean velocity defect, U+c is the centreline velocity for channel and
pipe flows, or velocity at the edge of the TBL (typically 99 % of the freestream
velocity), while the outer function FD is flow dependent (superscript + indicates
normalization using uτ and ν, i.e. in wall units).

The above two-scale (inner and outer) description follows the essence of Prandtl’s
boundary-layer concept and is commonly referred to as ‘classical’ scaling. The
celebrated log law is obtained by matching (1.1) and (1.2), that is

U+(y+)=
1
κ

ln(y+)+ B, (1.3)

where the Karman constant κ was believed to be universal (Pope 2000; Wilcox
2006), and the additive constant B is flow dependent (Marusic et al. 2010). The log
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law was later obtained by Millikan (1938) by an argument that y+∂U+/∂y+ must
match using (1.1) and (1.2). However, other quantities can be invoked to define the
matching condition. For instance, if one invokes ( y+/U+)∂U+/∂y+ as an invariant
matching condition, the resulting functional form of the mean velocity is a power
law. Thus, (1.3) is not the unique matching form and that is why the debate between
the log law and the power law has been strong over the decades (Barenblatt 1993;
Cipra 1996; Barenblatt & Chorin 2004; George 2005).

In turbulent-pipe studies, the log law contradicts the boundary conditions at wall
and centreline, and Prandtl was dissatisfied with this (Davidson et al. 2011). In 1925,
Prandtl suggested representing effects of turbulent fluctuation, i.e. Reynolds stress W=
−〈u′v′〉 (which is non-negative in turbulent shear flows except in the case of negative
production due to alignment of successive coherent structure orientations at a physical
location (Hussain & Zaman 1985), which is not a subject of concern here), in terms
of an eddy viscosity νT and a velocity gradient, that is

−〈u′v′〉 = νTS= `2
uvS

2. (1.4)

Here, S= ∂U/∂y is the mean shear and

`uv =
√

W/S (1.5)

is called the stress length function, which is the same as the mixing length `M
introduced by Prandtl (1925), but now interpreted as indicating an eddy whose size
does not need to be proportional to y (the basis of the classical mixing length
hypothesis). Note that (1.4) is a mere definition, which requires `uv to be modelled.
As summarized in White (2006), both Prandtl (1925) and Von Karman (1930) took
turns to make estimates of `uv and arrived at the following proposals:

overlap region `uv ≈ κy (1.6)
sublayer `uv ≈ y2 (1.7)

outer layer `uv ≈ const. (1.8)

The linear assumption (1.6) leads to the log law, while (1.7) is proposed to satisfy the
wall condition, i.e. `uv→ 0 as y→ 0 (because of the vanishing Reynolds stress W = 0
and the non-zero mean shear S= u2

τ/ν at the wall Pope 2000). Various combinations
of (1.6)–(1.8) yield formulas for wall function and wake function. For example, by
assuming both (1.6) and (1.7), van Driest (1956) proposed an exponential damping
function

`uv ≈ κy[1− exp(−y+/A)], (1.9)

where A≈ 26 is determined for a flat-plate TBL. One may also merge (1.9) with (1.8)
to produce a piecewise functional form covering both inner and outer flows, widely
used in Reynolds-averaged Navier–Stokes (RANS) models (Pope 2000; Wilcox 2006).
Another well-known model was suggested by Coles (1956) going from the overlap
region (the log law) to the outer region, by taking into account both (1.2) and (1.3),
namely

U+(y+)=
1
κ

ln(y+)+ B+
2Πc

κ
Wf

(y
δ

)
, (1.10)

with the Coles wake parameter Πc and the wake function Wf (x). A widely used
empirical model for pipe or channel or TBL is Wf (x)= sin2(πx/2).
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As we show below, the correct scaling in the viscous sublayer is `uv ∝ y3/2 and
(1.7) describes the scaling in the buffer layer. The latter, placed just above the viscous
sublayer, is populated with numerous near-wall vortex structures and where turbulent
production is the strongest. These two features distinguish them from the sublayer.
Note that although eddy viscosity/mixing length approaches have made some modest
successes, these cannot be taken literally as they are not supposed to be. For example,
equation (1.6) cannot be valid very far from the wall. In order to describe the MVP
for the entire flow region and to accurately measure flow constants (such as κ), we
need to theoretically determine the stress length function for the entire flow. We also
need theoretical arguments to extend/modify the function to include other boundary
conditions (such as pressure gradient, roughness, heating, etc.).

Two important issues are worth mentioning: how exact is the log law and how
universal is the Karman constant κ? The log law has been challenged by Barenblatt
(1993), Barenblatt & Chorin (2004) and George (2005). They argue that the power
law is more natural and fits the MVP data in a wider domain. In addition, κ has
been assumed to be a universal constant for a long time (Pope 2000; Wilcox 2006),
equaling 0.40–0.41. However, as more data accumulate, κ measured using the classical
definition of the log law (1.3) shows a 20 % variation, from 0.37 to 0.45 (Nagib &
Chauhan 2008; Marusic et al. 2010; Segalini, Orlu & Alfredsson 2013; Wu et al.
2013). To resolve these controversies, Smits, McKeon & Marusic (2011) suggest
developing new facilities with an improved measurement accuracy; also, a valuable
move would be to develop a composite description of MVP, such as the models
by Monkewitz, Chauhan & Nagib (2007) (hereafter cited as MCN) and Nagib &
Chauhan (2008). Further improved models should involve more relevant physical
content and more rigorous theoretical underpinning.

Here we pursue this line of thought by developing a composite formula connecting
the inner and outer (and hence the overlap) flow region descriptions guided by a
dilatation-invariance principle. Specifically, we determine the forms of fw( y+) and
g( y′) (κ is measured based on g), and then the entire function Φ( y′, y+). This is
accomplished by introducing a set of new quantities, called order functions, which
is an extension of the concept of order parameter in Landau’s mean-field theory
to reveal the macroscopic symmetry emerged from microscopic fluctuations. Here,
the order function is different from the order parameter in its spatial variation in
the wall normal direction, which reflects the changing of symmetry due to varying
turbulent fluctuations. Briefly, our derivation of the MVP involves three steps. First,
the stress length function is identified as the order function (other choices such
as the mean velocity or the eddy viscosity function are inappropriate as discussed
below), which characterizes the length scale of eddies responsible for the momentum
transport normal to the wall. Second, a dilatation-group analysis is applied to the
mean-momentum equation, focusing on the dilatation invariants of the stress length
function and its derivative as (new) similarity variables (note that the group invariants
include dimensionless quantities as a special set), which further leads to building
local invariant solutions for the unclosed balance equations. Third, a multi-layer
formula for the stress length function over the entire flow domain is developed
employing the multiplicative rule; and the balance mechanisms between different
terms in the turbulent kinetic-energy equation are interpreted as the origin of the
multi-layer structure. That is, the transition from one layer to another is assumed
to satisfy a generalized Lie-group invariance ansatz so that the matching technique
yields a complete analytical formula. Hence it yields the MVP for the entire flow,
where fw( y+) and g( y′) are also derived in good agreement with the data.
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Note that the current analysis focuses on the group invariants of the stress length
function instead of the mean velocity in earlier works by Oberlack (2001), Lindgren,
Osterlund & Johansson (2004) and Marati et al. (2006), explained as follows. In our
view, it is very important to choose the right group invariant when its constancy is
used to construct the invariant solution. The constant dilatation invariant for the mean
velocity, as assumed in previous works, is only valid in part of the viscous sublayer
very close to the wall where U+≈ y+; and this constancy is lost except in a restricted
region beyond the log layer where Barenblatt argued it is the power law (Barenblatt
1993). However, Barenblatt’s proposal has two difficulties: on one hand, there exists
no simple pattern for the variation of the dilatation invariant of the mean velocity from
one layer to another (so as to define a multi-layer); on the other hand, the invariant
(e.g. scaling exponent) is Re-dependent, making this proposal less sound. As we show
below, both difficulties can be resolved when one chooses the dilatation invariants of
the stress length (order) function and its derivative: a clear and universal multi-layer
structure appears with Re-independent scaling. It turns out that the correct choice of
dilatation invariants is key to constructing the composite solution matching two local
invariant solutions of adjacent layers together, a previously unresolved issue (Oberlack
& Rosteck 2010).

The present analysis can be considered as a generalization of the intermediate
asymptotic approach by Barenblatt (1996), who proposes the existence of local power
law in a restricted domain. Presently, the sublayer and buffer layer are restricted,
respectively, to the domains of y+ . 10 and 10 . y+ . 40. The novelty here is to
motivate three concrete analytical forms of Lie-group invariance ansatz (see (2.21),
(2.24) and (2.26)). In particular, neither the defect-power law (2.24) nor the transition
from one scaling to another (2.26) has been obtained before; these yield the analytical
function for the stress length valid throughout the entire flow region. In other words,
the present formalism gives the inner wall function and outer wake function in
the classical boundary layer asymptotic sense (as Reτ →∞), without adopting the
restrictive Baranblatt’s intermediate asymptotic argument. Also note that the current
symmetry analysis is significantly different from previous works modelling the mean
velocity (Nickels 2004; Del Alamo & Jimenez 2006; Monkewitz et al. 2007; Panton
2007; L’vov, Procaccia & Rudenko 2008) by two features: a unified description
of the mean velocities of all three canonical flows (channel, pipe and TBL) is
obtained for the first time and the current parameters adequately characterize the
physical multi-layer structure in the flow. This symmetry may be a physical principle
applicable to a variety of wall-bounded flows, for which no-slip wall is a common
presence and the multi-layer structure is a universal characteristic. Several other
examples, such as rough pipe (She et al. 2012), compressible TBL (Wu et al. 2017),
etc., show convincing evidence of the multi-layer structure. In summary, we have
achieved a fairly accurate description, beyond the log law and power law, of the
entire mean profiles of wall turbulent flow.

This paper is organized as follows. In § 2, we summarize previous studies using
Lie group symmetry analysis and introduce our study of invariant solutions of stress
length function with three ansatz. In § 3, we apply the analysis to form a concise
description of the wall function with viscous sublayer, buffer layer, log layer and the
wake function consisting of a bulk layer; for turbulent pipes and channels the wake
also consists of a core layer. Section 4 is devoted to comparing the theoretical results
and the empirical data. Section 5 summarizes and further discusses the results. In
appendix A, we present a standard three-step Lie-group-symmetry analysis, so that
no previous knowledge of Lie group is assumed. For more exhaustive discussions, see
Bluman & Kumei (1989) and Cantwell (2002). In appendix B, we discuss the main
features of a current symmetry-based approach and its generality to other wall flows.
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2. Symmetry approach to the study of wall flows
Symmetry is an important concept in physics (Falkovich 2009; Gibson, Halcrow

& Cvitanovic 2009; Kadanoff 2009) as it indicates invariants in the system. It
is associated with a pattern which satisfies invariant properties under a certain
rule of transformation. Generally speaking, if there is an invariant quantity, i.e.
remaining unchanged under transformation, then there exists a symmetry. Lie groups
are basic tools to characterize continuous symmetry in mathematical structures such
as differential equations. It was originally developed by Sophus Lie in the 1890s
(Bluman & Kumei 1989; Cantwell 2002), laying the foundations for the theory of
continuous transformation groups and now provides a systematic tool to reduce the
differential order or the number of independent variables, when studying ordinary or
partial differential equations.

Early studies devoted to Lie-group symmetry analysis for the Navier–Stokes (NS)
equations, i.e.

∂uk

∂xk
= 0 (2.1)

∂ui

∂t
+ uk

∂ui

∂xk
= ν

∂2ui

∂x2
k
−
∂p
∂xi

(2.2)

(note that the density is absorbed in p) and the relevant symmetry transformations
can be found in textbooks, for example, Frisch (1995) and Cantwell (2002), which
are briefly summarized below:

(i) space translations: t∗ = t, x∗i = xi + εi, u∗i = ui, p∗ = p
(ii) time translations: t∗ = t+ ε, x∗i = xi, u∗i = ui, p∗ = p
(iii)Galilean transformations: t∗ = t, x∗i = xi + εit, u∗i = ui + εi, p∗ = p
(iv) rotations: t∗ = t, x∗i = aijxj, u∗i = aijuj, p∗ = p
(v) dilatations: t∗ = eεt, x∗i = eλεxi, u∗i = e(λ−1)εui, ν∗ = e(2λ−1)εν, p∗ = e(2λ−1)εp.


(2.3)

Here ε ∈ R (and εi ∈ R3) denotes the Lie-group parameter; aij is the element of
an orthonormal matrix (the reflection symmetry is also included); λ ∈ R is a free
parameter for dilatations (dilatation on viscosity also; λ = 1/2 if no dilatation
of viscosity). Note that the boundary condition is crucial for the application of
symmetry transformations, because it may break the aforementioned symmetries in
(2.3) or introduce new symmetries (Bluman & Kumei 1989; Kelbin, Cheviakov &
Oberlack 2013; Avsarkisov, Oberlack & Hoyas 2014; Chen & Hussain 2017).

Symmetry analysis is a particularly useful tool in the study of turbulence.
For example, the Kolmogorov 1941 theory (Kolmogorov 1941), the Frisch–Parisi
multi-fractal model (Frisch & Parisi 1985), as well as the She–Leveque model of
intermittency (She & Leveque 1994; She & Zhang 2009) are all based on symmetry
considerations. The symmetry can be formally defined: if u(t, x) is a solution
for a velocity field, then the transformed u∗(t∗, x∗) is also a solution (∗ denotes
transformed variables). In general, the velocity field u(t, x) could have the following
symmetries for each of the above items in (2.3): (i–ii) homogeneity in space and time;
(iii) independent of reference frame (note, however, that acceleration is permitted);
(iv) isotropy: isotropic turbulence with zero mean velocity; and (v) Re similarity for
λ= 1/2 (constant viscosity). The three scaling models mentioned above (Kolmogorov
1941; Frisch & Parisi 1985; She & Leveque 1994) impose appropriate symmetry
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constraints on turbulent fluctuating velocities in the scale space to predict the scaling
of a two-point velocity structure function. This work is a continuing effort in the
same direction, but directs the subject from homogeneous isotropic turbulence to wall
flows as well as from scale space to physical space, as described below.

2.1. Symmetry analysis with length (order) functions
Let us take a canonical turbulent channel flow in the x direction, for example. The
mean-momentum equation has the following form, steady in time,

∂

∂y

(
`uv
∂U
∂y

)2

+ ν
∂2U
∂y2
+ P̄x = 0, (2.4)

where P̄x is the constant pressure gradient driving the channel flow; the nonlinear
mean convection term and the diffusion terms in x and z directions are all zeros. In
(2.4), the Reynolds stress is replaced by the stress length function, e.g. (1.5). In the
following, we treat (2.4) for inner and outer flows separately (as in a standard singular
perturbation framework). For the inner flow, using viscous (wall) units, i.e.

y+ = yuτ/ν, U+ =U/uτ (2.5a,b)

the streamwise mean-momentum equation is

C=
∂2U+

∂y+2
+ 2`+2

uv

(
∂U+

∂y+

)(
∂2U+

∂y+2

)
+ 2`+uv ˙̀

+

uv

(
∂U+

∂y+

)2

+
1

Reτ
= 0, (2.6)

where the left-hand side of (2.6) is named C; ˙̀+uv= ∂`
+

uv/∂y+ is the derivative of stress
length function; and the wall condition is U+(0)= `+uv(0)= 0. For the outer flow, using
outer length scale δ (the half-height of channel or pipe radius)

r= 1− y/δ, `∧uv = `uv/δ, (2.7a,b)

the mean-momentum equation (2.4) is

N=
−1
Reτ

∂2U+

∂r2
+ 2`∧2

uv
∂U+

∂r
∂2U+

∂r2
+ 2`∧uv ˙̀

∧

uv

(
∂U+

∂r

)2

− 1= 0, (2.8)

where the left-hand side of (2.8) is named N; ˙̀∧uv = ∂`∧uv/∂r, and the centreline
condition is U+(0)=U+c , `

∧

uv(0)=∞.
In appendix A, we present a standard three-step Lie-group analysis of (2.6) and

(2.8). According to (A 7) and (A 8), the inner flow admits the following two-parameter
(ε and α) dilatation transformations:

y+∗ = eεy+, Re∗τ = e(1+2α)εReτ , `+∗uv = eαε`+uv, ˙̀+∗
uv = e(α−1)ε ˙̀+

uv,

U+∗ = e(1−2α)εU+, U̇+∗ = e(−2α)εU̇+, Ü+∗ = e(−1−2α)εÜ+,

}
(2.9)

which define six group invariants (by eliminating ε) given by

I0 = Reτ/y+(1+2α), I1 = `
+

uv/y
+α, I2 = ˙̀

+

uv/y
+(α−1),

G1 =U+/y+(1−2α), G2 = U̇+y+2α, G3 = Ü+y+(1+2α).

}
(2.10)
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Note that the boundary condition is also invariant under the dilatation (2.9), i.e.
U+∗(0)= `+∗uv (0)= 0.

The group invariants, called similarity variables (Cantwell 2002), are functions of
y+ and Reτ in (2.10). The dilatation transformations (2.9) correspond physically to
a kind of re-scaling in the direction normal to the wall, which extends the simple
re-scaling of y and `uv by dimensional argument. In fact, a dimensional analysis can
only yield a proportionality relation between `uv and y, giving α= 1, since Π = `uv/y
is dimensionless. However, α can also be different from unity in (2.10), as explained
below.

Using the transformation of the Reynolds stress

〈u′v′〉∗ =−[`∗uv(∂U∗/∂y∗)]2 = e−2αε
〈u′v′〉, (2.11)

if one adopts a normal scaling argument (i.e. α = 1), one obtains 〈u′v′〉∗ = e−2ε
〈u′v′〉,

indeed the same dilatation factor as U∗2
= e−2εU2. However, for α 6= 1, the velocity

fluctuations (u′ and v′) scale differently from the mean velocity; the consequence is
that `uv scales differently from y (the usual case except in the log layer). How are
such different scalings possible? In the following, we propose an argument for random
dilatation transformation to demonstrate why α 6= 1 is possible from a group-analysis
perspective.

Recall Kraichnan’s argument regarding the random Galilean transformation for the
NS equation (Frisch 1995) for homogenous isotropic turbulence: letting x∗i = xi + dit,
u∗i = ui + di, where each di (i = 1, 2, 3) is a random variable satisfying Gaussian
distribution with zero mean. In this case, there is no translation for the mean velocity
ui, since di = 0; but there is a translation acting on the fluctuation, i.e. u′∗ = u′ + di.
In other words, the fluctuation and the mean are transformed differently. We apply
a similar argument by introducing a random dilatation transformation, i.e. u∗i = λui

where λ is an independent, positive random variable, which yields, ū∗i = λūi and u′∗i =
u∗i − ū∗i =λui−λūi. Taking the parallel flow for example, the streamwise mean velocity
ū∗ = λ̄ū and the streamwise fluctuation u′∗ = λu − λ̄ū; similarly, the vertical mean
velocity v̄∗ = λ̄v̄ = 0 and the vertical fluctuation v′∗ = λv − λ̄v̄ = λv′ (since v̄ = 0
and v = v′). Therefore, the Reynolds stress is transformed as u′v′∗ = u′∗v′∗ = λ2u′v′,
while the square of the mean velocity is transformed as λ

2
ū2

i . Since λ2 is different
from λ

2
in general, the dilatation of the Reynolds stress is obviously different from

that obtained by multiplying the scaling of the mean velocities ū. This possibility has
not been considered before (Oberlack 2001; Lindgren et al. 2004; Marati et al. 2006).
It is important to treat the dilatations for the mean and fluctuations separately.

Here, we are interested in the invariant solution which not only satisfies the
balance equation but also remains invariant under the symmetry transformation
(2.9). According to the standard procedure in Lie group analysis, one substitutes the
invariants into the original differential equation and then solves the resulting equation
to obtain the invariant solution (an example is the Blasius solution). However, this
approach does not apply here, because the resultant equation (after the substitution
of (2.10) into (2.6))

C=G3 + 2I2
1G2G3 + 2I1I2G2

2 + 1/I0 = 0 (2.12)

is not closed (with two undetermined variables I and G). Still, analytical results, which
can be obtained near the wall and near the centreline as below, inspire us to adopt
another common procedure to develop invariant solutions: taking a simple ansatz (e.g.
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constancy of group invariant) to constrain I or G in (2.12) (we actually constrain I to
solve G using (2.12)).

Let us examine (2.12) near the wall in the viscous sublayer, to explain why our
strategy of constraining I is better. In the sublayer, the leading-order balance between
the viscous shear and the pressure gradient is G3 + 1/I0 ≈ 0. A Taylor-expansion
in y+ yields a solution to the mean velocity, i.e. U+ = y+ − y+2/(2Reτ ) + O( y+3).
This expansion can also be interpreted as an invariant solution by constraining G: the
first term in the expansion can be reproduced by assuming G2 = const. = 1 (with
α = 0) knowing that U+ = y+, a trivial result under the no-slip wall condition. The
second term can be obtained using the relation G3=−1/I0 from (2.12). On the other
hand, by setting I1 and I2 to be constants, one includes the effect of the Reynolds
stress and captures the higher-order terms in (2.12). Noting that since W+ ∝ y+3 and
`+uv ∝ y+3/2 (as explained in the subsequent § 3.1.1), one has I1 = const. with α =
3/2, leaving G1, G2 and G3 all y+-dependent, and a higher order approximation is
immediately obtained: U+ = y+ − y+2/(2Reτ )− I2

1y+4/4+O( y+5). Hence, by working
on the constant dilatation invariant of the stress length rather than the mean velocity,
we obtain a better approximation for U+, valid in a more extended domain.

Similarly, the symmetry transformation for the outer mean-momentum equation (2.8)
is

r∗ = eεr, Re∗τ = e−(1/2+α)εReτ , `∧∗uv = eαε`∧uv, ˙̀∧∗
uv = e(α−1)ε ˙̀∧

uv,

U+∗ =U+c − e(3/2−α)ε(U+c −U+), U̇+∗ = e(1/2−α)εU̇+, Ü+∗ = e(−1/2−α)εÜ+.

}
(2.13)

The centreline condition remains invariant, i.e. U+∗(0)=U+c and `∧∗uv (0)=∞, and the
corresponding group invariants are

I0 = Reτ r1/2+α, I1 = `
∧

uv/r
α, I2 = ˙̀

∧

uv/r
α−1,

G1 = (U+c −U+)/r3/2−α, G2 = U̇+/r1/2−α, G3 = Ü+r1/2+α.

}
(2.14)

Thus, the outer mean-momentum equation (2.8) in terms of group invariants is

N=−G3/I0 + 2I2
1G2G3 + 2I1I2G2

2 − 1= 0. (2.15)

A similar examination of (2.15), as we have done for the viscous sublayer, can be
carried out to define the central core layer of channel and pipe flows. Here, W+ ∝ r
and `∧uv ∝ 1/

√
r (see discussion in § 3.2.1). Thus, a candidate invariant solution for

(2.15) is I1 = const. with α =−1/2 (note that I2, G1, G2 and G3 are also constants)
and U+ =U+c −G1r2

+O(r3), which is consistent with a simple quadratic expansion
around the centreline, a result of the mirror symmetry for internal flows (i.e. S= 0 at
r= 0).

The above arguments inspire the following systematic procedure to define the multi-
layer structure of wall turbulence. By assuming I1 or I2 to be constants (or postulating
a simple ansatz relating I1 and I2), we define a candidate invariant solution of the
steady RANS equation. This has two important features: the RANS equation is solved
(knowing I1 and I2) and the solution remains invariant under dilatation transformation.
This invariant nature is particularly important, because it may establish a universal
solution based on the similarity requirement of the solution manifolds covering a set
of wall flows with varying boundary conditions. Indeed, this universal solution exists
because the analytical expression of the multi-layer structure is universal, while only
layer thicknesses are flow-dependent. In this sense, the postulated ansatz via group
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invariants are more than semi-empirical models, and stress length plays a special role
in revealing the function of dilatation invariance of wall flows.

Note that previous Lie-group analyses for wall-bounded flows (Oberlack 2001;
Lindgren et al. 2004; Marati et al. 2006) also introduced the assumption of a
constant group invariant to suggest candidate invariant solutions to the unclosed
balance equation. For example, a specific proposal by Oberlack (2001) assumes
a constant invariant in the following group of transformation (a combination of a
translation in U and dilatation in y)

y∗ = eεy, U∗ =U + bε (2.16a,b)

(b has a dimension of velocity). In this case, the group invariant is composed of U
and y (by eliminating ε):

I =U∗ − b ln y∗ =U − b ln y. (2.17)

Then, by assuming I = const., the log law is obtained:

U = b ln y+ I. (2.18)

Such a constant group invariant assumption can also be found in Lindgren et al.
(2004) and Marati et al. (2006). It should be mentioned that (2.16) breaks the
boundary condition, since the translation in U is broken by the wall condition U= 0
at y = 0. In fact, the dilatation group is the only rigorous invariance group of wall
turbulence under the no-slip wall condition. That is why we focus on the dilatation
invariance of the stress length function.

2.2. Three ansatz for candidate invariant solutions
Here, we introduce three kinds of invariant solutions to the stress length function,
while the reasons why they exist and how they agree with DNS data will be presented
in the next section. First, we define the notation, that is: ` denotes `+uv for the inner
flow and `∧uv for the outer flow, while y denotes y+ for the inner flow and r for the
outer flow. Thus, the more compactly defined dilatation invariants associated with `
and d`/dy in (2.10) and (2.14) are

I1 = `
∗/y∗α = `/yα (2.19)

I2 =

(
d`∗

dy∗

)/
y∗(α−1)

=

(
d`
dy

)/
y(α−1). (2.20)

Note that I2 is a prolongation in the Lie group. I2 is also called the differential
invariant, which is useful not only for (i) the order reduction of a differential equation
(such as obtaining Blasius from NS equations), but also for (ii) constructing models
for symmetries with known symmetries (Olver 1995; Cantwell 2002). We follow (ii)
in this study by postulating three ansatz as below.

2.2.1. Ansatz 1: power law
The first ansatz is a constant dilatation invariant for I1, which leads to the power

law scaling for the stress length function:

If I1 = const., from (2.19), `= I1yα. (2.21)
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FIGURE 1. (Colour online) (a) Stress length function shown by DNS data and (b) Q(y+)=
d ln(`+DNS

uv /L)/d ln(y+) reveals local scaling in sub-, buffer and log layers with exponents
3/2, 2 and 1, respectively. Two channel flows from Iwamoto, Suzuki & Kasagi (2002)
at Reτ = 650 and Hoyas & Jimenez (2006) at Reτ = 940, one pipe flow of Wu & Moin
(2008) at Reτ = 1142 and one TBL flow of Schlatter et al. (2010) at Reτ = 1270. Dashed
lines indicate sublayer thickness y+sub= 9.7 and buffer-layer thickness y+buf = 41, respectively,
at the middle of scaling transitions.

In this case, I2 is also a constant, which can be verified by substituting (2.21) into
(2.20)

I2=αI1= const. (2.22)

The ratio of these two dilatation invariants

γ = I2/I1 = d ln(`)/d ln( y) (2.23)

is particularly important because we can use γ as a diagnostic function to analyse
DNS data: if there is a power law of ` in a range of y, then γ displays a local plateau
(constant α) in the same y range. How γ enables the discovery of different scaling
exponents in the viscous sublayer, buffer layer, etc. will be shown later in figure 1.

2.2.2. Ansatz 2: defect-power law
When I1 6= const., a second invariant relation is postulated:

For I1 6= const. but I2= const., from (2.20), d`/dy= I2y(α−1). (2.24)

We refer to this case as the dilatation symmetry broken in ` but preserved in d`/dy.
Integration of (2.24) yields the defect-power law

`= (I2/α)yα + c. (2.25)

2.2.3. Ansatz 3: scaling transition, a generalized invariant relation
To describe a smooth and monotonic transition of ` from one power-law scaling

`(I)= cIyγI to another `(II)= cIIyγII (i.e. from one layer to another), a simple transition
ansatz can be found with a nonlinear relation between the two dilatation invariants.
Specifically, we extend (2.22) to include a nonlinear term (explained below) as

I2 = γII1 + c(I1)
n
⇒ `= cIyγI (1+ ( y/yc)

p)
(γII−γI)/p, (2.26)
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where I1 = `/yγII and I2 = (d`/dy)/yγII−1. The power laws in the two adjacent layers
are

`(I) = cIyγI for y� yc (2.27)
`(II) = (cIyγI−γII

c )yγII for y� yc, (2.28)

which are connected at the transition location y = yc = (cI/cII)
1/(γII−γI) where `(I) =

`(II). Parenthetically, it is interesting that (2.26) has appeared before in some fluid
mechanics problems, such as connecting two spectral regions (Batchelor 1951) and
building a compound MVP (L’vov et al. 2008).

The choice of the generalized invariant relation (2.26) is explained below. Note that
the left-hand side of (2.26) can be rewritten as I2/I1= γI + c(I1)

n−1, characterizing the
local scaling exponent γ = I2/I1 varying from a constant value γI (in layer I) to γII
(in layer II) by suitable choices of c and n. To see this, we rewrite the left-hand side
of (2.26) as

γ − γI

γII − γI
=

(
cII

I1

)q

, (2.29)

where n= 1− q and c= (γII − γI)c
q
II are substituted as compact notations. Then, for

y� yc (i.e. approaching layer II), I1 = `/yγII → cII , the right-hand side of (2.29) goes
to 1, consistent with the left-hand side of (2.29). For y� yc (approaching layer I), the
right-hand side of (2.29) goes to zero when p= q(γII − γI)� 1, consistent with the
left-hand side of (2.29). This can always be guaranteed by choosing an appropriate
q where q specifies the sharpness of the transition between the two layers. Therefore,
equation (2.29) connecting the two asymptotic power-law states (2.27) and (2.28) is
explicitly written as

d(`/yγI )p/(γII−γI)

d(yp)
= cp/(γII−γI)

II , (2.30)

which, after integration, yields the scaling (simply means power law) transition ansatz,
the right-hand side of (2.26),

`= cIyγI (1+ ( y/yc)
p)(γII−γI)/p. (2.31)

All of the parameters in (2.31) are determined from (2.29), except for cI which is an
integration constant determined by the power-law coefficient in layer I.

In the following, we will show that (2.25) and (2.31) serve as the basic analytical
structures which, together with the commonly used multiplicative matching rule, define
the analytical multi-layer wall function and wake function. Let us emphasise that the
functional form of the multi-layer structure is obtained from symmetry analysis, while
the parameter values are determined by a variety of other techniques (involving Taylor
expansion, heuristic reasoning and empirical data fitting), as presented in the following
section.

3. A multi-layer stress length function
The notion of the multi-layer structure in wall turbulence is well known (Pope 2000;

Wei et al. 2005; Klewicki et al. 2012). However, our four-layer description below
differs from previously defined four layers by Wei et al. (2005) and Klewicki et al.
(2012), who considered the leading-order balance of the mean-momentum equation
(viz., layer I extends to y+ ≈ 3, layer II to y+ ≈ 1.6

√
Reτ , layer III to y+ ≈ 2.6

√
Reτ
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and layer IV to the centreline). In the following, we report our Lie-group description
of the multi-layer structure of the stress length function and validate the concept using
DNS data.

First, let us explain two new regions of the flow. According to our study here,
a bulk-flow region can be defined by quasi-balance (meaning nearly equal) between
production and dissipation. This bulk flow contains the overlap region near the wall
and extends to the edge of the TBL; in the case of channel and pipe flows, there
is an additional layer, the ‘core layer’, towards the centre, where turbulent transport
replaces production with balance dissipation. Below we introduce inner (2.5) and outer
scales (2.7) to normalize the stress length function (thereby also balance equations).
Specifically, in analogy to the centreline of channel/pipe, an outer dilatation centre is
defined for the TBL (let us call it δ, where δ is not necessarily δ99 commonly used
to describe the boundary layer edge of the TBL). The invariant solutions expressed in
terms of the stress length function are the same as (2.21), (2.24) and (2.26), but only
by replacing y with y+ (inner) or with r (outer). At the end, these postulated solutions
should be validated by DNS data, which we present in detail now.

3.1. Wall layers
The normalized group invariants for stress length function (2.19) and its derivative
(2.20), are respectively

I1 = `
+

uv/y
+α, I2 = ˙̀

+

uv/y
+(α−1). (3.1a,b)

Then, the constant dilatation-invariant assumption in (2.21) yields

I1 = c1, and I2 = αc1, (3.2a,b)

which lead to a power-law scaling as a function of y+:

`+uv = c1y+α. (3.3)

To test (3.3), we display the following diagnostic function as in (2.23)

γ = I2/I1 = d ln(`+uv)/d ln(y+). (3.4)

If the empirical γ as opposed to the theoretical α displays a plateau in the range of y+,
then a local power law of `uv is validated and the value of the plateau is thus α. This
is shown in figure 1 with α = 3/2 in the viscous sublayer, α = 2 in the buffer layer
and α = 1 in the log layer. The scaling in the buffer layer is a typical intermediate
asymptotic scaling (Barenblatt 1996) covering a restricted domain (10 . y+ . 40).
The calculation of γ is unavoidably affected by the nearby viscous sublayer and bulk
region and the value of scaling exponent 2 appears only at a point (rather than over an
extended plateau). Nevertheless, this does not invalidate the concept of the buffer-layer
scaling `+uv ∝ y+2, especially after we employ the third ansatz to form a combined
multi-layer description. Also note that in order to present a clear display of α= 1 in
the log layer, we plot a compensated γ function, i.e. Q(y+)= d ln(`+DNS

uv /L)/d ln(y+),
where L = `∧Outer

uv /y+ is the theoretical formula for the outer flow (see later). This
compensated plot eliminates the outer-flow influence on the log layer, but without
changing the scaling exponents in the viscous sublayer and buffer layer, as L is a
constant near the wall. In the following, we introduce the local power law for each
of the layers.
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3.1.1. Viscous sublayer
In the viscous sublayer, the stress length function is

`+sub
uv = Isub

1 y+3/2. (3.5)

This can be justified by a near-wall expansion (Pope 2000; Wu et al. 2012): u′ ∝ y
and v′ ∝ y2 such that the Reynolds shear stress W+ =W/u2

τ ∝ y+3. Since S+ ≈ 1 near
the wall, thus `+uv∝ y+3/2 (hence α= 3/2). Note that for Isub

1 , according to current DNS
data, it is approximately 0.034. Interestingly, if we assume `+uv( y+sub)≈1 (in wall units),
we immediately obtain an estimate of y+sub= (Isub

1 )−2/3
≈ 9.5, which is very close to the

final value 9.7 (see figure 1).

3.1.2. Buffer layer
Note that the log layer is well known as in (1.6), while the viscous sublayer is

characterized by (3.5). A natural question is: What is the scaling exponent of the stress
length function in the buffer layer? In fact, in the buffer layer, the power law for the
stress length function is

`+buf
uv = Ibuf

1 y+2. (3.6)

A preliminary study yields the following explanation. Using dimensional analysis we
obtain `uv = `νΘ

1/4, where `ν = (W/S)3/4/ε1/4
= ν

3/4
T /ε1/4 is a shear-induced eddy

length and Θ = ε/(SW) is the ratio between dissipation and production. A near-wall
expansion yields `ν ∝ y2, while in the buffer layer Θ ≈ const. (due to the fact that
turbulent transport and dissipation are of the same order as production). Hence, `uv ∝

y2 by multiplying `ν and Θ . Such a scaling exponent 2 is shown in figure 1, indicated
by a peak in the γ function located at approximately y+=20; and the coefficient Ibuf

1 ≈

0.01 from moderate Re’s DNS data. Whether this power law can be explained by a
statistical study of coherent vortex structures (Schoppa & Hussain 2002) in the buffer
layer, deserves further study. Interestingly, equation (1.7) assumes also a power-law
scaling with exponent 2, but it should be valid in the buffer layer and not the viscous
sublayer.

3.1.3. Log-law region (log layer)
The power scaling in the log-law region (log layer) is

`+log
uv = Ilog

1 y+ = κy+, (3.7)

which is the classical assumption made by Prandtl in 1925 (leading to the log law for
the mean velocity), i.e. the Karman constant κ = Ilog

1 . Later we will see (3.7) can be
obtained from a near-wall asymptotic analysis of a (outer) bulk solution (3.13). Hence,
(3.7) is not an assumption.

3.2. Outer flow
As shown in (2.14), the group invariants for the length function and its derivative are
respectively

I1 = `
∧

uv/r
α, I2 = ˙̀

∧

uv/r
α−1 (3.8a,b)

and the corresponding diagnostic function for the power-law scaling exponent is

γ = I2/I1 = ∂ ln(`∧uv)/∂ ln(r). (3.9)
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FIGURE 2. (Colour online) Plot of the stress length function `+uv (symbols) divided 1− r4

comparing the current theory with DNS data (Hoyas & Jimenez 2006). The plateau
demonstrates the existence of the bulk flow with the defect-power law (in coordinate
r), valid from y+ ≈ 50 to approximately 0.6Reτ . The lines are composite solutions: the
sub-buffer-layer transition `+(sub-buf )

uv (compensated by y+, solid line), the buffer-log-layer
transition `+(buf -log)

uv (compensated by y+, dashed line) and the bulk-core-layer transition
`+(bulk-core)

uv (dashed line). See table 1.

3.2.1. Core layer
A power law for the stress length can be derived near the centreline (core layer, as

r→ 0)
`∧core

uv = Icore
1 r−1/2, (3.10)

which can be explained as follows. The leading-order balance of the mean-momentum
equation between the Reynolds stress and the total stress yields W+ ≈ τ+ = r;
meanwhile, the central symmetry (zero mean shear) yields the first-order expansion
S+ ∝ r as r→ 0; hence `∧uv =

√
W+/(ReτS+) ∝ r−1/2, which diverges to infinity as

r→ 0. In a historical context, mixing length is undefined in the core region. Here we
resolve this problem by analytically quantifying its asymptotical behaviour and indeed
a well-defined formula for it is given and valid in the core. This extra layer is present
in a channel/pipe, as shown in figure 2. For the TBL, the core layer is absent, since
no centre symmetry is forced by the opposite wall condition (see figure 3). Typical
data would show occasional abrupt jumps to the high values of the stress length
function outside the boundary layer thickness. Such jumps are obviously artefacts and
hence are ignored.

3.2.2. Bulk flow (quasi-balance region)
The bulk flow is defined by a quasi-balance between production (SW) and

dissipation (ε). In this region, Θ = ε/(SW)≈ 1 and `ν = ν
3/4
T /ε1/4

→ `e as r→ 0 (finite
dissipation and eddy viscosity), therefore `uv = `νΘ

1/4
≈ `ν → `e (Chen, Hussain &

She 2016b). The existence of a finite `e introduces a characteristic length, which
contradicts the dilatation symmetry of `uv generally implying the absence of any
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Eqs. (3.27) and (3.28)

Eqs. (3.27) and (3.28)

1000 1200

(a)

(b)

FIGURE 3. (Colour online) (a) The stress length function from DNS data (in log–log
coordinates) compensated by the bulk-flow formula reveals a four-layer structure, i.e.
viscous sublayer, buffer layer, bulk zone and core layer (for channel and pipe), separated
by (empirical) layer thicknesses y+sub ≈ 9.7, y+buf ≈ 41 and rcore ≈ 0.27 respectively. (b) The
stress length function from DNS data (in log–linear coordinates) shows the constant
plateau of the bulk-flow structure, where the green dashed line indicates the bulk-flow
constant κ ≈ 0.45. Note that the stress length profiles in the three flows collapse in the
viscous sublayer, buffer layer and bulk flow, by multiplying m= 4 (channel and TBL) and
m= 5 (pipe) respectively. Solid lines are theoretical formulas (3.27) and (3.28) with the
above parameters (for the TBL, we choose δ = σδ99 ≈ 0.7δ99). Data are the same as in
figure 1.

characteristic length. In this case, we need to skip the constant I1 assumption, but
assume a constant group invariant for its first derivative only, i.e.

I1 6= const. and I2= const. (3.11a,b)
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Once again, when the dilatation symmetry in the length function itself is broken, it
may still be preserved for its derivative. Integrating (3.11) using (3.8) yields

`∧uv = (I2/m)rm
+ c, (3.12)

where c is an integration constant and m (=α) is a scaling exponent.
Note that (3.12) should be consistent with the wall condition `∧uv → 0 as r→ 1

(towards the wall), then c = −I2/m. A consequence is that we obtain a linear
asymptotic scaling for `∧uv as r→ 1, i.e. `∧uv→−I2(1 − r) = −I2( y/δ), which is, in
viscous units, `+uv→−I2y+. This is exactly the linear scaling (3.7) in the log layer. By
defining κ =−I2, (3.12) is exactly (3.7) when r→ 1. Therefore, the final expression
for the bulk flow is

`∧bulk
uv = κ(1− rm)/m, (3.13)

and the Karman constant is in fact the dilatation-group invariant of the bulk flow.
As long as the dilatation symmetry holds, κ is a constant. This is a very interesting
finding as the constancy of κ has been the subject of numerous controversies in the
literature (Nagib & Chauhan 2008; Marusic et al. 2010), although we have asserted
a universal κ (Chen, Hussain & She 2016a; Chen et al. 2016b; Chen & She 2016).
This new interpretation also implies that κ can be measured from the bulk-flow data
hence can be free of the ambiguity of the non-unique overlap region. Moreover, a
theoretical determination the scaling exponent m was reported by Chen et al. (2016b),
where a variational argument yields m = 4 for the flat wall (channel and TBL) and
m= 5 for the cylindrical wall (pipe).

3.3. Scaling transition between adjacent layers
The above results give a (local) quantitative characterization of the multi-layer
structure, i.e. power laws for viscous sublayer, buffer layer and core layer, and
defect-power law for bulk flow. As proposed by Oberlack & Rosteck (2010), it is
an open issue to describe scaling matching between different layers, which is now
addressed by using the generalized invariant relation (2.26) (or (2.29)) as below.

Applying (2.29) to the viscous sublayer and buffer layer yields

γ − 3/2
2− 3/2

=

(
Ibuf

1

`+uv/y+2

)q1

, (3.14)

where 3/2 and 2 are the scaling exponents in the sublayer and buffer layer,
respectively; and Ibuf

1 is the constant dilatation invariant in the buffer layer. It leads
to the following scaling transition function connecting the two layers, (3.5) and (3.6),
together as follows:

`+(sub-buf )
uv = Isub

1 y+3/2

(
1+

(
y+

y+sub

)p1
)1/2p1

= `0

(
y+

y+sub

)3/2(
1+

(
y+

y+sub

)p1
)1/2p1

, (3.15)

where the constant dilatation invariants Isub
1 and Ibuf

1 are replaced by y+sub = (Isub
1 /Ibuf

1 )2

(which is called the sublayer thickness and takes a value of approximately 9.7 shown
in figure 1) and `0 = Isub

1 (Isub
1 /Ibuf

1 )3 ≈ 1.03 (determined from κ). Note also that the
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transition sharpness p1= q1(2− 3/2)= q1/2 is set as integer 4, which is least sensitive
to predict MVP.

Similarly, for buffer and log layers, by using (2.29)

γ − 2
1− 2

=

(
Ilog

1

`+uv/y+

)q2

(3.16)

one has the following scaling transition:

`+(buf -log)
uv = Ibuf

1 y+2

(
1+

(
y+

y+buf

)p2
)−1/p2

= `0

(
y+

y+sub

)2(
1+

(
y+

y+buf

)p2
)−1/p2

, (3.17)

where y+buf= Ilog
1 /I

buf
1 = κy+2

sub/`0 (approximately 41, as shown in figure 1); and p2 = 4,
the same as p1.

The generalized invariant relation also works accurately for the outer flow. Note
that the bulk solution (3.13) saturates to a constant `∧uv → κ/m towards the centre,
indicating a zero scaling exponent, while the scaling exponent in the core layer is
−1/2; thus applying (2.29) to the bulk edge and the core-layer yields

γ − 0
−1/2− 0

=

(
Icore

1

`∧uv
√

r

)q3

, (3.18)

where γ is a function of r as in (3.9). Integrating (3.18) with respect to r leads to
the following composite solution:

`∧(bulk-core)
uv = (κ/m)(1+ (r/rcore)

p3)−1/(2p3)/Zc, (3.19)

where Zc = (1+ (1/rcore)
p3)−1/(2p3) obtained from `∧uv → κ/m as r → 1, and Icore

1 =

(κr1/2
core)/(mZc) is replaced by the core layer thickness rcore (which is then measured

to be 0.27 shown later). Note that the sharpness p3 has been derived by us (Chen
et al. 2016b) to be −2 from a central symmetry consideration, which is summarized
as follows. From (3.19), we can calculate that near the centreline ∂rε∝ r−p3−1 (using
ε= SWΘ). On the other hand, the dissipation is parabolic in the core layer (as ∂rε= 0
at the centre). Thus, by requiring equality between our calculation and the symmetry
consideration, i.e. ∂rε∝ r−p3−1

∝ r, one has p3 =−2.
The multi-layer representations of the invariant solutions are summarized in table 1.

Note that the defect-power law in the quasi-balance region connects two asymptotic
scalings, i.e. linear scaling in the log layer and the finite constant value at the bulk
edge. Figure 2 displays clear robust scaling, confirming the existence of dilatation
invariance in each layer. One may wonder why the invariance (symmetry) is preserved
in each layer. It is a conjecture that turbulence preserves statistical symmetries (Frisch
1995) (which means symmetry on the statistical quantities). Here, the dilatation
symmetry is indeed preserved locally in the stress length hence validating that
conjecture. The dilatation invariance in both the viscous sublayer and the central
core layer can be rigorously proven using the boundary constraints. New dilatation
invariance suggested by us includes the power law (e.g. y+2) in the buffer layer
and the defect-power law (e.g. 1 − rm) in the bulk flow. In conclusion, while prior
approaches have applied dilatation invariance to the MVP, our approach pushes the
level higher by applying dilatation invariance to a turbulence quantity, namely stress
length function.
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TABLE 1. Multi-layer structure for the stress length function. The first layer adjacent to
the wall is the viscous sublayer ending at y+sub ≈ 9.7; then it is the buffer layer ending at
y+buf ≈ 41; the core layer extends from the centreline to the core layer thickness rcore≈ 0.27
and the remaining flow domain is the bulk-flow region. The right column shows the
scaling transition which connects local power laws in adjacent layers (middle column)
together. Note that m = 4 for channel and the TBL, m = 5 for pipe, and `0 = κy+2

sub/y
+

buf ,
Zc = (1+ r2

core)
1/4.

3.4. Composite stress length function for the entire flow
To obtain a composite formula for the entire flow domain, we use the following
multiplicative rule (Van Dyke 1964):

φI-III
= φI-IIφII-III/φCommon. (3.20)

Note that for the inner three layers, the multiplicative rule corresponds to

`+In
uv = `

+(sub-buf )
uv `+(buf -log)

uv /`+buf
uv , (3.21)

which leads to the following composite solution for the inner flow

`+In
uv = `0

(
y+

y+sub

)3/2
(

1+
(

y+

y+sub

)4
)1/8(

1+
(

y+

y+buf

)4
)−1/4

. (3.22)

Similarly, applying the multiplicative rule to the outer flow

`∧Outer
uv = `∧bulk

uv `∧(bulk-core)
uv /`∧0 , (3.23)

where `∧0 = κ/m, the resulting outer solution is

CH & Pipe : `∧Outer
uv =

κ

mZc
(1− rm)

(
1+

(rcore

r

)2
)1/4

; (3.24)

TBL : `∧Outer
uv =

κ

4
(1− r4). (3.25)
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Finally, the composite stress length for the entire flow domain is obtained by

`+uv = `
+In
uv `

+Outer
uv /`+Common

uv = `+In
uv `

+Outer
uv /`+log

uv , (3.26)

which is (for channel and pipe)

`+uv=`0

(
y+

y+sub

)3/2
(

1+
(

y+

y+sub

)4
)1/8(

1+
(

y+

y+buf

)4
)−1/4

1− rm

m(1− r)Zc

(
1+

(rcore

r

)2
)1/4

.

(3.27)
For the TBL, the entire formula is the same, except for the absence of the core layer

`+uv = `0

(
y+

y+sub

)3/2
(

1+
(

y+

y+sub

)4
)1/8 (

1+
(

y+

y+buf

)4
)−1/4

1− r4

4(1− r)
. (3.28)

Figures 2 and 3 show verifications of (3.27) and (3.28) compensated by the bulk-
flow structure, 1− rm, where the agreement with DNS data is quite satisfactory. Note
that each of the inner layers and the core (divergent) layer are demarcated by the
corresponding layer thicknesses.

4. Validation of wall function and wake function
4.1. Validation by DNS data for moderate Re

As in the preceding introduction, in the near-wall region (y/δ→ 0), Φ(y/δ, y/δν)→
Φ1(0, y/δν)= fw(y+), which is called the wall function. It is believed to be universal
for canonical wall-bounded flows (Pope 2000); this concept has been widely used in
numerical modelling of wall flows, when the grid resolution becomes problematic. A
well-known wall function is the van Driest (1956) damping function (1.9), which bears
an incorrect asymptotic scaling `uv ∝ y2 in the viscous sublayer that should be `uv ∝

y3/2, as in (3.5).
Here, we propose a further improvement to the wall function. Substituting `+uv into

the momentum balance equation, which is S+ +W+ = τ+ in common with channel,
pipe and TBL flows (Pope 2000), the solution for the mean shear for three flows can
be generally denoted as

S+ =
(
−1+

√
1+ 4τ+`+2

uv

)/
(2`+2

uv ), (4.1)

U+ =
∫ y+

0
S+ dy+, (4.2)

where τ+ is the total stress. For channel and pipe flows, τ+ = 1 − y+/Reτ exactly;
for the TBL, τ+ can be derived from the wall normal velocity using the NS equation,
which is τ+= 1+

∫ y
0 (U

+∂xU++V+∂y′U+) dy′. Commonly, all three flows have τ+≈ 1
in the near-wall region. Substituting τ+= 1 into (4.1) and (4.2), one has respectively

S+( y+)=
(
−1+

√
1+ 4`+2

uv

)/
(2`+2

uv ), (4.3)

U+( y+)=
∫ y+

0

(
−1+

√
1+ 4`+2

uv

)/
(2`+2

uv ) dy+, (4.4)
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FIGURE 4. (Colour online) Wall function (4.4) (with (4.5)) predicted MVP (lines)
compared with DNS data (symbols) of channel (a,b), pipe (c) and TBL (d) flows,
respectively. Data are the same as in figure 1.

where `+uv for the near-wall region is given in (3.22)

`+uv = `0

(
y+

y+sub

)3/2
(

1+
(

y+

y+sub

)4
)1/8(

1+
(

y+

y+buf

)4
)−1/4

. (4.5)

With the empirical parameters y+sub=9.7, κ=0.45 and y+buf =41 (while `0=κy+2
sub/y

+

buf ≈

1.03), the resulting MVPs are plotted in figure 4 and the agreement with data is good
from the wall up to y+≈300. This supports a universal wall function for channel, pipe
and TBL flows. In fact, our preliminary study also shows that the new wall function
(4.4) with (4.5) applies to compressible channel, pipe and TBL flows, as well as to
TBL flows with pressure gradient effects. This establishes the universal multi-layer
formula of stress length.

Note that the outer-flow prediction of MVP can be given through the integration of
S+ ≈

√
τ+/`+uv. Taking channel and pipe flows for example, τ+ = 1− y+/Reτ = r (the

TBL is treated in Chen & She 2016), and the stress length function is given in (3.24).
Thus,

U+ =U+c −
∫ r

0

√
r′

`∧Outer
uv

dr′ =U+c −
∫ r

0

mr′[(1+ rcore
2)/(r′2 + rcore

2)]
1/4

κ(1− r′m)
dr′, (4.6)
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where κ and rcore are measured as follows. A direct way to measure κ is to examine
the compensated stress length function, i.e. m`∧uv/(1 − rm), as shown in figure 3(b)
where a plateau identifies the bulk zone and yields an estimate of κ ≈ 0.45. However,
this method requires high-quality Reynolds-shear-stress and mean-shear data, and
avoiding the influence of data noise. We develop an integration method to measure κ
and rcore, based on the MVP data as input.

We rewrite (4.6) as

U+(r)=U+c −
1
κ

f (r; rcore), (4.7)

where f is

f (r; rcore)=m(1+ r2
core)

1/4
∫ r

0
r′/[(1− r′m)(r′2 + r2

core)
1/4
] dr′, (4.8)

(m = 4 for channel and 5 for pipe). Then, the integration method consists of
minimising the errors between the theoretical prediction of (4.7) and empirical
MVP data for varying κ and rcore. This can also be considered as a fitting procedure
with two parameters as follows. Let U+Em(ri) be a set of empirically measured mean
velocities. Denote the theoretical mean velocity from (4.7) as U+The(ri; κ, rcore)
with corresponding parameters κ and rcore; and the relative error is defined as
Er = [

∑
(1−U+Em

i /U+The
i )

2
/N]1/2. Then, the minimum of Er yields the optimal

κOpt and rOpt
core. Note that the range of data used in the present method (i.e. the range

spanned by N measuring points) is still a factor which may influence the outcome
of optimal κ and rcore, but is far less important than the range defining the overlap
region in prior efforts to measure κ based on the log law. Since (4.7) is valid for
the outer flow, we take y+ > 150 as the data domain, where y+ ≈ 150 is the location
where the quasi-balance between production and dissipation begins according to our
analysis of the DNS data (Iwamoto et al. 2002; Hoyas & Jimenez 2006). On the
other hand, for high-quality DNS data, the outer edge is the centreline (in practice
when dealing with experimental data, we set a minimum r > 0.1 from the centreline
to avoid having too small values of the velocity defect).

Figure 5(a) shows contours of errors Er for DNS channel data at Reτ = 650
(Iwamoto et al. 2002), for which we find κOpt

≈ 0.452 and rOpt
core ≈ 0.26. Also, at

Reτ = 940 (Hoyas & Jimenez 2006), κOpt
≈ 0.447 and rOpt

core ≈ 0.31 (figure 5b).
The results are consistent with previously reported values obtained through the
compensated plot of the stress length function (in figure 3). The consistency of the
method is further checked by verifying (4.7), i.e. using the scaling function f and
the mean defect velocity, U+DNS

d , to display a linear relation. Taking Reτ = 650 for
example, figure 5(c) shows a clear linear relation with slope 0.452 for the entire
outer region from y+ = 150 to y+ = Reτ . Figure 5(d) shows that the theoretical MVP
according to (4.7) (with three parameters U+DNS

c = 21.54; rcore = 0.26 and κ = 0.452)
agrees very well with DNS data, with small errors, bounded within 0.1 % (see inset),
indicating high-quality measurements. Therefore, on average, we choose κ ≈ 0.45 and
rcore ≈ 0.27 for current DNS data.

A further consistency check is carried out by fixing κ = 0.45, rcore = 0.27 and
displaying the resulting outer MVPs using (4.6) for channels and pipes, as shown in
figure 6, which are in excellent agreement with the data. This fully demonstrates the
validity of the bulk-flow structure, i.e. 1 − r4 for channel and 1 − r5 for pipe. Note
that (4.6) can be rewritten as

U+c −U+ =G(r); G(r)=
∫ r

0

mr′[(1+ rcore
2)/(r′2 + rcore

2)]
1/4

κ(1− r′m)
dr′. (4.9)
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FIGURE 5. (Colour online) Contours of Er for DNS channel at Reτ = 650 (Iwamoto et al.
2002) (a) and at Reτ = 940 (Hoyas & Jimenez 2006) (b), using the theoretical MVP given
by (4.7). Different colours indicate different levels of error Er. The optimal κOpt

≈ 0.452
and rOpt

core≈ 0.26 for (a) and κOpt
≈ 0.447 and rOpt

core≈ 0.31 for (b) are marked by crosses. (c)
Verification of (4.7) at Reτ = 650 indicated by the linearity between f (r, 0.26) and U+DNS

d .
Note that the slope is the Karman constant κ = 0.452. (d) Accurate description of MVP.
The inset shows the relative error 1− UDNS/USED (times 100), which is bounded within
0.1 %.

We refer to G as the wake function for channel and pipe flows.
It is interesting to compare our current results with the analysis by Klewicki

(2013), who introduced a characteristic length scale L+width = O(β−1/2) where
β = dW+/dy++ 1/Reτ =−dS+/dy+ (according to the mean-momentum equation). From
our bulk solution S+=

√
W+/`+uv≈m

√
r/κ(1− rm)Reτ =m

√
r/κy+(1+ r+ · · · + rm−1),

it follows that, for the asymptotically large Re’s, S+ ≈ (κy+)−1 as r → 1; then
L+width ∝

√
κy+, consistent with the results of Klewicki (2013).

Finally, descriptions of entire MVP (lines) for channel and pipe flows are given
in figure 7 using (3.27) and τ+ = 1 − y+/Reτ . The agreement is strong between
predictions and data, as shown in the inset figures: the relative errors are bounded
within 1 % at every measured point. Hence, through a multi-layer stress length
function we obtain accurate descriptions of MVP for wall flows.

To examine the sensitivity of the ansatz in predicting the mean velocity U( y), we
have computed U( y) for varying parameters (κ, y+sub, y+buf , rcore, p) in (3.27). It turns
out that κ is the most sensitive parameter, whose 2 % variation yields a 2 % change
in the MVP. In contrast, for the same change of MVP, y+buf needs to be changed by
4 %, y+sub by 25 % and rcore by 50 %. In addition, the transition sharpness p is the least
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FIGURE 6. (Colour online) Outer prediction of MVP through (4.6) (solid lines) compared
with DNS data (symbols) of channel (a) and pipe (b) flows. The data are the same as in
figure 1.
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FIGURE 7. (Colour online) Predictions of MVP through (3.27) (solid lines) compared with
DNS data (symbols) of channel (a) and pipe (b) flows. The insets show the relative errors,
i.e. 100 × (1 − UDNS/USED), uniformly bounded within 1 % (dashed lines) for the entire
flow region. The data are the same as in figure 1.

sensitive parameter: by varying current p= 4 to either 2 or 6, changes the MVP by
no more than 1 %. Thus, the most sensitive parameters are layer thickness and the
Karman constant. Note that the scaling exponents are also important to quantify the
MVP, but they are not fitting parameters, as they are either determined by boundary
conditions or predicted theoretically.

4.2. Validation by experimental data for high Re
Given the fact that the multi-layer formula is verified and the parameters are
determined by the DNS data, it is important to compare the predictions with
experimental data at higher Re to confirm whether the candidate solutions proposed
here are generally valid for all Reynolds numbers. Below, we compare our theoretical
prediction with experimental data: channel-flow data from Melbourne (Monty 2005)
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FIGURE 8. (Colour online) MVPs for the entire flow (3.27) (solid lines) compared with
experimental data (symbols) of channel (a) and pipe (c) flows. Experimental data for
channel flow are from Melbourne (Monty 2005) and from Princeton (Zagarola & Smits
1998) for pipe flow. Each profile has been vertically shifted for a better display. (b,d) Show
the relative errors of channel and pipe flows, respectively, mostly bounded within 1 %
(dashed lines) for the entire flow region.

(for Reτ varying from 1170 to 4042) and pipe-flow data from Princeton (Zagarola
& Smits 1998) (for Reτ varying from 76 100 to 528 550), as shown in figure 8. The
comparison shows that the present formalism yields a quantitative description with
good accuracy over a wide range of Re (i.e. errors are mostly bounded within 1 %),
with a universal κ ≈ 0.45 but a slight change of y+buf and rcore, both growing slowly
as Re increases for Reτ below 5000 but becoming constants (y+buf ≈ 44, rcore≈ 0.5) for
Reτ over 5000. Such a transition around Reτ = 5000 is also noted but not explained
by Marusic et al. (2010).

5. Discussions and concluding remarks
Several recent studies of the MVP are noteworthy. Monkewitz et al. (2007) and

Nagib & Chauhan (2008) (i.e. the MCN model) have made a tremendous effort
to parameterize the entire MVP of channel, pipe and TBL, which concludes that
the classical description (an inner–outer two-layer model with a logarithmic overlap
region) is better than the competing power-law model. However, more than 10 fitting
parameters defying any physical explanation are needed for each canonical flow,
and the parameter variations among different flows are hardly intuitive. Moreover,
the choice of wake functions has no sound physical basis and κ as a free-fitting
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parameter is called the ‘Karman coefficient’. Another model, by Nickels (2004),
employs a three-layer description (with an explicit logarithmic layer), but the switch
from channel and pipe flows to the TBL has no justification. In addition, in Nickels’s
model κ is also a fitting parameter with no discussion of its universality and with no
attempt to determine wake parameters to predict the full MVP. Del Alamo & Jimenez
(2006) also proposed a model for turbulent eddy viscosity, following Reynolds &
Hussain (1972), which leads to a closure description of the MVP in channel flows
with no intent to generalize to the TBL is reported. A physical model by L’vov et al.
(2008) addresses explicitly effects of turbulent fluctuations on the mean velocity using
three characteristic length scales, but then still employs an empirical wake function
(by inspecting DNS data) for describing channel and pipe flows, without extending
the analysis to the TBL. In summary, all existing quantitative models (Nickels 2004;
Del Alamo & Jimenez 2006; Monkewitz et al. 2007; Panton 2007; L’vov et al. 2008)
for wall turbulence remain essentially empirical.

In this paper, we present a derivation of the multi-layer formula for the stress
length function, motivated from an innovative Lie-group symmetry analysis. The
Lie-group formalism expresses the mean-momentum equation in terms of the group
invariants, which is not closed and hence cannot be solved directly. Then, a specific
set of ansatz are postulated for group invariants associated with the stress length
and its derivative, then the multi-layer analytical structure is predicted, which yields
expressions for the mean shear, the Reynolds stress and hence the mean velocity
over the entire domain. While the multi-layer structure follows from the symmetry
assumption, which is rigorously justified locally for the viscous sublayer and the
central core layer, the parameters quantifying the multi-layer are obtained by a
mixture of phenomenological reasoning and empirical fitting to data. The final results
are reasonable, since the current description provides a simple distinction between
channel, pipe and TBL (m= 4 for a flat wall while m= 5 for a cylindrical wall; the
presence of the central core layer for internal flows while absent for the external flow).
It is particularly interesting to mention that κ and y+sub are checked to be universal
constants for three canonical wall flows, while y+buf possesses modest Re-dependence
(which will be reported in the near future). Hence, a unified description of three
canonical wall-bounded flows is achieved.

As explained in previous sections, the multi-layered structure identified here is
closely associated with the different balances between the terms in the turbulent
kinetic-energy equation (i.e. SW + Πp = ε, where SW is the production, ε is the
dissipation and Πp is the spatial transport effect). This is illustrated again by the ratio
of SW to ε shown in figure 9. One can see that the viscous sublayer is characterized
by SW � ε ≈ Πp; the buffer layer by the same order of SW, ε and |Πp|; the bulk
region by SW ≈ ε � |Πp|; and the core layer by SW � ε ≈ Πp. Thus, different
balances of the kinetic-energy equation terms give rise to different layers of the stress
length function.

Note that the universality of κ is an important issue. In the literature, the κ values
are under vivid debates varying over a fairly wide range (Marusic et al. 2010).
One of the major uncertainties in measuring κ is due to the arbitrary setting of the
overlap region, which obviously leads to different values of κ (Alfredsson et al. 2013;
Segalini et al. 2013). Taking the Princeton pipe data, for example, while Zagarola
& Smits (1998) chose an overlap region of 600 < y+ < 0.07Reτ , yielding κ = 0.436,
McKeon et al. (2004) chose the region of 600 < y+ < 0.12Reτ , yielding κ = 0.421.
Recently, Marusic et al. (2013) defined a logarithmic region (in y+) from 3

√
Reτ to

0.15Reτ and suggested κ to be 0.39 for Princeton pipe data. Another recent effort
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FIGURE 9. Ratio of production to dissipation terms of the kinetic-energy equation in a
DNS channel at Reτ = 650 (Iwamoto et al. 2002). The boundaries of viscous sublayer,
buffer layer, bulk region and core layer are located at y+sub≈ 9.7, y+buf ≈ 41 and rcore≈ 0.27,
respectively.

by Nagib & Chauhan (2008) involves determining κ freely in (artificially) composed
asymptotic expansions. In contrast, here we have derived a geometry-dependent
bulk-flow structure (i.e. 1− rm with m= 4 for channel and TBL and 5 for pipe), thus
removing the need for defining the overlap region. Our theory then defines κ as a
global coefficient valid for the entire outer flow (including the overlap region), which
coincides with Prandtl’s original definition close to the wall for asymptotically large
Re′s. The value 0.45 is measured here from DNS data in figure 5, and is verified to
a great extent to higher Re by a number of experimental MVPs for channel, pipe and
TBL (She et al. 2012; Chen et al. 2016b; Chen & She 2016). An additional support
of this new Karman constant stems from a recent study of the Wilcox k–ω model
(Chen et al. 2016a): by changing κ = 0.41 in the original k–ω model (Wilcox 2006)
to 0.45, one immediately obtains much better agreement with Princeton’s experimental
MVPs near the wall, with significant improvement at high Re’s. Thus, our results
support a universal κ for three canonical wall flows, which should be verified against
more data.

It is natural to ask whether the stress length is the only choice as a symmetry-
preserved variable. Actually, the prediction will be different if a different quantity,
e.g. the eddy viscosity ν+T =W+/S+, is assumed to follow the invariant ansatz. Note
that if one carries the transformation (2.9) on ν+T in the balance equation (2.6), the
transformed eddy viscosity then reads ν+∗T = `

+∗2
uv S+∗= `+2

uv S+= ν+T . In other words, ν+T
is itself a dilatation invariant. However, unlike I1 or I2 for the stress length, neither
the scalar nor the differential invariant of ν+T is a true constant in any of the layers,
since neither ν+T = const. nor ν+T ∝ ln(y+) is supported by empirical data. In practice,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

46
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.464


Quantifying wall turbulence via a symmetry approach: a Lie group theory 349

choosing `uv to follow the dilatation invariant ansatz yields simple and valid analytical
forms for all relevant functions (e.g. S+, W+).

Also, what does the symmetry analysis using the Lie-group formalism add to our
understanding beyond making a direct postulate of power law? The answer is that
a Lie-group formalism guarantees that the RANS equation remains invariant under
the (dilatation) group of transformation and any invariant solution ansatz used here
also guarantees that a transformed solution satisfies the RANS equation. While the
power-law form of the stress length can be motivated from simple scaling arguments,
the ansatz of the second and third kinds, a defect-power-law form for the bulk flow
and a series of scaling matched forms, would be difficult to guess. This last ansatz
is invoked by the simple continuity assumption about the variation of the local group
invariants. A future task is to combine the stress length function with the study of
coherent structures. For example, by assuming that the stress length indeed describes
the integral scale eddies, one may extend the Townsend–Perry wall-attached eddy
theory (Townsend 1976; Perry & Chong 1982; Perry, Henbest & Chong 1986).

The present approach also can be applied to describe the distribution of streamwise
fluctuation intensity (Chen et al. 2015). In analogy to the stress length function `uv
defined in (1.4), it is natural to define `uu = 〈u′u′〉1/2/∂yU, which leads to 〈u′u′〉 =
−〈u′v′〉(`uu/`uv)

2. Similar to `∧Outer
uv in (3.24), a composite formula for `∧uu connecting

the bulk and the core layer of pipe flows is suggested as

`∧uu = κ
′(1− r)1γ (1− r5)[1+ (rcore/r)2]1/2/(5Z′c), (5.1)

where Z′c = (1+ r2
core)

1/2. Here, `∧uu differs from `∧uv by the presence of an abnormal
scaling 1γ 6= 0 quantifying a meso-layer and a different core layer scaling at the
centreline (`∧uu ∝ 1/r for r → 0 due to a finite 〈u′u′〉 at the centreline). Note that
1γ = 0 yields |〈u′u′〉/〈u′v′〉|1/2= `uu/`uv ≈ κ

′/κ in the overlap region, which indicates
〈u′u′〉 ≈ (κ ′/κ)2u2

τ , a constant streamwise kinetic energy. However, this contrasts with
a recent observation of an outer peak of 〈u′u′〉 in high Re pipe (Hultmark et al. 2012).
In other words, the presence of the outer peak implies that 1γ 6= 0.

Thus, using (3.24) and (5.1), the outer streamwise kinetic-energy profile is given as

〈u′u′〉+ =−〈u′v′〉+(`uu/`uv)
2
≈ r(κ ′/κ)2(1− r)21γ (Zc/Z′c)

2
[1+ (rcore/r)2]1/2. (5.2)

With the values of rcore = 0.27, κ ′ = 0.80 and 1γ = −0.06 for `uu, figure 10 shows
good agreement between (5.2) and the data. Hence, the multi-layer ansatz and the
length order functions give rise to a unified description of the mean velocity and
kinetic-energy profiles. A complete description of the entire 〈u′u′〉, 〈v′v′〉 and 〈w′w′〉
profiles through `uu, `vv and `ww can all be obtained similarly.

Finally, it is necessary to clarify the analytical part of current results from
those obtained from data, where concerns may arise regarding the ‘derivation’ (or
‘prediction’) of the multi-layer structure. Here, let us summarize our three steps to
define the invariant solution of the RANS equation and hence obtain the multi-layer
structure. First, the theory chooses the length (order) function since length scale
is essential to the description of turbulence. Second, the Lie-group argument is
invoked to determine the analytical form of the stress length function, with the
dilatation invariance from y = 0 (the wall) and r = 0 (the centre of channel/pipe
and the edge of the TBL). The composite formula over the entire flow region is
obtained by matching the local dilatation invariants, and the wall and wake functions
for the mean velocity are directly obtained from the mean-momentum equation.
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FIGURE 10. (Colour online) (a) Compensated plot of `uu (divided by 1− r5) in pipe flow
at Reτ = 1142. DNS data (symbols) compared with (5.1) (line). (b) Outer profile of DNS
〈u′u′〉+ (symbols) compared with (5.2) (line).

Finally, a variety of techniques are used to determine the values of the scaling
exponents and layer thicknesses in the multi-layer formula, where phenomenological
arguments and data fitting are involved only in this step. Thus the three steps
constitute a general and systematic procedure. We have applied the approach to a
variety of wall-bounded flows (channel, pipe, TBL, Rayleigh–Benard convection and
Taylor–Coutte flow, etc.), and under the effects of compressibility (Zhang et al. 2012;
Wu et al. 2017), roughness (She et al. 2012) and pressure gradient, and these results
will be communicated in the near future.
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Appendix A. Dilation group analysis for channel flow
The analysis consists of the following three standard steps. Step one is to define the

symmetry transformations. For (2.6), a Lie-group transformation Sε can be expressed
as

t∗ =Φ(t, x, ε); x∗ =Ψ (t, x, ε), (A 1a,b)

where the superscript ∗ denotes transformed variables; t= ( y+,Reτ ) and x= (U+, `+uv)
are independent and dependent variables, respectively; and Φ, Ψ are analytical
functions of t, x and a continuous parameter ε (note that a key step is to specify
the independent ( y+, Reτ ) and dependent variables (U+, `+uv). The next step is to
follow the standard software to calculate the infinitesimals). Then the symmetry
transformation satisfies

C(t, x)= 0 ⇔ C(t∗, x∗)= 0. (A 2)

Note that Sε can also be expressed in an infinitesimal form

t∗ = t +
−→
ξ (t, x)ε+O(ε2); x∗ = x+−→η (t, x)ε+O(ε2), (A 3a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

46
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.464


Quantifying wall turbulence via a symmetry approach: a Lie group theory 351

where
−→
ξ = ∂Φ/∂ε|ε=0= (ξy+, ξReτ ) and −→η = ∂Ψ /∂ε|ε=0= (ηU+, η`+uv ) are the so-called

infinitesimals. Then Taylor expansion, C(t∗, x∗) = C(t, x) + εXC + O(ε2), yields the
following equation for the infinitesimals:

XC|C=0 = ξy+
∂C
∂y+
+ ξReτ

∂C
∂Reτ

+ ηU+
∂C
∂U+
+ η`+uv

∂C
∂`+uv
+ Xp = 0, (A 4)

where X is the so called Lie-group operator and Xp, solved from
−→
ξ and −→η , is referred

to as the ‘prolongation’ (of the group) by the contact condition (see Cantwell 2002).
The infinitesimals can be solved conveniently by software Maple13, yielding

ξy+ = a1y+ + b1, ξReτ = a2Reτ , (A 5a,b)

ηU+ = (2a1 − a2)U+ + b2, η`+uv = (−a1 + a2)`
+

uv/2, (A 6a,b)

where coefficients ai and bi (i = 1, 2) are functions of Reτ denoting dilatations and
translations, respectively. Now, the wall condition, i.e. U+

∗

= `+
∗

uv = 0 at y+
∗

= 0, leads
to b1= b2= 0; thus, near the wall, only the dilatations (as opposed to translations) are
permitted. Normalized with the parameter a1, we have

ξy+ = y+, ξReτ = (1+ 2α)Reτ , (A 7a,b)

ηU+ = (1− 2α)U+, η`+uv = α`
+

uv, (A 8a,b)

where α = (−1 + a2/a1)/2 is the only remaining parameter quantifying the local
scaling of the stress length.

Step two is to define group invariants, which are obtained by solving the
characteristic equations dti/dξi = dxi/dηi, for our case, written as

dy+

y+
=

dReτ
(1+ 2α)Reτ

=
d`+uv
α`+uv
=

d ˙̀+uv
(α − 1) ˙̀+uv

=
dU+

(1− 2α)U+
=

dU̇+

2αU̇+
=

dÜ+

−1− 2αÜ+
. (A 9)

Here, we introduce the prolongated infinitesimals for the gradients of mean velocity
(up to second order) and of the stress length function, for example, η ˙̀+uv = (α− 1) ˙`+uv,
where · denotes a derivative operator in y+. The solutions to (A 9) define the following
group invariants:

I0 = Reτ/y+(1+2α), I1 = `
+

uv/y
+α, I2 = ˙̀

+

uv/y
+(α−1),

G1 =U+/y+(1−2α), G2 = U̇+y+2α, G3 = Ü+y+(1+2α).

}
(A 10)

These group invariants, in general, functions of y+ and Reτ , are the similarity
variables (Cantwell 2002).

Finally, in step three, we rewrite C= 0 in terms of the group invariants,

C=G3 + 2I2
1G2G3 + 2I1I2G2

2 + 1/I0 = 0. (A 11)
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Similarly, for the outer flow, the analysis above yields (in centre units)

I0 = Reτ r1/2+α, I1 = `
∧

uv/r
α, I2 = ˙̀

∧

uv/r
α−1,

G1 = (U+c −U+)/r3/2−α, G2 = U̇+/r5/2−α, G3 = Ü+/r7/2−α,

}
(A 12)

where · denotes r-derivative and the outer mean-momentum equation in terms of group
invariants is

N=−G3/I0 + 2I2
1G2G3 + 2I1I2G2

2 − 1= 0. (A 13)

Geometrically speaking, C= 0 (or N= 0) defines an invariant surface in the variable
space of t and x, which is invariant under a dilatation group of transformation, and
the infinitesimals are tangent vectors to the invariant surface. The so-called invariant
solution, for example, Θ(t, x) = 0, defined to satisfy the invariant surface condition,
i.e. XΘ|Θ=0= 0, must be a function of similarity variables. The present work seeks an
analytical form of the invariants of the stress length function and its first derivative,
namely Θ(I1, I2)= 0, which is a sub-space tangent to a prescribed set of infinitesimals
(e.g. ξy+ , η`+uv and η ˙̀+uv ).

Appendix B. The structure ensemble dynamics theory
The structure ensemble dynamics (SED) theory aims to develop a foundation

dealing with the (statistical) symmetry of turbulence (Frisch 1995), based on which
a quantitative description becomes feasible. It originates from three concepts, i.e.
ensemble, structure and dynamics, with the following fundamental assumption: the
ensemble property of structure and dynamics, spatial and temporal constituents of
physical systems (e.g. wall flows), is a quantifiable behaviour governed by a statistical
symmetry. Thus, to uncover the relevant statistical symmetry would be the main task
to reveal the simplicity of a turbulent system, a complex system induced by various
boundary conditions and nonlinear multi-scale interactions among a large number of
degrees of freedom. In this section, we address why and how the SED provides a
general framework to quantify wall-bounded turbulent systems.

Dilation symmetry is of particular importance to turbulent wall flows due to
the constraint by the presence of wall. The non-slip wall condition governs all
terms in the RANS equations (including mean-momentum, kinetic-energy and
internal-energy equations) when any transformations are performed. SED, following
Landau’s spirit, further assumes that the dilatation symmetry also determines the
solutions of RANS equations (i.e. distributions of mean quantities) through order
parameter/function which describes ensemble properties emerged from the turbulence
fluctuation background. The relevant order parameter/function, once identified, is thus
the key to quantifying turbulence, since its role of symmetry is universal to wall
flows. Specifically, SED theory involves two important concepts, i.e. multi-state and
order function, which are universal to all wall flows as explained in detail below.

B.1. Multi-state symmetries with distinct energy-balance mechanism
Turbulence as a typical non-equilibrium process displays a number of symmetry-
breaking behaviours. In wall-bounded flows, when turbulent fluctuations arise,
several balance mechanisms in energy dynamics (e.g. turbulence production or
transport-balance dissipation) are comparable, which is the origin of different scaling
of stress length. Thus, it is natural to conjecture that multi-state is the general form of
symmetry-breaking in wall turbulence. To facilitate the generalization of the present
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analysis to other flows, a basic set of postulates are formulated as follows: (i) the
existence of wall introduces a finite number of statistical states due to the presence
of different characteristic fluctuation structures; (ii) each state covers a spatially
extended domain, which is a layer in wall-bounded flows, depending on the distance
from the wall; and (iii) layers, as well as transitions between layers, are characterized
by the symmetry properties of the order functions. In other words, wall-bounded
turbulent flows typically exhibit a ‘multi-layer structure’. Then, the key issue is
to find appropriate variables and suitable formalisms for their descriptions; this is
accomplished by the concept of order function as described below.

B.2. Order function
Generally speaking, order functions are quantities displaying distinct symmetry
properties. It is inspired by the concept of order parameter in the statistical
mean-field theory, which describes the changes of the statistical state (e.g. phase
transition) associated with symmetry breaking. In critical phenomena, phase transition
accompanies symmetry changes, which alter the scaling exponent. In turbulent flow,
fluctuations inherently alter the mean velocity (through Reynolds stress) and this
interaction also constitutes symmetry breaking. This effect is described by introducing
a length order function, which displays a distinct character from one layer to another
by its dilatation-invariant scaling. In a sense, turbulent fluctuations restore a dilatation
symmetry (layer by layer) (Frisch 1995) and the symmetry property can be quantified
by the scaling of the order functions.

An order function typically involves a ratio of two (or more) statistical quantities.
Finding an appropriate order function for a given turbulent flow is the very first
step in a SED study of turbulent flows. Three kinds of order functions have been
suggested (She et al. 2010). The first is a ratio between two (dominant) terms in the
governing equation (mean-momentum equation or mean kinetic-energy equation),
called ratio-order function. The ratio-order function is particularly effective in
connecting the statistical state to its dynamical origin, e.g. linking the multi-layer
to the balance mechanism in the momentum or energy equation. The second is
a length function, which is probably the most important quantity for describing
physics phenomena; the complexity of turbulence lies in the fact that multiple
characteristic length scales are relevant to different aspects of turbulence dynamics.
Usually, dimensional argument is sufficient to define a number of relevant length
scales (such as the stress length function). The third is a sensitive indicator function
with correct (theoretical) asymptotic scaling which is effective to incorporate boundary
effects and can be used to check the quality of simulation (see She et al. 2010).

Note that we keep the list of order function open, as additional fluctuations (such
as density, temperature, etc.) may introduce new order functions. As more flows are
studied by us, we will show that for each flow, there always exists a set of order
functions which exhibit distinct symmetry behaviour across different layers and hold
important physical constants – some of which (like Karman constant) maybe universal
for different kinds of flows.

B.3. How does one proceed in a SED study of turbulence?
A SED study of turbulence proceeds in three steps. First, it consists in verifying the
existence of the symmetry, which amounts to verifying whether the order function
has local scaling. Second, it determines the parameters, such as scaling exponents
and layer thicknesses, with available empirical data. In particular, one would identify
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universal constants which do not vary with physical conditions (Re, Ma, geometry,
surface roughness, pressure gradient, etc.). Finally, based on the above qualitative (first
step) and quantitative (second step) information, one calculates important quantities
(such as friction coefficient, heat flux, etc.) in the third step, for making predictions
for a range of physical parameters (such as Re, Ma, etc.). The three steps constitute
a complete procedure, going from DNS analysis to relevant engineering model
construction (as we have done for improving the k–ω model Chen et al. 2016a).
Note that this procedure is also applicable to a number of wall flows under a variety
of physical conditions (such as two-phase flows, magneto-hydrodynamic flow, flows
in tokamac, etc.), which can be helpful in better utilizing a DNS study of practical
flow systems. The SED is proposed to fulfil this need.
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