Background: Changes in lifestyle factors are known to affect mood. However, there is insufficient evidence supporting the association between smoking, alcohol consumption, physical activity and depression in middle-aged women who are likely to experience rapid hormonal changes.

Methods: We used a nationwide database of medical records in South Korea. 901,721 premenopausal and 943,710 postmenopausal women aged 40 years or older included in this study. Information on smoking, alcohol consumption, physical activity was identified from health examination data and followed up for the occurrence of depression using claims data.

Results: Compared with never-smokers, ex-smokers and current smokers among premenopausal and postmenopausal women showed an increased risk of depression in a dose-dependent manner (aHR 1.13 for ex-smokers; aHR 1.23 for current smokers). Compared with non-drinkers, mild drinkers showed a decreased risk of depression (aHR 0.98 for premenopausal women; aHR 0.95 for postmenopausal women), and heavy drinkers showed an increased risk of depression both among premenopausal (aHR 1.20) and postmenopausal women (aHR 1.05). The risk of depression due to smoking and heavy alcohol consumption was higher in premenopausal women than in postmenopausal women. Compared with those who had not engaged in regular physical activity, those who had engaged showed a decreased risk of depression both among premenopausal (aHR 0.96) and postmenopausal women (aHR 0.95).

Conclusions: Smoking and heavy alcohol consumption increased the risk of depression, and the increased risk was prominent in premenopausal than in postmenopausal women. Regular physical activity decreased the risk of depression both in premenopausal and postmenopausal women.

P61: The use of the errorless learning method in the rehabilitation of activities of daily living and instrumental activities of daily living

Authors: MSc Gabriela Początek¹, MSc Natalia Segiet², Professor Aleksandra Klimkowicz-Mrowiec, MD, Ph.D.³, Professor Agnieszka Gorzkowska, MD, Ph.D.⁴

¹Medical University of Silesia, Doctoral School of Medical University of Silesia in Katowice

Objective: The aim of this review was to describe the usage and effectiveness of errorless learning in activities of daily living (ADL) and instrumental activities of daily living (IADL) rehabilitation methods reported in the literature over the past 10 years.

Methods: Two databases were searched (PubMed, EMBASE) using the key words "errorless learning and ADL and IADL". Articles published in the last 10 years in English were considered.

Results: 4 studies were identified that included 94 people with Alzheimer's disease (AD) and 129 people with stroke (104 with amnesia and 25 with ideational apraxia).

One study on AD patients showed that it is possible for them to re-learn relevant IADL activities using the errorless learning (EL) and spaced retrieval (SR) techniques and to maintain these gains for at least 3 months (t =2.811; df =22.246; p=0.010).

² Jagiellonian University Medical College Collegium Medicum, Doctoral School of Medical and Health Sciences

³Jagiellonian University Collegium Medicum, Chair in Internal Medicine and Gerontology.

⁴Medical University of Silesia, Faculty of Medical Sciences in Katowice, Department of Neurorehabilitation

In another study on AD patients, participants with AD had to re-learn three IADLs. All three learning methods (including EL) had similar efficiency (F(2,94)=21,99). However, the intervention resulted in greater improvement in actual IADL task performance than in explicit knowledge.

In another study, structured ADL re-training in stroke survivors with amnesia significantly increased functional independence (MD: 4.90, SE=1.4, 95% confidence interval) and shortened time of hospitalisation (mean difference: 5.22, SE= 1.4, 95% CI: 1.8, 8.7).

The fourth study presented a model in which patients with post-stroke ideational apraxia attended tea making training sessions during which progress was monitored and feedback was provided via a computer system. A qualitative analysis of errors was conducted before training, and the most common errors observed were those related to kettlebell and continuous perseveration. After training, the frequency of errors decreased for all error types except for skipping a step.

Conclusion: The results of the studies discussed demonstrate the wide range of applications of error-free learning protocols in both AD patients and post-stroke patients. A clearly specified but flexible training protocol, together with information on error distribution, provide pointers for further refinement of task model approaches in ADL and IADL rehabilitation.

P63: Best Practice Guidance on Human Interaction with Technology in Dementia Update June 2023 – Recommendations from the INDUCT and DISTINCT Networks

Authors: Rose-Marie Dröes¹, Yvette Vermeer², Sébastien Libert², Gianna Kohl², Sophie Gaber³, Sarah Wallcook³, Harleen Rai⁴, Aline Cavalcanti Barroso⁴, Esther Gerritzen⁴, Joeke van Santen¹, Floriana Mangiaracina¹, Kim Beentjes¹, David Neal¹, Josephine Tan¹, Sara Bartels⁵, Hannah Christie⁵, Pascale Heins⁵, Golnaz Atefi⁵, Rose Miranda⁶, Annelien van Dael⁶, Fanny Monnet⁶, Kate Shiells⁷, Ángel C. Pinto Bruno⁸, Angie Alejandra Diaz⁹, Mauricio Molinari Ulate⁹, Aysan Mahmoudi Asl⁹, Simone Fielding¹⁰, Beliz Budak¹⁰, Viktoria Hoel¹¹, Wei Qi Koh¹², Jaroslav Cibulka¹³, Lieve Van den Block⁶, Lara Pivodic⁶, Dympna Casey¹², Georgina Charlesworth², Karin Dijkstra¹⁴, Teake Ettema¹, Manuel Franco Martin⁹, Paul Higgs², Iva Holmerova⁷, Camilla Malinowsky³, Orii McDermott⁴ Franka Meiland¹, Louise Nygard³, Martina Roes¹⁰, Henriëtte van der Roest⁹, Justine Schneider⁴, Olga Stepankova¹³, Annemieke van Straten⁸, Elaine Toomey¹², Frans Verhey⁵, Marjolein de Vugt⁵, Karin Wolf-Ostermann¹¹, Martin Orrell⁴

¹VU University Medical Centre, Amsterdam, The Netherlands, ²University College London, London, United Kingdom, ³Karolinska Institutet, Stockholm, Sweden ⁴University of Nottingham, Nottingham, United Kingdom, ⁵Alzheimer Center Limburg/Maastricht University, Maastricht, The Netherlands, ⁶End of Life Care Research Group, Vrije Universiteit Brussel, Brussels, Belgium, ⁷Charles University, Prague, Czech Republic, ⁸Vrije Universiteit, Amsterdam, The Netherlands, ⁹Universidad de Salamanca, Salamanca, Spain, ¹⁰Deutsches Zentrum fuer Neurodegenerative Erkrankungen, Germany, ¹¹University of Bremen, Germany, ¹²National University of Galway, Ireland, ¹³Czech Technical University, Prague, Czech Republic, ¹⁴Saxion University of Applied Sciences, The Netherlands

Objective: INDUCT (Interdisciplinary Network for Dementia Using Current Technology), and DISTINCT (Dementia Inter-sectorial strategy for training and innovation network for current technology) are two Marie Sklodowska-