
1
Stars

In antiquity stars were generally supposed to be bright spots fixed on a sphere
that revolves once a day about the Earth. Modern astrophysics began in the early
nineteenth century, with the discovery by Joseph von Fraunhofer (1787–1826)
of dark lines in the spectra of the Sun and some bright stars, which showed
that they all have similar composition, and with the measurement by Friedrich
Bessel (1766–1828) and William Wollaston (1784–1826) of the distances of
stars like Y Cygni and α Centauri, which showed that their absolute luminosity
is not very different from that of the Sun. By the end of the nineteenth century
hydrodynamics and thermodynamics had been applied to the structure of the
Sun and stars. Only the source of their energy was still mysterious, not to be
understood in detail until the development of nuclear physics in the 1930s.

It would be most logical to begin this chapter with an introduction to the
physics required to understand modern stellar theory, including calculations of
nuclear energy production and opacity, and only then go on to the stars them-
selves. Logical, but perhaps a bit boring. It is not always possible to maintain
one’s interest in the details of nuclear and atomic physics without knowing how
these results are to be used. So in this chapter we start with the stars.

First in Section 1.1 we derive the equations of hydrostatic equilibrium for
stars. This leads to the virial theorem, which illuminates the stars’ early history.
Then in Sections 1.2 and 1.3 we adopt a simple model in which energy is
transported in the star solely by radiation, leaving convection for later sections.
In this model we can see how the structure of the star is uniquely determined
by the formulas that give pressure, opacity, and nuclear energy production in
terms of density and temperature, with just one free stellar parameter, that can
be taken to be the star’s total mass. With this as motivation, in Sections 1.4
and 1.5 we describe the physics underlying the formulas for opacity and nuclear
energy generation. It turns out to be a fair approximation to take the opacity and
energy generation as well as the pressure as proportional to products of powers
of density and temperature. This approximation is used in Section 1.6 to give
formulas for stellar properties, including luminosity, radius, central temperature,
etc., in terms of the star’s mass. We come to convection in Section 1.7, and
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2 1 Stars

show that the presence of convective zones does not greatly change the results
of Sections 1.3 and 1.6.

We then turn to stars of a more exotic breed. In Section 1.8 we consider the
general class of stars in which the pressure is simply proportional to some power
of the density. Where this power is close to 4/3, the star is close to instability.
The detailed conditions for stellar instability are worked out in Section 1.9. Then
we consider white dwarf and neutron stars in Section 1.10 and supermassive
stars in Section 1.11, using the results of Section 1.8 to describe their structure
and of Section 1.9 to find where they become unstable.

This chapter deals only with isolated single stars. Binary stars and their emis-
sion of gravitational radiation will be considered in the following chapter.

1.1 Hydrostatic Equilibrium

Suppose a star is in equilibrium and is spherically symmetric, so that the mass
density ρ and pressure p are functions only of the distance r from the cen-
ter. Consider a thin spherical shell of radius r and thickness dr . Its mass is
4πr2ρ(r) dr , so it feels a gravitational force

Fgravitational = −G4πr2ρ(r) dr M(r)

r2
= −4πGρ(r)M(r) dr , (1.1.1)

where M(r) is the total mass interior to the radius r:

M(r) =
∫ r

0
4πr ′2ρ(r ′) dr ′. (1.1.2)

The minus sign in Eq. (1.1.1) indicates that this force points inward. The shell
also feels an outward buoyant force, equal to the pressure force on the inner
surface of the shell minus the pressure force on its outer surface:

Fbuoyant = 4πr2[p(r)− p(r + dr)] = −4πr2 p′(r) dr . (1.1.3)

In equilibrium the sum of these forces vanishes, so

dp(r)

dr
= −GM(r)ρ(r)

r2
. (1.1.4)

This is the fundamental equation of hydrostatic equilibrium for stars. For some
purposes it is convenient to rewrite Eq. (1.1.2) also as a differential equation

dM(r)

dr
= 4πr2ρ(r), (1.1.5)

with initial condition M(0) = 0.
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1.1 Hydrostatic Equilibrium 3

Equations (1.1.4) and (1.1.5) lead to a useful inequality for the pressure.1 We
note that

d

dr

[
p(r)+ GM2(r)

8πr4

]
= −GM(r)ρ(r)

r2
− GM2(r)

2πr5
+ GM(r)M′(r)

4πr4
.

The first and third terms cancel, leaving the negative second term, so

d

dr

[
p(r)+ GM2(r)

8πr4

]
≤ 0. (1.1.6)

In particular, assuming that the density is finite at r = 0, we have M(r) ∝ r3 for
r → 0, so M2(r)/r4 → 0 for r → 0. Assuming also that the pressure vanishes
at some nominal stellar radius R, and taking M(R) = M , the quantity in square
brackets in (1.1.6) is p(0) at r = 0 and GM2/8πR4 at r = R, so (1.1.6) yields
a useful inequality for the central pressure:

p(0) ≥ GM2

8πR4
= 4.44 × 1014(M/M�

)2(
R/R�

)−4 dyne/cm2. (1.1.7)

(The subscript � denotes values for the Sun. For comparison, recall that one
standard atmosphere equals 1.013 × 106 dyne/cm2.) Using methods described
in this chapter, it has been calculated that the pressure at the center of the Sun
is p�(0) 	 2 × 1017 dyne/cm2, in accord with the inequality (1.1.7).

Equation (1.1.4) can be used to derive a simple formula for the total gravi-
tational potential energy � of the star, related to the virial theorem of celestial
mechanics. We define −� as the energy required to remove the mass of the
star to infinity, peeling it shell by shell from the outside in. Once all the mass
exterior to a radius r has been removed, the energy required to remove the shell
at r of thickness dr is the integral over the distance r ′ between the shell and the
star’s center of the gravitational force GM(r)/r ′2 × 4πr2ρ(r) dr exerted by a
mass M(r) on the shell’s mass:

GM(r)× 4πr2ρ(r) dr ×
∫ ∞

r

dr ′

r ′2
= 4πGrM(r)ρ(r) dr ,

so the total gravitational binding energy is

−� = 4πG
∫ R

0
rM(r)ρ(r) dr , (1.1.8)

where R is the radius of the nominal stellar surface, where p(R) = 0. Using
Eq. (1.1.4) for −GMρ, we have

1 S. Chandrasekhar, An Introduction to the Study of Stellar Structure (University of Chicago Press, Chicago,
IL, 1939), Chapter III. This chapter also gives other general theorems derived from Eqs. (1.1.4) and (1.1.5).
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4 1 Stars

� = 4π
∫ R

0

dp(r)

dr
r3 dr = −3

∫ R

0
p(r) 4πr2 dr , (1.1.9)

in which we have integrated by parts, using the vanishing of r3p(r) at both
endpoints of the integral.

Incidentally, the definition of � can also be written in terms of the familiar
gravitational potential

φ(r) = −G
∫ ∞

r

M(r ′) dr ′/r ′2. (1.1.10)

(This formula satisfies the defining condition that −φ′(r) should equal the New-
tonian force per mass −GM(r)/r2. An arbitrary additive constant has been
chosen so that φ(r) → 0 for r → ∞.) Integrating by parts, we have∫ ∞

0
φ(r)M′(r) dr = −

∫ ∞

0
φ′(r)M(r) dr = −G

∫ ∞

0
M2(r)dr/r2.

With −1/r2 = d/dr(1/r) and integrating by parts again, we see that the final
expression is 2�, so

� = 1

2

∫ ∞

0
φ(r)M′(r) dr . (1.1.11)

The integral here is the sum of the gravitational energies of each bit of stellar
matter, due to the gravitational field of each bit of matter, so in the integral
each bit of stellar matter is counted twice, a double counting corrected by the
factor 1/2.

The total energy of the star is the sum of � and the star’s thermal energy,
given by

ϒ ≡
∫ R

0
E(r) 4πr2 dr , (1.1.12)

where E(r) is the density of internal thermal energy, not including rest mass
energies or gravitational energy. The total non-relativistic energy (not including
rest masses) of the star is then

E = ϒ +� =
∫ R

0

[
E(r)− 3p(r)

]
4πr2 dr . (1.1.13)

We see that the star has negative energy and is therefore stable against dispersal
of its matter to infinity if E(r) < 3p(r).

It is frequently the case that the density E of internal energy is proportional
to the pressure, a relation conventionally written as

E = p/(� − 1). (1.1.14)

(Such stars are called polytropes, and are discussed in detail in Section 1.8.)
For instance, for an ideal gas of monatomic particles with number density n we
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1.1 Hydrostatic Equilibrium 5

have p = nkBT and E = 3nkBT/2 (where kB is Boltzmann’s constant), so here
� = 5/3. For radiation p = E/3, so � = 4/3. In such cases, the thermal and
gravitational energies of the star are given in terms of its total non-relativistic
energy by Eqs. (1.1.9), (1.1.12), and (1.1.14) as

ϒ = − E

3� − 4
, � = (� − 1)E

� − 4/3
. (1.1.15)

The star will explode if E is positive, so stability requires that E < 0, and since
Eq. (1.1.9) gives � < 0, this means that � > 4/3. Stars whose pressure is
dominated by highly relativistic particles (such as very massive ordinary stars
and white dwarfs and neutron stars with masses near their upper limit) have �
only slightly above 4/3 and are therefore trembling on the brink of instability.

Equation (1.1.15) plays a crucial role in governing the early history of stars.
A cloud of cold diffuse gas will have little internal or gravitational energy, so its
total energy E will be small. Unless the cloud is at absolute zero temperature
it will radiate some light, chiefly at infrared wavelengths. If its total energy
becomes negative, the cloud will no longer be able to disperse. According to
Eq. (1.1.15), as the cloud loses energy then, as long as � > 4/3,�will decrease,
becoming increasingly negative, but the internal energy ϒ will increase. The
star behaves as if it has negative specific heat; the more it loses energy, the hotter
it gets. With increasing temperature the star radiates energy more rapidly, and
the process accelerates. Eventually the central temperature of the star becomes
so high that nuclei can penetrate the Coulomb repulsion that separates them
(discussed in Section 1.5); nuclear energy generation begins and increases until
it balances the energy lost by radiation; and the star becomes stable, at least
until the nuclear fuel at the star’s center is exhausted. Paradoxically, the onset
of nuclear reactions stops the heating of the star.

As a protostar radiates energy and heats up, it also contracts. We can define a
mass-weighted mean radius r , by

M2r−1 ≡
∫ R

0
rM(r)ρ(r) dr .

Then Eq. (1.1.8) may be written � = −4πGM2/r . As −� increases, r must
decrease.

Before the discovery of radioactivity, with its implications for the source of
heat of stars, William Thomson (1824–1907, a.k.a. Lord Kelvin), estimated the
length of time that the Sun could have been shining with its present luminosity,
deriving its heat solely from gravitational contraction.2 As we have seen, the

2 W. Thomson, Phil. Mag. 23, 158 (1862); reprinted in Mathematical and Physical Papers by Sir William
Thomson, Baron Kelvin, ed. J. Larmor (Cambridge University Press, Cambridge, 1911).
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6 1 Stars

energy E of a star is related to its gravitational energy � by Eq. (1.1.15), which
for � = 5/3 gives

E = �/2. (1.1.16)

We can get a fair estimate of � by taking ρ(r) constant in Eq. (1.1.6), so that
ρ(r) = 3M/4πR3 and M(r) = Mr3/R3, in which case

E 	 −1

2
× 4πG× MR2

5
× 3M

4πR3
= −3GM2

10R
. (1.1.17)

This is minus the energy the star has lost in contracting from a cloud with
negligible gravitational and thermal energy, if no internal energy sources have
contributed to its heat since the contraction began. For the Sun,M� = 1.9891×
1033 g and R = 6.960 × 1010 cm, so E 	 −1.1 × 1048 ergs. The Sun’s present
luminosity is L� = 3.9 × 1033 erg/sec, so in the absence of internal energy
sources it could only have been shining at that rate for roughly |E|/L� 	
107 years.3 Kelvin’s 1862 conclusion was not very different: “It seems therefore
most probable that the sun has not illuminated the earth for 100,000,000 years.”
Already in the nineteenth century it was known that this was too short a time
for the evolution of life and of features of the Earth’s surface, but the path to
a resolution of the problem first appeared with the discovery of nuclear energy
in 1897.

(By the way, this calculation is sometimes done setting the energy radiated
during the Sun’s previous life equal to |�| rather than to |E|. This ignores the
fraction of the energy of gravitational contraction that goes into heating the
Sun. As we have seen, that fraction is given by the virial theorem as 1/2 for
� = 5/3, so the Sun’s age calculated here is reduced by a factor 1/2. This
serves to emphasize the peculiar aspect of gravitation mentioned above, that as
a young star condenses under the influence of gravitation without the produc-
tion of nuclear energy, it heats up, so that the temperature of a gravitationally
condensing body increases as it loses energy.)

In some cases, such as zero-temperature white dwarf stars, the pressure p
is a known function of the mass density ρ, which otherwise depends only on
chemical composition and universal constants such as h̄, c, and me. (This is
discussed in Section 1.10.) In such cases, Eqs. (1.1.4) and (1.1.5) yield a definite
stellar model.

More generally p(r) depends on the temperature at r as well as on ρ(r), and
so Eqs. (1.1.4) and (1.1.5) do not in themselves lead to any definite result for the
structure of a star. For this, we also need to understand how energy is transported
in the star. There are two chief mechanisms for energy transport, radiation and
convection, to be studied in the following sections.

3 See e.g. C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar Interiors, 2nd edn. (Springer, New York,
2004).
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1.2 Radiative Energy Transport 7

1.2 Radiative Energy Transport

The equations of hydrostatic equilibrium involve the pressure, which depends
on the temperature, so in order to use them we need equations of energy trans-
port, that dictate how the temperature varies through the star. There are two chief
mechanisms of energy transport: radiation and convection. (Because mean free
paths are small in stars, conduction is much less important.) In this section we
shall work out the coupled differential equations, Eqs. (1.2.28) and (1.2.30),
that govern the r-dependent temperature and luminosity for a star in which
energy transport is dominated by radiation. Convection will be considered in
Section 1.7.

Let 	(n̂, x, ν, t) d2n̂ dν be the energy per volume at position x and time t
of photons with directions within a solid angle d2n̂ around the unit vector n̂
and frequencies between ν and ν + dν. Our first task is to calculate various
contributions to the rate of change of 	(n̂, x, ν, t). Later we shall assume that
the total rate of change of 	(n̂, x, ν, t) vanishes, and use that requirement as the
condition of equilibrium when energy transport is dominated by radiation.

There are four contributions to this rate of change.

Transport

If nothing is happening to the radiation, then at time t+dt the energy of photons
per volume, per solid angle, and per frequency interval traveling in direction n̂
with frequency ν at position x will be what it was at time t and position x−cn̂ dt :

	(n̂, x, ν, t + dt) = 	(n̂, x − cn̂ dt , ν, t).

Thus the rate of change of 	 solely due to the transport of radiation is(
∂

∂t
	(n̂, x, ν, t)

)
transport

= −cn̂ · ∇	(n̂, x, ν, t). (1.2.1)

Absorption

It is important to distinguish here between absorption and scattering. We will
understand absorption to be any process in which an incident photon disap-
pears without producing a photon whose direction is correlated with that of the
incident photon. For instance, in a so-called bound–free transition, a photon
gives its energy to raising the energy of a bound electron so that it becomes
a free particle. In a free–free transition the incident photon is absorbed by a
free electron in the Coulomb field of an ion (which allows such a transition to
conserve energy and momentum). In either case the final free electron merges
with the surrounding medium, increasing its temperature. The medium may then
give up this energy by emitting photons, but the directions of these photons will
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8 1 Stars

be uncorrelated with the initial photon’s direction, so these transitions count as
absorption. In a bound–bound transition the energy of the initial photon goes
to raise the atom to a higher energy state. Typically the atom then undergoes
collisions, which either drain the excitation energy or change the excited state
so that even if it decays radiatively the final photon direction is uncorrelated with
the direction of the initial photon. In either case, these bound–bound transitions
also count as absorption.

Suppose that the net fraction of radiation of frequency ν absorbed at position
x and time t in a time interval dt is cκabs(x, ν, t)ρ(x, t) dt , where ρ is the
mass density and κabs is a coefficient characterizing the medium, called the
absorption opacity. (As discussed in Section 1.4, stimulated emission counts
here as negative absorption.) A factor of the speed of light is inserted here to
give 1/κabsρ the dimensions of length; it is the average distance that a typical
photon travels before being absorbed in a homogeneous medium. Then the rate
of change of 	 due to absorption is(

∂

∂t
	(n̂, x, ν, t)

)
absorption

= −cκabs(x, ν, t)ρ(x, t)	(n̂, x, ν, t). (1.2.2)

For a two-body absorption process like a bound–free or bound–bound transition
κabsρ is the absorption cross section times the number density of absorbers, and
hence κabs is the absorption cross section divided by the mean absorber mass.
(As we will see in Section 1.4, free–free transitions are more complicated.)

Scattering

These are processes in which the disappearance of an initial photon yields a
final photon, whose direction generally differs from the initial direction, but is
correlated with it. The leading example is Thomson scattering, the elastic scat-
tering of photons with energies well below mec

2 on non-relativistic electrons.
A bound–bound transition could also be regarded as a scattering, if the excited
atom were to decay radiatively before the atom undergoes collisions that wipe
out any correlation of the final and initial photons.

The fraction of radiation energy of frequency ν traveling in a direction n̂
that in a time interval dt at time t is scattered at position x into a solid angle
d2n̂′ around a final direction n̂′ is written as cκS(n̂ → n̂′; x, ν, t) ρ(x, t) d2n̂′ dt ,
where κS is a coefficient characterizing the scatterers, independent of the photon
distribution function 	. In calculating the rate of change of 	(n̂, x, ν, t), we must
now take into account not only the scattering of photons at position x and time t
with initial directions n̂ into any other directions n̂′, but also the earlier scattering
of photons elsewhere with arbitrary initial directions n̂′ into the position x and
direction n̂. For this purpose, we assume that 1/κSρ is so much smaller than
the distance over which conditions in the star vary that we can assume that any
photon that after scattering reaches a given position x at time t can only have
been scattered at a position and time where the photon distribution function 	
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1.2 Radiative Energy Transport 9

and density ρ were essentially the same as at x and t . (This may not be true near
the surface of a star.) Then the contribution of scattering to the rate of change
of 	 is(
∂

∂t
	(n̂, x, ν, t)

)
scattering

= cρ(x, t)
∫
d2n̂′ [−κS(n̂ → n̂′; x, ν, t)	(n̂, x, ν, t)

+ κS(n̂′ → n̂; x, ν, t)	(n̂′, x, ν, t)
]
.

(1.2.3)

(We are here ignoring any shift in frequency in scattering. Such shifts are small
if the photon energy hν is much less than the rest mass energy of the particles
responsible for scattering, and if the velocity of these particles is much less
than the speed of light, though even small frequency shifts can be important
when scattering cross sections are very sensitive to frequency, as in resonant
scattering.)

If (as is usually the case) the scattering is a two-body process, with photons
scattered each time by a single particle of the medium, we have

κS(n̂ → n̂′; x, ν, t) = Nscat(x, t)σ (n̂ → n̂′, ν),

where σ(n̂ → n̂′, ν) is the differential scattering cross section, and Nscat(x, t)
is the ratio of the number density of scattering centers to the mass density ρ; in
other words, it is the number of scattering centers per gram.

Emission (thermal and nuclear)

We suppose that the radiation energy emitted in any direction per time, per
volume, per solid angle, and per frequency interval at position x and time t is(

∂

∂t
	(n̂, x, ν, t)

)
emission

= j (x, ν, t)ρ(x, t)/4π , (1.2.4)

where j is another coefficient characterizing the medium and the radiation field.
Note that j includes any radiation emitted isotropically subsequent to photon
absorption, along with the ordinary thermal radiation from the stellar material,
which is heated by nuclear processes. (Stimulated emission, which creates a
photon with the same momentum and helicity as one already present, will be
included as a negative term in the absorption coefficient κabs.)

Putting together these four terms, we have

∂

∂t
	(n̂, x, ν, t) = − cn̂ · ∇	(n̂, x, ν, t)

− cκabs(x, ν, t)ρ(x, t)	(n̂, x, ν, t)

+ cρ(x, t)
∫
d2n̂′[−κS(n̂ → n̂′; x, ν, t)	(n̂, x, ν, t)

+ κS(n̂′ → n̂; x, ν, t)	(n̂′, x, ν, t)
]

+ j (x, ν, t)ρ(x, t)/4π . (1.2.5)
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10 1 Stars

If we now require the photon distribution function 	 and the stellar material to
be unchanging, we arrive at the condition of radiative equilibrium

0 = −cn̂ · ∇	(n̂, x, ν)

− cκabs(x, ν)ρ(x)	(n̂, x, ν)

+ cρ(x)
∫
d2n̂′ [−κS(n̂ → n̂′; x, ν)	(n̂, x, ν)

+ κS(n̂′ → n̂; x, ν)	(n̂′, x, ν)
]

+ j (x, ν)ρ(x)/4π , (1.2.6)

in which we assume that κ , j , and ρ as well as 	 are all independent of time,
and so drop the argument t everywhere.

We want to use this result to derive relations between three fundamental
quantities, the radiation energy per volume and per frequency interval

Erad(x, ν) ≡
∫
d2n̂ 	(n̂, x, ν), (1.2.7)

the flux vector of radiation energy per frequency interval

�i(x, ν) ≡ c

∫
d2n̂ n̂i	(n̂, x, ν), (1.2.8)

and the spatial part of the energy-momentum tensor of radiation per frequency
interval

�ij (x, ν) ≡
∫
d2n̂ n̂i n̂j 	(n̂, x, ν). (1.2.9)

(Here i and j etc. run over the Cartesian coordinate indices 1, 2, 3. Note that
�iNi dA dν is the rate at which radiant energy of frequency between ν and
ν + dν passes through a small patch with area dA and unit normal Ni .)

To derive our relations, we first integrate Eq. (1.2.6) over the direction of n̂,
which gives

∇ · �(x, ν) = −cκabs(x, ν)ρ(x)Erad(x, ν)+ j (x, ν)ρ(x). (1.2.10)

Note that the scattering term in Eq. (1.2.6) does not contribute here, because the
integrand in this term is antisymmetric in n̂ and n̂′.

Let us pause at this point to note a relation between the quantities κ(x, ν),
j (x, ν), and Erad(x, ν). These quantities depend only on ν and on the density
ρ(x), temperature T (x), and chemical composition at x; they vary with position
because ρ(x) and T (x) and perhaps the chemical composition vary with posi-
tion, but they have no independent dependence on position. That is, we can write
κ(x, ν), j (x, ν), and Erad(x, ν) as ν-dependent functions only of ρ(x), T (x),
and chemical composition at x. Now, if the energy emission density j (x, ν)
received no contribution from nuclear processes then the medium could come
to equilibrium with thermal emission balancing absorption at each point and
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1.2 Radiative Energy Transport 11

at each frequency, as in a black-body cavity. We could thus imagine a homoge-
neous medium that everywhere had the same temperature, density, and chemical
composition that the real star has at a given position x. For this hypothetical
homogeneous medium, Eq. (1.2.10) would require that j = cκabsErad. Hence in
the inhomogeneous real star, we have

j (x, ν) = cκabs(x, ν)Erad(x, ν)+ ε(x, ν), (1.2.11)

where ε(x, ν) is the rate per gram and per frequency interval of energy genera-
tion from nuclear reactions. Equation (1.2.10) then reads

∇ · �(x, ν) = ε(x, ν)ρ(x). (1.2.12)

We next multiply Eq. (1.2.6) with n̂i and then integrate the product over the
directions of n̂:

∇j�ij (x, ν) = −κabs(x, ν)ρ(x)�i(x, ν)

−cρ(x)
∫
d2n̂′

∫
d2n̂ n̂i

[
κS(n̂ → n̂′; x, ν)	(n̂, x, ν)

−κS(n̂′ → n̂; x, ν)	(n̂′, x)
]
.

(In accord with the usual summation convention, the index j is here summed
over the values 1, 2, 3. The emission term in Eq. (1.2.6) does not contribute
here, because jρ is independent of photon direction.) Under the assumption
that κS is invariant under rotations together of both initial and final photon
directions, we may define∫

d2n̂′ κS(n̂ → n̂′; x, ν) ≡ κout(x, ν) (1.2.13)

and ∫
d2n̂ n̂iκS(n̂

′ → n̂; x, ν) ≡ n̂′
iκin(x, ν). (1.2.14)

It follows then that

c

∫
d2n̂′

∫
d2n̂ n̂iκS(n̂ → n̂′; x, ν)	(n̂, x, ν) = κout(x, ν)�i(x, ν)

and

c

∫
d2n̂′

∫
d2n̂ n̂iκS(n̂

′ → n̂; x, ν)	(n̂′, x, ν) = κin(x, ν)�i(x, ν),

and therefore
c∇j�ij (x, ν) = −κ(x, ν)ρ(x)�i(x, ν), (1.2.15)

where κ is the total opacity:

κ(x, ν) ≡ κabs(x, ν)+ κout(x, ν)− κin(x, ν). (1.2.16)
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12 1 Stars

To derive a formula for κin that clarifies its relation to κout, we contract
Eq. (1.2.14) with n̂′. This gives

κin(x, ν) =
∫
d2n̂ (n̂ · n̂′)κS(n̂′ → n̂; x, ν) =

∫
d2n̂′ (n̂ · n̂′)κS(n̂ → n̂′; x),

(1.2.17)
which differs from the definition (1.2.13) of κout by the factor n̂ · n̂′. Textbook
treatments of opacity often do not distinguish between absorption and scatter-
ing, and so do not encounter the term κin. This is obviously wrong, because
κout would not vanish even if the scattering were restricted to an infinitesimal
neighborhood of the forward direction n̂′ = n̂, in which case the scattering
should have no effect. The inclusion of κin removes this paradox, since

κout(x, ν)− κin(x, ν) =
∫
d2n̂′ [1 − n̂ · n̂′]κS(n̂ → n̂′; x, ν), (1.2.18)

which vanishes for purely forward scattering, as it must. The authors of these
treatments can get away with this oversight, because, for reasons described in
Section 1.4, κin happens to vanish for Thomson scattering. But κin might matter
in other scattering, such as bound–bound transitions in which the excited state
decays radiatively, with the final photon direction correlated with that of the
incoming photon.

So far, this has been exact, aside from the approximations made in deriving
Eq. (1.2.3). We will now extend the approximation of short mean free path used
there to the rest of our analysis. That is, we assume again that the opacity κ
is so large that the mean path 1/κρ of typical photons is much smaller than
the distance over which conditions vary. This is appropriate for the interiors of
most stars, though not necessarily for their outer layers. It follows that to a good
approximation 	(n̂, x, ν) is independent of the photon direction n̂, so that �ij is
approximately proportional to δij . From the trace of Eq. (1.2.9) we have then

�ij (x, ν) 	 1

3
δijErad(x, ν). (1.2.19)

We also note that with 1/κρ very short the radiation is in thermal equilibrium
with local matter at a temperature T , so that

Erad(x, ν) 	 B
(
ν, T (x)

)
, (1.2.20)

where B is the Planck black-body distribution

B(ν, T ) = 8πh

c3

ν3

exp(hν/kBT )− 1
. (1.2.21)

Using Eqs. (1.2.19) and (1.2.20) in Eq. (1.2.15),

c∇B(ν, T (x)
) = −3κ(x, ν)ρ(x)�(x, ν). (1.2.22)
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1.2 Radiative Energy Transport 13

Of course, 	(n̂, x, ν) does depend somewhat on n̂. Even deep in a star, there is
some difference between up and down, the directions toward and away from the
star’s surface. We are neglecting this in Eqs. (1.2.19) and (1.2.20), but since κρ
is assumed large, we may not neglect the quantity κρ�i in Eq. (1.2.22), even
though perfect isotropy of the photon distribution would make �i vanish.

Now let us take up the special case of greatest interest, a spherically symmet-
ric star in which the only special direction at any point is the radial direction,
which distinguishes up and down. We then take the flux vector to point in the
direction x̂ ≡ x/r , and otherwise to depend only on ν and r ≡ |x|, so that we
may write

�(x, ν) = x̂
L(r , ν)
4πr2

. (1.2.23)

Then L(r , ν) is the total radiant energy flux, the radiant energy per time and per
frequency interval passing outward through a sphere of radius r . In this case,
Eqs. (1.2.12) and (1.2.22) take the form

dL(r , ν)
dr

= 4πr2ε(r , ν)ρ(r), (1.2.24)

and

c
d B
(
ν, T (r)

)
dr

= −3κ(r , ν)ρ(r)
L(r , ν)
4πr2

. (1.2.25)

To calculate the temperature distribution in a star, it suffices to consider
the total radiant energy for all frequencies. The total radiant energy flux is
defined by

L(r) ≡
∫
dν L(r , ν), (1.2.26)

and the total energy per gram emitted by nuclear processes at all frequencies is

ε(r) ≡
∫
dν ε(r , ν). (1.2.27)

Then integrating Eq. (1.2.24) over frequency, we have

dL(r)
dr

= 4πr2ε(r)ρ(r). (1.2.28)

In order to write the equation for dT /dr in terms of L(r), we divide Eq. (1.2.25)
by κ(r , ν) and integrate over ν:

−3ρ(r)
L(r)
4πr2

= c

∫
dν

1

κ(r , ν)

(
∂B(ν, T )

∂T

)
T=T (r)

T ′(r).
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14 1 Stars

We define the Rosseland mean opacity4 κ(r) as the inverse of the average of the
inverse of κ(r , ν), evaluated with a weighting function (∂B(ν, T )/∂T )T=T (r):∫
dν

1

κ(r , ν)

(
∂B(ν.T )

∂T

)
T=T (r)

≡ 1

κ(r)

∫
dν

(
∂B(ν.T )

∂T

)
T=T (r)

= 4aT 3(r)

κ(r)
,

(1.2.29)

where a is the radiation energy constant, a= 8π5k4
B/15h3c3 = 7.566 × 10−15

erg cm−3 K−4. So

−3ρ(r)
L(r)
4πr2

= 4acT 3(r)T ′(r)
κ(r)

,

or, multiplying by κ(r)/4acT 3(r):

dT (r)

dr
= −3ρ(r)κ(r)

4acT 3(r)

L(r)
4πr2

. (1.2.30)

Equations (1.2.28) and (1.2.30) are the fundamental equations of radiative
energy transport in spherical star interiors.

It is convenient for some purposes to introduce an opacity function κ(ρ, T , ν)
and its Rosseland mean κ(ρ, T ) that depend on density and temperature rather
than on position, with

κ(r) = κ
(
ρ(r), T (r)

)
, κ(r , ν) = κ

(
ρ(r), T (r), ν

)
. (1.2.31)

Then the definition (1.2.29) of the Rosseland mean takes the position-
independent form ∫

dν
1

κ(ρ, T , ν)

(
∂B(ν, T )

∂T

)
= 4aT 3

κ(ρ, T )
. (1.2.32)

1.3 Radiative Models

In this section we shall describe the differential equations and boundary
conditions that govern a star in which energy transport is everywhere dominated
by radiation. The most important result here is that for a set of stars of
a given age and initial uniform chemical composition (such as the stars in
many clusters), any stellar parameter, such as radius, luminosity, etc., may be
expressed as a function of stellar mass. In consequence, when any two of these
parameters are plotted against one another, the plot is a one-dimensional curve.
(One such relation is the plot of luminosity against effective temperature, known
as the Hertzsprung–Russell relation, about which more later.) The following two

4 S. Rosseland, Mon. Not. Roy. Astron. Soc. 84, 525 (1924).
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1.3 Radiative Models 15

sections will consider the opacity and nuclear energy generation per mass,
which appear as ingredients in these differential equations. Then in Section 1.6
we will derive consequences from these equations in the form of power
laws for various stellar properties for stars that are on the main sequence of
the Hertzsprung–Russell diagram. Section 1.7 considers energy transport by
convection, and shows that convection does not affect the main results of this
section and Section 1.6.

With the chemical composition fixed and uniform, we can regard the pres-
sure p(r), opacity κ(r), and nuclear energy production per mass ε(r) as fixed
functions of the density ρ(r) and temperature T (r). The star’s structure is then
described by four functions of the radial coordinate r: the mass M(r) contained
within a sphere of radius r; the radiant energy per second L(r) flowing outward
through a spherical surface of radius r; and the density ρ(r) and temperature
T (r). These four quantities are governed by four first-order differential equa-
tions: the equations (1.1.4) and (1.1.5) of hydrostatic equilibrium

dp(r)

dr
= −GM(r)ρ(r)

r2
(1.3.1)

and
dM(r)

dr
= 4πr2ρ(r), (1.3.2)

and the equations (1.2.28) and (1.2.30) of radiative energy transport

dL(r)
dr

= 4πr2ε(r)ρ(r) (1.3.3)

and
dT (r)

dr
= −3κ(r)ρ(r)

4caT 3(r)

L(r)
4πr2

. (1.3.4)

There are also four boundary conditions – two at the center,

M(0) = L(0) = 0; (1.3.5)

and two at the star’s nominal radius R,

ρ(R) = T (R) = 0. (1.3.6)

With the pressure p, Rosseland mean opacity κ , and nuclear energy production
per mass ε assumed to be given as functions of density and temperature, the dif-
ferential equations (1.3.1)–(1.3.4) and boundary conditions (1.3.5) and (1.3.6)
then govern the four unknown functions ρ(r), M(r), T (r), and L(r).

Before considering the implications of these differential equations and
boundary conditions, we need to say a bit about the implausible boundary
condition that the temperature and density vanish at the star’s surface. With
four first-order differential equations for four unknown functions, and only two
boundary conditions at r = 0, there is enough freedom to impose these two
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16 1 Stars

additional conditions at any radius in the generic case. We call the value of r
where these conditions are imposed on the solutions of Eqs. (1.3.1)–(1.3.4) the
“nominal radius”R of the star. But of course the surfaces of stars are not actually
at absolute zero temperature. Not even close. In fact, the approximation of
nearly perfect isotropy that we used in deriving the equations (1.3.3) and (1.3.4)
breaks down close to the stellar surface, where there is a big difference between
up, down, and sideways. Specifically, this approximation breaks down at values
of r for which R − r is no longer large compared with the typical photon
free path 1/ρ(r)κ(r) at r . In this region, known as the stellar atmosphere, we
need to use the full equation (1.2.6) of radiative equilibrium, and we do not
find a surface with absolute zero temperature. The nominal radius R is where
the density and temperature would vanish if Eqs. (1.3.1)–(1.3.4) held out to
this radius.

In the real world, instead of a surface at which the density and tempera-
ture vanish, there is a “true surface” with radius Rtrue beyond which there is
essentially empty space, with only outgoing radiation and some gas of very low
density, such as the solar corona. But this is not the surface from which comes
the light we see. To the extent that the light of a star resembles black-body
radiation, we can think of it as coming from an effective surface with radius
Reff, defined by the condition

σT 4(Reff)× 4πR2
eff = L, (1.3.7)

where σ = ac/4 is the Stefan–Boltzmann constant, and L is the star’s lumi-
nosity, the value of L(r) at all values of r outside the stellar core in which
nuclear energy production occurs. The depth of the effective surface below the
true surface is best described in terms of its optical depth

τeff =
∫ Rtrue

Reff

κ(r)ρ(r) dr . (1.3.8)

Since it is the typical photon free path 1/κρ that sets the scale of variations with
radius near the surface, we expect τeff to be of order unity. (In fact, there is a
time-honored but rather unconvincing calculation5 that gives the optical depth
of the effective surface as τeff = 2/3.)

The important point for us is that the thickness of the stellar atmosphere is
much less than R. As long as we restrict our interest to the star’s interior, we
can therefore continue to use the differential equations (1.3.1)–(1.3.4), with
the boundary conditions (1.3.5) and (1.3.6), with the understanding that the
condition (1.3.6) just means that the density and pressure are much less at the
star’s true surface than deep in the interior. For instance, the central density and
temperature of the Sun are (98±15) g/cm3 and (13.6±1.2)×106 K, while even
deep in the stellar atmosphere, at an optical depth τ = 10, the solar density and

5 For instance, see J. P. Cox and R. T. Giuli, Principles of Stellar Structure: Application to Stars, Vol. 2
(Gordon & Breach, New York, 1968), Chapter 20.
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1.3 Radiative Models 17

temperature are only about 5 × 10−7 g/cm3 and 9,700 K, much less than the
central values.

With four first-order equations and four boundary conditions in which
there appear only a single parameter R, we expect a one-parameter family
of solutions. This result is close to a conclusion that is often called the Vogt–
Russell theorem,6 which asserts that for a definite chemical composition there
is a unique solution to the equations of stellar structure, that depends on just
a single stellar parameter, such as the radius R or the total mass M . In fact,
we can’t be sure of the existence of a solution, because it is possible that a
singularity could be encountered that prevents a solution, though no such case
of astronomical relevance is known. Also, assuming a solution exists, it may
not be unique.

The possibility of non-uniqueness arises from the peculiar feature, that the
boundary conditions refer to two different boundaries, r = 0 and r = R.
Consider how we would actually construct a solution. Starting at r = 0, we
can adopt various trial values ρc and Tc of the central density ρ(0) and central
temperature T (0), so that with the original conditions M(0) = L(0) = 0 we
have four initial conditions. Integrating Eqs. (1.3.1)–(1.3.4) with these initial
conditions gives a unique solution, depending on ρc and Tc. We can then adjust
these two initial values so that the other conditions, ρ(R) = T (R) = 0, are
satisfied at any given R. With two conditions on the two parameters ρc and
Tc, there is likely to be a solution, but possibly more than one. As long as
the number of solutions is finite, they can each depend on only a single free
parameter, which so far we have taken as the stellar radius R.

Of course, if all stellar parameters depend on a single parameter R, they can
be taken to depend on any one of the other stellar parameters, not necessarily R.
In particular, since the stellar mass M is the one thing that remains essentially
fixed as a star evolves (until the star in its old age begins to blow off mass), it is
more natural to take the single parameter as M rather than R. We can (though
we need not) do this directly, by a reinterpretation of the differential equations.
We can take the independent variable to be M rather than r , with the dependent
variables taken as r(M) along with ρ(M), T (M), and L(M). The differential
equations are the reciprocal of Eq. (1.3.2),

dr(M)

dM = 1

4πr2(M)ρ(M)
, (1.3.9)

and the ratios of Eqs. (1.3.1), (1.3.3), and (1.3.4) to Eq. (1.3.2):

dp(M)

dM = − GM
4πr4(M)

, (1.3.10)

dL(M)

dM = ε(M), (1.3.11)

6 H. Vogt, Astron. Nachr. 226, 301 (1926); H. N. Russell, Astronomy (Boston) 2, 910 (1927).
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18 1 Stars

and
dT (M)

dM = − 3κ(M)L(M)

4caT 3(M)
(
4πr2(M)

)2 . (1.3.12)

Instead of imposing boundary conditions at r = 0 and r = R, here they are
imposed at M = 0,

r(M) = L(M) = 0 at M = 0, (1.3.13)

and at M equal to the total stellar massM ,

ρ(M) = T (M) = 0 at M = M . (1.3.14)

With the equations written in this way, there is no need to input any stellar
parameter aside from the massM .

It is the dependence of stellar structure on just a single parameter that explains
a remarkable feature of observations of clusters of stars. The dozens or hun-
dreds of stars in an open cluster like the Pleiades generally condensed at about
the same time from the same cloud of interstellar material, so they all have
pretty much the same initial chemical composition and age as well as distance,
though differing widely in their masses. The only thing on which any observable
feature of the stars in such a cluster can depend that varies from one star to
another will thus be the stars’ masses. Hence when any pair of observables
for the cluster stars are plotted against each other, these points will fall on a
one-dimensional curve, each different point on this curve corresponding to a
different stellar mass.

This is less so for the thousands or hundreds of thousands of stars in a globular
cluster like M15, where there is a greater spread in age and initial chemical
composition. But even here the plot of any pair of observables against each
other is a more or less thickened curve.

The most easily observable stellar quantities are the luminosity L (or, if the
distance d to the cluster is not known, the apparent luminosity L/4πd2) and the
effective temperature Teff. The effective temperature is defined by the condition
that L = σT 4

eff ×4πR2, but it is estimated from observations of the star’s color7

and/or spectrum, as described in the following table:8

7 The color of a star is measured by the differences of its luminosity when the star is observed with several
different filters. As seen by an observer without filters, the color depends on the distribution with frequency
of the radiant energy emitted by the star, for those frequencies that are visible to the eye. For hot stars with
temperatures T > 30, 000 K, these frequencies are all much less than kBT/h, and therefore, according
to the black-body formula (1.2.21), the energy emitted between visible frequencies ν and ν + dν is
proportional to ν2 dν. As it happens, this is the same frequency distribution as for the light scattered by
molecules and other small particles in the atmosphere, which gives the sky its color. Hence sky blue is the
asymptotic visible color of black bodies with very high temperature.

8 The information here is taken from F. LeBlanc, Introduction to Stellar Atmospheres (John Wiley & Sons,
Chichester, 2010), with some additions from other sources.
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1.3 Radiative Models 19

Typical spectral lines, effective temperatures, colors, and examples of various
types of star

Type Lines Teff (K) Color Example

O HeII abs >30,000 Sky blue λ Ori
B HeI abs, H 10,000–30,000 Blue–White Rigel
A H, CaII 7,500–10,000 White Sirius A, Vega
F CaII, H weaker 6,000–7,500 Yellow–White Procyon
G CaII, Fe, H weak 5,000–6,000 Yellow Sun
K Metals, CH, CN 3,500–5,000 Orange Arcturus
M TiO <3,500 Red Antares

The graph of observed absolute or apparent luminosity versus effective temper-
ature is known as the Hertzsprung–Russell diagram, which was first constructed
a century ago.9

In practice, the Hertzsprung–Russell diagram of a cluster is a thick curve, not
strictly one-dimensional. This is because the cluster stars did not all begin at
precisely the same time with precisely the same chemical composition. There
are also observational problems: a star’s color and spectrum do not give a precise
value for the effective temperature, and it is often difficult to distinguish binary
stars from single stars. Even so, one can clearly see in the data that there is
a one-dimensional curve of luminosity versus effective temperature, not just
points everywhere in the plot.

The Hertzsprung–Russell diagram for a cluster commonly contains a main
sequence, consisting of stars like the Sun that are still burning hydrogen at
their cores. On the main sequence L increases smoothly with Teff, with the most
massive stars the hottest and most luminous. (In Section 1.6 we will show how to
estimate the shape of the main sequence curve by applying dimensional analysis
to Eqs. (1.3.1)–(1.3.4).) As the cluster evolves, the Hertzsprung–Russell
diagram develops a red giant branch, consisting of stars that have converted
most of the hydrogen at their cores to helium, and are burning hydrogen only in
a shell around the inert helium core. On this branch, the effective temperature
decreases (and radius increases) with increasing luminosity, accounting for the
red color of very luminous red giant stars such as Betelgeuse and Antares.
The heavier stars on the main sequence have larger L and therefore evolve more
quickly, so as time passes more and more of the upper part of the main sequence
bends over into the red giant branch. Observations of this main sequence

9 E. Hertzsprung, Astron. Nachr. 179 (24), 373 (1908); H. N. Russell, Pop. Astron. 22, 275 (1914).
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20 1 Stars

turn-off therefore indicate the age of the cluster.10 Eventually the more massive
stars of the cluster will begin to burn helium, and the Hertzsprung–Russell
diagram will develop further complications, but it remains a more-or-less one-
dimensional curve, as required by the Vogt–Russell theorem.

There is a general conclusion of some importance, which can be derived
immediately from Eqs. (1.3.1)–(1.3.4), without detailed calculation. We note
that the pressure p in Eq. (1.3.1) is the sum of the pressures of gas and radiation,

p = pgas + prad, (1.3.15)

where, for black-body radiation,

prad = a

3
T 4. (1.3.16)

For an ideal gas pgas = ρkBT/m1μ, where μ is the molecular weight and m1
is the nucleon mass, or more precisely, the mass of unit atomic weight. For the
present all we need to know about the gas pressure is that it decreases with
increasing r . Now, Eq. (1.3.4) may be written

dprad(r)

dr
= −κ(r)ρ(r)L(r)

4πcr2
.

Taking the difference between this and Eq. (1.3.1) gives

−κ(r)ρ(r)L(r)
4πcr2

+ GM(r)ρ(r)

r2
= −dpgas(r)

dr
> 0

and therefore, everywhere in the star,

κ(r)L(r) < 4πGcM(r).

In particular, by setting r equal to the nominal stellar radius R, we find an
inequality involving the star’s luminosity L = L(R) and massM = M(R):

κ(R)L < 4πGcM . (1.3.17)

If this inequality were violated, then the radiation pressure alone would be
strong enough to blow off the outer layers of the star. In the commonly encoun-
tered case where the opacity in the star’s outer layers is due to Thomson scatter-
ing the inequality (1.3.17) is known as the Eddington limit. This inequality also
limits the luminosity that can be produced by spherically symmetric accretion
onto a star or galactic nucleus.

This derivation also shows that if gas pressure were negligible compared with
radiation pressure (as it is in only the most massive stars) the inequality would
become an equality, κ(R)L = 4πGcM .

10 For a summary of the use of this technique in cosmology, see S. Weinberg, Cosmology (Oxford University
Press, Oxford, 2008), pp. 62–63.
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1.4 Opacity

We saw in Section 1.2 that Eq. (1.2.30), one of the pair of equations that
govern the variation of temperature of stars with distance r from the center,
involves a quantity κ(r), known as the opacity. In general, the opacity is given
by Eq. (1.2.16):

κ ≡ κabs + κout − κin, (1.4.1)

with it understood that in Eq. (1.2.30) κ(r) is a Rosseland mean value κ(ρ(r),
T (r)), calculated according to Eq. (1.2.32):∫

dν
1

κ(ρ, T , ν)

(
∂B(ν, T )

∂T

)
= 4aT 3

κ(ρ, T )
,

where B is the black-body distribution function

B(ν, T ) = 8πh

c3

ν3

exp(hν/kBT )− 1
.

The first term in Eq. (1.4.1) is defined so that cρκabs is the net rate of absorp-
tion – that is, it is the average rate per photon at which photons are absorbed,
less the rate per initial photon at which photons with the same momentum are
created by stimulated emission. If �abs is the rate of absorption alone, then when
stimulated emission is taken into account, the net rate of photon absorption is

cρκabs(ρ, T , ν) = �abs(ρ, T , ν)
[
1 − e−hν/kBT

]
. (1.4.2)

This can most easily be seen by returning to Eqs. (1.2.11) and (1.2.20), which
show that when radiation and matter come to equilibrium in the absence of
nuclear energy generation, the absorption opacity is related to the energy
j (ρ, T , ν) emitted by the matter per mass, per time, and per frequency
interval, by

κabs(ρ, T , ν) = j (ρ, T , ν)/cB(ν, T ) = c2

8πhν3
j (ρ, T , ν)

[
exp(hν/kBT )− 1

]
.

The emission rate j has a familiar factor exp(−hν/kBT ), reflecting the prob-
ability of excitation by energy hν of degrees of freedom in the matter. When
combined with the factor exp(hν/kBT )− 1 from 1/B this gives the correction
factor 1−e−hν/kBT in Eq. (1.4.2), in which the first and second terms arise from
absorption and stimulated emission.11

The second and third terms in Eq. (1.4.1) are defined so that cρκout and cρκin
are the rates at which photons are scattered out of or into any given direction.

11 For a derivation of Eq. (1.4.2) that does not depend on the assumption that the radiation can come into
equilibrium with the matter, see R. Flauger and S. Weinberg, Phys. Rev. D 99, 123030 (2019).
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In cases where scattering occurs in a collision with a single particle, such as an
electron or atom, these terms are given by Eqs. (1.2.13) and (1.2.17):

κout = Nscat

∫
d2n̂′ σscat(n̂ → n̂′), (1.4.3)

κin = Nscat

∫
d2n̂′ (n̂′ · n̂) σscat(n̂ → n̂′), (1.4.4)

where σscat(n̂ → n̂′) is the differential cross section for scattering of a photon
traveling in a direction n̂ into a direction n̂′, andNscat is the number of scatterers
per gram. (These integrals are independent of the unit vector n̂ because of the
invariance of the integrands under simultaneous rotations of n̂ and n̂′.)

Now let us consider the various contributions to opacity, and the temperature
and density dependence of each. It is often a fair approximation to represent the
opacity as a simple function of temperature and density, proportional to powers
of both:

κ(ρ, T ) = κ1ρ
α(kBT )

β , (1.4.5)

where κ1 as well as α and β are approximately independent of density and
temperature. We will estimate α and β below for contributions to opacity of
various types, and show in Section 1.6 how these results can be used to relate
observable properties of stars.

Thomson Scattering

This is the simplest contribution to opacity. It is the elastic scattering of photons
with energies much less thanmec

2 on free electrons moving non-relativistically.
The differential scattering cross section is

σThomson(n̂ → n̂′) = e4

2m2
ec

4

[
1 + (n̂ · n̂′)2

]
. (1.4.6)

(Recall that in this book e is the charge of the electron in unrationalized elec-
trostatic units.) Because this differential cross section is even12 in n̂′, while the
factor n̂ · n̂′ in Eq. (1.4.4) is odd in n̂′, here we have κin = 0. Hence, where the
opacity is dominated by Thomson scattering, the total opacity is

κ = κout = NeσT, (1.4.7)

12 This forward–backward symmetry can be understood in classical terms. Classically, in Thomson
scattering the electron position oscillates under the influence of the electric field of the incoming photon,
and this oscillation produces the electromagnetic field of the outgoing photon. This oscillation is in the
direction of the polarization vector of the incoming photon, which is normal to the photon’s direction, so
there is nothing about this oscillation or the field it produces that can distinguish between the forward and
backward directions.
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where σT is the total Thomson scattering cross section, given by the integral of
the differential cross section (1.4.6) over solid angle:

σT = 8π

3

(
e2

h̄c

)2 (
h̄

mec

)2

= 0.66525 × 10−24 cm2,

and Ne is the number of free electrons per gram. For instance, for a medium
consisting of completely ionized atoms of atomic number Z and atomic weight
A, we have Ne = Z/Am1, where m1 = 1.66054 × 10−24 g is the mass for
unit atomic weight. This gives a Thomson scattering opacity (1.4.7) equal to
0.400 × Z/A cm2/g.

Since the cross section is constant (aside from a possible dependence of
the degree of ionization on temperature and density) the opacity for Thomson
scattering has

α = β = 0. (1.4.8)

No averaging over photon frequency is necessary if Thomson scattering domi-
nates the opacity.

Free–Free Absorption

In the absence of external fields, the conservation of energy and momentum
forbids the absorption of a photon by a free electron. If the photon has momen-
tum q then it has energy c|q|, so the conservation of energy and momentum
requires that

0 = (E′ − E)2 − c2(p′ − p)2 = 2m2
ec

4 − 2E′E + 2c2p′ · p.

where p and p′ are the initial and final electron momenta, and E = [c2p2 +
m2

ec
4]1/2 and E′ = [c2p′2 +m2

ec
4]1/2 are the initial and final electron energies.

This is not possible if any energy is absorbed by the electron, for in the frame in
which the electron is initially at rest, this requires that E′ = mec

2, so the final
electron would have to be also at rest in the same frame.

But in the Coulomb field of an atomic nucleus, the nucleus can take up
momentum without carrying away appreciable energy because it is so massive.
So absorption is possible on a free electron near a nucleus, with the energy
but not the momentum of electron and photon conserved, in the same way
that a dropped ball can bounce upward without losing energy, its momentum
being taken up by the Earth. This is the inverse of the familiar process of
bremsstrahlung, in which a photon is emitted when a charged particle is slowed
in a collision. (The cooling of interstellar matter by bremsstrahlung is dis-
cussed at the end of Section 3.3, and the emission of detectable radiation by
bremsstrahlung is considered in Section 3.7.) The absorption of photons by free
electrons in the Coulomb field of a nucleus leads to what is known as Kramers
opacity, named for Hendrik Kramers (1894–1952) who, using classical physics,
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first attempted a calculation.13 Kramers’ classical result was in effect that the
rate of absorption of a photon of frequency ν (averaged over photon directions
and helicities) is14

�Kramers(ρ, T , ν) =
∫
ne(v, T ) d3v

4πZ2e6nN

3
√

3hm2
evν

3

where the integral is over initial electron velocities v; ne(v, T ) is the number of
electrons per spatial volume and per velocity-space volume; nN is the number
density of ions, taken to have charge Ze; e is the magnitude of the electron
charge in unrationalized electrostatic units; and h = 2πh̄.

Depending on the electron velocity and photon frequency, this can be sig-
nificantly modified by quantum and other corrections. With or without these
corrections, the net rate cρκ of photon absorption in free–free transitions is
quadratic in particle densities, so α = 1, but the temperature dependence is
more complicated. It was first calculated by John Arthur Gaunt15 (1904–1944).
It has become traditional to express the rate per electron as the Kramers result
multiplied by a correction factor, known as the free–free Gaunt factor:

�ff abs(ρ, T , ν) =
∫
ne(v, T ) d3v

4πZ2e6nN

3
√

3hm2
evν

3
gff(ν, v). (1.4.9)

This absorption rate is quite complicated, given by an integral of the matrix
element of the momentum operator of the electron between initial and final
electron wave functions, which in a Coulomb potential are Kummer functions.
But it is not so difficult to carry out the calculation in Born approximation –
that is, to first order in the Coulomb potential. As shown in the appendix to this
section, in this order the rate at which a photon of frequency ν is absorbed is16

�ff abs(ρ, T , ν) =
∫
nNne(v, T ) d3v

4Z2e6

3hm2
evν

3
ln

(
v′ + v
v′ − v

)
, (1.4.10)

where v′ is the final electron velocity, given by the energy conservation
condition

mev
′2

2
= mev

2

2
+ hν. (1.4.11)

13 H. Kramers, Phil. Mag. 46, 836 (1923).
14 The fractional rate of decrease of energy in a light ray of frequency ν is hν�(ν), which for the Kramers

formula is independent of Planck’s constant. It is this rate that emerges from a purely classical calculation.
15 J. A. Gaunt, Proc. Roy. Soc. 126, 654 (1930).
16 For a different derivation of this formula, using “old-fashioned” second-order perturbation theory, see

H.-Y. Chiu, Stellar Physics (Blaisdell, Waltham, MA, 1968). The factor v in the denominator of
Eq. (1.4.10) appears in Chiu’s book as v′; presumably this is a typographical error.
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That is, the Gaunt factor is

gff(ν, v) =
√

3

π
ln

(
v′ + v
v′ − v

)
, (1.4.12)

with v′ again given by Eq. (1.4.11). This is a good approximation for non-
relativistic electrons if the Coulomb potential at an electron scattered by an
atom or ion is typically much less than electron kinetic energies, which is the
case if Ze2/h̄v � 1 and Ze2/h̄v′ � 1.

In thermal equilibrium at temperature T , far from degeneracy, the electron
velocity distribution is given by the Maxwell–Boltzmann formula

ne(v, T ) = ne

(
me

2πkBT

)3/2

exp

(
−mev

2

2kBT

)
, (1.4.13)

where ne is the total electron number density. We can find the temperature
dependence of the integral (1.4.10) by introducing a re-scaled variable of
integration

x ≡ v
√
me/2kBT .

Then Eq. (1.4.10) can be written

�ff abs(ρ, T , ν) = nenN
16Z2e6

3hcm2
eν

3

√
me

2πkBT

∫ ∞

0
xe−x

2
dx × ln

(
x′ + x
x′ − x

)
,

(1.4.14)
where ne and nN are the total number densities of electrons and ions, respec-
tively. If we supply the correction factor 1 − exp(−hν/kBT ) for stimulated
emission, and as usual write the result as cρκff, then

κff(ρ, T , ν) = ρNeNN
16Z2e6

3hcm2
eν

3

√
me

2πkBT

∫ ∞

0
xe−x

2
dx

× ln

(
x′ + x
x′ − x

) (
1 − exp(−hν/kBT )

)
, (1.4.15)

where Ne ≡ ne/ρ is the number of electrons per gram, NN ≡ nN/ρ is the
number of nuclei per gram, and x′ ≡ v′√me/2kBT is given by the energy
conservation equation (1.4.11) as

x′2 = x2 + y, y ≡ hν/kBT . (1.4.16)

The Rosseland mean opacity (1.2.32) is here

κ(ρ, T ) = 8ρ(kBT )
−7/2NeNNZ

2e6h6(a/k4
B)m

−3/2
e

3
√

2π3/2
∫ ∞

0
dy

y6ey

(ey − 1)

[∫ ∞

0
x e−x

2
dx × ln

(
x′ + x
x′ − x

)]−1
,

(1.4.17)
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with x′ related to the integration variables x and y by the energy conserva-
tion condition (1.4.16). The important result is that in Eq. (1.4.5) the Kramers
opacity has

α = 1, β = −7/2. (1.4.18)

The mean opacity has a factor T −7/2 because of the factor 1/
√
T in Eq. (1.4.15),

and because the factor 1/ν3 in Eq. (1.4.15) is converted into a factor propor-
tional to 1/T 3 in the Rosseland mean.

It should not be thought that the T −7/2 dependence of the free–free opacity
continues to arbitrary low temperatures. Obviously, for sufficiently low tem-
peratures, there are very few free electrons, and the free–free and Thomson
scattering contributions to the opacity both become negligible.

High-Energy Bound–Free Absorption

When a photon is absorbed by a bound electron whose binding energy is much
less than the photon energy, it hardly matters that the electron is initially bound.
Thus the temperature dependence in this case is the same as for free–free
absorption, with β = −7/2. The difference is that the relevant density of
electrons is not the ambient density of free electrons, but an average square of
the bound electron wave function, so the absorption rate cρκ is proportional just
to the density of atoms, and hence α = 0 rather than α = 1. The contribution
to opacity of this sort of photon absorption is often lumped in with free–free
absorption in what is called Kramers opacity.

Bound–Bound Absorption and Low-Energy Bound–Free Absorption

In these cases the photon is absorbed by a bound electron whose binding energy
is at least comparable to the photon energy. This contribution to opacity involves
complications of atomic physics not present for other contributions, and will not
be examined further here. The heating of interstellar hydrogen by low-energy
bound–free absorption of photons from hot stars is discussed in Section 3.2.

Appendix: Calculation of Free–Free Opacity

We consider a process in which a photon of momentum q and helicity λ is
absorbed by a non-relativistic free electron of momentum p in the neighborhood
of an atomic nucleus, giving the electron a non-relativistic momentum p′. The
nucleus serves to provide a potential V (x), but is supposed to be so heavy
that it can carry away momentum without receiving appreciable energy, so
that p′2/2me = p2/2me + qc (where q ≡ |q|, p ≡ |p|, and p′ ≡ |p′|) but
p′ �= p + q. For the present we will consider a general potential, but will later
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specialize to a screened Coulomb potential with V (x) = −Ze2 exp(−r/	)/r
where r ≡ |x|, including the unscreened case where the screening radius 	 is
taken to be infinite.

According to the general rules of quantum mechanics,17 the differential rate
for this process is given by

d�(p + (q, λ) → p′) = (2πh̄)5nN
∣∣M(p + (q, λ) → p′)∣∣2

× δ(p′2/2me − p2/2me − qc) d3p′, (1.4.A1)

and so the rate of photon absorption is

�abs(q, λ) = (2πh̄)5nN

∫
ne(p) d3p

×
∫
d3p′ ∣∣M(p + (q, λ) → p′)∣∣2 δ(p′2/2me − p2/2me − qc),

(1.4.A2)

where ne(p) d3p is the number density of initial electrons with momenta in a
range d3p around p; nN is the number density of nuclei;M is the coefficient of
the energy and momentum conservation delta functions in the S-matrix element
for this process; and we have used the momentum conservation delta function
in the rate to eliminate the integral over the final nucleus momentum.

We are only concerned with single-photon absorption processes, and will
ignore all quantum electrodynamic radiative corrections, so the matrix element
M is of first order in the interaction between the electron and the quantized
electromagnetic field. It therefore takes the form18

M = −2πi√
2qc(2πh̄)3/2

× −√
4πeh̄2

me

∫
d3x ψ ′∗(x)e(q̂, λ) · ∇ψ(x). (1.4.A3)

Here ψ and ψ ′ are “in” and “out” solutions of the Schrödinger equations for the
initial and final electrons

− h̄2

2me
∇2ψ + Vψ = p2

2me
ψ , − h̄2

2me
∇2ψ ′ + Vψ ′ = p′2

2me
ψ ′, (1.4.A4)

17 For the general relation between S-matrix elements and rates, see e.g. S. Weinberg, The Quantum Theory
of Fields, Vol. I (Cambridge University Press, Cambridge, 1995), Section 3.4. Note that in this reference
2πM was defined as the coefficient of the delta function in the S-matrix, while here this coefficient is
justM .

18 For a textbook derivation of this interaction, see e.g. S. Weinberg, Lectures on Quantum Mechanics,
2nd edn. (Cambridge University Press, Cambridge, 2015), Eq. 11.7.6. In Eq. (1.4.A3) we are using
the electric dipole approximation, in which the photon wavelength is much larger than the de Broglie
wavelengths of the initial and final electrons. With photon and electron energies of order kBT , this is a
good approximation if kBT � mec

2, as we shall assume is the case.
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normalized so that for r → ∞
ψ(x) → exp(ip · x/h̄)

(2πh̄)3/2
+O(1/r), ψ ′(x) → exp(ip′ · x/h̄)

(2πh̄)3/2
+O(1/r),

(1.4.A5)
where the O(1/r) term is an outgoing wave for ψ and an incoming wave
for ψ ′. (For an unscreened Coulomb potential the arguments of the exponentials
contain additional imaginary terms of order ln r .) Also e(q̂, λ) is the polariza-
tion vector for a photon with direction q̂ and helicity λ, normalized so that
e∗ · e = 1. We will use the results forM obtained here also in the discussions of
bremsstrahlung in Sections 3.3 and 3.7.

Eventually we will be moving on to the Born approximation, in which M is
calculated only to first order in V , but it is useful for several reasons to work
for a while with Eq. (1.4.A3), which is derived in what is called the distorted
wave Born approximation;19 it is valid to all orders in V but only to first order
in the interaction of the electron with the annihilation part of the quantized
electromagnetic field.

Multiplying Eq. (1.4.A3) with qc = p′2/2me − p2/2me and using the
Schrödinger equations (1.4.A4), we have

qcM = −2πi√
2qc(2πh̄)3/2

× −√
4πeh̄2

me

×
∫
d3x

[(
− h̄2

2me
∇2ψ ′ + Vψ ′

)∗
e(q̂, λ) · ∇ψ

−ψ ′∗e(q̂, λ) · ∇
(

− h̄2

2me
∇2ψ + Vψ

)]
.

Integration by parts shows that the kinetic energy terms cancel,20 while the
potential terms cancel except for a term proportional to the gradient of the
potential:

M = −ie√h̄
(qc)3/2me

∫
d3x ψ ′∗(x)e(q̂, λ) · [∇V (x)]ψ(x). (1.4.A6)

We now go over to the Born approximation, keeping only terms of first order
in the potential V . Since Eq. (1.4.A6) already has an explicit factor V , in the
Born approximation we can ignore V in the wave functions, and use for ψ and
ψ ′ just the plane waves

19 For a general textbook account of this approximation, see Weinberg, op. cit. Section 8.6.
20 The surface term in the integration by parts may be neglected because of its rapid oscillation as r → ∞

when p′ �= p.
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ψ(x) = exp(ip · x/h̄)
(2πh̄)3/2

, ψ ′(x) = exp(ip′ · x/h̄)
(2πh̄)3/2

. (1.4.A7)

Equation (1.4.A6) then reads

M = −ie√h̄
(2πh̄)3(qc)3/2me

∫
d3x e(q̂, λ) · [∇V (x)] exp

(
i(p − p′) · x/h̄

)
= −e
(2πh̄)3(qc)3/2me

√
h̄

e(q̂, λ) · (p − p′)

×
∫
d3x V (x) exp

(
i(p − p′) · x/h̄

)
. (1.4.A8)

For the screened Coulomb potential V (x) = −Ze2e−r/	/r , this reads

M = Ze3

(2πh̄)3(qc)3/2me
√
h̄

4πe(q̂, λ) · (p − p′)
(p − p′)2/h̄2 + 1/	2

. (1.4.A9)

Orbital electrons in singly ionized atoms obviously produce a partial screen-
ing with 	 of the order of atomic dimensions. But even where ionization is
complete, there is a screening due to mobile electrons attracted to the vicinity
of the atomic nucleus. This is known as Debye screening, and is discussed
in Section 3.7. For the present, we will consider the unscreened case, with 	
infinite, in which case

M = Ze3

2π2(qch̄)3/2me

e(q̂, λ) · (p − p′)
(p − p′)2

. (1.4.A10)

The absorption rate per photon is then given by Eqs. (1.4.A2) and (1.4.A10) as

�abs(q, λ) =
∫
d3p ne(p)

∫
d2p̂′ 8πe6Z2h̄2p′nN

mec3q3

[
(p − p′) · e(λ, q)
(p′ − p)2

]2

.

(1.4.A11)

We average over photon helicity and direction, using

1

2

∑
λ=±1

1

4π

∫
d2q̂ ei(λ, q)e∗j (λ, q) = 1

8π

∫
d2q̂

[
δij − qiqj /q2

]
= 1

3
δij .

(1.4.A12)
The integral over the direction of the outgoing electron is then∫

d2p̂′ 1

(p − p′)2
= 2π

pp′ ln

(
p′ + p
p′ − p

)
. (1.4.A13)
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Equation (1.4.A11) now gives the average photon absorption rate

�abs(q) =
∫
d3p ne(p)

16π2e6Z2h̄2nN

3pmec3q3
ln

(
p′ + p
p′ − p

)
. (1.4.A14)

This can be rewritten for the purposes of comparison with the main text, setting
v = p/me, v′ = p′/me, ν = qc/h, and h = 2πh̄. Equation (1.4.A14) then
becomes Eq. (1.4.10).

In this derivation we have treated the Coulomb interaction between electrons
and nuclei only to first order in the Coulomb potential. This is justified if Ze2/r

for typical values of r is much less than the electron kinetic energies. Taking the
typical value of r as the de Broglie wavelength h̄/mev, the ratio of potential to
kinetic energy is of order

Ze2/r

mev2/2
≈ Ze2

h̄v
	 Zc/137v,

so this calculation is reliable only if v/c � Z/137. Our non-relativistic treat-
ment also requires that v/c � 1. For nuclei like C, N, and O, with Z ≥ 6,
this does not leave much of a range for the electron velocity in which the
above calculation is reliable, beyond just giving the order of magnitude of the
absorption rate. The contribution toM of terms of higher order in the Coulomb
potential is considered in the context of bremsstrahlung in Section 3.7.

1.5 Nuclear Energy Generation

We now consider the nuclear energy production per mass ε(ρ, T ). As with
opacity in the previous section, one of our aims here will be to estimate the
exponents when ε(ρ, T ) is approximated by a power-law expression

ε(ρ, T ) 	 ε1ρ
λ(kBT )

ν , (1.5.1)

with ε1 as well as λ and ν independent of ρ and T .
The nuclear material left over from the first three minutes of the big bang was

chiefly 1H (that is, protons), plus about 25% by mass 4He, and only a trace of
2H, 3He, and 7Li. These light nuclei have less binding energy per nucleon than
nuclei of medium atomic weight like iron and nickel, so energy can be gained
by fusion of hydrogen and helium into heavier elements. But there are no stable
nuclei with five or eight nucleons, so it is difficult (though, as we shall see,
not impossible) to gain energy from helium in 1H–4He or 4He–4He collisions.
Thus, as long as hydrogen lasts in the center of a star, the dominant source of
nuclear energy will be the fusion of 1H into 4He, which has by far the greatest
binding energy of any of these light elements.
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There are two chief routes by which hydrogen can fuse into helium. One is
the proton–proton chain,21 of which the simplest version is22

I : 1H + 1H → 2H + e+ + νe + 1.18 MeV

II : 1H + 2H → 3He + γ + 5.49 MeV

III : 3He + 3He → 4He + 1H + 1H + 12.85 MeV. (1.5.2)

The other route is the CNO cycle,23 which in its simplest variant is

i : 1H + 12C → 13N + γ + 1.95 MeV

ii : 13N → 13C + e+ + νe + 1.50 MeV

iii : 1H + 13C → 14N + γ + 7.54 MeV

iv : 1H + 14N → 15O + γ + 7.35 MeV

v : 15O → 15N + e+ + νe + 1.73 MeV

vi : 1H + 15N → 12C + 4He + 4.96 MeV, (1.5.3)

where carbon, nitrogen, and oxygen nuclei are understood to be present in the
interstellar matter from which stars like the Sun are formed, left over from
nuclear processes in an earlier generation of stars. They are catalysts, neither
created nor destroyed in a complete cycle. In both cases there are side branches
and extensions to which we will return below, but these simple versions will
provide us with sufficient examples to illustrate how ε(ρ, T ) is estimated.

The detailed calculation of the rates of these various nuclear reactions is
beyond the scope of this book. However, we can usefully identify various sup-
pression factors in the rates that tell us a good deal about which reactions are
dominant, and about their temperature dependence.

Electromagnetic Coupling

The rate of any reaction in which a single photon is emitted (such as 1H+2H →
3He + γ in the proton–proton cycle or 1H + 12C → 13N + γ in the CNO cycle)
is suppressed by a factor of order e2/h̄c 	 1/137.

Weak Coupling

The rate of any reaction in which a proton turns into a neutron with the emission
of a positron and neutrino (such as the first step 1H + 1H → 2H + e+ + νe in

21 H. A. Bethe and C. H. Critchfield, Phys. Rev. 54, 248 (1938).
22 The energies listed here for the proton–proton chain and below for the CNO cycle are the energies for

each reaction actually deposited in the stellar material. Thus, where a positron is emitted, these energies
include not only the rest energy mec

2 of the emitted positron but also the rest energy of the electron
with which that positron inevitably annihilates. On the other hand, the mean energy of the accompanying
neutrino is subtracted from the energy released, since virtually all neutrinos leave the star.

23 C. F. von Weizsäcker, Phys. Z. 38, 176 (1938); H. A. Bethe, Phys. Rev. 55, 434 (1939).
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the proton–proton cycle or the beta decays of 13N and 15O in the CNO cycle) is
suppressed by two factors of the weak coupling constantGwk = 1.1664×10−11

MeV−2. Since the typical energy involved in these nuclear reactions is about
1 MeV, weak interaction processes are typically suppressed by a dimensionless
factor of order 10−22.

Coulomb Barrier

The temperature dependence of nuclear reaction rates is chiefly due to the neces-
sity for colliding nuclei to leak through the Coulomb barrier, the field of elec-
trostatic repulsion between positively charged atomic nuclei.24 The calculation
of the effect of the Coulomb barrier on reaction rates requires use of quantum
mechanics, but only at a quite elementary level, and will be presented in an
appendix at the end of this section. The result is that a reaction involving two
nuclei of atomic numbers Z1 and Z2 and an energy of relative motion E is
suppressed by a factor of order

B(E) = exp

[
−πZ1Z2e

2

√
2μ

h̄2E

]
, (1.5.4)

where μ = m1m2/(m1 +m2) is the reduced mass.
The nuclei colliding in a star of course do not have any definite value for

the energy E of relative motion, but rather a range of values, with probabilities
governed by the requirements of kinetic theory at temperature T . Assuming
that nuclei spend most of their time sufficiently far from other nuclei that their
energy is mostly kinetic, the probability of finding a pair of nuclei in a range of
momenta d3p1 d

3p2 is proportional to

exp

(
− p1

2

2m1kBT
− p2

2

2m2kBT

)
d3p1 d

3p2 = exp

(
− E

kBT

)
d3p

× exp

(
− P2

2(m1 +m2)kBT

)
d3P ,

(1.5.5)

where P ≡ p1 + p2 is the total momentum, and E = p2/2μ is the energy of
relative motion, with p ≡ μ(p1/m1 − p2/m2) the relative momentum. The rate
ε of nuclear reactions per gram is then of the form

ε(ρ, T ) =
∫ ∞

0
dE f (E, ρ, T ) exp(−E/kBT )B(E)

=
∫ ∞

0
dE f (E, ρ, T ) exp

(
− E

kBT
− C√

E

)
, (1.5.6)

24 Barrier penetration was first calculated in the context of nuclear α-decay; G. Gamow, Z. Phys. 52, 510
(1928).
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1.5 Nuclear Energy Generation 33

where f (E, ρ, T ) arises from power-law factors in the thermal distribution of E
and P and in the probability of the nuclear reaction occurring when the nuclei
reach zero separation, and C is the constant in the exponent in Eq. (1.5.4):

C = πZ1Z2e
2

√
2μ

h̄2
. (1.5.7)

In practice, kBT is always much less than C2, so the exponential exp(−C/√E)
will be very small unless E is much greater than kBT , in which case exp(−E/
kBT ) will be very small. The exponential in Eq. (1.5.6) is therefore very sharply
peaked at the energy ET where its argument is a maximum:

0 = d

dE

∣∣∣∣
E=ET

(
− E

kBT
− C√

E

)
= − 1

kBT
+ C

2E3/2
T

(1.5.8)

so
ET = (CkBT/2)

2/3. (1.5.9)

The dominant factor BT in the temperature dependence of the reaction rate
(1.5.6) is simply the exponential function, evaluated at E = ET :

BT = exp

(
− ET

kBT
− C√

ET

)
= exp

⎛
⎝−3

(
πZ1Z2e

2√μ
h̄
√

2kBT

)2/3
⎞
⎠. (1.5.10)

Numerically this is

BT = exp

[
−
(
Z2

1Z
2
2(μ/mp)× 7.726 × 1010 K

T

)1/3]
, (1.5.11)

where mp is the proton mass.
The values of reaction rates depend on a number of other factors besides

the barrier penetration factor, but it is the barrier that chiefly governs their
temperature dependence. Thus we can use the above calculation of the Coulomb
barrier to estimate the exponent ν in the power law ε ∝ (kBT )

ν that is used to
estimate the temperature dependence of the energy generation rate ε. We take

ν = T
d

dT
lnBT 	 1

3

(
Z2

1Z
2
2(μ/mp)× 7.726 × 1010 K

T

)1/3

. (1.5.12)

(The T −1/3 temperature dependence here is sufficiently weak to justify approxi-
mating ε as proportional to a constant power of temperature.) From Eqs. (1.5.11)
and (1.5.12) we infer the general rule that ν is one-third the absolute value of
the exponent in whatever barrier penetration factor dominates the temperature
dependence of the energy generation rate.

Let us now apply these general remarks to stars that derive their nuclear
energy either from the proton–proton chain or from the CNO cycle.
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Proton–Proton Chain

For the first reaction p + p → d + e+ + ν in the proton–proton chain we take
μ = mp/2 and Z1 = Z2 = 1, so, according to Eq. (1.5.11), if T = 107K
(roughly the temperature at the center of the Sun), the Coulomb barrier sup-
presses the reaction by a factor exp(−15.7) = 1.5 × 10−7.

But the reaction p+p → d+e++ν is not the end of the story; it is just the first
step in a chain of reactions. The Coulomb barrier suppression of the second step,
1H+2 H → 3He+γ, is only slightly more severe than that of reaction I, because
the charges of the nuclei are the same, and their reduced mass is larger only by
a factor 4/3. Taking μ = 2mp/3, Z1 = Z2 = 1, and T 	 107 K in Eq. (1.5.11)
gives BT ≈ exp(−4/3 × 15.7) = 8 × 10−10. Apart from Coulomb suppression,
since step I involves a weak interaction it is suppressed by an additional factor
of order 10−22 and since step II involves an electromagnetic interaction it is
suppressed by an additional factor of order 1/137, so the ratio of the rate per
proton of step I and the rate per deuteron of step II is expected to be of order

rate/p of p + p → d + e+ + ν

rate/d of p + d → 3He + γ
≈ 10−22 × (1.5 × 10−7)

(1/137)× (8 × 10−10)
	 3 × 10−18.

(The actual ratio is about 10−17.) Reaction III has a more formidable Coulomb
barrier, with Z1Z2 = 4. All three reactions release substantial amounts of
energy. So which do we need to calculate in order to find ε. And in particular,
which is the relevant Coulomb barrier?

The answer relies on an assumption of time-independence: The abundances
of the intermediate participants in these reactions rapidly evolve to stable values,
for which these abundances change little over times in which a very large num-
ber of reactions take place in the star’s core. Thus, in order that the abundance
of deuterons should not change, the rates per volume of reactions I and II, in
which deuterons are respectively created and destroyed, should be the same,
and in order that the abundance of 3He nuclei should not change, the rate per
volume of reaction II should be twice that of reaction III, in which two 3He
nuclei are destroyed:

� ≡ �(I) = �(II) = 2�(III), (1.5.13)

where the �s denote the rates per volume of various reactions. It is like the law
of economics that supply equals demand. If demand exceeds supply prices will
go up, damping demand and providing an incentive for increased supply, until
supply and demand approach each other. (Or so they say.) In the same way, if
the rate per volume of reaction II were less than that of reaction I the abundance
of 2H nuclei would rise until these rates were equal, and just as many 2H nuclei
were being destroyed as created. According to the above estimate of the ratio
of the rate per proton of reaction I and the rate per deuteron of reaction II, we

https://doi.org/10.1017/9781108227445.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108227445.002
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therefore expect the number density of deuterons to be smaller than the number
density of protons by a factor of order 3 × 10−18.

Though �(I), �(II), and 2�(III) must all be equal, their calculation differs in
one important respect. The rate of reaction I does not depend on the abundance
of the intermediate nuclei 2H and 3He, and in particular is not suppressed by
their low abundance, so it can be calculated without knowing anything about
the other reactions. Thus it is the Coulomb barrier in reaction I that governs
the rate at which hydrogen is converted to helium and energy is produced,
and its temperature dependence. In particular, in accordance with the general
rule (1.5.12), for the proton–proton cycle the exponent ν in the temperature
dependence of ε is one-third of the value 15.7 that we previously calculated
for the exponent in the barrier penetration factor for reaction I, so ν 	 5 at
T ≈ 107 K. Fortunately ν has only a mild dependence on temperature, going
as T −1/3, so this estimate of ν is a fair approximation for a wide range of
temperatures.

But although we only need to calculate the rate � of reaction I, all of reactions
I, II, and III release energy, say an energy EI, EII, and EIII per reaction, so the
rate ερ of total energy production per volume is not just EI�, but

ερ =
(
EI + EII + 1

2
EIII

)
� = 13.1 MeV × �. (1.5.14)

The crucial first step in the proton–proton chain is a collision of two protons.
Its rate, and hence the rate per volume ερ of energy generation due to the
proton–proton chain, is proportional to ρ2. Hence, if the proton–proton chain
dominates nuclear energy generation, we have λ = 1 as well as ν ≈ 5.

The reactions (1.5.2) dominate the energy production in the proton–proton
chain, but there are alternative finales to this chain, one of which is of historical
importance. In one alternative, instead of a pair of 3He nuclei combining in
reaction III, individual 3He nuclei undergo the reaction

III′ : 3He + 4He → 7Be + γ

followed by either

IV : 7Be + e− → 7Li + νe

V : 7Li + 1H → 4He + 4He (1.5.15)

or else

IV′ : 7Be + 1H → 8B + γ

V′ : 8B → 8Be + e+ + νe

VI′ : 8Be → 4He + 4He. (1.5.16)

The probability of a 3He nucleus undergoing the reaction III′ rather than III
is small, so these alternatives have little effect on the energy generation rate ε
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and its density and temperature dependence, but the high energy of the neutrino
from the 8B beta decay in reaction V′, extending up to over 10 MeV, offered an
early opportunity of observing neutrinos from the Sun.

The reaction 37Cl + νe → 37Ar + e− that was used to search for solar
neutrinos in the experiments of Davis et al.25 on solar neutrinos is sensitive only
to these high-energy neutrinos, not to the much lower-energy neutrinos emitted
in the other reactions of the proton–proton chain. The high Coulomb barriers in
reactions III′ and IV′ make the flux of high-energy neutrinos extremely sensitive
to the temperature profile in the Sun. Detailed calculations by John Bahcall26

(1934–2005) showed that the high-energy neutrinos should be observable in
Davis’s experiments, but decades of searching did not find them. Finally solar
neutrinos were detected27 using the reaction Ga71 + νe → Ge71 + e−, but the
observed rate was substantially less than predicted by Bahcall. Either Bahcall’s
calculations were inaccurate, or something was happening to neutrinos on the
way to the Earth.

In particular, it was speculated by Bruno Pontecorvo (1913–1993) that neu-
trinos have mass, and that the states of definite mass are not the neutrinos of
electron type emitted in the Sun, but superpositions of neutrinos of electron type
with neutrinos of muon and tauon type, so that on the way to Earth electron-type
neutrinos become an oscillating superposition of types, with only the electron-
type fraction observable in reactions like Cl37+νe → Ar37+e− or Ga71+νe →
Ge71 + e−. The issue was settled by experiments at the Sudbury Neutrino
Observatory.28 By monitoring a large tank of heavy water, experimenters could
detect high-energy 8B neutrinos not only in the reaction νe + d → p + p + e−,
which is sensitive only to electron-type neutrinos, but also in the neutral current
process ν + d → p + n + ν, which is equally sensitive to neutrinos of all
types, electron, muon, and tauon. It turned out that the total flux of neutrinos of
all types agreed with Bahcall’s calculations, providing a decisive vote in favor
of neutrino oscillations. Since then the existence of neutrino oscillations has
been confirmed and neutrino masses and mixing angles measured in numerous
terrestrial experiments.

CNO Cycle

Matters are more complicated for the CNO cycle. Here too we assume that the
abundances of the intermediate CNO nuclei settle down to constant values. The
constancy of the abundance of 13N requires that reactions i and ii have the same
rate per volume; the constancy of the abundance of 13C requires that reactions

25 R. Davis, D. S. Harmer, and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).
26 J. N. Bahcall, Current Science 77, 1487 (1999), and earlier references quoted therein.
27 P. Anselmann et al., Phys. Lett. B342, 440 (1995); J. N. Abdurashitov et al., Phys. Rev. Lett. 77, 3708

(1996).
28 Q. R. Ahmad et al., Phys. Rev. Lett. 89, 11301 (2002).
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1.5 Nuclear Energy Generation 37

ii and iii have the same rate per volume; and so on, so that all these rates per
volume are equal:

�(i) = �(ii) = �(iii) = �(iv) = �(v) = �(vi) ≡ �. (1.5.17)

This determines the ratios of the abundances. Each of the rates here is propor-
tional to the number density n of the CNO nucleus in the initial state of the
reaction

�(i) = n
(12C

)
R(i), �(ii) = n

(13N
)
R(ii), etc., (1.5.18)

with the rate factors R independent of the densities of anything but hydrogen.
For each reaction, R is the rate at which the CNO nucleus in the initial state
undergoes that reaction. For instance, R(i) is the rate at which any individual
12C nucleus undergoes the reaction 1H +12 C → 13N + γ. Then the equality of
rates (1.5.17) gives

n
(13N

)
n
(12C

) = R(i)

R(ii)
) , n

(13C
)

n
(12C

) = R(i)

R(iii)
, etc. (1.5.19)

But we cannot in this way find the overall number density of the CNO nuclei

n(CNO) ≡ n
(12C

)+n(13N
)+n(13C

)+n(14N
)+n(15O

)+n(15N
)
, (1.5.20)

which does not change in the reactions i through vi, and is determined by the
abundances in the interstellar medium from which the star formed. We can,
however, express the common rate � in terms of n(CNO): Using Eqs. (1.5.20)
and (1.5.17) and then (1.5.18) we note that

n(CNO)

�
= n

(12C
)

�(i)
+ n
(13N

)
�(ii)

+ n
(13C

)
�(iii)

+ n
(14N

)
�(iv)

+ n
(15O

)
�(v)

+ n
(15N

)
�(vi)

= 1

R(i)
+ 1

R(ii)
+ 1

R(iii)
+ 1

R(iv)
+ 1

R(v)
+ 1

R(vi)
,

so the common rate is

� = n(CNO)

/(
1

R(i)
+ 1

R(ii)
+ 1

R(iii)
+ 1

R(iv)
+ 1

R(v)
+ 1

R(vi)

)
.

(1.5.21)
That is, the common rate of the reactions equals the harmonic mean of what the
individual rates would be if the density of the CNO nucleus in each initial state
equaled the total density n(CNO). The rate per volume ερ of energy generation
in the CNO cycle is � times the sum of the energies in Eq. (1.5.3):

ερ = � × 25.03 MeV. (1.5.22)

Because of the absence of a Coulomb barrier in the beta decays ii and v, these
reactions have relatively rapid rates R per CNO nucleus, with mean lives 1/R
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of 7 minutes and 82 seconds, respectively, while 1/R for all the other reactions
in the CNO cycle is at least 105 years. Thus the terms 1/R(ii) and 1/R(v) can
be neglected in the denominator in Eq. (1.5.21). Also, for the same reason,
the number density of the CNO nucleus in the initial states of the beta decay
reactions is much smaller than the number densities of the other CNO nuclei,
and can be neglected in n(CNO). Thus Eq. (1.5.21) for the rate � of the various
reactions in the CNO channel is dominated by the two-body reactions i, iii, iv,
and vi. As two-body reactions, they all have λ = 1. Also, these reactions all have
about the same value of the reduced mass, ranging from 12mp/13 to 15mp/16,
whileZ1Z2 only ranges from 6 for reaction i to 7 for reaction vi, so the Coulomb
suppression factor and hence the rate factor R is smallest for reaction vi, but not
overwhelmingly so. We will take the Coulomb barriers of these reactions to be
a compromise, calculated by taking Z1Z2 = 6.5 and μ = mp. At any given
temperature, the exponent in Eq. (1.5.10) for the effective Coulomb barrier is
thus larger than for the proton–proton chain by a factor 6.52/321/3 = 4.4. At the
nominal temperature of 107 K, the Coulomb barrier in the CNO cycle produces a
suppression factor exp(−4.4 × 15.7) 	 10−30. It is only because of the extreme
slowness of weak interaction processes such as the first step in the proton–
proton chain that the CNO cycle can compete with the proton–proton chain
at any temperature.

The power of temperature in Eq. (1.5.1) is larger than for the proton–proton
chain by the same factor 4.4, so at T ≈ 107 K we have ν ≈ 22, and somewhat
less at higher temperatures. As already mentioned, the power of density is
λ = 1.

Here too there are alternative finales. Instead of step vi, the 15N nucleus can
undergo the reaction 1H + 15N → 16O + γ, followed by 1H + 16O → 17F + γ

and 17F → 17O + e+ + ν. After that, there are again two possibilities: either
1H + 17O → 14N + 4He, or else 1H + 17O → 18F + γ followed by 18F →
18O + e+ +ν and 1H + 18O → 15N + 4He. In all cases the net effect is that four
protons turn into a 4He nucleus plus two positrons and two neutrinos, with the
CNO catalysts always returned to their original abundances.

Crossover

We can now estimate the crossover temperature at which the rates of energy
production in the CNO cycle and proton–proton chain would be equal. We
have seen that the rate of the reactions in the proton–proton chain is suppressed
by the Coulomb barrier by a factor exp

(−15.7(T [107 K])−1/3
)
, so the rate

of the reactions in the CNO cycle is suppressed by a factor exp
(−4.4 ×

15.7(T [107 K])−1/3
)
. It is further suppressed relative to the proton–proton

chain by the ratio of the number of CNO nuclei to hydrogen nuclei, which
for the Sun is about 10−3, and since a photon is emitted, also by a factor
e2/h̄c 	 10−2. On the other hand, the reaction p + p → d + e+ + ν in
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the proton–proton chain is a weak interaction, so its rate is proportional to
the square of the weak coupling constant, and is therefore suppressed by a
dimensionless factor (GwkE

2)2, which for E ≈ 1 MeV is about 10−22. So, very
roughly, the crossover temperature at which the CNO cycle and the proton–
proton chain have competitive rates is given by

10−3 × 10−2 × exp
(− 4.4 × 15.7(T [107 K])−1/3)

≈ 10−22 × exp
(− 15.7(T [107 K])−1/3),

or T ≈ 2.5 × 107 K. This is not very different from the value given by more
detailed calculations,29 which is not much greater than the temperature 1.36 ×
107 K at the center of the Sun. For stars that are considerably more or less mas-
sive than the Sun the central temperature is higher or lower, and it is respectively
the CNO cycle or the proton–proton chain that dominates energy production.

Beyond Hydrogen Burning

As mentioned in Section 1.3, when the hydrogen has been converted to helium
in a star’s center, the star leaves the main sequence and becomes a red giant,
in which the conversion of hydrogen to helium continues in a shell surrounding
the helium core. The core temperature continues to grow, and when it becomes
sufficiently high it becomes the turn of helium to undergo nuclear reactions.
Although there is no stable nucleus that can be formed in a collision of a proton
and a 4He nucleus or in the collision of two 4He nuclei, the latter collision can
produce an unstable state of the nucleus 8Be that lives long enough before it
undergoes fission back into two 4He nuclei, so that it can serve as an intermedi-
ary in the carbon production reactions

a : 4He + 4He → 8Be + γ

b : 4He + 8Be → 12C + γ. (1.5.23)

Although this is a sequence of two-body reactions, it does not lead to an energy
production rate per volume ερ proportional to ρ2, as in the proton–proton chain
and the CNO cycle. The reason is that there is only a small probability P
for the 8Be nucleus to absorb another 4He nucleus before it fissions. Thus
ερ is proportional to ρ2P , and since P when small is proportional to ρ, ερ
is proportional to ρ3, and therefore the exponent λ in Eq. (1.5.1) is λ = 2.

As usual, the temperature dependence of ε is harder to estimate. Reaction a
is endothermic, requiring an energy E of relative motion of the two 4He nuclei
of at least 92 keV. In order for 4He nuclei to have any chance of having energies
this large, the temperature must be at least 108 K. Even at such relatively high

29 R. J. Tayler, The Stars: Their Structure and Evolution (Wykeham Publications, London, 1970), Figure
39m gives the crossover temperature as 1.7 × 107 K, while F. LeBlanc, An Introduction to Stellar
Astrophysics (John Wiley & Sons, Winchester, 2010), Figure 6.7 gives 1.9 × 107 K.
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temperatures, there are sizable Coulomb barriers both in the rate for reaction a
and in the probability P that a 8Be nucleus will experience reaction b instead
of fissioning. The only reason30 why carbon production is non-negligible at
temperatures of order 108 K to 109 K is that there is an unstable state of 12C that
provides a resonance in the 4He+8Be channel at an accessible excitation energy
of 310 keV. This unstable state has an appreciable chance of decaying into the
stable ground state of carbon, with the emission of a 7.4 MeV photon. Because
of the pair of Coulomb barriers plus the exothermic nature of reaction a, the
exponent ν in Eq. (1.5.1) for the temperature dependence of carbon production
is quite large, estimated to be of order 30 to 40, depending on the temperature.

Once 12C is formed in this way, it is possible to produce heavier nuclei in
various reactions that are suppressed mostly by Coulomb barriers: 4He+12 C →
16O+γ, 4He+16 O → 24Mg+γ, 12C+12 C → 24Mg+γ, and so on. There are
also reactions that destroy but do not produce various light nuclei with relatively
small binding energies, including 2H, 3He, 6Li, 7Li, 9Be, 10B, and 11B. Where
these nuclei are found spectroscopically in interstellar clouds, their measured
abundance provides a valuable lower bound on the cosmological abundance of
light elements left over from the beginning of the big bang.

Appendix: Calculation of Suppression by Coulomb Barriers

Classically, the total energy of a pair of nuclei interacting through a central
potential V (r) is

Etot = p2
1

2m1
+ p2

2

2m2
+ V (r) = P2

2(m1 +m2)
+ p2

2μ
+ V (r), (1.5.A1)

where p and P are the relative and total momenta, where

p = μ

(
p1

m1
− p2

m2

)
, P = p1 + p2, (1.5.A2)

and μ again is the reduced mass

μ = m1m2

m1 +m2
.

Since both Etot and P are time-independent, they can be expressed at any time
in terms of the relative and total momenta p0 and P0 at a time t0 early enough
that the nuclei are so far apart that V (r) is negligible:

Etot = P2
0

2(m1 +m2)
+ p2

0

2μ
, P = P0. (1.5.A3)

30 E. E. Salpeter, Astrophys. J. 115, 326 (1952).
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We are assuming here that the potential depends only on the separation r ≡ |x|,
x = x1 − x2.

Quantum mechanically, the probability of finding the nuclei with separation
vector x1 − x2 in a small volume d3x around x and center-of-mass position
(m1x1 +m2x2)/(m1 +m2) in a small volume d3X around X is given in terms of
a wave function ψ(x, X) by |ψ(x, X)|2 d3x d3X. The wave function satisfies the
Schrödinger equation Hψ = Etotψ , where Etot is the numerical quantity given
by Eq. (1.5.A3), and H is the Hamiltonian operator, given by replacing p and P
on the right-hand side of Eq. (1.5.A1) with −ih̄ times gradients with respect to
the separation x and the center-of-mass position X = (m1x1+m2x2)/(m1+m2).
The Schrödinger equation is then

Etotψ(x, X) =
[
− h̄2

2(m1 +m2)
∇2

X − h̄2

2μ
∇2

x + V (r)
]
ψ(x, X). (1.5.A4)

We can always find a solution of the form

ψ(x, X) = eiP·X/h̄ψE(x), (1.5.A5)

where E is the energy of relative motion, defined by

Etot = P2

2(m1 +m2)
+ E, (1.5.A6)

and

EψE(x) =
[
− h̄

2

2μ
∇2

x + V (r)
]
ψE(x). (1.5.A7)

This is supposed to hold only outside some very small radius r0, within which
nuclear reactions occur.

To solve this equation, we can often employ the WKB approximation. We
suppose that for a range of radii r > r0, V (r) − E is positive and sufficiently
large that V (r) changes little in a distance 1/κE(r), where

κE(r) =
[

2μ

h̄2

(
V (r)− E)]1/2

.

Then, in this range of r ,

ψE(r) 	 C+ exp

(
+
∫ r

r0

κE(r
′) dr ′

)
+C− exp

(
−
∫ r

r0

κE(r
′) dr ′

)
. (1.5.A8)

The nuclear reactions that occur within the radius r0 fix the ratio C+/C− to
take some value of order unity, which we will not need to calculate. We suppose
further that V (r) eventually decreases to zero for r → ∞. Equation (1.5.A8)
must break down when r approaches a radius rE where V (rE) = E, at which
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κ(rE) = 0. We take the potential barrier between r0 and rE to be sufficiently
high and thick that ∫ rE

r0

κE(r) dr � 1.

Then, for r = rE , Eq. (1.5.A8) reads

ψE(rE) 	 C+ exp

(
+
∫ rE

r0

κE(r
′) dr ′

)
,

the other term in Eq. (1.5.A8) being negligible. For r > rE the function ψE(r)
oscillates, with little change in amplitude, so |ψE(rE)| is determined by the
wave function representing the approach of the nuclei from a large separation.
Thus the rate of nuclear reactions is suppressed by a barrier penetration factor

B(E) 	
∣∣∣∣ C+
ψE(rE)

∣∣∣∣
2

= exp

(
−2
∫ rE

r0

κE(r
′) dr ′

)
. (1.5.A9)

For a Coulomb barrier, we have V (r) = Z1Z2e
2/r , so, taking r0 � rE , we

have

B(E) 	 exp

⎡
⎣−2

∫ rE

0
dr

√
2μZ1Z2e2

h̄2

(
1

r
− 1

rE

)⎤⎦ , (1.5.A10)

where rE = Z1Z2e
2/E. To do this integral, we set r = rEu

2, and use∫ 1
0 du

√
1 − u2 = π/4, so that

B(E) 	 exp

⎡
⎣−π

√
2μZ1Z2e2rE

h̄2

⎤
⎦ = exp

[
−πZ1Z2e

2

√
2μ

h̄2E

]
, (1.5.A11)

as was to be shown.

1.6 Relations among Observables: The Main Sequence

As we have seen in Section 1.3, we expect on very general grounds that stellar
parameters such as radius, luminosity, central temperature, effective surface
temperature, etc. all depend only on the star’s mass, age, and initial chemical
composition. This is why, when any pair of these parameters for a sample of
stars in a cluster that all began at the same time with the same uniform chemical
composition are plotted against each other, the values of these parameters will
fall close to a one-dimensional curve, such as the Hertzsprung–Russell diagram
comparing luminosity and effective surface temperature. But to find the form of
these curves requires detailed physical assumptions and numerical calculation.
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We shall see in this section that for stars that are still on the main sequence,
burning hydrogen at their cores, it is possible to make a good estimate of the
form of these curves using dimensional analysis, together with the assumption
of power-law behavior for the rate per mass ε of nuclear energy generation and
for the opacity κ:

ε = ε1ρ
λ(kBT )

ν , κ = κ1ρ
α(kBT )

β , (1.6.1)

with κ1 and ε1, α, β, λ, and ν all constants assumed to depend only on chemical
composition. (Section 1.4 found α = β = 0 for Thomson scattering, and α = 1
and β = −7/2 for free–free absorption. Section 1.5 found λ = 1 for the proton–
proton chain and CNO cycle; ν ≈ 5 for the proton–proton chain and larger for
the CNO cycle, and ν weakly dependent on temperature, with ν ∝ T −1/3.) Our
discussion in this section will be limited to stars in which thermal energy is
transported only by radiation. In the following section we shall show that the
presence of convective energy transport does not change our main conclusions.

With these assumptions, each stellar parameter will turn out to be dependent
only on the star’s mass M and a pair of quantities N1 and N2 that depend
on chemical composition and fundamental physical constants. Since there are
no dimensionless ratios among M , N1, and N2, any stellar parameter will be
proportional to a product of powers of M , N1, and N2, with exponents fixed by
dimensional analysis. This only works for stars on the main sequence whose
chemical composition (on which κ1, α, etc. depend) is still approximately uni-
form. For red giant stars whose stellar parameters also depend on the radius of
the helium core, dimensional analysis is not enough. It is also not enough even if
we assume that non-uniformities evolve from an initially uniform composition,
because then stellar parameters depend on the age of the star, as well as on
M , N1, and N2.

To carry out our dimensional analysis, we write Eqs. (1.3.3) and (1.3.4) in
terms of ρ, kBT , and L∗ ≡ L/ε1:

dL∗(r)
dr

= 4πr2ρλ+1(r)
(
kBT (r)

)ν , (1.6.2)

d
(
kBT (r)

)4
dr

= −3N1ρ
α+1(r)

(
kBT (r)

)β L∗(r)
4πr2

, (1.6.3)

where

N1 ≡ κ1ε1k
4
B

ca
. (1.6.4)

We will begin by assuming that the pressure p is dominated by gas pressure, as
is the case for all but the most massive stars. (We will return at the end of this
section to stars in which p is dominated by radiation pressure.) The pressure
then is well approximated by the ideal gas law, p = kBTρ/m1μ, where μ is the
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molecular weight and m1 is the mass of unit atomic weight. Then Eqs. (1.3.1)
and (1.3.2) are

d
(
ρ(r)kBT (r)

)
dr

= −N2
M(r)ρ(r)

4πr2
, (1.6.5)

dM(r)

dr
= 4πr2ρ(r), (1.6.6)

where
N2 ≡ 4πGm1μ. (1.6.7)

For uniform chemical composition, the stellar parameters R, L∗ ≡ L/ε1, ρ(0),
kBT (0), etc. can depend only on N1, N2, andM .

Next we must work out the dimensionalities of N1 and N2 in powers of
length, time, and mass. We note that the energy production rate per mass has
dimensions

[ε] = [energy][mass]−1[time]−1 = [velocity]2[time]−1 = [length]2[time]−3,

so

[ε1] = [length]2[time]−3[mass/length3]−λ[energy]−ν

= [length]2+3λ−2ν[time]−3+2ν[mass]−λ−ν .

Also, since 1/κρ is the mean free path, the opacity has dimensions [κ] =
[length]−1/[mass/length3], so

[κ1] = [length]−1[mass/length3]−1−α[energy]−β

= [length]2+3α−2β[time]2β[mass]−1−α−β .

Finally,

[ca/k4
B] = [energy][time]−1[area]−1[energy]−4

= [energy]−3[length]−2[time]−1

= [length]−8[time]5[mass]−3.

Thus

[N1] = [length]12+3λ−2ν+3α−2β[time]−8+2ν+2β[mass]2−λ−ν−α−β (1.6.8)

and

[N2] = [G][mass] = [velocity]2[length] = [length]3[time]−2. (1.6.9)

To calculate the stellar radius R, we ask what product of form MAN
A1
1 N

A2
2

has the dimensions of length. Setting the numbers of powers of length, time,
and mass in this product respectively equal to +1, 0, and 0, we find
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powers of length : 1 = (12 + 3λ− 2ν + 3α − 2β)A1 + 3A2, (1.6.10)

powers of time : 0 = (−8 + 2ν + 2β)A1 − 2A2, (1.6.11)

powers of mass : 0 = A+ (2 − λ− ν − α − β)A1. (1.6.12)

Using Eq. (1.6.11) to eliminate A2 in Eq. (1.6.10) gives A1; Eq. (1.6.11) then
gives A2; and using this in Eq. (1.6.12) gives A. In this way we find

A = −2 + λ+ ν + α + β
3λ+ ν + 3α + β , (1.6.13)

A1 = 1

3λ+ ν + 3α + β , (1.6.14)

A2 = −4 + ν + β
3λ+ ν + 3α + β , (1.6.15)

and so
R ∼= MAN

A1
1 N

A2
2 , (1.6.16)

with A, A1, and A2 given by Eqs. (1.6.13)–(1.6.15). (Here we use ∼= to mean
“proportional to, and since there are no very large or very small dimensionless
constants in the differential equations, also roughly equal to.”)

Likewise, the luminosity has dimensions

[L] = [energy]/[time] = [length]2[time]−3[mass],

so L∗ ≡ L/ε1 has dimensions

[L∗] = [length]−3λ+2ν[time]−2ν[mass]1+λ+ν .

Following the same procedure as above for R, we find that the unique product
of powers ofM , N1, and N2 that has the same dimensionality as L∗ is

L∗ ∼= MBN
B1
1 N

B2
2 ,

where

B = (1 + λ+ ν)(3α + β)+ (3 − α − β)(3λ+ ν)
3λ+ ν + 3α + β , (1.6.17)

B1 = − 3λ+ ν
3λ+ ν + 3α + β , (1.6.18)

B2 = ν(3α + β)+ (4 − β)(3λ+ ν)
3λ+ ν + 3α + β . (1.6.19)

We conclude then that

L = ε1L
∗ ∼= ε1M

BN
B1
1 N

B2
2 . (1.6.20)
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The same reasoning can be applied to other quantities, such as the tempera-
ture at the center of the star. The only combination of N1, N2, and M that has
the same dimensions as kBT isMCN

C1
1 N

C2
2 , where

C = 2
λ+ α + 1

3λ+ ν + 3α + β , (1.6.21)

C1 = − 1

3λ+ ν + 3α + β , (1.6.22)

C2 = 1 + 4C1, (1.6.23)

so we conclude that the central temperature is

kBT (0) ∼= MCN
C1
1 N

C2
2 . (1.6.24)

At this point the reader may be wondering why the central temperatures of
stars are so different from their effective surface temperatures, despite their
having the same dimensionality. For instance, the effective surface temperature
of the Sun is measured as Teff,� = 5, 800 K, while detailed solar models give
the central temperature of the Sun as T�(0) = 1.36 × 107 K etc., larger by a
factor 2,340. The answer is that, while the central temperature depends only on
M , N1, and N2, this is not true of the effective surface temperature, which is
defined by the requirement L = 4πR2σT 4

eff, or in other words,

kBTeff ≡ [k4
BL/4πσR

2]1/4 = [Lk4
B/πacR

2]1/4 = [N1L
∗/πR2κ1]1/4.

(1.6.25)
This can be written as the product

Teff = τ
−1/4
0 T0, (1.6.26)

where τ0 is the dimensionless quantity

τ0 = Rκ1[M/R3]1+α[kBT (0)]
β ,

and T0 has the dimensions of temperature,

kBT0 = [R[M/R3]1+α[kBT (0)]
βN1L

∗/πR2]1/4.

Since T0 and T (0) depend only on M , N1, and N2, and have the same dimen-
sionality, we expect them to be equal, up to factors of order unity. So from
Eq. (1.6.26) we expect that

T (0)/Teff ≈ τ
1/4
0 . (1.6.27)

On the other hand, τ0 is the value that the optical depth of the center of the
star would have if the density and temperature had the uniform values M/R3

and T (0), which is much greater than unity because the star is optically thick.
For instance, if we take the Sun to be completely ionized hydrogen and take its
opacity to be entirely due to Thomson scattering, then, as shown in Section 1.4,
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κ 	 0.4 cm2/g, so for a uniform density ≈ M/R3� the optical depth of the
center of the Sun is τ0 ≈ R�κM�/R3� = 1.6×1011. Our estimate (1.6.27) then
suggests that T (0)/Teff 	 630, not very different from the actual ratio 2,340
cited above.

We are now in a position to find the shape of the famous Hertzsprung–Russell
relation between effective surface temperature and luminosity for stars on the
main sequence. From the definition (1.6.25) and our results that R ∝ MA and
L ∝ MB , we find the mass dependence of the effective surface temperature

Teff ∝ M [B−2A]/4. (1.6.28)

Therefore, eliminating M from our results for L and Teff, we can express the
Hertzsprung–Russell relation as a power law:

L ∝ T Heff (1.6.29)

with exponent

H = 4B

B − 2A
= 4

[
1 − 2

−2 + λ+ ν + α + β
(1 + λ+ ν)(3α + β)+ (3 − α − β)(3λ+ ν)

]−1

.

(1.6.30)

The estimate of H is simplest for stars on the upper part of the main sequence,
whose high temperature means that opacity is dominated by Thomson scatter-
ing, for which α = β = 0. For both the proton–proton chain and the CNO cycle
λ = 1, so leaving ν as a free parameter, the Hertzsprung–Russell exponent is

H = 12(3 + ν)
11 + ν . (1.6.31)

In all cases ν is positive-definite and 3.27 < H < 12. More specifically, for the
proton–proton chain and CNO cycle we have roughly ν 	 5 and ν 	 15, for
which respectively H 	 6 and H 	 8.3. The comparison with observation is
complicated by the fact that, although it is straightforward to measure L for any
star whose distance is known (or to measure ratios of values of L for a cluster of
stars that are all at the same distance), it is difficult to obtain a precise value for
Teff from observations of colors or spectral lines. From one graph31 of L versus
Teff for a large sample of stars with masses between 2 and 10 solar masses,
I estimate that H 	 7.

The problems associated with the measurement of effective surface temper-
ature can be avoided by considering the class of eclipsing binary stars, for
which accurate values of R and M can be found from the analysis of the time-
dependence of luminosities and Doppler shifts.32 It is particularly revealing to
consider the relation between luminosity and mass for stars, such as those on the

31 F. LeBlanc, Introduction to Stellar Astrophysics (John Wiley & Sons, Chichester, 2010), p. 27.
32 J. Andersen, Astron. Astrophys. Rev. 3, 91 (1991).
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upper part of the main sequence, whose opacity is due to Thomson scattering,
for which α = β = 0. For these stars Eqs. (1.6.17)–(1.6.19) give B = 3,
B1 = −1, and B2 = 4, so here Eq. (1.6.20) reads

L ∼= ε1M
3N−1

1 N4
2 = ca(4πGm1μ)

4

κ1k
4
B

M3. (1.6.32)

It is striking that this result is entirely independent of the parameters ε1, λ, and ν
characterizing the mechanism for nuclear energy generation. One suspects that
for α = β = 0 this result is even independent of the assumption that the rate
of energy generation per mass is proportional to a product of powers of density
and temperature, but I have not been able to prove this.

The data on eclipsing binaries cited by Andersen shows that for 2 ≤ M/

M� ≤ 20, binaries have L ∝ M3.6. Another survey33 shows that bright stars
have L ∝ M4.0, while dimmer stars have L ∝ M2.76. Stars on the upper part of
the main sequence have34 L ∝ M3.5. Given the limited statistics from eclipsing
binaries and the oversimplification in our assumption of an opacity entirely due
to Thomson scattering, the discrepancies among these measured exponents –
3.6, 4.0, 2.76, and 3.5 – and with our result that L ∝ M3 – are not surprising.

The luminosity–mass relation provides insight regarding the scale of time
over which stars of various mass evolve. The fusion 41H → 4He yields 6.5 MeV
per proton, so the energy per mass available from hydrogen burning is

6.5 MeV/p × 1.602 ×10−5 erg/MeV/1.672 ×10−24 g/p = 6.23 ×1019 erg/g.

The Sun has massM� = 1.939 × 1033 g, but initially only 75% was hydrogen,
so the energy available is

EH = 0.75f × 1.939 × 1033
(
M

M�

)
g × 6.23 × 1019 erg/g

= 0.93 × 1053f

(
M

M�

)
erg,

where f is the fraction of the Sun’s hydrogen that becomes sufficiently hot to
initiate nuclear reactions. The Sun has luminosity L� = 3.845 × 1033 erg/sec,
so a star of massM and luminosity L could go on burning hydrogen for a time

EH/L 	 7.6 × 1011f
M/M�
L/L�

years.

The main sequence duration of the Sun is commonly estimated as 1010 years,
corresponding to f 	 0.013, a not unreasonable value. Even with an efficiency

33 Cited by J. P. Cox and R. T. Giuli, Principles of Stellar Structure (Gordon and Breach, New York, 1968),
p. 15.

34 C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar Interiors: Physical Principles, Structure and
Evolution, 2nd edn. (Springer, New York, 2004), p. 28.
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this small, the solar main sequence lifetime is much longer than the Kelvin time
107 years over which the Sun could go on shining without nuclear reactions, and
it is not much less than the present age 1.37 × 1010 years of the big bang. But
with our analytic estimate L ∝ M3 and the same hydrogen burning efficiency,
for M = 100M� the main sequence duration would be only 106 years, while
with the empirical relation L ∝ M3.5 the main sequence lifetime would be
105 years.

Finally, consider the relation between stellar radii and masses. Recall
that R ∝ MA, and for α = β = 0 and λ = 1, Eq. (1.6.13) gives

A = −1 + ν
3 + ν .

If for the CNO cycle we take ν = 15, then R ∝ M0.78. Data35 for stars with
masses between 5 and 20 solar masses give R ∝ M0.78, while other data36 for
stars on the upper part of the main sequence indicate that R ∝ M0.75. This is a
very satisfactory confirmation of the results of dimensional analysis.

* * * * *

In closing, we return to the case in which the pressure is dominated by radiation
rather than hot gas. Here p = aT 4/3, so Eqs. (1.6.5) and (1.6.7) are replaced
with

d
(
kBT (r)

)4
dr

= −3N ′
2
M(r) ρ(r)

4πr2
,

and

N ′
2 ≡ 4πGk4

B/a,

while there is no change in Eqs. (1.6.1)–(1.6.4) or (1.6.6). Now stellar param-
eters R, L∗ ≡ L/ε1, ρ(0), kBT (0), etc. depend only on N1, N ′

2, and M . Note
that N ′

2 has the dimensions of G[energy]4/[energy/volume], or

[N ′
2] = [G][energy]4/[energy/volume] = [G][energy]3[volume]

= [length]12[time]−8[mass]2. (1.6.33)

Here again there is a remarkably general simple relation between luminosity
and mass in the case where opacity is dominated by Thomson scattering. Recall
that L has dimensions

[L] = [energy]/[time] = [length]2[time]−3[mass],

35 Cited by A. Weiss, W. Hillebrandt, H.-C. Thomas, and H. Ritter, Cox and Giuli’s Principles of Stellar
Structure, 2nd edn. (Cambridge Scientific Publishers, Cambridge, 2004), p. 10.

36 Cited by C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar Interiors: Physical Principles, Structure
and Evolution, 2nd edn. (Springer, New York, 2004), p. 28.
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so L∗ ≡ L/ε1 has dimensions

[L∗] = [length]−3λ+2ν[time]−2ν[mass]1+λ+ν .

The only combination of N1, N ′
2, and M that has the same dimensions as L∗ is

MB ′
N
B ′

1
1 N ′B ′

2
2 , where

B ′ = 1 + (λ+ ν/2)(3α + β)− (α + β/2)(3λ+ ν)
3λ+ ν + 3α + β , (1.6.34)

B ′
1 = − 3λ+ ν

3λ+ ν + 3α + β , (1.6.35)

B ′
2 = ν

4
+ B ′

1

(
−1 + ν

4
+ β

4

)
. (1.6.36)

Hence
L = ε1L

∗ ∼= ε1M
B ′
N
B ′

1
1 N ′B ′

2
2 . (1.6.37)

Equations (1.6.25)–(1.6.27) with α = β = 0 give B ′ = 1, B ′
1 = −1, B ′

2 = 1,
so Eq. (1.6.37) gives

L ∼= ε1MN
−1
1 N ′1

2 = 4πGc

κ1
M , (1.6.38)

for any values of λ and ν. This may be compared with the result given at the
end of Section 1.3, that in the absence of gas pressure

L = 4πGcM

κ(R)
. (1.6.39)

This result was derived with no assumptions regarding the dependence of opac-
ity or nuclear energy generation on temperature and density. If we assume that
the opacity is independent of temperature and density, as it is for Thomson
scattering, then κ(R) is the same as what in this section we have called κ1, so
Eq. (1.6.38) is the same as Eq. (1.6.39) and dimensional analysis is not needed.
Here ∼= actually means =. But, for a more general dependence of opacity on
temperature and density, of the form (1.6.1), though Eq. (1.6.39) is still valid in
the absence of gas pressure, the opacity κ(R) at the surface is different from κ1,
the relation depending on the profile of density and pressure throughout the star
and hence on the stellar mass, so here dimensional analysis comes in handy in
finding the luminosity–mass relation.

1.7 Convection

The regime of radiative energy transport discussed in the previous sections,
and more generally any smooth model of stellar structure, may not be stable
against the onset of convection. Bits of stellar material may separate from their
surroundings, and rise or fall, like eddies in a heated pot of water.
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Suppose that a small element of stellar fluid happens to move upward from
r to r + dr . The balance of forces at the surface of the element will cause the
pressure inside to change, from p(r) to the ambient pressure p(r)+ p′(r) dr at
its new location. The density and temperature will also change, but not to the
new ambient density and temperature. Since heat conduction is generally very
slow in stars, it is reasonable to suppose that the process is adiabatic, with no
heat flowing into or out of the fluid element. Then the density and temperature
will be some definite function of the pressure (in general depending on initial
conditions), and in particular the new density will be

ρ(r)+
[
∂ρ(p)

∂p

]
p=p(r)

p′(r) dr , (1.7.1)

in which we adopt the convention that a partial derivative in square brackets is
to be calculated assuming that variations are adiabatic – that is, with changes
in pressure, the temperature and density vary in such a way that no heat flows
into or out of the fluid element. If this new density is greater than the ambient
density ρ(r)+ρ′(r) dr at the new position, then the fluid element will sink back
toward its original position, and the initial configuration will be stable. Thus the
condition for stability against upward motion is[

∂ρ(p)

∂p

]
p=p(r)

p′(r) > ρ′(r). (1.7.2)

Similarly, if the blob density (1.7.1) is less than the new ambient density ρ(r)+
ρ′(r) dr then the fluid element will float upward, so we then have stability
against downward motion. Since for downward motion dr is negative, the sta-
bility condition is again (1.7.2).

On the other hand, if the left-hand side of Eq. (1.7.2) is less than the right-
hand side we have an exponentially growing instability, whereas if the two sides
are equal we have instability against a steady drift upwards or downwards.

Under conditions of convective stability, the r-derivative of the temperature is
given by the equation (1.3.4) of radiative energy transport, while the r-derivative
of the pressure is given by the equation (1.3.1) of hydrostatic equilibrium, so it
is convenient (and conventional) to rewrite the equation (1.7.2) of convective
stability in terms of temperature and pressure rather than density and pressure.
For this purpose, we need the ideal gas law

ρ = mp/kBT ,

where m is the mass of the gas particles, whose value will not concern us. It
follows then that [

∂ρ

∂p

]
= ρ

p
− ρ

T

[
∂T

∂p

]
= ρ

p
−
[
∂ ln T

∂ lnp

]
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(the square brackets again indicating adiabatic variations), and

ρ′ = ρp′

p
− T ′ρ

T
,

so the quantity appearing in the stability condition (1.7.2) can be written[
∂ρ

∂p

]
p=p(r)

p′(r)− ρ′(r) = −p
′(r)ρ(r)
p(r)

(∇ad(r)− ∇(r)),
where ∇ad is the value of ∂ ln T/∂ lnp for adiabatic variations,

∇ad(r) ≡
[
∂ ln T (p)

∂ lnp

]
p=p(r)

, (1.7.3)

and ∇(r) is the actual value of this derivative in the star:

∇(r) ≡ T ′(r)/T (r)
p′(r)/p(r)

. (1.7.4)

Since the quantity p′ρ/p is everywhere negative, the condition (1.7.2) for
convective stability is just

∇(r) < ∇ad(r). (1.7.5)

Using Eqs. (1.3.1) and (1.3.4), we have

∇(r) = 3κ(r)L(r)p(r)
16πca T 4(r)GM(r)

. (1.7.6)

It is instructive to write the stability condition ∇(r) < ∇ad(r) as a limit on the
rate of energy flow through a sphere of radius r that can be carried stably by
radiation:

L(r) < 4 ∇ad(r)

(
prad(r)

p(r)

)
LEdd(r), (1.7.7)

where prad(r) is the radiation pressure aT (r)4/3 and LEdd(r) is the Eddington
limit 4πGcM(r)/κ(r). As we saw at the end of Section 1.3, L(r) must in any
case be less than LEdd(r) in order for radiation not to overcome gravitational
attraction and tear the star apart. We will see that 4 ∇ad is never very different
from unity, so for ordinary stars, for which radiation pressure is much less than
gas pressure, stability against convection requires that L(r)must be not just less
but very much less than the Eddington limit LEdd(r).

To calculate ∇ad we make use of the conservation of energy and mass. (For
relativistic theories, in which mass is not conserved, we use baryon number
instead.) We take E as the thermal energy density, excluding the energy associ-
ated with rest masses, so the thermal energy per gram is E/ρ. When the volume
per gram 1/ρ of stellar material increases by a small amount δ(1/ρ) (which
of course is negative for decreasing volume), the work per gram that is done
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against the ambient pressure p is p δ(1/ρ), so in the absence of heat flow the
conservation of energy requires that

δ(E/ρ)+ p δ(1/ρ) = 0. (1.7.8)

As already mentioned in Section 1.1, for a wide variety of stellar material E is
proportional to p, a relation conventionally written as

E = p

� − 1
. (1.7.9)

(This is sometimes written as E = np, where n ≡ 1/(�− 1).) Using Eq. (1.7.9)
in Eq. (1.7.8), the adiabatic energy conservation condition becomes

�p δ(1/ρ)+ (1/ρ) δp = 0,

or in other words
δ
(
p/ρ�

) = 0. (1.7.10)

The adiabatic partial derivative in Eq. (1.7.2) is then[
∂ρ(p)

∂p

]
= ρ

�p
, (1.7.11)

and the stability condition (1.7.2) is then just the condition that

ρ(r) p′(r)
�p(r)

> ρ′(r),

or, multiplying by the positive quantity �/ρ(r),

p′(r)
p(r)

>
�ρ′(r)
ρ(r)

. (1.7.12)

(The difference between the left-hand and right-hand sides of this inequality is
a quantity known as the Schwarzschild discriminant.) Hence stability requires
that p(r)/ρ�(r) increases with r . Where this is not the case, convection occurs.

For an ideal gas, with p proportional to ρT , we have p/ρ� proportional to
T �/p(�−1), so for adiabatic variations T ∝ p(�−1)/� , and the quantity (1.7.3)
is the constant

∇ad = 1 − 1/�. (1.7.13)

This is the value we must use in the stability criterion (1.7.5).
For a monatomic ideal gas of atoms at temperature T the equipartition of

energy gives a thermal energy per atom 3kBT/2, so with ρ/m1μ atoms per
volume (where μ is the atomic weight andm1 the mass for unit atomic weight),
the thermal energy per volume is E = 3kBTρ/2μm1, as compared with a
pressure given by the ideal gas law as p = kBTρ/μm1, so here Eq. (1.7.9)
is satisfied with � = 1 + 2/3 = 5/3, and ∇ad = 2/5.

Matters are not always so simple, even in ordinary stars. For instance in the
Sun, as we go inwards from just below the surface to r 	 0.8R�, the increasing
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temperature goes first to ionizing atomic hydrogen (which takes 13.6 eV per
atom), then to singly ionizing atomic helium (24.6 eV per atom), and then
to completely ionizing singly ionized helium (54.4 eV per ion), rather than
to increasing thermal velocities and pressure. Since ∂E/∂p is thus effectively
greater than 3/2, the effective value of � is less than 5/3, and ∇ad is less than 2/5.
In the outer layers of the Sun, from just below the surface down to r 	 0.8R�,
the effective value of ∇ad is approximately 0.15.37 Elsewhere in the Sun, ∇ad is
close to the nominal value 2/5.

Energy density is proportional to pressure also if the thermal energy and
pressure are both dominated by relativistic particles, such as fast electrons in
high-mass white dwarfs or photons in supermassive stars. In such cases we have
p = E/3, so Eqs. (1.7.9) and (1.7.13) are satisfied with � = 4/3 and ∇ad = 1/4.

Now suppose that, in some part of a star, the condition (1.7.2) for convective
stability is not satisfied, but rather[

∂ρ(p)

∂p

]
p=p(r)

p′(r) < ρ′(r), (1.7.14)

or equivalently,
∇(r) > ∇ad(r). (1.7.15)

(This is the case in the Sun from just below the surface, at a depth where
p ≈ 105 dyne/cm2, down to r 	 0.7R�, where p ≈ 1013.5 dyne/cm2.) As
we have seen, in this case a blob of stellar fluid that happens to move upwards
or downwards will become respectively lighter or heavier than the same volume
of ambient fluid along its path, and hence will tend to keep moving in the same
direction. The pressure in the blob remains the same as the ambient pressure
along its path, so if the energy per volume E depends only on the pressure, it
too remains the same in the blob as in the fluid along its path, but since the mass
density ρ in the blob becomes less or greater than in the fluid along its path
for a blob going upwards or downwards, the energy per mass E(p)/ρ becomes
respectively greater or less than in the fluid along its path. Specifically, after the
blob travels a distance δr , the difference between its density and the density of
the surrounding material will be

δρ =
[[
∂ρ(p)

∂p

]
p=p(r)

p′(r)− ρ′(r)

]
δr ,

so the difference between the thermal energy per mass of the blob and of the
surrounding material will be

37 Numerical results for ∇ and ∇ad here and below are taken from Figure 29.4 of R. Kippenhahn and
A. Weigert, Stellar Structure and Evolution (Springer-Verlag, Berlin, 1990). Other solar parameters are
taken from C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1955).
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δ

(E
ρ

)
= −Eδρ/ρ2 = E(r)

ρ2(r)

[
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

]
δr . (1.7.16)

According to the condition (1.7.14) for convection to occur, the change (1.7.16)
in energy per mass of the blob will be positive or negative for outward or inward
motion, respectively. Eventually the blob will dissolve into the ambient material,
heating the ambient matter above if the blob has gone upward and cooling the
matter below if the blob has gone downward. The succession of blobs going up
and down thus leads to a flow of heat energy outward through the star.

The convective transport of energy forces a clarification of notation. From
now on, we refer to the rate of energy transport outward through a sphere of
radius r by radiation and convection as Lrad(r) and Lconv(r), respectively, while
the total rate of energy transport is

Lrad(r)+ Lconv(r) ≡ Ltot(r).

The equation (1.3.3) of energy conservation refers of course to the total energy
transport rate

dLtot(r)

dr
= 4πr2ε(r)ρ(r), (1.7.17)

while it is Lrad(r) that controls variations in temperature through Eq. (1.3.4),
which we now write as

dT (r)

dr
= −3κ(r)ρ(r)

4caT 3(r)

Lrad(r)

4πr2
. (1.7.18)

Thus, in the presence of convection, Eq. (1.7.6) refers to the radiative energy
transport rate, not the total rate:

∇(r) = 3κ(r)Lrad(r)p(r)

16πca T 4(r)GM(r)
. (1.7.19)

Often one defines a quantity ∇rad(r) as what ∇(r) would be if energy were
transported entirely by radiation:

∇rad(r) ≡ 3κ(r)Ltot(r)p(r)

16πca T 4(r)GM(r)
. (1.7.20)

Since convection carries some energy, the presence of convection means that
∇(r) is less than ∇rad(r) (often much less), as well as greater than ∇ad.

Finding Ltot(r) is relatively easy. Equation (1.7.17) tells us that outside a
central core where nuclear reactions occur, Ltot(r) is a constant, and hence is
equal to the star’s luminosity L. But in order to use Eq. (1.7.18) to calculate the
variation in the star’s temperature, we need to find Lrad(r), which is not so easy.
Instead we can often simply assume that in convective zones ∇(r) 	 ∇ad(r),
so that the temperature varies in such a way as to keep the pressure simply
proportional to ρ� .
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To see when this is likely to be the case, it is usual to calculate the convective
energy flux employing a radical approximation. One assumes that the dissolu-
tion of each blob occurs after it has traveled a distance 	(r), known as the mixing
length. (The mixing length at radius r is usually taken to be of the same order
of magnitude as the scale height of the stellar fluid at that position, the radial
distance in which density, pressure, etc. change appreciably, but it is difficult
to justify this guess, and even more difficult to do better.) We assume that the
whole mass of the star is involved in this convection, so the energy per time
transported by convection through a sphere of radius r is the quantity (1.7.16)
(with δr replaced with 	) times the mass 4πr2ρ(r)	(r) in a shell of thickness
	(r) divided by the time ≈ 	(r)/u(r) that it takes blobs to pass through this
shell,

Lconv(r) ≈ 4πr2u(r)
E(r)
ρ(r)

(
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

)
	(r), (1.7.21)

where u(r) is a typical blob velocity. To estimate u(r), we note that the buoyant
force on a blob of volume V is the acceleration of gravity g = GM/r2 =
|p′/ρ| times the mass ρV of the ambient material with the same volume V
minus the mass (ρ + δρ)V of the blob.38 To first order the acceleration of the
blob is this force divided by ρV , which after traveling a distance 	(r) is

a =
∣∣∣∣p′(r)
ρ2(r)

∣∣∣∣
(
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

)
	(r).

The average velocity over this time is then of the order u ≈ √
a	, or

u(r) ≈
∣∣∣∣p′(r)
ρ2(r)

∣∣∣∣
1/2
(
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

)1/2

	(r). (1.7.22)

Together with Eq. (1.7.21), this gives the energy per time transported by con-
vection through a sphere of radius r as

38 A proof of the classic result that the buoyant force on a submerged body equals the weight of the fluid the
body displaces was given by Archimedes, “On Floating Bodies,” in The Complete Works of Archimedes,
trans. T. L. Heath (Cambridge University Press, Cambridge, 1897). He compared two columns of fluids.
In one, the submerged body is held down by a piston, while in the other, with the same horizontal cross
section as the submerged body, the fluid is undisturbed. In order for the fluid to be at rest the force pressing
down at the base of the two columns must be the same, so the buoyancy, which equals the force exerted by
the piston, plus the weight of the submerged body, plus the weight of the column of fluid less the weight
of the fluid displaced by the body, must equal the weight of the fluid in the undisturbed column, which
does include the weight of the fluid displaced by the body. The same result can be derived more directly
by modern methods. The integral of the pressure force on the surface of the displaced body is related by
Gauss’s theorem to the integral of the pressure gradient over the displaced volume, which according to
the equation of hydrostatic equilibrium equals the weight of the displaced fluid.
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Lconv(r) ≈ 4πr2
∣∣∣∣p′(r)
ρ2(r)

∣∣∣∣
1/2 E(r)
ρ(r)

(
ρ′(r)−

[
∂ρ(p)

∂p

]
p=p(r)

p′(r)

)3/2

	2(r).

(1.7.23)
In the same way as in our derivation of the condition (1.7.5) for convective
stability, for ideal gases we can rewrite Eq. (1.7.23) as

Lconv(r) ≈ L0(r)
(∇(r)− ∇ad(r)

)3/2, (1.7.24)

where

L0(r) ≡ 4πr2p
′2(r)E(r)	2(r)

p3/2(r)ρ1/2(r)
. (1.7.25)

We say that convection is efficient at r if the coefficient L0(r) is much larger
than the luminosity L. This is often the case. Where the mixing length 	(r) is
half the pressure scale height, and E = 3p/2, we have

L0 ≈ (3/2)πr2p3/2(r)/ρ1/2(r).

In the Sun at r = 0.8R� we have r = 5.6×1010 cm, p = 1.6×1012 dyne/cm2,
and ρ = 0.018 g/cm3, so L0 ≈ 2 × 1041 erg/sec, as compared with the solar
luminosity L = 3.9 × 1033 erg/sec. By a wide margin, this is a case of efficient
convection. In general cases of efficient convection, Eq. (1.7.24) requires that
∇(r) is very close to the adiabatic value ∇ad(r). In particular, where E is related
to the pressure by Eq. (1.7.9), ∇ad is given by Eq. (1.7.13), and so in the case of
efficient convection we have

p(r) = Kρ�(r), (1.7.26)

whereK is a constant that depends on conditions at the boundary of this region.
This is the case throughout the convective region of the Sun, aside from a thin
shell near the surface, where the pressure drops from 106 dyne/cm2 to 105

dyne/cm2. (But, as already mentioned, due to the effect of ionization, � is not
constant in the outer parts of the convective region.) Where Eq. (1.7.26) holds
throughout a star’s interior, the star is known as a polytrope. Such stars are
discussed further in Section 1.8.

There is another way of expressing this. The second law of thermodynamics
tells us that there is a function s of ρ, p, etc. known as the specific entropy, or
entropy per gram, for which39

T ds = d(E/ρ)+ p d(1/ρ). (1.7.27)

Hence Eq. (1.7.8) can be interpreted as the statement that convection does not
change the specific entropy of the convected fluid elements:

δs = 0. (1.7.28)

39 We are using δ to denote a change in a fluid element as it rises or falls in the star, while d stands for an
arbitrary variation, not necessarily related to any actual motion.
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This is because heat conduction is neglected here, which is generally a good
approximation in stars. In regions where convection is efficient the specific
entropy tends to a nearly uniform value to keep the convective energy transport
consistent with the actual luminosity of the star. Stars with a uniform entropy
per gram are said to be isentropic.

Though not strictly necessary for our purposes, it is instructive to work out
a formula for the specific entropy for gases. With the internal energy given by
Eq. (1.7.9), Eq. (1.7.27) reads

T ds = 1

� − 1

(
dp

ρ
+ �p d

(
1

ρ

))
= ρ�−1

� − 1
d

(
p

ρ�

)
. (1.7.29)

For an ideal gas, T = p/Rρ, with R constant, so

ds = R

� − 1

(
ρ�

p

)
d

(
p

ρ�

)
= R

� − 1
d ln

(
p

ρ�

)
. (1.7.30)

Hence

s = R

� − 1
ln

(
p

ρ�

)
+ constant. (1.7.31)

We see again that p/ρ� is constant in an isentropic star.
In typical stars there are regions stable against convection, in which energy

transport is by radiation and p/ρ� increases with r , and others with effective
convection, in which p/ρ� is constant. For instance, in the Sun there is a core
with radiative energy transport, extending from the center where p 	 2 × 1017

dyne/cm2, out to a radius about 0.65R� where the pressure has dropped to about
3 × 1013 dyne/cm2. This is surrounded by an outer convective layer, and (since
convection cannot carry energy into empty space) a relatively thin surface layer
dominated by radiative energy transport. In more massive stars, there typically
is a convective core, and an outer layer dominated by radiative transport that is
stable against convection.

None of this affects the general results of Section 1.3 because the radii where
regions of convective energy transport begin or end, and the values of p/ρ�

in these regions, are set by the conditions in the adjacent regions of radiative
energy transport, and so are ultimately determined in terms of physical constants
and the value of the nominal stellar radius R where the boundary conditions
ρ(R) = p(R) = 0 are imposed. Also, the general results of Section 1.6 for the
main sequence are unchanged, because nothing regarding convection involves
new dimensionful constants.

* * * * *

For isentropic stars, whether or not satisfying the conditions for a polytrope,
the equations of hydrostatic equilibrium can be expressed as a variational prin-
ciple, which will prove useful when we come to stellar instability in Section 1.9.
Let us consider the variation in the total energy
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E =
∫ R

0
4πr2

(
E(r)− GM(r)ρ(r)

r

)
dr . (1.7.32)

Changes δρ and δE in the mass and energy densities produce a change in the
total energy

δE =
∫ R

0
4πr2

(
δE(r)− GM(r) δρ(r)

r
− Gρ(r)

r

∫ r

0
4πr ′2δρ(r ′) dr ′

)
dr .

(1.7.33)
In the first term, we use Eq. (1.7.8), which gives δE = (E + p) δρ/ρ. In the
third term, we interchange the order of integration, and also interchange the
coordinate labels r and r ′. This gives

δE =
∫ R

0
4πr2 F(r) δρ(r) dr , (1.7.34)

where

F(r) = E(r)+ p(r)
ρ(r)

− GM(r)

r
−G

∫ R

r

4πr ′ρ(r ′) dr ′. (1.7.35)

A straightforward calculation using Eq. (1.7.8) gives

dF(r)
dr

= 1

ρ(r)

dp(r)

dr
+ GM(r)

r2
. (1.7.36)

This vanishes according to the equation (1.1.4) of hydrostatic equilibrium, so
F(r) is a constant F0, and therefore Eq. (1.7.32) reads

δE = F0

∫ R

0
4πr2 δρ(r) dr = F0 δM . (1.7.37)

Thus, although the equation of hydrostatic equilibrium does not tell us that
either E orM is stationary, it does tell us that E is stationary ifM is. (The same
result applies in general relativity,40 with the total baryon number NB times the
baryon rest mass mB taking the place of M and M − mBNB taking the place
of E.)

1.8 Polytropes

There are several classes of stars for which the pressure is simply proportional
to a power of density, at least away from the surface:

p = Kρ� , (1.8.1)

40 For a textbook demonstration, see Section 11.2 of S. Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972).
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with K and � constant throughout the star. Such stars are known as polytropes
with index �. These include the following types,

• Ordinary stars with efficient convective energy transport. As shown in the
previous section, these stars obey Eq. (1.8.1), with � typically close to 5/3,
and K depending on boundary conditions, such as the values of the central
density and pressure.

• As we shall see in Section 1.10, exceptionally light white dwarf stars obey
Eq. (1.8.1) with � usually close to 5/3, and exceptionally heavy white dwarf
stars obey Eq. (1.8.1) with � 	 4/3. In both cases K depends only on the
chemical composition, as well as on fundamental physical constants.

• Supermassive stars. As discussed in Section 1.11, these stars obey Eq. (1.8.1)
with � 	 4/3 and withK depending on the molecular weight and on the ratio
of matter to radiation pressure, as well as on fundamental physical constants.

In this section we will treat all polytropes in common, not inquiring into the
reason for Eq. (1.8.1).

Since the temperature does not enter in Eq. (1.8.1), we can work out the
properties of the star using only the hydrostatic equations (1.1.4) and (1.1.5). It
will be convenient now to rewrite these two first-order differential equations as
a single second-order equation for the density:

d

dr

(
r2

ρ(r)

d

dr
ρ�(r)

)
+ 4πG

K
r2ρ(r) = 0. (1.8.2)

As boundary conditions, we can take the central density to have some assumed
value ρ(0) and, since the analyticity of ρ as a function of x requires ρ(r) to
be a power series in r2 near r = 0, we also take ρ′(0) = 0. With two initial
conditions, we have a unique solution, depending only on � and on the free
parameters K/G and ρ(0).

There is an apparent paradox in the case of stars with efficient convective
energy transport. Here there is not just one free stellar parameter, such as the
star’s mass or radius, but two free parameters, which can be taken as ρ(0) and
K = p(0)/ρ(0)� . Thus the Vogt–Russell theorem mentioned in Section 1.3
does not apply to such polytropes. This may seem surprising, because we
can think of the star as described by three first-order differential equations:
Eqs. (1.1.4) and (1.1.5), together with

d

dr

(
p(r)

ρ�(r)

)
= 0,

together with three parameter-free boundary conditions: M(0) = 0, ρ(R) = 0,
and p(R) = 0. So why, with an equal number of first-order differential equa-
tions and parameter-free boundary conditions, do we have any free parameters
beyond the radius R at which some of the boundary conditions are imposed?
The reason why this counting does not work here, though it may seem the
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same as the sort we used in Section 1.3, is that we are really imposing only
one boundary condition at the surface. With p(r)/ρ�(r) constant, the condition
ρ(R) = 0 implies that p(R) = 0. Having three first-order differential equations
and only two independent parameter-free boundary conditions depending on R,
there is an additional free parameter, which can be taken as K or ρ(0), in
addition to the radius R at which one of the boundary conditions is imposed.

Returning now to general polytropes, the free parameters in Eq. (1.8.2) can be
eliminated by re-scaling the independent and dependent variables. First, define

� ≡
(
ρ(r)

ρ(0)

)�−1

. (1.8.3)

Then Eq. (1.8.2) gives

1

r2

d

dr

(
r2 d

dr
�

)
+ 4πG(� − 1)

K�
ρ(0)(2−�)�1/(�−1) = 0.

We can get rid of the constant in the second term by introducing

ξ ≡
(

4πG(� − 1)

K�

)1/2

ρ(0)(2−�)/2r . (1.8.4)

The differential equation (1.8.1) then becomes

1

ξ2

d

dξ

(
ξ2 d

dξ
�(ξ)

)
+�(ξ)1/(�−1) = 0, (1.8.5)

and the boundary conditions are

�(0) = 1, �′(0) = 0. (1.8.6)

(The requirement �′(0) = 0 like the requirement ρ′(0) = 0 is needed for the
analyticity of ρ(r) at r = 0 as a function of the Cartesian components of x.)

Equation (1.8.5) is known as the Lane–Emden equation,41 and was much
studied in the early years of the twentieth century. It was shown that, for
� > 6/5, its solution vanishes at a finite value ξ1 of ξ , so the radius of the star is

R =
(

4πG(� − 1)

K�

)−1/2

ρ(0)−(2−�)/2ξ1. (1.8.7)

The star’s mass is

M =
∫ R

0
4πr2ρ(r) dr

= 4πρ(0)(3�−4)/2
(

K�

4πG(� − 1)

)3/2 ∫ ξ1

0
ξ2�1/(�−1)(ξ) dξ .

41 The classic discussion of the Lane–Emden equation is by S. Chandrasekhar, An Introduction to the Study
of Stellar Structure (University of Chicago Press, Chicago, IL, 1939).
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By using Eq. (1.8.5), we easily see that∫ ξ1

0
ξ2�1/(�−1)(ξ) dξ = −ξ2

1�
′(ξ1),

so

M = 4πρ(0)(3�−4)/2
(

K�

4πG(� − 1)

)3/2

ξ2
1 |�′(ξ1)|. (1.8.8)

There are just three values of � > 1 for which exact non-singular solutions
of the Lane–Emden equation are known.

• For � = ∞, Eq. (1.8.5) is linear and inhomogeneous. The general solution
is −ξ2/6 plus any linear combination of 1/ξ and 1. The condition �(0) = 1
fixes the solution to be simply �(ξ) = 1 − ξ2/6. This gives ξ1 = √

6 and
ξ2

1�
′(ξ1) = −2

√
6.

• For � = 2, Eq. (1.8.5) is linear and homogeneous. The general solution
is any linear combination of sin ξ/ξ and cos ξ/ξ . The condition �(0) = 1
fixes the solution to be simply �(ξ) = sin ξ/ξ . This gives ξ1 = π and
ξ2

1�
′(ξ1) = −π .

• For � = 6/5, the solution of Eq. (1.8.5) with �(0) = 1 is

�(ξ) = (1 + ξ2/3)−1/2.

This reaches zero only at infinity, so ξ1 = ∞, but ξ2�′(ξ) approaches the
finite value −√

3 for ξ → ∞, so, though the radius is infinite, the mass is
finite.

For other values of � > 1 a numerical computation is needed.42 Here are some
values of ξ1 and ξ2

1 |�′(ξ1)| for several values of �:

� ξ1 ξ2
1 |�′(ξ1)|

6/5 ∞ √
3

4/3 6.89685 2.01824
3/2 4.35287 2.41105
5/3 3.65375 2.71406
2 π π

∞ √
6 2

√
6

The isothermal case � = 1 is discussed in connection with galaxies in
Section 4.2.

42 Chandrasekhar, op. cit.
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1.9 Instability

We noted in Section 1.1 that stars that are close to a polytrope with � = 4/3 are
at the brink of a catastrophic instability. In this section we will prove a theorem
that allows us to identify more precisely the threshold parameters at which such
stars become unstable.

Suppose that a time-independent equilibrium stellar configuration is subject
to an infinitesimal perturbation. As usual for perturbations of time-independent
equilibrium, the perturbations δρ(x, t), δT (x, t), etc. of various quantities can be
expressed as a sum over normal modes, the contribution of each normal mode
having a time-dependence given by a factor e−iωt , with various values of ω (not
necessarily real) for the various normal modes.43 Each frequency ω is a function
of the various parameters characterizing the equilibrium configuration, such as
mass and/or central density.

In the absence of dissipative effects like heat conduction, the equations gov-
erning the time-dependence of the perturbations have the symmetry of time-
reversal invariance, so that if δρ(x, t), δT (x, t), etc. is a solution of these equa-
tions, then so is δρ(x, −t), δT (x, −t), etc. This tells us that if ω is the frequency
for some normal mode, then there is another normal mode with frequency −ω.
If ω is complex then exp(−iωt) grows exponentially unless the imaginary part
of ω is negative, in which case exp(iωt) grows exponentially. Hence the equi-
librium configuration is unstable unless all the frequencies ω characterizing the
various normal modes are real.

Now, consider an equilibrium configuration with parameters for which all ω
are real. Small perturbations will oscillate, but not grow. If we vary the star’s
parameters some ω may become complex, marking a transition to instability,
but this faces an obstacle. Everything in these equations is real, so if δρ(x, t),
δT (x, t), etc. is a solution of these equations, then so is its complex conjugate
δρ(x, t)∗, δT (x, t)∗, etc., which tells us that if ω is the frequency for some
normal mode, then there is another normal mode with frequency −ω∗, as well
as time-reversed modes with frequencies −ω and ω∗. Thus, if a generic real
frequency ω became complex for some value of a stellar parameter, then the
two modes with real frequencies ω and −ω would become four modes with
frequencies ω, −ω, −ω∗, and ω∗. This is impossible; the number of modes is set
by the dimensionality of the problem, and cannot suddenly increase or decrease.

43 This is a consequence of the time-translation symmetry of the problem. If δρ(x, t), δT (x, t), etc. is a
solution of the differential equations for small perturbations, then so is δρ(x, t + δt), δT (x, t + δt), etc.
Since the equations governing these very small perturbations are linear, the solution at t + δt must be a
linear combination of the various solutions at t . By diagonalizing the matrix in this linear combination, we
obtain an equal number of solutions in which each δρ(x, t + δt), δT (x, t + δt), etc. is simply proportional
to the corresponding δρ(x, t), δT (x, t), etc., with a coefficient of proportionality that differs from unity by
a term of first order in δt . That is, δρ(x, t + δt) = [1 − iωδt]δρ(x, t), δT (x, t + δt) = [1 − iωδt]
δT (x, t), etc., with ω some constant, This implies the desired time-dependence, proportional to
exp(−iωt).

https://doi.org/10.1017/9781108227445.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108227445.002


64 1 Stars

There is, however, a way in which a real frequency ω can become complex,
and the star thereby become unstable. If for some set of parameter values the
two real frequencies ω and −ω come together, so that ω vanishes, then for
slightly different parameters the frequency can become pure imaginary, so that
ω = −ω∗, and there are still just two normal modes, with frequencies ω and
−ω = ω∗. We conclude that the transition from stability, with all ω real, to
instability, with some ω complex (actually imaginary), takes place for parameter
values at which some ω vanishes.44

For the parameter values at which the ω for some normal mode vanishes,
this normal mode becomes a time-independent perturbation of the stellar con-
figuration, satisfying the equations of stellar structure. Since this perturbation
becomes time-dependent for infinitesimal ω, it must preserve the values of
conserved quantities, such as the total energy and baryon number. Thus (with
the possible exceptions described in footnote 2) a time-independent stellar con-
figuration can become unstable only at values of stellar parameters at which
there exists a time-independent perturbation that preserves the values of all
conserved parameters.

In cases where the effects of general relativity can be neglected at the transi-
tion to instability, we can take the two quantities that have to be conserved as
the energy E, not counting rest masses, and the total rest massM , defined equal
to the baryon number B times the rest mass mB per baryon. As we saw at the
end of Section 1.7, at least for stars with a uniform entropy per rest mass, if one
of these is stationary the other is too, so we can concentrate on perturbations
that leave just E conserved. We will see an example of this in Section 1.10 for
iron white dwarfs.

There are other cases, where the instability arises because of effects of general
relativity. Here again there are two conserved quantities, the mass M in the
Schwarzschild metric (see Eq. (1.9.A1) below) and the total baryon number B.
As in the non-relativistic case, it is especially convenient to look for values
of stellar parameters at which the total internal energy E ≡ M − mBc

2B

(which includes gravitational energy and everything else except the energy in
rest masses) is stationary. Obviously ifM and B are stationary then so is E, and
the theorem mentioned at the end of Section 1.7 tells us that at least for stars
with a uniform entropy per baryon, in general relativity the condition that E is
stationary is sufficient as well as necessary for bothM and B to be stationary.

44 Strictly speaking, there are other possible ways in which, at the transition to instability, several modes may
come together to have the same frequency. As an example, suppose that for some set of parameters we
have four normal modes with distinct real frequencies ω1, −ω1, ω2, and −ω2. If we vary the parameters
in such a way that ω1 and ω2 become equal to the same real value ω0, then for a further variation of
parameters we could again have four distinct frequencies, ω0 + iε, −ω0 − iε, −ω0 + iε, and ω0 − iε

with ε �= 0 real. For instance, this happens if the frequencies of the four normal modes are the roots of
the equation (ω2 − a2)2 − b = 0, with a and b real. The roots are real for b > 0, but become complex
(though not pure imaginary) as b moves to negative values. I am not aware of these possibilities actually
occurring in stars, and they will not be considered in what follows.
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To find where E is stationary in a relativistic context, we will use an expan-
sion for E in powers of the dimensionless quantities p/ρc2 and GM/rc2.
These two quantities according to Eq. (1.1.4) are roughly of the same order of
magnitude, which will be denoted v2/c2, and are assumed to be very small.45

The expansion reads

E =
∫ R

0
E(r) 4πr2 dr − 3

∫ R

0
p(r) 4πr2 dr

+
∫ R

0
6πr4dr p′2(r)/c2ρ(r)

−
∫ R

0
8πr3dr p(r)p′(r)/c2ρ(r)+ · · · , (1.9.1)

where E is the thermal energy density, excluding only gravitational energy and
the energy in rest masses. The individual terms on the first line are of order
Mv2, while the terms on the second and third lines are of order Mv4/c2, and
the dots denote terms no larger than of orderMv6/c4.

The derivation of the expansion (1.9.1) is given at the end of this section. This
derivation does not rely on any assumption about the star being a polytrope,
but the expansion finds its most important application when the terms of order
Mv2 on the first line nearly cancel, so that the relativistic corrections on the
second and third lines become important. This occurs when the pressure is
close to E/3, i.e., when the star is close to a polytrope with � = 4/3. As
already remarked in Section 1.1, when a star is very close to having E = 3p,
as for a polytrope with � 	 4/3, very small corrections to a stellar model can
make the difference between stability and instability. Because the relativistic
corrections on the second and third lines of Eq. (1.9.1) are already much smaller
than the individual terms on the first line, in the case at hand these terms can be
calculated using the non-relativistic equations of stellar structure for a polytrope
with � = 4/3, that is with p = Kρ4/3 for some constant K , the inaccuracies in
this calculation being even smaller. Using Eqs. (1.8.3), (1.8.4), and (1.8.1), we
easily find that Eq. (1.9.1) becomes

E =
∫ R

0
4πr2 dr

[
E(r)− 3p(r)

]+ 16π

(πG)3/2c2
ρ2/3(0)K7/2η, (1.9.2)

45 For ordinary stars supported by non-relativistic gas pressure, p/ρc2 ≈ v2
th/c

2, where vth is a typical
thermal velocity, generally much less than c. Even when the pressure is dominated by relativistic particles,
such as electrons in the most massive white dwarfs or photons in very massive stars, the ratio p/ρc2 is of
the order of the ratio of the energy in these relativistic particles to the energy in baryon rest masses, and
is still generally very small.
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where η is the positive numerical constant46

η = −2
∫ ξ1

0
�4(ξ)�′(ξ)ξ3 dξ+6

∫ ξ1

0
�3(ξ)�′2(ξ)ξ4 dξ = 3.49815, (1.9.3)

with ξ1 = 6.89685 corresponding to the radius at the star’s surface. We still need
to calculate the first term in Eq. (1.9.2) separately for individual cases, such as
massive white dwarfs and supermassive stars, as will be done in Sections 1.10
and 1.11, but the second term in Eq. (1.9.2) represents a universal relativistic
correction for stars that are close to polytropes with � = 4/3.

Appendix: Derivation of Relativistic Correction to Energy

As in the non-relativistic case, in general relativity there are two quantities that
must be conserved, at least in any spherically symmetric perturbations of the
star, and that therefore must both be stationary at values of parameters such as
central density at which there is a transition from stability to instability. One
of them is the mass M appearing in the Schwarzschild solution for the metric
outside the star:

− gtt = g−1
rr = 1 − 2MG/rc2, gθθ = r2, gφφ = r2 sin2 θ . (1.9.A1)

(Here and below we are using “standard” coordinates, for which inside or out-
side the star gtt and grr are functions of r and t , while gφφ and gθθ are the same
as for a flat space.) The Schwarzschild solution gives

M =
∫ R

0
ρ(r) 4πr2 dr , (1.9.A2)

where now ρ(r)c2 is the total energy density (that is, the time–time component
of the energy-momentum tensor T μν), including mass energy and everything
else except gravitational energy. (Gravitational energy is included in M in the
difference between 4πr2 dr and the spatial volume element 4πr2√grr dr .)

The other conserved quantity is B, the total baryon number of the star:

B =
∫ R

0
Bt(r) 4πr2

√
−grr(r)gtt (r) dr , (1.9.A3)

where Bμ is the conserved current of baryon number. We can write Bt in terms
of the scalar baryon density n ≡ UμB

μ, where Uμ is the velocity four-vector,
normalized so that UμUνgμν = −1. For a fluid at rest Ur = Uθ = Uφ = 0, so
Ut = 1/

√−gtt , Ut = √−gtt , n = √−gttBt , and therefore

46 The numerical value given here is inferred from Eqs. (6.9.29)–(6.9.31) of S. Shapiro and S. Teukolsky,
Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983).
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B =
∫ R

0
n(r) 4πr2

√
grr(r) dr . (1.9.A4)

The Schwarzschild solution inside the star gives

grr(r) =
(

1 − 2GM(r)

rc2

)−1

, (1.9.A5)

where, as before,

M(r) =
∫ r

0
4πr ′2ρ(r ′) dr ′. (1.9.A6)

Thus

B =
∫ R

0
n(r) 4πr2

(
1 − 2GM(r)

rc2

)−1/2

dr . (1.9.A7)

Of course, in the non-relativistic limit ρ is the rest mass density, and
M = mBB, where mB 	 938 MeV/c2 is the rest mass per baryon. More
generally, we can define an internal energy density E excluding rest masses, by

ρ(r) ≡ n(r)mB + E(r)/c2. (1.9.A8)

We will eventually be assuming that the star, though not necessarily a polytrope,
is close to a non-relativistic polytrope with �= 4/3, and therefore has a pressure
p(r) close to 3E(r). Without yet making this approximation, we can anticipate
that it will be convenient to express ρ as

ρ(r)c2 = mBn(r)c
2 + 3p(r)+�E(r), (1.9.A9)

where

�E(r) ≡ E(r)− 3p(r), (1.9.A10)

which will eventually be treated as a small perturbation, arising from the finite
electron mass for white dwarfs and the finite baryon kinetic energy for super-
massive stars.

It is important to be clear about the order of magnitude of the terms in M
and mBB. The leading term in both,

∫ R
0 4πr2mBn(r) dr , is the non-relativistic

approximation to M , and hence is of order M . The next-to-leading terms,∫ R
0 12πr2p(r) dr/c2 in M and

∫ R
0 4πr2mBn(r)

(
GM(r)/c2r

)
dr in mBB,

are of order Mv2/c2, where v is a characteristic gas particle velocity, with
v2 ≈ GM/r ≈ p/mBn, assumed much less than c. The general relativistic
correction

∫ R
0 4πrmBn(r)

(
GM(r)/rc2

)2
dr in mBB is of order Mv4/c4.
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To eliminate the terms of order M , we consider the difference, which gives the
total internal energy E:

E/c2 ≡ M −mBB

=
∫ R

0
4πr2 dr

[
3p(r)/c2 +�E(r)/c2

+mBn(r)
(
1 − (1 − 2GM(r)/rc2)−1/2)]. (1.9.A11)

The terms of order Mv2/c2 also cancel in Eq. (1.9.A11), as can be seen by
integrating the pressure term by parts,∫ R

0
12πr2p(r) dr =

∫ R

0
p(r) d(4πr3) = −

∫ R

0
p′(r) 4πr3 dr ,

and then using the relativistic equilibrium condition47

−r2p′(r) = G
(
ρ(r)+p(r)/c2)(M(r)+4πr3p(r)/c2)(1−2M(r)G/rc2)−1,

(1.9.A12)
which together with formula (1.9.A9) for the total energy density gives∫ R

0
12πr2p(r) dr =

∫ R

0
4πrG

(
mBn(r)+ 4p(r)/c2 +�E(r)/c2)

× (M(r)+ 4πr3p(r)/c2)(1 − 2M(r)G/rc2)−1
dr .

(1.9.A13)

Using this for the first term in Eq. (1.9.A11) gives the internal energy

E =
∫ R

0
4πr2

[
�E(r)+mBn(r)c

2(1 − (1 − 2GM(r)/rc2)−1/2)] dr
+
∫ R

0
4πrG

(
mBn(r)c

2 + 4p(r)+�E(r))
× (M(r)+ 4πr3p(r)/c2)(1 − 2M(r)G/rc2)−1

dr . (1.9.A14)

So far, although we have been guided by order-of-magnitude estimates, the
result (1.9.A14) is exact. Now, we note the term of order Mv2 in the first line
is − ∫ R0 4πr2mBn(GM/rc2) dr and cancels the term of order Mv2/c2 in the

second line, which is + ∫ R0 4πrGmBnM dr/c2. The leading terms are then of
orderMv4/c2:

47 For a textbook derivation, see Section 11.1 of S. Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972).

https://doi.org/10.1017/9781108227445.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108227445.002


1.9 Instability 69

E 	
∫ R

0
4πr2

[
�E(r)− 3

2
mBn(r)c

2(GM(r)/rc2)2] dr
+G

∫ R

0
4πr dr

[
mBn(r)M(r)

(
2M(r)G/rc2)

+mBn(r)4πr
3p(r)+ 4p(r)M(r)

]
. (1.9.A15)

Because each relativistic correction term in Eq. (1.9.A15) is individually small,
of order Mv4/c4, they can each be evaluated by using the non-relativistic
approximation

ρ(r) = mB n(r) (1.9.A16)

and the non-relativistic equation of equilibrium, Eq. (1.1.4), which gives

M(r) = −r2p′(r)/Gρ(r). (1.9.A17)

Then, also combining the last term on the first line of Eq. (1.9.A15) with the
first term on the second line,

E =
∫ R

0
4πr2 dr �E(r)+

∫ R

0
2πr4 dr p′2(r)/c2ρ(r)

+
∫ R

0
16π2Gr4 dr ρ(r)p(r)/c2 −

∫ R

0
16πr3 dr p(r)p′(r)/c2ρ(r).

(1.9.A18)

This can be further simplified, by noting that to order Mv4/c2 the third term is
a linear combination of the second and fourth terms. Using the non-relativistic
equation (1.1.4) of hydrostatic equilibrium (which is justified since this term is
already small), we have

4πGr2ρ = G
dM
dr

= − d

dr

(
r2

ρ

dp

dr

)
,

so integrating by parts gives

∫ R

0
16π2Gr4 dr ρ(r)p(r) = −

∫ R

0
4πr2p(r)

d

dr

(
r2

ρ(r)
p′(r)

)

=
∫ R

0
4πr4p′(r)2/ρ(r)

+
∫ R

0
8πr3p(r)p′(r)/ρ(r), (1.9.A19)
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so that (1.9.A18) becomes

E =
∫ R

0
4πr2 dr �E(r)+

∫ R

0
6πr4 dr p′2(r)/c2ρ(r)

−
∫ R

0
8πr3 dr p(r)p′(r)/c2ρ(r), (1.9.A20)

as was to be shown.

1.10 White Dwarfs and Neutron Stars

In a white dwarf star nuclear reactions have come to an end, the star has cooled
to the point that temperature may be neglected in studying the interior, and
pressure and kinetic energy are provided by cold degenerate electrons. To a good
approximation, the mass density ρ is m1μ times the electron number density,
where m1 = 931.49 GeV/c2 is the nuclear mass for unit atomic weight, and
here μ ≡ A/Z is the atomic weight per electron, equal to 55.847/26 for iron.
According to the rules of Fermi statistics, this gives the mass density as48

ρ(r) = 8πm1μ

h3

∫ kF(r)

0
k2 dk = 8πm1μk

3
F(r)

3h3
, (1.10.1)

where kF is the maximum momentum of the filled electron levels, known as
the Fermi momentum, and h = 2πh̄ is the original Planck constant. (The extra
factor 2 in 8π takes account of the electron’s two spin states.) The internal
energy density (excluding rest masses) and pressure of the electrons are then

E(r) = 8π

h3

∫ kF(r)

0

[√
k2c2 +m2

ec
4 −mec

2
]
k2 dk (1.10.2)

and

p(r) = 8πc2

3h3

∫ kF(r)

0

k4√
k2c2 +m2

ec
4
dk. (1.10.3)

Using Eq. (1.10.1) to express kF in terms of ρ/μ, Eqs. (1.10.2) and (1.10.3)
become formulas for E and p in terms of ρ/μ (or each other). With μ assumed
uniform in the star, for any given μ and central density ρ(0), we can use the

48 Fermi statistics requires that no two electrons can have the same momentum and spin. The possible states
of free particles are represented by wave functions of the form exp(ik · x/h̄), with k the momentum. To
confine these particles in a finite volume L3 without violating translation invariance, we require the wave
function to be the same on opposite faces of a box with edge L, so that k = 2πh̄n/L, where n is a vector
with integer components. The number of such vectors n with magnitude between n and n+dn is 4πn2 dn,
so the number of possible momenta with magnitude between k and k+ dk is (2πh̄/L)−3 × 4πk2 dk, and
with two particles per momentum state, the number of particles per volume with momenta between k and
k + dk is 8πk2 dk/(2πh̄)3.
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equations (1.1.4) and (1.1.5) of hydrostatic equilibrium to find ρ(r) and p(r)
throughout the star, and in particular to find the stellar massM and radius R.

In general a white dwarf star is not a polytrope, with E proportional to p and
p proportional to a power of ρ, except in the limit of very small or very large
density and Fermi momentum. According to Eq. (1.10.1), the critical density at
which the Fermi momentum becomes equal to mec is

ρc = 8πm1μm
3
ec

3

3h3
= 0.97 × 106 μ g/cm3. (1.10.4)

For ρ � ρc we have kF � mec, so Eqs. (1.10.2) and (1.10.3) give

p = 8π

3meh3

∫ kF

0
k4 dk = 8πk5

F

15meh3
= 8π

15meh3

(
3h3ρ

8πm1μ

)5/3

(1.10.5)

and E = 3p/2. This is a polytrope, with � = 5/3, and

K = 8π

15meh3

(
3h3

8πm1μ

)5/3

. (1.10.6)

Equations (1.8.7) and (1.8.8) then give the radius and mass of the star as

R = 3.65375 ×
(

8πG

5K

)−1/2

ρ(0)−1/6 = 2.0 × 104 μ−1
(
ρ(0)

ρc

)−1/6

km

(1.10.7)
and

M = 2.71406 × 4πρ(0)1/2
(

5K

8πG

)3/2

= 2.79μ−2
(
ρ(0)

ρc

)1/2

M�. (1.10.8)

Thus low-mass white dwarfs, with ρ(0) � ρc, have radii somewhat greater than
the Earth’s, and masses somewhat less than the Sun’s. Also, their thermal plus
gravitational energy (1.1.13) is

E =
∫ R

0

(
E(r)− 3p(r)

)
4πr2 dr = −6π

∫ R

0
p(r)r2 dr

= −6π

(
5

8πG

)3/2

K−1/2ρ(0)7/6
∫ ξ1

0
�5/2(ξ)ξ2 dξ , (1.10.9)

where ξ1 = 3.65375.
For ρ � ρc we have kF � mec, so Eqs. (1.10.2) and (1.10.3) give

p = 8πc

3h3

∫ kF

0
k3 dk = 2πck4

F

3h3
= 2πc

3h3

(
3h3ρ

8πm1μ

)4/3

(1.10.10)
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and E = 3p. This is a polytrope, with � = 4/3, and

K = 2πc

3h3

(
3h3

8πm1μ

)4/3

. (1.10.11)

Equations (1.8.7) and (1.8.8) then give the radius and mass of the star as

R = 6.89685 ×
(
πG

K

)−1/2

ρ(0)−1/3 = 5.3 × 104μ−1
(
ρ(0)

ρc

)−1/3

km

(1.10.12)
and

M = 2.01824 × 4π

(
K

πG

)3/2

= 5.87μ−2M�. (1.10.13)

It is striking that although R decreases andM increases with increasing central
density, the mass approaches the limiting value (1.10.13), known as the Chan-
drasekhar bound. Of course, with � = 4/3, the energy (1.1.13) is E = 0.

White dwarfs with ρ(0) � ρc have � considerably above 4/3, so according to
the arguments in Section 1.1 they are stable at least against complete dispersal.
Also, Eqs. (1.10.8) and (1.10.9) show that in this region M and E both vary
monotonically with ρ(0), while according to the theorem cited in the previous
section, in order for a white dwarf to become unstable with increasing central
density it is necessary for ρ(0) to reach a value at which the conserved quantities
M and E have vanishing derivatives with respect to central density.

If our results so far were the whole story, white dwarfs would also be stable
for ρ(0) � ρc. For � = 4/3 bothE andM are constants, but as we shall see, by
itself the small departure from the polytropic equation of state due to the finite
electron mass would give both −E andM a continued monotonic increase with
ρ(0). But there are two complications that make instability possible.

One complication is provided by neutronization: the baryon number per elec-
tron μ is not really constant. For sufficiently large central density, the Fermi
momentum is large enough for it to be energetically favorable for electrons to
be absorbed by protons, in the reaction e−+p → νe+n. For an iron white dwarf,
this occurs when ρ(0) exceeds 1.14 × 109 g/cm3, and has the effect that 56Fe
nuclei with μ = 2.15 are converted to 56Mn, with μ = 2.24. The increase in μ
eventually causes the mass (1.10.13) to stop rising toward a limit, and instead to
reach a maximum close to the value (1.10.13), and then begin to decrease. This
maximum marks the transition to instability, and thus represents the true upper
bound on the masses of iron white dwarfs.

Another complication arises from general relativity. According to the results
of the previous section, even if μ is constant there is a transition to instability at
a value of central density for which a maximum is reached by the energy

E =
∫

4πr2 dr
[
E(r)− 3p(r)

]+ 16π

(πG)3/2c2
ρ2/3(0)K7/2η, (1.10.14)
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where η = 3.49815. The second term is a universal general relativistic correc-
tion for stars with E near 3p, except that we must use the appropriate value
for K , which for white dwarfs is given by Eq. (1.10.11). To calculate the first
term for white dwarfs with ρ(0) � ρc, we use Eqs. (1.10.2) and (1.10.3) for
m2

ec
2 � k2

F, together with the familiar expansions√
k2c2 +m2

ec
4 = kc +m2

ec
3/2k + · · · ,

1/
√
k2c2 +m2

ec
4 = 1/kc −m2

ec/2k
3 + · · · .

Taking kF from Eq. (1.10.1), we obtain expansions in powers of electron mass49

E = 3hc

4

(
3

8π

)1/3 (
ρ

μm1

)4/3

−
(
me

μm1

)
ρc2

+ 3m2
ec

3

4h

(
3

8π

)−1/3 (
ρ

μm1

)2/3

+ · · · , (1.10.15)

3p = 3hc

4

(
3

8π

)1/3 (
ρ

μm1

)4/3

− 3m2
ec

3

4h

(
3

8π

)−1/3 (
ρ

μm1

)2/3

+ · · · .

(1.10.16)

The leading terms give the equation of state (1.10.10) of a � = 4/3 polytrope.
The terms in Eqs. (1.10.15) and (1.10.16) of first and second order in me give

�E ≡ E − 3p = −
(
me

μm1

)
ρc2 + 3m2

ec
3

2h

(
3

8π

)−1/3 (
ρ

m1μ

)2/3

+ · · ·

= −
(
me

μm1

)
ρc2 + 3m2

ec
4

8m2
1μ

2K
ρ2/3 + · · · . (1.10.17)

Since the factor m2
e/m

2
1 makes the term in

∫
4πr2 dr �E of second order in me

very small, it can be evaluated by using the solution given in Section 1.8 for
a non-relativistic polytrope with � = 4/3. Equation (1.10.17) then gives the
expansion∫

4πr2 dr �E = −
(
me

m1μ

)
Mc2 + 3πm2

ec
4K1/2ζ

2m2
1μ

2(πG)3/2
ρ(0)−1/3 + · · · ,

(1.10.18)
where50

ζ =
∫ ξ1

0
�2(ξ)ξ2 dξ = 4.3267. (1.10.19)

49 The term in Eq. (1.8.15) of first order in me is present because we have chosen to define E excluding all
rest masses, including the electron rest mass. As we shall see in Eq. (1.10.18), it leads to a term in E that
is independent of central density, and therefore has no effect on the threshold for instability.

50 The numerical value here is inferred from Eqs. (6.10.19) and (6.10.20) of S. Shapiro and S. Teukolsky,
Black Holes, White Dwarfs, and Neuton Stars (Wiley, New York, 1983).
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The critical central density ρinst for a transition from stability to instability is
then the stationary point of Eq. (1.10.14):

0 = ∂E

∂ρ(0)

∣∣∣∣
ρ(0)=ρinst

= − πm2
ec

4K1/2ζ

2m2
1μ

2(πG)3/2
ρ

−4/3
inst + 32π

3(πG)3/2c2
ρ

−1/3
inst K

7/2η.

(1.10.20)
This gives51

ρinst = 3m2
ec

6ζ

64m2
1μ

2K3η
= 8πm2

em
2
1c

3μ2ζ

h3η
= 6.6 × 109μ2 g/cm3. (1.10.21)

The critical densities for general relativistic instability along with neutron-
ization thresholds52 are given (both in g/cm3) for three commonly considered
chemical compositions in the table below. Since white dwarfs of low central
density are stable, the transition to instability for increasing central density
occurs at the lower of the neutronization threshold and ρinst. This transition
is evidently produced by neutronization for 56Fe, and by general relativity for
12C and 4He.

Critical densities and neutronization thresholds

Composition Neutronization threshold ρinst

56Fe 1.14 × 109 3.06 × 1010

12C 3.9 × 1010 2.63 × 1010

4He 1.37 × 1014 2.63 × 1010

Neutronization in a white dwarf star can only go so far before the star
becomes unstable. But when a star that is too massive to form a stable white
dwarf exhausts its nuclear fuel it collapses, becoming a supernova. The density
increases, and the rapid rise in the electron Fermi momentum forces a nearly
complete neutronization. Almost all of the star’s protons and electrons are
converted to neutrons, with just enough electrons left for the neutron decay
n → p + e− + ν to be blocked by the Pauli exclusion principle, and with an
equal number of protons left over to balance the electron charges. After blowing
off enough matter, what remains is a stable neutron star.53

In a neutron star, it is neutrons rather than electrons that fill all quantum
levels up to a Fermi momentum kF(r). Here the mass density is given again
by Eq. (1.10.1), but with the neutron mass mn in place of m1μ:

51 When cancellations and different notation are taken into account, this formula turns out to be identical to
the second line of Eq. (6.10.28) of Shapiro and Teukolsky, op. cit., derived in a rather different manner.
They give a numerical result 6.615 × 109μ2 g/cm3 for ρinst.

52 Thresholds are taken from Shapiro and Teukolsky, op. cit., Table 3.1.
53 W. Baade and F. Zwicky, Phys. Rev. 46, 76 (1934).
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ρ(r) = 8πmn

h3

∫ kF(r)

0
k2 dk = 8πmnk

3
F(r)

3h3
. (1.10.22)

There is again a critical density here, but now one for which the Fermi momen-
tum becomes mnc rather than mec:

ρc = 8πm4
nc

3

3h3
= 6.11 × 1015 g/cm3. (1.10.23)

The mean separation between neutrons is(
ρ

mn

)−1/3

=
(
ρc

ρ

)1/3

× 0.52 × 10−13 cm, (1.10.24)

which for ρ � ρc is greater than the range of nuclear forces, justifying the
treatment of neutrons as free particles, as implicitly assumed in Eq. (1.10.22).
Also, for ρ � ρc even neutrons at the top of the Fermi sea are moving non-
relativistically, so the neutron pressure is given by the same formula (1.10.5) as
for low-mass white dwarfs, but with mn in place of both me and m1μ:

p = 8π

15mnh3

(
3h3ρ

8πmn

)5/3

. (1.10.25)

This is again a polytrope with � = 5/3. Since the neutrons are moving non-
relativistically, the structure of the neutron star for ρ(0) � ρc is governed by
the Newtonian equations of gravitation and dynamics, just like the structure of
white dwarfs, and can therefore be treated by the methods of Section 1.8. In
particular, we can use Eqs. (1.10.6)–(1.10.8) for the neutron star’s radius R and
massM , again with mn in place of both me and m1μ:

R = 3.65375×(3Gmnh
3)−1/2

(
3h3

8πmn

)5/6

ρ(0)−1/6 = 11.0 km×
(
ρc

ρ(0)

)1/6

(1.10.26)
and

M = 2.71406×4πρ(0)1/2(3Gmnh
3)−3/2

(
3h3

8πmn

)5/2

= 2.7M�×
(
ρ(0)

ρc

)1/2

.

(1.10.27)
The mass is again a few solar masses, like a white dwarf, but now in a radius of
a few kilometers instead of a few thousand kilometers.

It may be surprising that both white dwarfs and neutron stars typically have
masses of orderM�, even though they are supported by the degeneracy pressure
of particles of very different mass: electrons for white dwarfs, and neutrons
for neutron stars. This is because the electron mass cancels in Eq. (1.10.8) for
white dwarf masses (though not in Eq. (1.10.7) for white dwarf radii). Indeed,
Eqs. (1.10.8) and (1.10.27) give the masses of both white dwarfs and neutron
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stars as equal to different factors of order unity times the same combination of
fundamental constants:

(h̄c/G)3/2m
−3/2
1 = 1.90M�.

In the following section we will see the same combination of constants appear-
ing in the mass of stars supported by radiation pressure.

The theory of neutron stars is much more complicated for ρ(0) comparable
to or greater than ρc. Here the neutron velocities are comparable to c, and since
the neutrons are the source of the star’s gravitational field, general relativity is
needed to work out the structure of the neutron star. Calculations by Landau54

and by Oppenheimer and Volkoff55 showed that there is a maximum mass,
beyond which neutron stars become unstable. Oppenheimer and Volkoff found
this maximum mass to be 0.7M�. But these calculations treated the neutrons
as an ideal gas. For ρ(0) greater than ρc, the separation (1.10.24) of neutrons
is no greater than the range of nuclear forces, and a treatment of neutrons as
free particles is no longer reliable. There have been various estimates of the
maximum mass of stable neutron stars, all of the order of a few solar masses
at most.

Because of their small size, neutron stars would naturally be expected to spin
very rapidly. The Sun, with a radius R� of about 7 × 105 km, rotates with a
frequency ω�/2π = 5 × 10−7 revolutions per second, not an exceptionally
rapid rotation. If a progenitor star core had a similar radius and rotation rate,
and if angular momentum per mass ∝ ωR2 were conserved in its collapse to a
neutron star, then the decrease in its radius to a few kilometers would increase
its rate of rotation by a factor of order 1010, giving it a rotation rate of a few
thousand revolutions per second. This is roughly the maximum possible rotation
rate. A body of mass M and radius R that is held together only by gravitation
cannot rotate at an angular frequency ω greater than ωmax ≈

√
GM/R3, at

which rate the centripetal acceleration ω2R equals the gravitational acceleration
GM/R2. For a neutron star at the Oppenheimer–Volkoff limit,M 	 0.7M� and
R 	 10 km, so its maximum rotation rate ωmax/2π is about 1,600 revolutions
per second.

The theoretical anticipation56 of rapidly rotating neutron stars was borne out
by the discovery of pulsars. First came the observation57 in 1967 of a source
of radio pulses with period 1.33 seconds. It was proposed58 that this was a
rapidly rotating neutron star, emitting radiation along the direction of a strong
magnetic field, at an angle to the axis of rotation, which happens to point in
the direction of Earth once in each rotation. This suggestion became widely

54 L. D. Landau, Phys. Z. Sowjetunion 1, 285 (1933).
55 J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1938).
56 F. Pacini, Nature 216, 567 (1967).
57 A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins, Nature 217, 709 (1968).
58 T. Gold, Nature 218, 731 (1968).
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accepted with the discovery of a source of much more rapid pulses, with period
33 milliseconds, too rapid for anything but a neutron star, in a known supernova
remnant, the Crab nebula. Since then pulsars have been found emitting radiation
at various wavelengths, with pulse periods ranging from 8.5 seconds down
to 1.4 milliseconds. There is uncertainty about the mechanism for producing
this radiation, but there seems no doubt that the sources are rapidly rotating
neutron stars.

Since the discovery of pulsars neutron stars have become even more interest-
ing. As discussed in Section 2.3, pulsars were found in binary systems, whose
decay gave the first observational evidence for the emission of gravitational
radiation, and the coalescence of binary neutron stars was proposed to account
for observed bursts of electromagnetic radiation (so-called kilonovae) with
intrinsic luminosity between ordinary novae and supernovae. Most dramati-
cally, as we shall see in Section 2.4, in 2017 gravitational waves as well as
electromagnetic radiation were observed coming from the coalescence of a
binary of neutron stars.

1.11 Supermassive Stars

There is an interesting class of stars in which the pressure of material particles
is much less than radiation pressure, though not entirely negligible. As we shall
see, these stars are necessarily supermassive, typically heavier than 100M�.
Stars this massive are very rare in the present universe,59 but they are plausible
precursors of supernovae that have led to neutron stars or black holes.

The energy density and pressure of radiation are given by the well-known
formulas

Erad = aT 4, prad = 1

3
aT 4, (1.11.1)

where a is the radiation energy constant

a = π2k4
B

5h̄3c3
= 7.567 × 10−15 erg

cm3 K4
. (1.11.2)

The matter of the star is assumed to form a non-relativistic ideal gas of particles
of average mass m, in thermal equilibrium with the radiation, and with energy
density and pressure

Egas = ρkBT

m(γ − 1)
, pgas = ρkBT

m
, (1.11.3)

59 One famous example is η Carinae A, the heavier star in a binary at a distance of 2,300 pc, with a mass
estimated as (100–200)M�. This is not a stable star; in 1837 it became the second brightest star in the
sky, then faded to below naked-eye visibility, and in 1940 again became easily visible. It is estimated to
have lost a mass of about 10M� in a decade.
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where kB is the Boltzmann constant, ρ is the mass density, γ is the polytrope
index of the gas alone, not counting the radiation, andm is the mean mass of the
gas particles. (For ionized hydrogen m 	 mp, the proton mass, and γ = 5/3.)
The ratio of gas pressure to radiation pressure is then

β ≡ pgas/prad = 3kB

am

ρ

T 3
. (1.11.4)

For β � 1 Eq. (1.11.1) shows that the star is close to a polytrope with index
� = 4/3, so that p 	 Kρ4/3 with a constant K that can be expressed it terms
of β:

K 	 prad/ρ
4/3 = aT 4

3ρ4/3
=
(

3

a

)1/3 (
kB

mβ

)4/3

. (1.11.5)

Assuming the whole star to be in a state of effective convection, the constant K
and hence also β must be constant through the star. This can be seen more quan-
titatively from considerations of entropy. As we saw in Section 1.7, the entropy
per gram of an ideal gas with Egas = pgas/(γ − 1) is R/(γ − 1) ln

(
Tρ1−γ ),

where R = kB/m is the constant appearing in the ideal gas law pgas = RρT .
The entropy of the radiation per mass of gas is calculated from

T dsrad = d

(
aT 4

ρ

)
+ aT 4

3
d

(
1

ρ

)
,

from which it follows that srad = 4aT 3/3ρ. The total specific entropy is then

s = 4aT 3/3ρ + R/(γ − 1) ln
(
Tρ1−γ ) = R

[
4

β
+ 1

γ − 1
ln
(
pgas/ρ

γ
)]

.

We expect the logarithm to vary only by amounts of order unity (at least away
from the star’s surface), so in order for s to be constant 1/β can only change
by amounts of order unity, and therefore for β � 1 by only a small fractional
amount, at most of order β.

Using the general formula (1.8.8) for the mass of any non-relativistic poly-
trope, and setting � = 4/3, we have here

M = 4π × 2.01824 ×
(
K

πG

)3/2

= 18M�
(mp

m

)2 1

β2
. (1.11.6)

With m 	 mp/2 and β less, say, than 0.3, the mass must be above 800M�, and
hence such stars are truly supermassive.

It should be noted that, even though we are interested here in the case β � 1,
for which gas pressure is much less than radiation pressure, we can (and will)
nevertheless confine our attention to the case ρc2 � aT 4, for which gas rest
energy density is much greater than radiation energy density. The ratio is

ρc2

aT 4
= β

mc2

3kBT
.
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Hence, as long as the gas itself is non-relativistic, with 3kBT � mc2, we can
assume that ρc2 � aT 4, provided only that β is greater than a lower bound
3kBT/mc

2. For this reason, general relativity has so far played no role in our
remarks about supermassive stars.

But, as shown in Section 1.9, in order to identify the critical density at which
the star becomes unstable, we must find the stationary point of the internal
energy E, which general relativity gives as the expression (1.9.2). To calculate
the first term in Eq. (1.9.2), we need

�E ≡ Erad +Egas − 3prad − 3pgas = −3γ − 4

γ − 1
pgas 	 −3γ − 4

γ − 1
βp. (1.11.7)

The factor β makes this small, so we can calculate its integral over the star by
taking the star to be a polytrope with � = 4/3, the corrections to this being
doubly small. Making the appropriate substitutions (1.8.3) and (1.8.4) for a
� = 4/3 polytrope, we have∫

4πr2p dr = 4πKρ4/3(0)
[
ρ1/3(0)(πG/K)1/2

]−3
α, (1.11.8)

where α is another numerical constant,

α ≡
∫ ξ1

0
�4(ξ)ξ2 dξ = 1.18119. (1.11.9)

Combining Eqs. (1.9.2), (1.11.7), and (1.11.8), we have then

E = −4πβK5/2α

(πG)3/2

(
3γ − 4

γ − 1

)
ρ1/3(0)+ 16πK7/2η

(πG)3/2c2
ρ2/3(0). (1.11.10)

The star is stable for sufficiently small central densities, where the second term,
due to general relativistic corrections, can be neglected. With increasing central
density, the star becomes unstable at a critical value ρinst of the central density
at which ∂E/∂ρ(0) = 0:

ρinst =
[
βαc2

8Kη

3γ − 4

γ − 1

]3

. (1.11.11)

To bring out the physical significance of this result, it is useful to consider the
radius of the star, which according to Eq. (1.8.7) is given by R = ξ1(K/πG)

1/2

ρ−1/3(0), where ξ1 = 6.89685 is the value of ξ where �(ξ) drops to zero. At
the critical central density, this is

Rinst = 8ηξ1
βαc2

(πG)−1/2K3/2 γ − 1

3γ − 4
. (1.11.12)
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It is instructive to compare this with the Schwarzschild radius 2MG/c2. The
mass of a � = 4/3 polytrope is given by Eq. (1.11.6), so

c2Rinst

MG
= γ − 1

β(3γ − 4)

2 × 6.89685 × 3.49815

2.01824 × 1.18119
= 20.24

γ − 1

β(3γ − 4)
. (1.11.13)

For a stable supermassive star we haveR > Rinst, so for small β the star’s radius
is much larger than the Schwarzschild radius, and the redshift MG/Rc2 from
the surface of the star is quite small.

Finally, let us consider the evolution of a supermassive star. The mass M of
the star is dominated by the rest mass of the nucleons it contains, and hence
cannot appreciably change with time. According to Eq. (1.11.6), it follows that
K does not change much, so the same is true of β. But the central density can
and does evolve. The internal energy (1.11.10) may be written

E
(
ρ(0)

) = E0

[
−2

(
ρ(0)

ρinst

)1/3

+
(
ρ(0)

ρinst

)2/3
]

, (1.11.14)

where E0 is a positive constant. If initially a supermassive star has ρ(0) < ρinst
it will have an internal energy that decreases monotonically with central density,
and be stable. As the star radiates, it loses internal energy, which must then
become increasingly negative. Since for ρ(0) < ρinst the internal energy E is
a monotonically decreasing function of central density, this requires the central
density to rise, until ρ(0) reaches its critical value, whereupon the star explodes.
It is not clear what happens after that, but it is plausible that a stable remnant is
left, a star that is no longer supermassive.
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