ON THE SECOND NATURAL REPRESENTATION OF THE SYMMETRIC GROUPS

by M. H. PEEL

(Received 13 November, 1967)

1. Introduction. In [1], the natural representation module of the symmetric groups, hereafter called the first natural representation module of the symmetric groups, was analysed. It is the purpose of this paper to analyse the second natural representation module of the symmetric groups.

We begin by defining these modules. Let K be a field of characteristic p, and let x_{1}, \ldots, x_{n} be commuting, independent indeterminates over K. Let Φ_{n} denote the group algebra of the symmetric group S_{n} on $\left\{x_{1}, \ldots, x_{n}\right\}$ over K. The ring of polynomials $K\left[x_{1}, \ldots, x_{n}\right]$ may be turned into a Φ_{n}-module in the obvious manner, namely by taking

$$
\tau f\left(x_{1}, \ldots, x_{n}\right)=f\left(\tau x_{1}, \ldots, \tau x_{n}\right)
$$

for all $f\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]$ and $\tau \in S_{n}$. We select certain Φ_{n}-submodules of $K\left[x_{1}, \ldots, x_{n}\right]$ which are finite-dimensional vector spaces over K. The first natural representation module $M^{1}(n)$ consists of all polynomials of the form $\sum_{i=1}^{n} \alpha_{i} x_{i}$ with $\alpha_{i} \in K$. The second natural representation module $M^{2}(n)$ consists of all polynomials of the form $\sum_{1 \leqq i<j \leqq n} \alpha_{i j} x_{i} x_{j}$ with $\alpha_{i j} \in K$. They have K-bases $\left\{x_{i}: 1 \leqq i \leqq n\right\}$ and $\left\{x_{i} x_{j}: 1 \leqq i<j \leqq n\right\}$ respectively.

In [2], we are given a method of constructing a full set of irreducible inequivalent representation modules of S_{n} over a field of characteristic zero. These modules, which we shall call Specht modules, are constructed as submodules of $K\left[x_{1}, \ldots, x_{n}\right]$ as follows. We require a module for each partition of n. Let $n=\lambda_{1}+\ldots+\lambda_{\mathrm{r}}\left(\lambda_{1} \geqq \lambda_{2} \geqq \ldots \geqq \lambda_{\mathrm{r}}>0\right)$ be a partition of n, denoted by (λ). We write down the associated tableau

with r rows, and λ_{i} entries in the i-th row.
If $\left\{a_{i}: i=1, \ldots, s\right\}$ is a set of elements of any ring, the difference product $\Delta\left(a_{1}, \ldots, a_{3}\right)$ is defined by

$$
\Delta\left(a_{1}, \ldots, a_{s}\right)=\prod_{1 \leqq i<j \leqq s}\left(a_{i}-a_{j}\right), \quad \Delta\left(a_{1}\right)=1
$$

We define the polynomial $f^{(\lambda)}\left(x_{1}, \ldots, x_{n}\right)$ to be the product of the difference products of the entries in each column of the tableau, i.e.

$$
f^{(\lambda)}\left(x_{1}, \ldots, x_{n}\right)=\Delta\left(x_{1}, x_{\lambda_{1}+1}, \ldots, x_{n-\lambda_{r}+1}\right) \Delta\left(x_{2}, x_{\lambda_{1}+2}, \ldots, x_{n-\lambda_{r}+2}\right) \ldots \Delta\left(x_{\lambda_{1}}, \ldots, x_{\lambda_{1}+\ldots+\lambda_{s}}\right),
$$

where s is the smallest integer such that $\lambda_{s} \neq \lambda_{s+1}$, or, if no such integer exists, $s=r$. The Specht module $S^{(\lambda)}$ corresponding to the partition (λ) is none other than $\Phi_{n} \cdot f^{(\lambda)}\left(x_{1}, \ldots, x_{n}\right)$. Over a field of characteristic zero, these Specht modules are irreducible and no two are Φ_{n}-isomorphic. Over a field of non-zero characteristic they may reduce, although they are indecomposable, except for characteristic 2.

Let $M_{0}^{1}(n)$ denote the set of polynomials of the form $\sum_{i=1}^{n} \lambda_{i} x_{i}$ with $\sum_{i=1}^{n} \lambda_{i}=0$, and let $M_{0}^{2}(n)$ denote the set of all polynomials of the form $\sum_{1 \leqq i<j \leqq n} \lambda_{i j} x_{i} x_{j}$ with $\sum_{1 \leqq i<j \leqq n} \lambda_{i j}=0$. Then these are Φ_{n}-submodules of $M^{1}(n)$ and $M^{2}(n)$ respectively. $\quad M_{0}^{1}(n)$ is generated over K by polynomials of the form $\left(x_{i}-x_{j}\right)$, and is clearly the Specht module $S^{(\lambda)}$ corresponding to the partition (λ) of n defined by $n=\lambda_{1}+\lambda_{2}$, where $\lambda_{1}=n-1$ and $\lambda_{2}=1$.
$M_{0}^{1}(n)$ is irreducible when p does not divide n. When p divides $n, s=\sum_{i=1}^{n} x_{i}$ is contained in $M_{0}^{1}(n)$, and $M_{0}^{1}(n) / K s$ is irreducible. These are the results of Theorem (5.2) of [1].

If (μ) is the partition $n=\mu_{1}+\mu_{2}, \mu_{1}=n-2, \mu_{2}=2$, then clearly $S^{(\mu)}$ is a Φ_{n}-submodule of $M_{0}^{2}(n)$; it is generated over K by the set of polynomials of the form $\left(x_{i}-x_{j}\right)\left(x_{k}-x_{i}\right)$ with i, j, k, l distinct integers between 1 and n. Note that $S^{(\mu)}$ is not defined if $n<4$. Indeed, we need only consider $n \geqq 4$ since $M^{2}(3) \approx M^{1}(3)$ and $M^{2}(2) \approx K$. We shall write $S(n)$ for $S^{(\mu)}$ in the following.

The first result is that

$$
M_{0}^{2}(n) / S(n) \approx M_{0}^{1}(n)
$$

We show that $S(n)$ is a direct summand of $M_{0}^{2}(n)$ if and only if p does not divide $n-2$. We find that $S(n)$ is irreducible if p does not divide $n-1$ or $n-2$, and we find how $S(n)$ reduces if p divides $n-1$ or $n-2$. We also show that $M_{0}^{2}(n)$ is a direct summand of $M^{2}(n)$ if and only if p does not divide $n(n-1) / 2$.

In the following, the range of any summation symbol will be 1 to n unless otherwise stated. Further, $\sum_{i \neq k} x_{i}$ will mean $x_{1}+\ldots+x_{k-1}+x_{k+1}+\ldots+x_{n}$. Also, whenever we have defined a set $\left\{\lambda_{i j}: 1 \leqq i<j \leqq n\right\}$ of elements of K, we shall suppose that $\lambda_{i j}$ is also defined for $i>j$ by $\lambda_{i j}=\lambda_{j i}$.

The author wishes to thank Dr H. K. Farahat for his guidance throughout the work which led to the preparation of this paper, the referee for his helpful comments, and the Science Research Council for their financial support.
2. Two exact sequences. We first construct the tools which will enable us to solve the problem. We have already denoted by s the element $\sum_{i=1}^{n} x_{i}$ of $M^{1}(n)$. Set

$$
a_{i}=x_{i}\left(s-x_{i}\right) \quad(i=1, \ldots, n)
$$

If $\tau \in S_{n}$ is such that $\tau x_{t}=x_{k}$, then $\tau a_{l}=a_{k}$. We denote by N the Φ_{n}-submodule of $M^{2}(n)$ generated over K by $\left\{a_{1}, \ldots, a_{n}\right\}$, i.e.

$$
N=\Phi_{n} a_{1}
$$

Set

$$
b_{i j}=a_{i}-a_{j}=\left(x_{i}-x_{j}\right)\left(s-x_{i}-x_{j}\right)
$$

We denote by \tilde{N} the Φ_{n}-submodule of N generated over K by the $b_{i j} . \tilde{N}$ is in fact generated over K by $\left\{b_{1 j}: j=2, \ldots, n\right\}$. Finally, let

$$
\sigma=\sum_{1 \leqq i<j \leqq n} x_{i} x_{j} .
$$

Then, by induction on n, we have

$$
\sum_{i=1}^{n} a_{i}=2 \sigma
$$

In $\S 4$ we shall write $\tilde{N}(n)$ and $N(n)$ for \tilde{N} and N as defined above, so that we may speak of $\tilde{N}(n-1)$ and $N(n-1)$ defined in terms of x_{1}, \ldots, x_{n-1} without confusion. We shall then denote by $\sigma(n-1), a_{i}(n-1)(i=1, \ldots, n-1)$, etc., elements of $M^{2}(n-1)$, and by σ, a_{i}, etc., elements of $M^{2}(n)$.

A linear transformation of vector spaces is uniquely determined by its action on a basis of the domain space. Any Φ_{n}-module is a vector space over K, and any Φ_{n}-homomorphism is a K-linear transformation. We shall define certain Φ_{n}-homomorphisms by giving the action of the map on a basis, leaving it to the reader to check that the resulting linear transformation is indeed a Φ_{n}-homomorphism. This principle is illustrated in the next paragraph.

Define the Φ_{n}-homomorphism $d: M^{2}(n) \rightarrow M^{1}(n)$ by

$$
d\left(x_{i} x_{j}\right)=x_{i}+x_{j}
$$

and let d denote the restriction of d to $M_{0}^{2}(n)$. Clearly, d may be written in terms of the partial differentiation operators $\partial / \partial x_{i}$ in the following way:

$$
\begin{equation*}
d\left(x_{i} x_{j}\right)=\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}}\left(x_{i} x_{j}\right) \tag{1}
\end{equation*}
$$

$M_{0}^{2}(n)$ has K-basis $\left\{x_{i} x_{j}-x_{1} x_{2}: i<j\right.$ and $\left.(i, j) \neq(1,2)\right\}$. Clearly, d maps $M_{0}^{2}(n)$ into $M_{0}^{1}(n)$. In fact, d maps $M_{0}^{2}(n)$ onto $M_{0}^{1}(n)$, since

$$
x_{i}-x_{j}=d\left(x_{i} x_{s}-x_{j} x_{s}\right)
$$

if $s \neq i, j$. We now obtain an expression for the image of an element of $M^{2}(n)$ in $M^{1}(n)$.
Lemma 1. Let

$$
x=\sum_{i<j} \lambda_{i j} x_{i} x_{j}
$$

Then

$$
d(x)=\sum_{k} \beta_{k} x_{k},
$$

where

$$
\beta_{k}=\sum_{j \neq j} \lambda_{k j} .
$$

Proof. By definition

$$
d(x)=\sum_{i<k} \lambda_{i j}\left(x_{i}+x_{j}\right)
$$

We proceed by induction on n. The proof for $n=1$ is immediate. Suppose that

$$
\sum_{1 \leqq i<j \leqq n} \lambda_{i j}\left(x_{i}+x_{j}\right)=\sum_{k=1}^{n}\left(\sum_{j \neq k} \lambda_{j k}\right) x_{k} .
$$

Then

$$
\begin{aligned}
\sum_{1 \leqq i<j \leqq n+1} \lambda_{i j}\left(x_{i}+x_{j}\right) & =\sum_{k=1}^{n}\left(\sum_{j \neq k} \lambda_{j k}\right) x_{k}+\sum_{i=1}^{n} \lambda_{i(n+1)}\left(x_{i}+x_{n+1}\right) \\
& =\sum_{k=1}^{n}\left(\sum_{\substack{j=1 \\
j \neq k}}^{n+1} \lambda_{j k}\right) x_{k}+\sum_{i=1}^{n} \lambda_{i(n+1)} x_{n+1} \\
& =\sum_{k=1}^{n+1}\left(\sum_{\substack{j=1 \\
j \neq k}}^{n+1} \lambda_{j k}\right) x_{k} .
\end{aligned}
$$

This proves the lemma.
We have already noted that $S(n)$ is contained in $M_{0}^{2}(n)$. In fact we have
Theorem 1. The following sequence of Φ_{n}-modules is exact:

$$
\begin{equation*}
0 \longrightarrow S(n) \xrightarrow{\mathrm{incl}} M_{0}^{2}(n) \xrightarrow{d} M_{0}^{1}(n) \longrightarrow 0 . \tag{2}
\end{equation*}
$$

Proof. We prove exactness at $M_{0}^{2}(n)$. First, by expressing d in the form (1), and by applying the product rule for differentiation, we see that

$$
d\left(\left(x_{i}-x_{j}\right)\left(x_{r}-x_{s}\right)\right)=0
$$

and hence $S(n) \subset \operatorname{Ker} d$.
Suppose that $x=\sum_{i<j} \lambda_{i j} x_{i} x_{j}$, with $\sum_{i<j} \lambda_{i j}=0$ and $d(x)=0$. Then, by Lemma 1 ,

$$
\sum_{j \neq k} \lambda_{j k}=0 \quad(k=1, \ldots, n)
$$

Set

$$
\theta_{i j}^{n}=x_{n}\left(s-x_{n}-x_{i}-x_{j}\right)+x_{i} x_{j}
$$

for $1 \leqq i<j<n$; then

$$
\sum_{1 \leqq i<j<n} \lambda_{i j} \theta_{i j}^{n}=\sum_{1 \leqq i<j<n} \lambda_{i j} x_{i} x_{j}+\sum_{1 \leqq i<j<n} \lambda_{i j} x_{n}\left(s-x_{n}\right)-x_{n} \sum_{1 \leqq i<j<n} \lambda_{i j}\left(x_{i}+x_{j}\right) .
$$

But

$$
\sum_{1 \leqq i<j<n} \lambda_{i j}=\sum_{1 \leqq i<j \leqq n} \lambda_{i j}-\sum_{i \neq n} \lambda_{i n}=0,
$$

and hence

$$
\begin{aligned}
\sum_{1 \leqq i<j<n} \lambda_{i j} \theta_{i j}^{n} & =\sum_{1 \leqq i<j<n} \lambda_{i j} x_{i} x_{j}-x_{n}\left(d(x)-\sum_{i=1}^{n-1} \lambda_{i n}\left(x_{i}+x_{n}\right)\right) \\
& =\sum_{1 \leqq i<j<n} \lambda_{i j} x_{i} x_{j}+x_{n} \sum_{i=1}^{n-1} \lambda_{i n} x_{i} \\
& =\sum_{1 \leqq i<j \leqq n} \lambda_{i j} x_{i} x_{j}=x .
\end{aligned}
$$

Since $\sum_{1 \leqq i<j<n} \lambda_{i j}=0$ (as proved above), $x=\sum_{1 \leqq i<j<n} \lambda_{i j}\left(\theta_{i j}^{n}-\theta_{12}^{n}\right.$). However,

$$
\theta_{i j}^{n}-\theta_{12}^{n}=\left(x_{i}-x_{1}\right)\left(x_{j}-x_{n}\right)+\left(x_{1}-x_{n}\right)\left(x_{j}-x_{2}\right) \in S(n)
$$

and thus $x \in S(n)$.
This proves that $\operatorname{Ker} d \subset S(n)$, and hence that $\operatorname{Ker} d=S(n)$.
Corollary 1. The dimension of $S(n)$ over K is $n(n-3) / 2$, and

$$
A=\left\{\theta_{12}^{n}-\theta_{i j}^{n}: 1 \leqq i<j<n,(i, j) \neq(1,2)\right\}
$$

is a basis for $S(n)$.
Proof.

$$
\begin{aligned}
\operatorname{dim}_{K} S(n) & =\operatorname{dim}_{K} M_{0}^{2}(n)-\operatorname{dim}_{K} M_{0}^{1}(n) \\
& =\frac{n(n-3)}{2}
\end{aligned}
$$

From the theorem, the set A generates $S(n)$ over K, and we have the required number of elements; hence the set is a linearly independent basis.

Corollary 2. (i) If $p \neq 2, \sigma \in S(n)$ if and only if p divides $n-1$.
(ii) If $p=2, \sigma \in S(n)$ if and only if n is of the form $4 a+1$ for some integer a.

Proof. From the theorem, we have $S(n)=\left\{x \in M_{0}^{2}(n): d(x)=0\right\}$. By Lemma 1,

$$
d(\sigma)=(n-1) s
$$

Also, the sum of the coefficients of σ is $n(n-1) / 2$, and $\sigma \in M_{0}^{2}(n)$ if and only if this sum is zero. The corollary follows from these statements.

Theorem 2. The exact sequence (2) splits if and only if p does not divide $n-2$.
Proof. Suppose that p does not divide $n-2$. Define $\phi: M^{1}(n) \rightarrow M^{2}(n)$ by

$$
\phi\left(x_{i}\right)=a_{i} \quad(i=1, \ldots, n)
$$

Then ϕ is a Φ_{n}-homomorphism. Let ψ be the restriction of $\{1 /(n-2)\} \phi$ to $M_{0}^{1}(n)$. Then the image of ψ is contained in $M_{0}^{2}(n)$, and we have

$$
\begin{aligned}
d \psi\left(x_{i}-x_{j}\right)=d\left(a_{i}-a_{j}\right) /(n-2) & =d\left(\left(x_{i}-x_{j}\right)\left(s-x_{i}-x_{j}\right)\right) /(n-2) \\
& =\left(x_{i}-x_{j}\right)(n-2) /(n-2)
\end{aligned}
$$

using (1) and the product rule for differentiation. Hence

$$
d \psi\left(x_{i}-x_{j}\right)=x_{i}-x_{j} .
$$

Thus $d \psi$ is the identity on $M_{0}^{1}(n)$, and the sequence splits.
In order to prove the converse, we establish the fact that, if $x=\sum_{i<j} \lambda_{i j} x_{i} x_{j}$ is any element of $M^{2}(n)$, and if τ is the permutation $\left(x_{r} x_{s}\right)$ with $r<s$, then

$$
\begin{equation*}
x-\tau x=\sum_{j \neq r, s}\left(\lambda_{r j}-\lambda_{s j}\right)\left(x_{r} x_{j}-x_{s} x_{j}\right) \tag{3}
\end{equation*}
$$

To begin with

$$
x-\tau x=\sum_{i<j} \lambda_{i j}\left(x_{i} x_{j}-\tau x_{i} x_{j}\right)
$$

If $i=r$ and $j=s$, then $x_{i} x_{j}-\tau x_{i} x_{j}=0$. Again, if i, j, r, s are all different, then $x_{i} x_{j}-\tau x_{i} x_{j}=0$. Hence

$$
\begin{aligned}
x-\tau x & =\sum_{j \neq r, s} \lambda_{r j}\left(x_{r} x_{j}-\tau x_{r} x_{j}\right)+\sum_{j \neq r, s} \lambda_{s j}\left(x_{s} x_{j}-\tau x_{s} x_{j}\right) \\
& =\sum_{j \neq r, s}\left(\lambda_{r j}-\lambda_{s j}\right)\left(x_{r} x_{j}-x_{s} x_{j}\right) .
\end{aligned}
$$

Let $f: M_{0}^{1}(n) \rightarrow M_{0}^{2}(n)$ be a Φ_{n}-homomorphism, and set

$$
f\left(x_{1}-x_{2}\right)=\sum_{i<j} \lambda_{i j} x_{i} x_{j} \quad \text { with } \quad \sum_{i<j} \lambda_{i j}=0
$$

Let τ be the permutation $\left(x_{r} x_{s}\right)$ with $2<r<s \leqq n$. Then $f\left(x_{1}-x_{2}\right)$ is invariant under τ. Using (3), we see that

$$
0=\sum_{i \neq r, s}\left(\lambda_{r i}-\lambda_{s i}\right)\left(x_{r} x_{i}-x_{s} x_{i}\right) \quad(2<r<s \leqq n) .
$$

Equating coefficients, we obtain

$$
\begin{array}{lll}
\lambda_{r 1}=\lambda_{s 1}=v & \text { (say) } & (2<r<s \leqq n) \\
\lambda_{r 2}=\lambda_{s 2}=w & \text { (say) } & (2<r<s \leqq n) \\
\lambda_{r^{k}}=\lambda_{s k} & & (k>2,2<r<s \leqq n) .
\end{array}
$$

From the last of these we see that $\lambda_{i j}=\lambda_{\alpha \beta}$ whenever α, β, i, j are all greater than 2 . Write $\lambda_{i j}=\gamma(2<i<j \leqq n)$.

Then we have

$$
f\left(x_{1}-x_{2}\right)=v \sum_{j=3}^{n} x_{1} x_{j}+w \sum_{j=3}^{n} x_{2} x_{j}+\lambda_{12} x_{1} x_{2}+\gamma \sum_{2<i<j \leqq n} x_{i} x_{j} .
$$

Now let χ be the permutation $\left(x_{1} x_{2}\right)$. Then

$$
f\left(x_{1}-x_{2}\right)=-\chi f\left(x_{1}-x_{2}\right) .
$$

This immediately gives $v=-w$ and $2 \lambda_{12}=2 \gamma=0$. Hence

$$
\begin{equation*}
f\left(x_{1}-x_{2}\right)=v\left(a_{1}-a_{2}\right)+\gamma \sum_{3 \leqq i<j \leqq n}\left(x_{i} x_{j}-x_{1} x_{2}\right) \tag{4}
\end{equation*}
$$

because $\sum_{i<j} \lambda_{i j}=0$.

Now suppose that the sequence (2) splits, i.e., that there exists a Φ_{n}-homomorphism $f: M_{0}^{1}(n) \rightarrow M_{0}^{2}(n)$ such that $d f$ is the identity on $M_{0}^{1}(n)$. Then f has the form (4), and

$$
d f\left(x_{1}-x_{2}\right)=x_{1}-x_{2}
$$

i.e.,

$$
x_{1}-x_{2}=v(n-2)\left(x_{1}-x_{2}\right) .
$$

Hence $v(n-2)=1$, and p does not divide $n-2$. This completes the proof of the theorem.
This theorem tells us that, when p does not divide $n-2, M_{0}^{2}(n)$ is the direct sum of $S(n)$ and the image of ψ. But the image of ψ is clearly \tilde{N}, and so we have the result that

$$
M_{0}^{2}(n)=S(n) \oplus \tilde{N}
$$

In particular, we have $\tilde{N} \approx M_{0}^{1}(n)$ when p does not divide $n-2$.
The second exact sequence deals with the embedding of $M_{0}^{2}(n)$ in $M^{2}(n)$. We consider the field K to be a Φ_{n}-module in which the operation of $S(n)$ is the trivial one, namely $\tau \alpha=\alpha$ for all $\alpha \in K$ and $\tau \in S(n)$. We then define a Φ_{n}-homomorphism $a: M^{2}(n) \rightarrow K$ by

$$
a\left(\sum_{i<j} \lambda_{i j} x_{i} x_{j}\right)=\sum_{i<j} \lambda_{i j} .
$$

Theorem 3. The following sequence is exact:

$$
0 \longrightarrow M_{0}^{2}(n) \xrightarrow{\text { incl }} M^{2}(n) \xrightarrow{a} K \longrightarrow 0 .
$$

Further, the sequence splits if and only if p does not divide $n(n-1) / 2$.
Proof. The sequence is clearly exact.
Suppose that p does not divide $n(n-1) / 2$, and define $f: K \rightarrow M^{2}(n)$ by

$$
f(1)=\frac{2 \sigma}{n(n-1)}
$$

Then f is a Φ_{n}-homomorphism, and clearly $a f$ is the identity on K. Hence the sequence splits.
In order to prove the converse, suppose that $f: K \rightarrow M^{2}(n)$ is a Φ_{n}-homomorphism, and let

$$
f(1)=\sum_{i<j} \lambda_{i j} x_{i} x_{j}
$$

Since $f(1)$ is invariant under all transpositions, the coefficients $\lambda_{i j}$ are all equal, say, to γ (using (3)). Then

$$
f(1)=\gamma \sigma .
$$

Now suppose that $a f$ is the identity on K. Then

$$
1=a f(1)=a(\gamma \sigma)=\gamma n(n-1) / 2
$$

Hence p does not divide $n(n-1) / 2$. This completes the proof.
Theorem 3 implies that, when p does not divide $n(n-1) / 2$,

$$
M^{2}(n)=M_{0}^{2}(n) \oplus K \sigma
$$

We can also deduce that $M_{0}^{2}(n)$ is not a direct summand of $M^{2}(n)$ when p divides $n(n-1) / 2$. For if $M_{2}(n)=M_{0}^{2}(n) \oplus B$, then B contains an element y which is invariant under all permutations. Applying formula (3), we see that $y=\lambda \sigma$ for some $\lambda \in K$. But $\sigma \in M_{0}^{2}(n)$ when p divides $n(n-1) / 2$, and this is a contradiction. This result may be compared with (2.1) of [1]. A similar argument shows that, when $p \mid n-2, S(n)$ is not a direct summand of $M_{0}^{2}(n)$.
3. Analysis of $S(n)$ when p does not divide $n-2$. Recall that

$$
\theta_{i j}^{n}=x_{n}\left(s-x_{n}-x_{i}-x_{j}\right)+x_{i} x_{j}
$$

Lemma 2.

$$
\sum_{1 \leqq i<j<n} \theta_{i j}^{n}=\left\{\begin{array}{cccccc}
\sigma & \text { if } & p \neq 2 & \text { and } p \mid n-1, & \text { or if } & p=2 \text { and } n=4 a+1 \\
\sigma-a_{n} & \text { if } & p \neq 2 & \text { and } p \mid n-2, & \text { or if } & p=2 \text { and } n=2(2 a+1)
\end{array}\right.
$$

Proof.

$$
\sum_{1 \leqq i<j<n} \theta_{i j}^{n}=\sum_{1 \leqq i<j<n} x_{i} x_{j}+\frac{(n-1)(n-2)}{2} x_{n}\left(s-x_{n}\right)-x_{n} \sum_{1 \leqq i<j<n}\left(x_{i}+x_{j}\right) .
$$

Under each of the four conditions described in the statement of the lemma, $(n-1)(n-2) / 2$ is zero in K, and, by applying Lemma 1 to the last term,

$$
\sum_{1 \leqq i<j<n} \theta_{i j}^{n}=\sum_{1 \leqq i<j<n} x_{i} x_{j}-x_{n}(n-2) \sum_{i=1}^{n-1} x_{i}=\sigma-a_{n}-(n-2) a_{n} .
$$

If $p \neq 2$ and p divides $n-1$, then $n-2 \equiv-1(\bmod p)$, and so

$$
\sum_{1 \leqq i<j<n} \theta_{i j}^{n}=\sigma .
$$

If $\boldsymbol{p} \neq \mathbf{2}$ and \boldsymbol{p} divides $\boldsymbol{n}-2$,

$$
\sum_{1 \leqq i<j<n} \theta_{i j}^{n}=\sigma-a_{n} .
$$

The results for $p=2$ follow similarly.
We now turn to the problem of analysing $S(n)$.
Theorem 4. (i) Suppose that p is not equal to 2 . $S(n)$ is irreducible when p divides neither $n-1$ nor $n-2$. When p divides $n-1$, a composition series for $S(n)$ is given by

$$
0 \subset K \sigma \subset S(n)
$$

(ii) Suppose that p is equal to 2 . $S(n)$ is irreducible when $n=2 a+1$ with a odd. When $n=2 a+1$ with a even, a composition series for $S(n)$ is given by

$$
0 \subset K \sigma \subset S(n)
$$

Proof. Let $x \in S(n)$. We may write

$$
x=\sum_{1 \leqq i<j<n} \lambda_{i j} \theta_{i j}^{n} \quad \text { with } \quad \sum_{1 \leqq i<j<n} \lambda_{i j}=0
$$

(Corollary 1, Theorem 1).

Supposing either that $p \neq 2$ and p does not divide $n-1$ or $n-2$ or that $p=2$ and $n=2 a+1$ with a odd, we shall assume that $x \neq 0$ and prove that $\Phi_{n} x=S(n)$; supposing either that $p \neq 2$ and p divides $n-1$, or that $p=2$ and $n=2 a+1$ with a even, we shall assume that \bar{x}, the coset of x in $S(n) / K \sigma$, is not zero, and we shall prove that $\Phi_{n} \bar{x}=S(n) / K \sigma$. The theorem will follow from this, except for the case $n=4$.

Let η denote the permutation $\left(x_{k} x_{l}\right)$, where $1 \leqq k<l<n$. By the method of the proof of (3), we find that

$$
y_{k l}=x-\eta x=\sum_{i \neq k, l, n}\left(\lambda_{i l}-\lambda_{i k}\right)\left(\theta_{i l}^{n}-\theta_{i k}^{n}\right)
$$

Further, let r and s be two integers less than n such that r, s, k, l are four distinct integers. If μ denotes the permutation ($x_{r} x_{s}$), we have

$$
\begin{aligned}
z_{k l r s}=y_{k l}-\mu y_{k l} & =\left(\lambda_{s l}-\lambda_{s k}-\lambda_{r l}+\lambda_{r k}\right)\left(\theta_{s l}^{n}-\theta_{s k}^{n}-\theta_{r l}^{n}+\theta_{r k}^{n}\right) \\
& =\left(\lambda_{s l}-\lambda_{s k}-\lambda_{r l}+\lambda_{r k}\right)\left(x_{s}-x_{r}\right)\left(x_{l}-x_{k}\right)
\end{aligned}
$$

If, for some set $\{r, s, k, l\},\left(\lambda_{s l}-\lambda_{s k}-\lambda_{r l}+\lambda_{r k}\right) \neq 0$, then clearly $\Phi_{n} x$ contains $\left(x_{s}-x_{r}\right)\left(x_{k}-x_{1}\right)$, which generates $S(n)$, and hence $\Phi_{n} x=S(n)$. Otherwise

$$
\lambda_{s l}-\lambda_{s k}=\lambda_{r l}-\lambda_{r k}
$$

for all r, s, k, l. In this case,

$$
\begin{aligned}
y_{k l} & =\left(\lambda_{r l}-\lambda_{r k}\right) \sum_{i \neq k, l, n}\left(\theta_{i l}^{n}-\theta_{i k}^{n}\right) \\
& =\left(\lambda_{r l}-\lambda_{r k}\right) \sum_{i \neq k, l, n}\left(x_{i} x_{l}-x_{i} x_{k}-x_{l} x_{n}+x_{k} x_{n}\right) \\
& =\left(\lambda_{r l}-\lambda_{r k}\right)\left\{\left[\sum_{i \neq k, l}\left(x_{i} x_{l}-x_{i} x_{k}\right)\right]-\left(x_{l} x_{n}-x_{k} x_{n}\right)-(n-3)\left(x_{l} x_{n}-x_{k} x_{n}\right)\right\} \\
& =\left(\lambda_{r l}-\lambda_{r k}\right)\left(\left(a_{l}-a_{k}\right)-(n-2) x_{n}\left(x_{l}-x_{k}\right)\right) .
\end{aligned}
$$

Suppose there exist l, k such that $\lambda_{r l}-\lambda_{r k} \neq 0$. Then $\Phi_{n} x$ contains $\left(a_{l}-a_{k}\right)-(n-2) x_{n}\left(x_{l}-x_{k}\right)$, and, if t is different from $k, l, n, \Phi_{n} x$ also contains $\left(a_{t}-a_{k}\right)-(n-2) x_{t}\left(x_{i}-x_{k}\right) . \quad \Phi_{n} x$ also contains the difference of these two, namely $(n-2)\left(x_{n}-x_{t}\right)\left(x_{1}-x_{k}\right)$, and, since p does not divide $n-2, \Phi_{n} x$ contains $\left(x_{n}-x_{t}\right)\left(x_{i}-x_{k}\right)$, which generates $S(n)$. Thus $\Phi_{n} x=S(n)$. Otherwise, $\lambda_{r l}=\lambda_{r k}$ for all r, k, l, i.e. the coefficients are all equal, say to λ. But $\sum_{1 \leqq i<j<n} \lambda_{i j}=0$, and hence

$$
\frac{1}{2}(n-1)(n-2) \lambda=0 .
$$

This is where we must distinguish between the different cases.
If $p \neq 2$ and p does not divide $n-1$ or $n-2$, then $\lambda=0$ and $x=0$, contrary to assumption. If $p \neq 2$ and p divides $n-1$, then, by Lemma 2,

$$
\begin{aligned}
x & =\lambda \sum_{1 \leq i<j<n} \theta_{1 j}^{n} \\
& =\lambda \sigma,
\end{aligned}
$$

and thus $\bar{x}=0$ in $S(n) / K \sigma$, contrary to assumption. This completes the proof of part (i).

If $p=2$ and $n=2 a+1$ with a odd, then $\frac{1}{2}(n-1)(n-2) \lambda=0$ implies $\lambda=0$ and hence $x=0$, contrary to assumption. If $p=2$ and $n=2 a+1$ with a even, we again have $x=\lambda \sigma$, and hence $\bar{x}=0$, contrary to assumption. This completes the proof, except for the case $n=4$, $p=3$. But this case is trivial since the K-dimension of $S(4)$ is 2 , and $S(4)$ contains the submodule $K \sigma$.

This completes the study of the cases when p does not divide $n-2$. We have $M_{0}^{2}(n)=$ $\tilde{N} \oplus S(n)$ with $\tilde{N} \approx M_{0}^{1}(n)$, and $M^{2}(n) / M_{0}^{2}(n) \approx K$.

For the situations considered in this section, composition series can easily be constructed from the chain

$$
0 \subset \tilde{N} \subset \tilde{N}+S(n)=M_{0}^{2}(n) \subset M^{2}(n)
$$

using Theorem 4 and the results from [1] quoted in Section 1. For instance, in the case $p \neq 2, p \mid n-1$, we obtain the composition series

$$
0 \subset \tilde{N} \subset \tilde{N}+K \sigma \subset M_{0}^{2}(n) \subset M^{2}(n)
$$

4. The case p divides $n-2$. In order to calculate the composition factors of $S(n)$ when p divides $n-2$, we look at $S(n)$ considered as a Φ_{n-1}-module. Any Φ_{n}-module may be regarded as a Φ_{n-1}-module. The operation of S_{n-1} on the module is determined by the process of restriction from S_{n} to its subgroup S_{n-1}.

By Corollary 1, Theorem 1, $S(n)$ has a K-basis

$$
\left\{\theta_{12}^{n}-\theta_{i j}^{n}: 1 \leqq i<j<n,(i, j) \neq(1,2)\right\} .
$$

$M_{0}^{2}(n-1)$ is the set of polynomials of the form $\sum_{1 \leqq i<j<n} \lambda_{i j} x_{i} x_{j}$ with $\sum_{1 \leqq i<j<n} \lambda_{i j}=0$. It has a K-basis

$$
\left\{x_{1} x_{2}-x_{i} x_{j}: 1 \leqq i<j<n,(i, j) \neq(1,2)\right\} .
$$

There is an obvious Φ_{n-1}-isomorphism

$$
\begin{equation*}
f: M_{0}^{2}(n-1) \rightarrow S(n) \tag{5}
\end{equation*}
$$

namely that defined by

$$
f\left(x_{1} x_{2}-x_{i} x_{j}\right)=\theta_{12}^{n}-\theta_{i j}^{n} \quad(1 \leqq i<j<n,(i, j) \neq(1,2))
$$

This proves
Lemma 3. $S(n)$ and $M_{0}^{2}(n-1)$ are Φ_{n-1}-isomorphic.
In the case $n=4, p$ divides $n-2$ implies that $p=2 . \quad S(4) \approx M_{0}^{2}(3)$ over Φ_{3}, and $M_{0}^{2}(3) \approx M_{0}^{1}(3)$. The latter is irreducible over Φ_{3}, and hence $S(4)$ is irreducible over Φ_{3}. But any Φ_{4}-submodule of $S(4)$ is also a Φ_{3}-submodule of $S(4)$, and hence $S(4)$ is irreducible over Φ_{4}. We shall next use Lemma 3 and the results of the last section to find the composition factors of $M^{2}(n)$ when p divides $n-2$ and $n>4$.

Set $n^{\prime}=n-1$. Then p divides $n^{\prime}-1$. The composition factors of $M^{2}\left(n^{\prime}\right)$ are known. We treat the cases $p=2$ and $p \neq 2$ separately, taking first the case $p \neq 2$. A composition series for $M^{2}\left(n^{\prime}\right)$ is given by

$$
0 \subset \tilde{N}(n-1) \subset \tilde{N}(n-1)+K \sigma(n-1) \subset \tilde{N}(n-1)+S(n-1)=M_{0}^{2}(n-1) \subset M^{2}(n-1)
$$

$\tilde{N}(n-1)$ has a K-basis $\left\{b_{1 j}(n-1): j=2, \ldots, n-1\right\}$, for it is generated by this set, and, being isomorphic to $M_{0}^{1}(n-1)$, it has K-dimension $n-2$. By definition,

$$
b_{1 j}(n-1)=\sum_{k \neq 1, j, n}\left(x_{1} x_{k}-x_{j} x_{k}\right)
$$

Using the isomorphism (5), we obtain

$$
\begin{aligned}
f\left(b_{1 j}(n-1)\right) & =\sum_{k \neq 1, j, n}\left(\theta_{1 k}^{n}-\theta_{j k}^{n}\right) \\
& =\sum_{k \neq 1, j, n}\left(x_{1} x_{k}-x_{j} x_{k}-x_{1} x_{n}+x_{j} x_{n}\right) \\
& =\sum_{k \neq 1, j}\left(x_{1} x_{k}-x_{j} x_{k}\right)-(n-2)\left(x_{1} x_{n}-x_{j} x_{n}\right) \\
& =b_{1 j} \in \tilde{N}(n) .
\end{aligned}
$$

Also, by Lemma 2,

$$
f(\sigma(n-1))=\sum \theta_{i j}^{n}=\sigma-a_{n} .
$$

We show that $\tilde{N}(n)$ and $\tilde{N}(n-1)+K \sigma(n-1)$ correspond under the isomorphism f. To do this we show that $\tilde{N}(n)$ has a basis $\left\{b_{12}, \ldots, b_{1(n-1)}, \sigma-a_{n}\right\}$. This set is linearly independent since f is an isomorphism. Also

$$
\sum_{j=2}^{n} b_{1 j}=\sum_{j=2}^{n}\left(a_{1}-a_{j}\right)=(n-1) a_{1}-\sum_{j=2}^{n} a_{j}=a_{1}-\left(2 \sigma-a_{1}\right)=2\left(a_{1}-\sigma\right) .
$$

Since $p \neq 2, \sigma-a_{1} \in \tilde{N}(n)$, and, since this is a Φ_{n}-module, $\sigma-a_{n} \in \tilde{N}(n)$. This shows that $\operatorname{dim}_{K} \tilde{N}(n) \geqq n-1$. But $\tilde{N}(n)$ is generated over K by $\left\{b_{12}, \ldots, b_{1 n}\right\}$, so that $\operatorname{dim}_{K} \tilde{N}(n) \leqq n-1$. Hence $\operatorname{dim}_{K} \tilde{N}(n)=n-1$, and it follows that $\left\{b_{12}, \ldots, b_{1(n-1)}, \sigma-a_{n}\right\}$ is a K-basis for $\tilde{N}(n)$. Thus the isomorphism (5) leads to the chain

$$
0 \subset \tilde{N}(n) \subset S(n)
$$

in which $S(n) \approx M_{0}^{2}(n-1)$ and $\tilde{N}(n) \approx \tilde{N}(n-1)+K \sigma(n-1)$ over Φ_{n-1}. Hence f induces a Φ_{n-1}-isomorphism

$$
M_{0}^{2}(n-1) /\{\tilde{N}(n-1)+K \sigma(n-1)\} \rightarrow S(n) / \tilde{N}(n)
$$

The former is irreducible over Φ_{n-1}, and hence the latter is irreducible over Φ_{n}.
We now observe that $\tilde{N}(n)$ is irreducible when $p \neq 2$ and p divides $n-2$. In fact $\tilde{N}(n) \approx M_{0}^{1}(n)$; this is clear since $\tilde{N}(n)$ has a K-basis $\left\{b_{12}, \ldots, b_{1 n}\right\}$, whilst $M_{0}^{1}(n)$ has a K-basis $\left\{x_{1}-x_{2}, \ldots, x_{1}-x_{n}\right\}$ and the map g, defined by

$$
g\left(b_{1 j}\right)=x_{1}-x_{j} \quad(j=2, \ldots, n)
$$

is a Φ_{n}-isomorphism. The results of [1] show that $\tilde{N}(n)$ is irreducible. This completes the proof of

Theorem 5. When p is not equal to 2 and p divides $n-2$, the following is a composition series of $M^{2}(n)$:

$$
0 \subset \tilde{N}(n) \subset S(n) \subset M_{0}^{2}(n) \subset M^{2}(n)
$$

Recall that, by Theorem 1,

$$
M_{0}^{2}(n) / S(n) \approx M_{0}^{1}(n) .
$$

We use a similar method to find a composition series for $M^{2}(n)$ when $p=2$ and n is even.
Theorem 6. Let $p=2$.
(i) If $n=2 a$ with a even, $S(n)$ has a composition series

$$
0 \subset \tilde{N}(n) \subset S(n)
$$

(ii) If $n=2 a$ with a odd, then $S(n)$ has a composition series

$$
0 \subset \tilde{N}(n) \subset \Phi_{n}\left(\sigma-a_{n}\right) \subset S(n) .
$$

Proof. We use the Φ_{n-1}-isomorphism (5).
(i) If $n=2 a$ with a even, then $n^{\prime}=n-1=2(a-1)+1$, with $a-1$ odd. A composition series for $M_{0}^{2}(n-1)$ is given by

$$
0 \subset \tilde{N}(n-1) \subset \tilde{N}(n-1)+S(n-1)=M_{0}^{2}(n-1)
$$

(ii) If $n=2 a$ with a odd, then $n^{\prime}=n-1=2(a-1)+1$ with $a-1$ even, and a composition series for $M_{0}^{2}(n-1)$ is given by

$$
0 \subset \tilde{N}(n-1) \subset \tilde{N}(n-1)+K \sigma(n-1) \subset \tilde{N}(n-1)+S(n-1)=M_{0}^{2}(n-1)
$$

In both cases we have $f\left(b_{1 j}(n-1)\right)=b_{1 j} \in \tilde{N}(n)$ for $j=2, \ldots, n-1$, and so we know that $\left\{b_{1 j}: j=2, \ldots, n-1\right\}$ is a linearly independent set. Also, $\left\{b_{1 j}: j=2, \ldots, n\right\}$ generates $\tilde{N}(n)$, and

$$
\sum_{j=2}^{n} b_{1 j}=\sum_{j=2}^{n}\left(a_{1}+a_{j}\right)=(n-1) a_{1}+\sum_{j=2}^{n} a_{j}=a_{1}+\left(2 \sigma+a_{1}\right)=0 .
$$

Thus $\left\{b_{1 j}: j=2, \ldots, n-1\right\}$ generates $\tilde{N}(n)$. This set is therefore a K-basis for $\tilde{N}(n)$, and $\operatorname{dim}_{K} \tilde{N}(n)=n-2$.

This proves that $\tilde{N}(n-1)$ and $\tilde{N}(n)$ are Φ_{n-1}-isomorphic. Since the former is irreducible over Φ_{n-1}, the latter is irreducible over Φ_{n}.

In the case $n=2 a$ with a even we also have a Φ_{n-1}-isomorphism

$$
M_{0}^{2}(n-1) / \tilde{N}(n-1) \rightarrow S(n) / \tilde{N}(n)
$$

induced by f. Hence we have $S(n) / \tilde{N}(n)$ irreducible over Φ_{n}. This completes the proof of part (i).

Now consider the case $n=2 a$ with a odd. By Lemma 2, $f(\sigma(n-1))=\sigma-a_{n} . \quad \Phi_{n}\left(\sigma-a_{n}\right)$ is a submodule of $S(n)$ containing $\tilde{N}(n)$, and $\left\{b_{12}, \ldots, b_{1(n-1)}, \sigma-a_{n}\right\}$ is a linearly independent
set. Further, $\Phi_{n}\left(\sigma-a_{n}\right)$ is generated over K by $\left\{\sigma-a_{2}, \ldots, \sigma-a_{n}\right\}$, and so both of these sets form a K-basis for $\Phi_{n}\left(\sigma-a_{n}\right)$. Hence f induces a Φ_{n-1}-isomorphism between $\tilde{N}(n-1)+K \sigma(n-1)$ and $\Phi_{n}\left(\sigma-a_{n}\right)$. Hence f induces a Φ_{n-1}-isomorphism

$$
M_{o}^{2}(n-1) /\{\tilde{N}(n-1)+K \sigma(n-1)\} \rightarrow S(n) / \Phi_{n}\left(\sigma-a_{n}\right) .
$$

The former is irreducible over Φ_{n-1}, and so the latter is irreducible over Φ_{n}. This completes the proof of part (ii).

This theorem and the fact that $M_{0}^{2}(n) / S(n)$ is isomorphic to $M_{0}^{1}(n)$ tell us the composition factors of $M^{2}(n)$ when $p=2$ and n is even. In this case, it was found that $M_{0}^{1}(n)$ has an irreducible factor space of K-dimension $n-2$. We show that this is isomorphic to $\tilde{N}(n)$.

We have the following exact sequences of Φ_{n}-modules:

$$
0 \longrightarrow K s \xrightarrow{\mathrm{incl}} M^{1}(n) \xrightarrow{\phi} N(n) \longrightarrow 0
$$

and

$$
0 \longrightarrow M_{0}^{1}(n) \xrightarrow{\text { incl }} M^{1}(n) \xrightarrow{a} K s \longrightarrow 0 .
$$

The mappings ϕ and a are defined by

$$
\phi\left(x_{i}\right)=a_{i} \quad(i=1, \ldots, n)
$$

and

$$
a\left(x_{i}\right)=s \quad(i=1, \ldots, n)
$$

respectively. Hence $N \approx M^{1}(n) / K s$ and $K s \approx M^{1}(n) / M_{0}^{1}(n)$. This shows that N and $M_{0}^{1}(n)$ have the same composition factors. From a knowledge of the composition factors of $M_{0}^{1}(n)$, we deduce that $0 \subset \tilde{N}(n) \subset N(n)$ is a composition series for $N(n)$ and that $\tilde{N}(n)$ is isomorphic to the ($n-2$)-dimensional composition factor of $M_{0}^{1}(n)$.

Thus when $p=2$ and p divides $n-2$, the irreducible Φ_{n}-module \tilde{N} appears twice in a composition series for $M^{2}(n)$. We saw that the same was true when $p \neq 2$ and p divides $n-2$.

This completes the analysis of the second natural representation module of the symmetric groups. We have obtained certain irreducible representation modules, namely factor modules of $S(n)$, in addition to the irreducible representation modules obtained in (5.2) of [1].

REFERENCES

1. H. K. Farahat, On the natural representation of the symmetric groups, Proc. Glasgow Math. Assoc. 5 (1962), 121-136.
2. W. Specht, Die irreduziblen Darstellung der symmetrischen Gruppe, Math. Z. 39 (1935), 696711.

The University
Sheffield

