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A DECOMPOSITION OF ADDITIVE FUNCTIONALS

OF FINITE ENERGY

MASATOSHI FUKUSHIMA

§ 0. Introduction

The celebrated Ito formula for the n-dimensional Brownian motion
Xt and for ue C\Rn) runs as follows:

(0.1) u{Xt) - u(X0) = Σ Γ ^(Xs)dBs + Γ 1 Δu{Xs)ds , Bt = Xt - Xo .
i = l JO OXi JO 2

In § 6 of this paper we extend this to the case where u is any element
of the Sobolev space H\Rn) and accordingly Δu is a tempered distribution
which is not even a signed measure in general. As a consequence the
second term of the right hand side of (0.1) may not be of bounded vari-
ation in t

Successful attempts have been made to generalize (0.1) to more gen-
eral processes Xt than the Brownian motion (the formula due to Kunita-
Watanabe [6] and so on) or to more general functions u than the C2~
functions (Tanaka's formula [9] and so on). They can be regarded as
specific realizations of semi-martingale decomposition [10]:

Semi-martingale = martingale + process of bounded variation.
However, since the square integrable martingale of zero quadratic
variation is identically zero, it seems to be natural and more general to
conceive (0.1) as a decomposition into the sum

(0.2) martingale + process of zero quadratic variation.

In this paper we formulate a decomposition of the type (0.2) in an
analytical way be making full use of the structure of the general sym-
metric Markov process. More specifically we introduce at the beginning
of § 1 the notion of the energy e(A) of a (not necessary positive) additive
functional A. We then establish in § 3 a unique decomposition
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ύ(Xt) - ύ(X0) = M™ + JV™ , M™ e J , N™ e Jfc

for any function u in the associated Dirichlet space. Here Jί denotes
the family of martingale additive functionals (MAF) of finite energy and
Jί\ is the family of continuous additive functionals of zero energy.

The functional Nίul is characterized in § 4 in a certain way by means
of the element T in the dual space J^* corresponding to u. In particu-
lar it is shown that iVp] is of bounded variation in t if and only if the
associated T is expressed as a difference of smooth measures. The notion
of the stochastic integral f Me^ί based on the MAF M is introduced in
§ 5 with a certain relaxation of the integrability condition on / imposed
"by Motoo-Watanabe [11]. These general theorems are applied in §6 to
the Brownian motion, yielding the generalization of Ito's formula men-
tioned above together with a representation theorem of the space J? by
stochastic integrals.

This paper is actually a continuation of [4], so that before we come
to our main topics, we shall give a quick review of what have been
discussed there. The same notions and notations will appear without
detailed interpretation. Now we start with a locally compact separable
Hausdorff space X, an everywhere dense positive Radon measure m on X
and an m-symmetric Hunt process M = {Ω9 Xty ζ, Px) on X. The asso-
ciated Dirichlet form on L2(X; m) is assumed to be regular. We put $F
= 2\δ\ and call this the Dirichlet space (relative to L2(X; m)). By an
additive functional of M, we mean an ordinary additive functional with
respect to the Hunt process M\X_B> B being some proper exceptional set.
Two additive functionals A and B are identified if v ί > 0, Px(At = Bt) = 1
q.e. xeX. The effects of such relaxation of the definition of AF are
apparent in the previous paper and in the present one as well.

We also recall that the previous paper [4] has established a one-to-
one correspondence between the family A£ of positive continuous additive
functionals (PCAF) and the family S of smooth measures, the correspond-
ence being specified by

(0.3) lim±-Eh.m((f.A)t) = (fμ,h), AeAϊ, μeS,
no tno

for any ^-excessive function h (γ ^ 0) and any non-negative Borel /.
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§ 1. Additive functionals of finite energy

For any additive functional At of the process M, we set

(1.1) Aim
no 2t

when the limit exists. β(A) is called the energy of A. Here are three

important classes of AF's of finite energy:

(I) AF's generated by functions

Suppose that a function u on X possesses a version ύ (u — ύ m-a.e.)

such that ύ is finely continuous q.e. and finite q.e. Then

(1.2) A * * = u(Xt) - u(X0) , t^O

defines an AF in our sense and indeed a unique equivalence class inde-

pendent of the choice of the version u ([3]).

When ue^, A M is well defined because we may take as ύ a quasi-

continuous version of u. Moreover A[ul is of finite energy and

(1.3) e(AM) = £τes(u, u) , u e & ,

by virtue of the formula (7.6) of the Appendices. Here SτQS denotes the

resurrected Dirichlet form defined by (7.5). $TQ* equals $ if and only if

there is no killing inside X (Corollary to Proposition 7.1). When the process

M is transient, the relation (1.3) extends to all functions u belonging to

the extended Dirichlet space !Fe (see Appendices).

(II) Martingale additive functionals of finite energy

Consider the family

Jl = {M: M is an AF such that for each t > 0 Ex(Mξ) < co and Ex(Mt) =

0 q.e. x € X} .

Since Em(M^) is subadditive in t, e(M) is well defined and

(1.4) e(M) = sup -±-EJMf) (^ + oo)

ί>o 2t

for any M^Jί. We set

(1.5) J = {Me Jl: e(M) < oo} .
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An AF M belongs to the family Jί if and only if M is a square

integrable martingale AF in the ordinary sense with respect to the Hunt

process M\X_B, where B is some proper exceptional set depending on M

in general. Hence the argument of P. A. Meyer [10; III. Theoreme 3] ap-

plies and there exists for each M e l a unique AF <M.> e A% such that

for any t > 0

(1.6) Ex((M)t) = Ex{Mf) q.e. x e X.

We call <M> the quadratic variation of M^Jί. The smooth measure

μ<M> corresponding to (M) by (0.3) is called the energy measure of M.

From (1.1) and (1.6) we see that the energy of M is just half of the total

mass of its energy measure:

(1.7) e(M) = \μmy(X) MeJί .

(Ill) CAF's of zero energy

Let us put

(1.8) Jίc = {N: N is a continuous AF such that e(N) = 0 and Ex(\Nt\) is

finite q.e. for each t > 0} .

The quadratic variation of NeJίc vanishes in the following sense:

(1.9) Σ (N(k+ί)/n - Nk/n)
2 -+ 0 , n -> oo, in L\Pm) ,

Λ = l

because the expectation of the left hand side equals

Σ Em{EXkln(m,n)) ^ nT Em(m/n) -> 0 , n -* oo .

An example of JV e Jfc is given by

(1.10) Nt = ϊ'f(Xs)ds
Jo

for any Borel function feU(X;m). Then Ex(Γ \f(Xs)\ds\ ^> e'R^fKx) is

finite for q.e. xe X and N is a CAF. Furthermore

Em(N!) =

r t r t s

= 2 (p sl, f-pvf)dvds . Hence
J J

t rt-s

o Jo
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(1.11) -±-Em(N?) = 1 \\Pc.sl,f Ssf)ds with £,/(*) = \Pvf{x)dv .

1 Γ£

Since the right hand side of (1.11) is dominated by — sds •(/,/), iV of
ί Jo

(1.10) is of zero energy, namely NeJ^c.

In this paper we are particularly interested in the sum of the classes

(II) and (III):

(1.12) s/ = J Θ Jίc

namely, J / consists of AF's A such that

(1.13) At = Mt + Nt , Me J, Ne Jίc .

Evidently stf is a linear space of AF's of finite energy. Moreover the

expression (1.13) of A e s/ is unique because

(1.14) J n JTC = {0}

where 0 denotes the additive functional identically zero. In fact, if A e Jί

is of zero energy, then μ<A} vanishes by (1.7) and so does <A>. Hence

A = 0 by (1.6).

We define the mutual energy of A, B e so by

(1.15) e(A, B) = lim -±-En(AtBt) .
no 2t

We know by Schwarz inequality that e(A, B) = 0 when either A or B is

in J¥\. Therefore

(1.16) e(A) = e(M) if A = M + N, Me J, Ne jrc .

The main purpose of this paper is to show that any AF ACz° (u e &)

in[the first class (I) actually belongs to J/, which is enough to get a

unique decomposition of A w indicated in Introduction. We first prove

that the space Ji is a Hubert space with inner product (1.15).

§ 2. Completeness of the space (y£, β)

THEOREM 1. Ji is a real Hilbert space with inner product e. More

specifically, if M(n) e ^i constitutes a Cauchy sequence with respect to e,

then there exist a unique MeJf and a subsequence nk -» oo such that

l i m e ( M ( n ) - M) = 0 , a n d f o r q . e . x e X ,
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Px(Mt

{nk) converges uniformly in any finite interval of t) = 1.

The proof is based on the next lemma.

LEMMA 1. Consider A e Af and the associated smooth measure μA.

Then for any v e SQQ and t > 0

(2.1) E£At) ^ (1 + Oil UvW^μjίX) (£ oo) .

Proof. Assume first that μ = μA is of finite energy integral: μeS0.

By setting ct(x) = Ex(At), xeX, we claim that

(2.2) ct e & and £(ct, v) = (μ,ϋ - ptv), v f € & .

By Proposition 1 of [4], the potential uA(x) of A is a quasicontinuous
version of the potential Uφ of μ. Hence <μ, ct} <̂  e\μ, uA} = etiι{μ) < oo.

On the other hand, —(c£, c, - p,c,) = — (c,, cs - ptcs) = —(ct - P A , cs)
5 S S

I p i p

which is, by Lemma 9 of [4], equal to — (μ,pu(ct ~ ptct))du = — <μ,
S Jo s Jo

2c ί+ω — cu — c2t+u}du. Therefore we get lim — (ct, ct — psct) = (μ, 2ct — c2t)

= <μ, Cί — PίC,> < oo, proving that ct e ^ and £(ct, ct) = <μ, ct — p^c,). In

the same way we have the relation of (2.2).

(2.2) leads us to, for μeS0 and ve5 0 0, E£At) = (y9 ct} = Sλ{Όxv, ct)

= <μ, Uxu - pt{Uλv)y + (c, ϋii;) ^ || ϋiHU (M-X) + \χ ct(x)m(dxή, which

1 Γ 1
proves the inequality (2.1) by noting that sup ct(x)m(dx) = lim—Em(A t)

t>o t Jx «lo t

When j« = //i is a general smooth measure, we may consider the in-

creasing sequence {Fn} of closed sets of Lemma 3 of [4]. Since IFnA is

related to IFn-μeSQ, we have

By letting n tend to infinity, we arrive at (2.1). q.e.d.

Proof of Theorem 1. Lemma 1 together with (1.6) and (1.7) implies

for any

(2.3) E£M?) £ 2(1 + ί)|| Up|U e(M) , v e Soo .

(M,, Pv)^o is then a square integrable martingale and we have
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(2.4) Pi sup I Ms I > a) -(1 + T)\\ Up ||. e(M)

on account of Doob's inequality.

Assume that Min) e Jl constitutes an e-Cauchy sequence and select a

subsequence nk -> co such that e(M(n*+1) - M{nk)) <: -^-. By (2.4)

p{ sup I M,(n*+1) - Mi** I > — W 2 ( 1 + ^ " ^ H - .
XO^S^T 2* / 2 f c

Applying the Borel-Cantelli lemma to this inequality, we see

(2.5) PV(AO) = 1 , veS00

where yio = {ω e Ω; Ms

ink) converges uniformly in s on each finite interval}.

In view of Lemma 1 of [4], (2.5) implies PX(ΛO) = 1 q.e. xeX. Denote

by Γk a defining set of M{7lk) and put Λ1 = Π Γk. We further put for ω
k

eΛ0O Ax Ms(ω) = lim Ms

{nk)(ω), s ^ 0. Ms is then an AF with defining set
ftfc-oo

Λo Π Λlm Since Mt

{n) is L2(PV) convergent to Mt by virtue of (2.3), we see

Ev(Mf) < oo and Ev(Mt) = 0 for any v € Soo. It is easy to conclude from
this with the help of Lemma 1 of [4] that Ex(Mf) < co and Ex{Mt) = 0
q.e. xeX, that is, MeJf.

For any ε > 0, choose N such that e(M(n) — M{m)) <e,n,m> N. We

have — Em((Mt

(n) - Mt)
2) ^ ε by Fatou's lemma and (1.4). Then e(Min) - M)

ε. Hence MeJi and M{n) is e-convergent to M. q.e.d.

§ 3. Decomposition of A[ul = C^Q — S(-XΌ), weJ^

THEOREM 2. For αziy ue^, the AF Aίul belongs to the class sf

Ji Θ Jr

c and so that Aίul can be expressed uniquely as

(3.1) Aw = Mw + Nw , Mw e J , Nw e JΓC .

Moreover it holds that

(3.2) e(M [M]) = £™(u, u) .

Jn transient case, the above statements extend to any u e SF'e (see Appendices

for notions).

Proof. We already know in § 1 the uniqueness of the decomposition
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(3.1) and hence it suffices to show the existence of such Mίul and Nίul.

We start with a special case that u is in the range of the resolvent:

u = RJ, Ra being the resolvent of the process M and / being a Borel

function in L2(X; m). In this case (3.1) is reduced to the usual semi-

martingale decomposition, namely, we may put

f ί * = u(Xt) - u(X0) - N ™ , t ^ O

As we saw in § 1 (III), iVM of (3.3) belongs to JTC. Since u is an ele-

ment of ^ , A^ ] = u(Xt) - u(X0) is of finite energy and M™ of (3.3) satis-

fies the relation (3.2) in view of (1.3). Since ^RJ2) ^ || UM\~ •(/,/) < °o,

Vy e Soo, we can see that Mίul e Jί and hence M [ w ] e Jl.

Next take any Borel function w e ^ and define the approximating

functions un by

(3.4) un = nRn+1u = RJn with fn = n(w - nRn+ιu) .

By the uniqueness of the decomposition (3.1) for wΛ's, we have then

(3.5) e(M^^ - M^) = ^ e s ( ^ n - W m, an - Mm) .

Since une^ are (^-convergent to w and Sγ(y, v) dominates ^res(ι;, v) for

any ve^, we conclude that {M[Mn]} is an e-Cauchy sequence in the

space <J.

By virtue of Theorem 1, the formula

f c*«3 in (J, e)
(3.6)

makes sense and

(3.7) Mw e J , e(Mίul) = SΐQ\u, u) , M

It only remains to show that Nίul of (3.6) belongs to the space Jίc.

Notice that a subsequence nk exists and

(3.8) Px(Nt

ίUnkl converges to iVp] uniformly on any finite interval of t)

= 1 q.e. x e X9

because the same statements for AίUnl and MίUnl hold on account of
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Theorem 1 and [4: Lemma 6] respectively. From this and (3.3), we know

that N™ is a CAF.

On the other hand we have from (3.6) iVp] = Aψ~Unl - (Mp ] - M}Unl)
l and consequently

2t

Owing to (1.3), (3.5) and (3.6), the right hand side equals 6£ve&(u — uny

u — un), which can be made arbitrarily small with large n. Therefore

e(Nw) = 0 and NM e Jfc.

When the process is transient, we may consider the extended Dirichlet

space (J^g, S) according to Appendices. Then exactly in the same way

as above, we can extend the decomposition (3.1) and the relation (3.2) to

any u e 3P e by making use of an approximating sequence un e ZF which

is ^-convergent to ue^e. q.e.d.

COROLLARY 1. The following linearity and continuity hold:

( i ) M [ α M + δ υ ] = aMw + bMίυ\ Nίau+bv^ = aN™ + bNίv\ a, be R\ u,υe ^{u,

v e SF'e in transient case).

(ii) un, ue^ (un,u e ^ e in transient case), £(un — u, un — u) -> 0, n -> oo

=> *nk a subsequence of n: lim Mp"* 1 = Mψ, lim iVf""*3 = iVt

Cα3 uniformly on

each finite interval of t, Px-a.s. for q.e. x e X.

In fact, the relation (i) follows from the uniqueness of the decomposi-

tion (3.1). The equality (3.2) means that the linear transform

(3.9) Φ\u^-*MW

is continuous from the Dirichlet space (J^, S) (the extended Dirichlet space

(J^e, S) in transient case) into the space (^#, e). Combining this with

Theorem 1 and [4; Lemma 6], we conclude the continuity statement (ii).

(3.2) also implies the following embedding statement telling us that

the structure of the Dirichlet space may be studied entirely within the

framework of the space Jί of martingales of finite energy.

COROLLARY 2. Suppose that the process M is transient and that there

is no killing inside X. Then the transformation Φ of (3.9) is ίsometry

and the extended Dirichlet space {JFe> $) can be identified by Φ with a

closed subspace of {Jί, e).
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§ 4. Characterizations of Nίul

We saw in § 1 (III) that any AF in Jί\ is of zero quadratic variation

in a certain sense. Nevertheless the class Jί\ contains in general a lot

of CAF's which are not of bounded variation. In this section we make

the situation clear by giving some characterizations of the CAF Nίul

constructed in the preceding section for ue^F (ue SF'e in transient case).

See § 6 for some related examples.

THEOREM 3. Following conditions are equivalent for an AF A and

for a function ue^F (ue^e in transient case):

( i ) A = Nίul

(ii) A e Jίc and, for each t > 0,

(4.1) Ex{At) = ptu{x) - u(x), q.e. xeX.

(iii) A e Jfc, lim Ex(At) = 0 q.e. and

(4.2) lim ±-Etm(Ad = - *{u, υ) , *v e & .
ίiO t

Proof. The implication (i) =£> (ii) =̂> (iii) is clear. Assume that an AF

A satisfies the condition (iii). Let us put ct(x) = Ex(At), then we see from

A e Jfe and the relation

(4.3) ct+s(x) = ct(x) + ptcs(x) q.e. for each t,s> 0 ,

t h a t ct e U(X; m), t > 0.

By (4.2) and (4.3), we have for any v e &, t > 0, and T > 0,

(υ — pτv, ct) = lim —(Sτv, — psSτv, ct) = lim ~(Sτv — ptSτv, cs)

= —i(Sτυ — ptSτυ, u) = —£(Sτv, u — ptu) = — (υ — pτυ, u — ptu) .

Hence, lt — (v, ct + u — ptu) is linear in t; lt = lt+τ — lτ. Since lim —lτ = 0
slO t

by (4.2), lt — 0 and, consequently,

(4.4) ct = ptu — u m-a.e.

(4.4) particularly means that ct e ^{ct e &'e in transient case). More-

over ct(x) is a q.e. limit of a quasi-continuous function psct_s(x) in view of

(4.3) and a condition in (iii). Hence ct is quasi-continuous and (4.1) fol-

lows from (4.4). The implication (iii) => (ii) is proven.
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Finally we assume condition (ii) for A. In order to derive (i), we

put Bt = N^ - At = u(Xt) - ύ(XQ) - M^ - Aty t > 0, qt(x) = JS/BJ) and

claim that

(4.5) qt(x) = 0 g.β. /or eαc/i t > 0 .

Clearly B, is a CAF of zero energy and Ex(Bt) = 0 on account of the

assumption (ii). But then qt(x)m(dx) = 0 because the left hand side is
J x

subadditive in t. We thus have qt{x) — 0 m-a.e., from which we can

conclude psqt — 0 q.e. for each s > 0. By using Fatou's lemma qt(x)
= Ex(lim(Bt+(l/n) - Bι/n)

2) ^ Umpι/nqt(x) == 0 q.e., getting (4.5). q.e.d.

An AF A is said to be of bounded variation if At(ω) is of bounded

variation in t on each compact subinterval of [0, ζ{ω)) for every fixed ω

in a defining set of A. A CAF A is of bounded variation if and only if

A can be expressed as a difference of two PCAF's:

(4.6) At(ω) = A<X)(ω) — Af}(ω) , A(1), A(2) e Ac

+

If an AF A is continuous and of bounded variation, then its total vari-

ation {A}(=Γ|dA,|) is a PCAF ([10, III, Proposition 1]) and an expres-

sion (4.6) is provided by Af] = {A},, A(2) = {A}t — At for instance.

In [4], we have introduced the space SQ of positive Radon measures

on X. For definiteness we say each measure ι>eS0 to be of finite 1-order

energy integral. In transient case, the same role is played by a measure

v of finite 0-order energy integral which is defined as a positive Radon

measure satisfying

\v(x)\v(dx)^C\\v\\s, ve^ Π C 0 ( Z ) .

Let us say that a signed Radon measure v on X is of bounded 1-order

(resp. 0-order) energy integral if so is the total variation \v\. This is the

case if and only if v can be expressed as v = i/υ — vi2\ va) and J/2) being

positive Radon measures of the same type. We can then define the a-

potential of v by Όav = Uav
a) — Uav

{2) (resp. 0-potential of v by Uv = Uva)

— Uv{2)) which does not depend on the choice of ι/υ and v{2\ Moreover

the quasi-continuous version v of any ue«f (resp. υe έFe) is integrable

with respect to the total variation \v\ and it holds that
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(4.7) δΛ(Uj>,υ) = <v,D> ^ e /

(4.8) β{ϋv, v) = (v, v) *v e ^ e

respectively.

Given a signed Radon measure v of finite 1-order (resp. 0-order in

transient case) energy integral, we express it as v = ι>a) — v(2) in the above

way and put

(4.9) A = Aa) - A(2)

where Aa) and A(2) are PCAF corresponding to i/υ and vm respectively.

A of (4.9) is a CAF of bounded variation and does not depend on the

choice of vω and v{2\

LEMMA 2. For any signed Radon measure as above, it holds that

(4.10) N ™ = P % ( X s ) d s - A t , t^O,
Jo

and in transient case that

(4.11) IF** = - A ,

where A is the CAF of bounded variation associated with v by (4.9).

Proof. In view of the linearity (Corollary 1 to Theorem 2), we may

assume that v is non-negaive. Let us first prove (4.10).

Now take v e So and a quasi-continuous version u of Uxv. By virtue

of (3.6) and (3.8), we then have

(4.12) NΫ* = lim Γ (nRn+1u(Xs) - /.(*.))&
n->oo Jo

where fn = n(u — nRn+ιύ) and the convergence in (4.12) is uniform in t

on each finite interval P^-a.s. for q.e. xeX. The equality (4.10) then

follows immediately from (4.12) together with [4; Lemma 6] and the way

of the construction of AeAf carried out in [4; Proposition 1].

In order to prove (4.11), observe that any positive Radon measure of

finite 0-order energy integral is also an element of So and

(4.13) Uv = Uxv + ^
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where R denotes the 0-order resolvent of the process M.

Put / = Up, then, in view of Appendices, Raf(e^) converges as

a 10 to Rf in (!Fe> <$). Therefore, by the continuity again and by an ob-

vious modification of [4; Lemma 6], we see

Nl*" = limiVP"/] = lim P («R.f(X.) - f(Xs))ds = - P f(X,)ds .
αlO αlO JO JO

(4.11) follows from this and (4.13). q.e.d.

Before formulating the next theorem, recall Lemma 3 of [4] (resp. its

obvious modification in transient case): if a non-negative Borel measure

v is smooth, then there exists an increasing sequence {Fk} of closed set

satisfying

(4.14) Pjlimσx_Fk < ζ) = 0 q.e. xeX,

(4.15) IFk'i>eS0 (resp. IFk-v is of finite 0-order energy integral) for each k.

Let us call such {Fk} a nest associated with ve S.

Given two smooth measures vω and i/2), we can always choose a

common nest {Fk} associated with va) and v(2\ We put then

(4.16) vk = IFk v™ - IFk v™ , Λ = 1, 2, ,

and call vk the restriction to Fk of the difference va) — i/2). Each vk is

a signed Radon measure of finite 1-order energy integral (resp. of finite

0-order energy integral in transient case). It we put

(4.17) &k = {u 6 &\ ύ - 0 q.e. on X - Fk) ,

then on account of [4; Lemma 7] and (4.7),

(4.18) ia(Uavk - Haιk(Uϊt), v) = <vk, δ>, *ve^k9

where HaJ(x) = Ex(e-«°ku(Xσk)), σk = σx_Fft.

The same statement for a = 0 holds in transient case. Keeping these in

mind we proceed to the proof of the next theorem.

THEOREM 4. Following two conditions are equivalent each other for

ue^F (ue SF'e in transient case):
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(i) JV/ϊi] is a CAF of bounded variation.

(ii) there exist smooth measures ι/υ and y(2) such that

(4.19) £(u,v) = (vk,v), y u € ^ f t ,

for every k. Here vk is the restriction to Fk of the difference va) — ι/2), {Fk}

being a common nest associated with v{1) and \>{2\ SF\ is the space defined

by (4.17).

Moreover in this case NM is characterized as the unique CAF A of

bounded variation satisfying for every k

(4.20) lim ±Eυ.m(At) = - (vk, ΰ) , *ve^k.
no t

Proof. We only give the proof for u e IF.

Proof of (i) =Φ (ii): Suppose Nίul e Jίc is of bounded variation, then Nw

= -Am + A(2) for some Aa) and A ( 2 )eΛ+. Denote by va) and ι/2) the

smooth measures associated with Aa) and A(2) respectively. Then (4.20)

holds for a function v = h — Hltkh( e ^k), h being any 1-excessive func-

tion in ^ in accordance with (0.3). Hence the relation (4.19) is valid

for such type of functions in view of Theorem 3. For any υ e ^Fk, we

can choose a sequence {vn} of the above type which is ^-convergent to

v. Since \vk\ is of finite 1-energy integral, vn is L\X;\vk\yconvergent to

υ as well. Thus (4.19) is established for any υ e SP\ for each h.

Proof of (ii)=^(i): Assume that the relation (ii) holds. Let A(1) and A(2)

be the PCAF associated with the smooth measures va) and i/2) respec-

tively. We set A = -A ( 1 ) + A(2) and claim that

(4.21) iVM = A .

Fix k and rewrite (4.19) as

(4.22) *x(u, v) = (μk> v) Wβ^,,

where μk = u-m + vk. Since the left hand side of (4.22) equals to

ix{u — Hifkύ, v) for any i; e J^^, we get from (4.18) and (4.22)

(4.23) u - H1>ku =

Now the CAF IFkA = -IFk Aa) + IFkΆ
{2) is associated with the
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fit

measure — vk. Hence u(Xs)ds — (IFkΆ)t is associated with μk and by
Jo

Lemma 2 we arrive at the equality

(4.24) W"* = Γ {GφJLX.) ~ u{Xs)}ds + (/„ A)t , ί > 0 .
Jo

On the other hand, Hltk{UΎμk) is also a 1-potential of a measure πkμkeS0

supported by X — Fk ([4; Lemma 7]). Denote by B the PCAF associated

with πkμk. Then using Lemma 2 again

(4.25) N^MU^I = Γ Hlfk(Uφk)(Xs)ds - Bt , t^O.
Jo

(4.23), (4.24), (4.25) and Corollary to Theorem 2 imply

(4.26) 2\Γp-*.*« = - Γ H1>kύ(Xs)ds + (JF 4 . A), + B, , ί > 0 .
Jo

Since Bt = 0, v£ < σfc we then conclude

(4.27) 2Vf»-̂ .*« = - Γ Hlyk(Xsύ)ds + At , ί < σfc .
Jo

It is easy to see that H1>kύe^ constitutes an efΓCauchy sequence.

Since we may take a s ϋ a quasi-continuous version of u in the restricted

sense ([2]), we have lim ϋ(Xt>) = ύ(Xt-) for all t e [0, oo), P^-a.s. for q.e.
t'U

xeX. Therefore the property (4.14) of the nest {Fk} and the quasi-left

continuity of the process M imply

(4.28) lim Hltkύ(x) = Ex(e-ζύ{X^)) = 0 q.e. x e X,

from which we conclude that lim iγ{Hltkύ, Hlikύ) = 0. We can now derive

the desired equality (4.21) from (4.27) by letting k tend to infinity and by

using (4.14), Corollary to Theorem 2 and [4; Lemma 6].

The proof of the equivalence (i) £=Φ (ii) has been completed. In order

to prove the latter statement of Theorem 4, it suffices to show A = 0 by

assuming that

(4.29) lim !tf,.m(A t) = 0 Vi; e ^ f c , k = 1, 2, ,
lO tίlO

for a CAF A of bounded variation and for an increasing sequence {Fk} of
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closed sets satisfying (4.14). Express A as A = Aω - A(2), AH) e At, i = 1,

2, and consider v(ί) e S associated with AH), i = 1, 2. Without loss of gen-

erality, we may suppose that IFk'»
{i) eS0,i = 1,2, k = 1, 2, . Then we

have for each k

(4.30) ί ΰ(x)vω(dx) = ί D(x)i/2)(cZx)
J Fie jFk

for any u e SF^ such that u is a difference of 1-excessive functions. Hence

in the same way as in the proof of the implication (i) => (ii), we see that

(4.30) holds for all ve^k. Since any fe C0(X) with Supp (/) C Ffc can be

approximated uniformly by u e i ^ Π C0(X) such that Supp [v] c Supp [/],

we conclude from (4.30) that IFk-v{l) = IFk-v{2\ k = 1, 2, . We have

V(D _ v(2) b e c a u s e p«) ( j o e s n o t charges the exceptional set X — UίΓ=i -̂ fc?

i = 1, 2. Therefore A = Aω — A(2) = 0 completing the proof of Theorem 4.
q.e.d.

COROLLARY. The following conditions are equivalent each other for

i ίe«f (resp. u e ^ e in transient case).

( i ) u is a difference of two 1-excessίve functions in & {resp. 0-excessive

functions in ^Fe).

(ii) u = Uxv (resp. u = Uv) with a signed Radon measure v of bounded 1-

order (resp. 0-order) energy integral.

(iii) iVCw] is a CAF of bounded variation and the associated measure v(1)

— i/2) in Theorem 4 has the additional property that lim|vfc| is a positive

Radon measure of bounded 1-order (resp. 0-order) energy integral.

In fact, relations (i)Φ^(ii) and (ii)=>(iii) are implied in [4; Lemma 4]

and Lemma 2 respectively, (iii) =$> (ii) is trivial.

Denote by J^* the dual space of the Dirichlet space J^ with metric

δx. Each element u e & defines a unique TCw] e J*~* by

(4.31) S(u, v) = (Tίu\ v) , v e & .

Sometimes it is convenient to express the relation (4.2) as

(4.32) lim -EΌ.m(At) = - <7™, v) , W e 3F .
no t

In transient case, the dual space J^* of the extended Dirichlet space

> &) plays a more specific role in characterizing the CAF's Nίul, ue^e:
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THEOREM 5. Suppose the process M is transient, then the family
{iV™, u € 3F ̂  of CAF's stands in one-to-one correspondence with the dual
space ^* of the extended Dίrichlet space ZF e, the correspondence being
characterized by the conditions that A e Jf c, lim Ex(At) = 0 q.e. and

ίiO

(4.33) lim -EΌ.n(At) = - < 2 » , ve^e.
no t

Moreover A is of bounded variation if and only if Te^f is expressible

as

(4.34) T = vw - v(2) , v{1\ ι/2) e S ,

in the sense of (4.20).

In fact the relation (4.31) defines a one-to-one correspondence be-
tween J^* and SF'e in this case. Hence Theorem 5 follows from Theorem
3 and Theorem 4.

§5. Stochastic integrals

We put

(5.1) Ac = {A - B: A, B e At, Ex(At) < oo, Ex(Bt) < oo, n > 0, q.e. x) .

For M,LeJί, there exists a unique element <M, L> of Ac such that

(5.2) Ex(MtLt) = EX«M, L>,) , v* > 0 , q.e. x e X.

This follows from the remark made in the paragraph after (1.5) and we
may set <M, L> = ±{(M + L) - <M> - <L>}.

Let us consider the family

(5.3) JCλ = { M e J : μ<af>( e ιS) is a Radon measure} .

Obviously Jίx is a linear space containing our family Λ. There exists

for M, Le Jίλ a unique signed Radon measure μiM,Ly such that

(5.4) f f(x)μ<M,L>(dx) = lim ±En(\'f(x,)d(M, L)) , v/ 6 C0(X) .

I n fact, i t suffices t o p u t μ<M,L> = i{μ<M+L> — μ<M> — μ<L>}

LEMMA 3. If M,Le Jtx,fe Π(X; μ<M>) and g e L2(X; μ<Ly), then f-g is

integrable with respect to the absolute variation \μ<M,L>\ of μ<M,L>

https://doi.org/10.1017/S0027763000018493 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018493


154 MASATOSHI FUKUSHIMA

(5.5) (\χ\f g\\dμiMtL)\j £ jj2dμ<My^g2dμ<L> .

Proof. The proof is essentially the same as in Motoo-Watanabe [11,

Lemma 10.1]. Making the expression dμ<MtL> = kxdv, dμ<M> = k2dv and dμ<L>

= kφ with v = μ<M> + μ{Ly + \μ<MtL>\, we get from (5.2) and (5.4) dμ{aM+bL> = (a%

+ 2abkλ + b2kz)dv for any a,beR. Therefore the set Bo = (J {x e Z;
α,δ: rational

a2k2(x) + 2 a 6 ^ i ( x ) + b2kz(x) < 0 } i s ̂ - n e g l i g i b l e a n d w e h a v e f o r e a c h a , β e R

a2f(x)2k2{x) + 2aβ\f(x)g(x)kι(x)\ + β2g(x)%(x) ^ 0 for every x e X - Bo .

Integrating this with v,

cc2^f2dμ<M> + 2aβ^\fg\\dμ<M>Ly\ + β2^g2dμ<L> ^ 0 ,

which proves (5.5). q.e.d.

THEOREM 6. Given MeJίλ and feL2(X;μ<M>), there exists a unique

element f-Me^£ such that

(5.6) e(/ M, L) = 1 f f(x)μ<MfL>(dx) , vL 6 J .
2 ox

The mapping f ^—> f- M is linear and continuous from L2(X; μ<M>) into the

space {<jiy e).

Proof. By virtue of Lemma 3

(5.7) \ J/<W,L>| ^ ^ψ II/IIL C^, ML) , Le.

Hence Theorem 1 implies Theorem 6 together with the inequality

(5.8)

f'MeJf constructed in Theorem 6 is called the stochastic integral.

This terminology is legitimate in view of the following theorem.

THEOREM 7. Let M, f and f M be as in Theorem 6. Then

(5.9) dμ<f.MfL> = f dμ<MtL> , vL e J .

Moreover the following approximation holds for fe C0(X):

(5.10) lim Ex{{(f'M)[Δ) - (f-M)t}
2) = 0 , t > 0 , q.e. x

Ml-o
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where

(5.11) (Λ M)?> = t Λ ^ Λ - M,,.,) ,
i = l

J denotes the partition 0 = tQ < ίx < < tn = t and |Δ\ = max (ί< — ί^) .

Proof. Let 5 be a common proper exceptional set for M and <M>

such that the relation (1.6) holds for every xe X — B. Applying the same

argument as in P.A.Meyer [10; III, Theoreme 4] to the Hunt process

M\X_B and its AF's M and <M> in the ordinary sense, we can see for

fe C0(X) that there exists a unique martingale AF M of M\X_B in the

ordinary sense such that

(5.12) limEx({(f Mψ - Mt}
2) = 0, xeX-B.

Furthermore

(5.13) E9{Mf) = Ex^f(Xsγd(M})j , xeX-B.

It follows from this that e(M) = lim ~Em(M?) = — ί f2dμ<M> < oo and

no 2t 2 Jx

consequently M e Jί.

On the other hand (5.2) and (5.12) imply

(5.14) Ex((Mf L)t) = Ex^ f(Xs)d(M, L

for any L e Jί and q.e. xe X. When L e Λ, μ<M,Ly is a bounded signed

measure and hence lim Eh.m((M, L)t) = h(x)μ<M Adx) for any bound-

ίio 2t JX

ed ^-excessive function h in view of the relation (0.3). Therefore we have

from (5.14)

(5.15) f h(x)μ<M,L}(dx) = f h(x)f(x)μ<MtL>(dx) , L e i .
J X J X

By setting h = aRah, h e C0(X), and letting a tend to infinity, we conclude

that (5.15) holds for any heC0(X). Therefore dμ<MiL} - f dμ<MtL>, vLe J.
1 f

In particular e(M, L) = — fdμ<M L> which means M = f-M.

2 Jx

We have proved Theorem 7 when fe CQ(X). But on account of in-

equalities (5.7) and (5.8), the relation (5.15) for M = f-M readily extends
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to f e L2(X; μ<M>). The proof of Theorem 7 is completed. q.e.d.

COROLLARY ( i) For MeJ?ltfe L\X; μ<M}) and g e L\X; f2μ<M}),

(5.16) g {f-M) = gf-M.

(ii) For M,Le^ufe L\X; μiM>) and g e L\X; μ<L>),

(5.17) e(f-M, g L) = 1 £ f(x)g(x)μ<M,L>(dx) .

Our stochastic integral /• M can be reduced to the stochastic integral

due to Motoo-Watanabe [11] in the following way. Suppose that Me<Jf

and f e L2(X; μ<M>). Then

(5.18) Ex(j'Q f{Xsfd{My)j < oo q.e. x € X.

In fact we have by Lemma 1

Ev(^J(Xsγd(My)j ^ (1 + t)\\ UMU'\j(x)2μiMy(dx) < oo for any veS00.

Let B be a common proper exceptional set for M and <M> such that

(1.6) and (5.18) hold for every xe X — B. According to a general theo-

rem [10; III, Theoreme 4] applied to the Hunt process M\x_By the stochastic

integral f-M in the sense of Motoo-Watanabe is well defined. We claim

for l e i !

(5.19) fM = f M,

the equality being understood in the present sense of the equivalence of

AFs.

Indeed (5.19) for fe C0(X) has been shown in the proof of the preced-

ing theorem. It is then easy to extend the relation (5.19) to general /

as above.

We exhibit in the next section examples of fe L2(X; μ<M>) for which

EJ\ f(Xs)
2d(M)s) = oo for some x. For such /, the stochastic integral

f-M in our sense is well defined, while the stochastic integral f-M in

Motoo-Watanabe sense can not be defined unless we admit an exceptional

set B as above.

In the remainder of this section, we study some properties of the
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stochastic integral /• MίuΊ relevant to the martingale AF Mίul e <J con-

structed in § 3 for u e IF.

THEOREM 8. The family {/• Mίv1} of stochastic integrals is dense in the

space (Jl9 e), provided that f (resp. u) runs over a uniformly dense subfamily

of C0(X) (resp. an SΓdense subfamily of !F).

Proof. Suppose that M e Jί is orthogonal to the family {/. Mw} in the

statement of Theorem 8: e{M,f Mw) = 0. Then by (5.6) \ f(x)μ(M,Mwy(dx)

— 0, which in turn extends to all ueέF by virtue of (3.2) and (5.7).

Therefore μ<M,Mw> = 0 and hence<M, M M > = 0 for any ue^.

By setting u = Rag, g e C0(X), we can conclude M = 0 on account of

Motoo-Watanabe [11; Theorem 12.2]. q.e.d.

We now express the energy of the stochastic integral in terms of the

Dirichlet form.

LEMMA 4. For ue^b and a quasi-continuous function fe^bi

(5.20) ί f(x)μ<Mίui}(dx) = 2Sΐe%u-f, u) - £™(u\f) .
«/ X

Proof. By (0.3) and (1.6),

(5.21) ί f(x)μ<MM>(dx) = lim 1 Ef.m((M^Y)
JX t[0 t

when / is a bounded ^-excessive function in IF. Since M[LUl = ύ(Xt)

-ύ(X0)-NM and Ef.m((NM2)£\\f\\~EΛ(N™y), we can see that the

right hand side of (5.21) equals lim — Ef.m((u(Xt) - u(X0))2) = lim {—(uf,
no t no {. t

1 1 1 Γ
u — ptu) — — ( / — ptf, u2) (u2f, 1 — ptΐ) > = 2i(uf, u) — i(f, u2) — u2fdk9

t t ) Jx

which can be rewritten as (5.20).

(5.20) is now valid if / is replaced by aRaf,fe^b. After letting a

tend to infinity, we get (5.20) for general fe^b. q.e.d.
COROLLARY 1. For any u, v e £F\ and a quasi-continuous function f
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By making use of the relation (5.17), we further have

COROLLARY 2. For uί9 u2 e ^ b and quasi-continuous functions fl9 f2 e ^b9

the stochastic integrals fλ Mίuύ, f2 M M e <J are well defined and

2e(f1 M^\f2.M^) = g^uJJ* u2) + £^{u2fxf2, Mi) - S^Xu^fJ,)

M. L. Silverstein [12; Theorem 11.3] first singled out the measure

μ<jr!>3> for ue^b through the formula (5.20). For example, if £ is a

Dirichlet form on L\Rn) given by

*<«, v) = ± f | ^ p-viΛ(dx) > 1; 6

then it holds that d/^<M,MW> = 2 Σ | ^ - ^ t i , M, 1; e Co-ίΛ").

i,y-i dxt dXj

Using the formula (5.20), Yves Lejan [8] then derived the following

transformation rule of the energy measure: in case that the process M is

continuous
n

(5.22) dμ<Mwu)\Ml*Ίy = Σ φχi(u)dμ<Mlu^Mίvly , V 6 &h ,
i = l

where u = (uly u2, , un) is a collection of quasi-continuous functions in

S^b, Φ is C^function on Rn vanishing at the origin and possessing bound-

ed derivatives. An integration of fe C0(X) by means of the both hand

sides of (5.22) leads us to

(5.23) e{M^u)\ f- M M ) = Σ e(Φx(u) M*<\ f M™) , ve^b,
ί = l

with the aid of (5.17). Hence, by Theorem 8, we arrive at the following

version of Ito's formula.

THEOREM 9. Suppose that the process M is continuous. Let u = (uu

u2, , un) and Φ be as above. Then the composite function Φ(u) belongs

to SFb again and

(5.24) M W κ ) ] = Σ ΦXt(u)

§ 6. Case of the Brownian motion

Applying the general theorems obtained so far, we examine in this

section the case that M = (Xt, Px) is the Brownian motion on Rn. In
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particular we represent the space Jl by means of the stochastic integrals

and thereby generalize Ito's formula.

The associated Dirichlet space on L2(Rn) is the Sobolev space

(6.1) H](Rn) = lu e U(Rn): — e L\Rn), 1 ^ i ^ n) .

with

(6.2) *<«,«> = | ± f P-Γ-**-
2 i=iJBn όXi ύXt

the derivatives being taken in the sense of Schwartz distribution. When

n >̂ 3, M is transient and the associated extended Dirichlet space (J*"e, <<f)

is the completion of C^{Rn) by means of the Dirichlet integral. The

quasi-continuous function in J^e is called the BLD function of potential

type. In view of the Sobolev inequality \\u\\PQ tί CV(?(u, u), u e C^(Rn)y

— — , we can regard the space lFβ as a closed subspace of
A 2 n

(6.3) & = lu € L\oe(R
n):

I

with inner product (6.2).
Let Xt

(ί) be the i-th coordinate of X, and put B ^ = X™ - X0

(i\ t ^ 0,

l^i<n. Then S(<) e Jtx with

(6.4) <B(ί), B^5), = δtj ί, μ<pw>(dx) = dx .

Therefore the stochastic integral /• B(ί) e Jί in the sense of § 5 is well

defined for any feL2(Rn). According to a remark made in §5, any Borel

function feU(Rn) satisfies

(6.5) Ex(jj(Xsγds) < oo

for q.e. xe Rn and the stochastic integral /• B{ί) coincides with the ordi-

nary one of Motoo-Watanabe with respect to the Brownian motion M

retsricted to Rn — B, B being some Borel polar set.

For instance the function in L\Rn)

f(x) = /0(x)/|*|« , « < | , fa
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satisfies (6.5) for all xeRn if a < 1. In this case the AF f-BU) in the

sense of Motoo-Watanabe can be well defined for every starting point

x e Rn. When a ^ 1 however, (6.5) is violated for x = 0 and the origin 0

must be excluded as the exceptional set for the AF f-B(ί).

THEOREM 10. ( i ) The space Λ of MAF's of finite energy can be ex-

pressed as

(6.6) J = JM = Σfi'BU):fe L\Rn\ 1 ̂  i ^ n\

and the following isometry between the space Ji and vector fields (fl9f2>

• ••,/;) holds:

(6.7) e(M) = ^±\\fi\\lHRn).

(ii) M e J equals Mίul for some u e H\Rn) (u e &\ in case n ^ 3) if and

only if the vector field corresponding to M is grad u:

(6.8) M M = grad u-B (= f]—-B(i)) .
\ *=i dxt 1

(iii) When n ^ 3, the extended Dίrichlet space («Fe, £) is identified by the

mapping u -̂ —> grad u £? with a closed subspace of (Jf, e).

Proof. We first prove the relation (6.8) for u e Co(Rn). In this case,

Ito formula gives

(6.9) u(Xt) - u(X0) = Σ Γ ξkX.)4Bit) + i Γ MX*)ds
ι = l JO dXt 2 JO

which holds P^-a.e. for every x e Rn. Since the first term on the right

hand side is a version of the stochastic integral (grad u B)t in our sense

and the second term belongs to Jί'c, we are led to (6.8) with the help of

the uniqueness of the decomposition (3.1).

We know from Theorem 8 that the family {/ M [ 2 i ] :/e C0(Rn), u e C0\Rn)}

spans the space (Jί9 e). By the above observation and (5.17), each mem-

ber f-Mίul of the family can be expressed as the stochastic integral

Σ ( / — )'B{ί) based on J3(ί)'s. Hence any M e J can be approximated
ί=i\ dXi'

by a sequence \MW = Σ ftk)' B(ί): flk) e L\Rn), k = 1, 2, 1 with e-metric.
I ί = l )
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On the other hand (5.18) and (6.4) imply

(6.10) e(M<*> - M«>) = 1 ± ||/«> - f{*> | |L ( f i n ) .
Z 1 = 1

Denote by ft the L2-limit of fz

(lc\ l^i^n. Then we have M = ΣUfi'B(ί)

together with the equality (6.7).

If u e H\Rn) (u e ^ e when n ^ 3), we can select uw e C0\Rn) which is

^-convergent to u. By the continuity embodied in (3.2), Mlu{k)Λ is then

β-convergent to M[M]. Since derivatives — — are L2-convergent to ——,

dxt dxt

we see as above that grad ua) B is β-convergent to gradw-JB. We thus

extend the identity (6.8) for the present u.

(iii) follows from Corollary 2 to Theorem 2. q.e.d.

Let ρε be a mollifier: ρε is a non-negative C°°-function vanishing when
\x\ :> ε and ρε(x)dx = 1. The additive functional

J Rn

(6.11) W,y) = \
2

expresses a normalized sojourn time of the Brownian path near the point

y. We then have for u e L\oc(Rn) and u£x) = p*u(x), x e R\

(6.12) 1 f J^ ε(Z s)ds = </. (ί, •), ^^>
2 Jo

Δ on the right hand side being taken in the sense of Schwartz distribu-

tion.

We now state an extension of Ito's formula in our direction.

THEOREM 11. Let u e H\Rn) (u e &\ when n ^ 3).

( i ) Let ύ be a quasi-continuous version of u. Then the identity

(6.13) ύ(Xt) - ύ(X0) = (grad u B)t + iV™

holds with

(6.14) N™ = lim — Γ JuJXs)ds .
εniO 2 Jθ

Here the convergence is uniform in t on each finite interval Px-a.s. for q.e.

x e Rn. {εn} is some sequence decreasing to 0 and depending only on the

function u.
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(ii) Nίul is characterized as a unique element of Jί c such that lim Ex(Nlul)

= 0 q.e. and

lim 1 f Ex{N^)φ{x)dx = ( 1 Δu, φ) , vφ e C0°°(2Γ) .
no t J Rn \ 2 /

(iii) When n ^ 3, Z/ie relation (ii) determines a one-to-one correspondence

between the family {Nίul, u e J^J o/ CAF o/ zero energy and the family

{^Δu, u e J^J of distributions. The latter family exhausts the dual space

<F* of S^e described explicitly as follows:

&* = {T: tempered distribution, feU(\ξ\-2dξ)}

where T denotes the Fourier transform,

(iv) Nίul is of bounded variation if and only if the distribution —\Λu

is represented by a difference vω — v{2) of some smooth measures va) and

ρ(2) in the manner of (4.19). In particular if ι/υ and v{2) are positive Radon

measures or more generally if a common nest {Fk} associated with vω and

v(2) can be chosen in such a way that each Fk is compact and contained in

the interior Fk+ί of Fk+1, then

(6.15) NM = lim ί ten(t, y)v(dy) , v = v™ - v(l) ,
ε w | 0 J Rn

the convergence being in the same sense as in (6.14).

Proof, (i) is a consequence of Theorem 2, its Corollary and Theorem

9. Since uε converges as ε | 0 to w with respect to the Dirichlet integral,

1 Γέ

Corollary 1 (ii) to Theorem 2 implies that Nj-Uεl = — Λue(X$)ds is con-
2 Jo

vergent to N^ul in the sense of the statement of the theorem.

(ii), (iii) and (iv) are applications to the Brownian motion of Theorem

3, Theorem 4 and Theorem 5 respectively. Suppose that a nest {Fk} as-

sociated with v — v{2) — ρ(1) satisfies the property stated in (iv). For q.e.

starting point x and Px-a.s., ω e Ω, the set {Xs(ω), 0 ^ s <I t} is then contain-

ed in some Fk, Consequently Supp [t£t, •)] c f̂e+i for sufficiently small

ε > 0 and hence the relation (4.19) yields

= f t.(t,xWdx).

Combining (6.14) with (6.12), we arrive at (6.15). q.e.d.
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In general we can not reduce the difference of smooth measures in

the statement (iv) of the above theorem to a difference of positive meas-

ures of finite energy integrals. For instance consider a signed measure

f(x)dx on R3 with

|x|«sin | x | < 1( |x | s in
(6.16) /<*)= 1*

f(x)dx can always be expressed as a difference f+(x)dx — f{x)dx of smooth

measures and

(6.17) At= ff(Xt)ds
Jo

defines a CAF of bounded variation of the 3-dimensional Brownian motion

with a possible exceptional set being the origin 0 (see [4]). The 0-order

resolvent is now given by the Newtonian kernel g(x, y) — —
4π\x - y\

and the limit

(6.18) u(x) = lim f g(χ, y)f(y)dy
HO J \y\>€

converges for every x e R3 whenever a > — 3. The Dirichlet integral of
u equals

(6.19) lim f g(χ, y)f{x)f(y) dxdy .
βlO J |r|>β,|y|>β

When — 3 < a, (6.19) is convergent and consequently, u of (6.18) belongs

to 2Fe. Moreover — iVM is given by (6.17) on account of Corollary to

Theorem 2. When — 3 < or <J — f however, (6.19) is not absolutely con-

vergent, which means that —\Δu = fdx can not be expressed as a differ-

ence of positive Radon measures of finite energy integrals. In the last

case, u can neither be expressed as a difference of excessive functions

belonging to ̂ e (Corollary to Theorem 4).

In the case of the one-dimensional Brownian motion, non-empty ex-

ceptional set is absent. This considerably simplify the situation. The

quasi-continuity and the smooth measure reduce to the ordinary contin-

uity and the positive Radon measure respectively. In particular Theorem

11 now reads as follows:

https://doi.org/10.1017/S0027763000018493 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018493


164 MASATOSHI FUKUSHIMA

THEOREM 12. Let n = 1 and u e Hι(Rι).

( i ) u{Xt) - u(X0) = Γ u\Xs)dBs + N™ Px-a.s. *x e Λι.

Jo

//ere ίΛβ /ϊrs£ te/vn on the right hand side is the stochastic integral in the

ordinary sense of Motoo-Watanabe and JVp] is given by (6.14), the conver-

gence being uniform in t on each finite interval P^-a.s. v * € Rn.

(ii) Nίul is characterized as a unique element of Jίc such that lim Ex{N}uΊ)
= 0, x e R\ and

lim 1 Γ Ex(N^)φ(x)dx = ( 1 M " ,

(iii) Nίul is of bounded variation if and only if the distribution \u" is a

(signed) Radon measure or equίvalently uf is of bounded variation on each

finite interval. When this is the case, N£ul is expressed by the measure

v = \u" as the local time integral:

(6.20) iVW= [ t(t,y)v{dy), Px-a.s
J/21

where t(t, y) is the local time of the Brownίan path.

In view of the identity t(t, z)φ(z)dz = — φ(Xs)ds, P^-a.s., we get
JiJi 2 Jθ

*e(t, y) = t(t, z)ρ£z — y)dz which converges as ε [ 0 to t(t, y). Hence
J &

(6.20) follows from the expression (6.15).

As an example of Theorem 12 (iii), consider a function g e C0(Rι)

satisfying g(x)dx = 0 and set u(x) = g(x)dx. Then 2V[W] is of bound-
Ji21 J-oo

ed variation if and only if the function g is of bounded variation.

Appendices

(I) Killing measure and resurrected Dirichlet form

PROPOSITION 7.1. There exists a unique positive Radon measure k

charging no exceptional set such that

(7.1) lim 1 f u(x)2(l - ptl(x))m(dx) = [ ύ(x)2k(dx)
tlQ t J & Jχ

for any u e IF. It holds that
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(7-2) Ek.m(f(Xζ-); C £ 0 = Γ <fk,psh}ds
Jo

for any f, he&+ and t > 0. In particular Ex(e~aζf(XζJ)) is a quasi-contin-

uous version of the potential Ua(f- k) when a > 0 and f is of compact sup-

port.

We call the measure k the killing measure of the process M.

Proof. In view of the formula

(7.3) 1 f (u(x) - u(y)Ypt(x, dy)m(dx) + 1 f u{x)\l - ptl(x))m{dx)
It J xxx t Jx

(u(x) u(y)Ypt(x, dy)m(dx) +
It J xxx t

= i-(«,u-pt»)tί(«,»), no,

and the regularit}7 of the Dirichlet space, we can subtract a sequence

tn[0 such that the measure _ ( 1 — ptnl(x))m(dx) converges vaguely to a

positive Radon measure k on X and

(7.4) f u(x)2k(dx) ^ <?(M, M) , w € ^ Π C0(Z) .

In particular Iκ-k is of finite energy integral for any compact set K and

hence k is smooth.

By making use of (7.3) and (7.4) again, we can easily see that the

equality (7.1) holds provided that we take the limit of the left hand side

only along the sequence {tn}. Therefore it suffices to show (7.2) because

the measure k is then independent of the choice of {tn}.

Take non-negative f,ge CQ(X) and we first show (7.2) for / and h = aRag.

Notice that h e @(A) Π L\X; m), A being the infinitesimal generator of the

ZΛsemigroup determined by pt. We have then

[ί/ίn]

= lim Σ

= limΣ
J l

Choose δ > 0 such that ||pβΛ - /ι||L2 < 2s\\Ah\\L2 for any s < δ. For ίn < δ,
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[</«
P(»-i)tΛ/(i -A.1)) - - | . ( P A / ( I -ptui))d8

tn

 υ

[ί/Cn] ]_ p ί n
== / i I I \P(k-l)tn'l

+ f f I(P.Λ,/(1-

which decreases to zero as δ[0. Therefore

ζ-)l C ^ ί) = lim f Γ (pΛ /(I " = Γ
JO

proving (7.2) for feC0

+(X) and h = aRag,ge C0

+(X). Letting a tend to

infinity, we know that (7.2) holds for any f, he C0

+(X). q.e.d.

We define the resurrected Dirichlet form ^ r e s by

(7.5) £τes(u, v) = S(u, υ) - [ u(x)v(x)k(dx) , u9 v e ^ .
J x

Then the formula (7.3) leads us to

(7.6) P°\u, u) = lim 1 £m((w(^) - u(XQ))2) , w e J^ .
no 2t

As an immediate consequence of Proposition 7.1, we have

COROLLARY. Following conditions are equivalent:

( i ) there is no killing inside X: PX(X^ e X, ζ < oo) = 0 q.e. xeX.

(ii) k = 0
(iii) δτes(u, v) = £{u, ι;), u9υe^.

(II) Transience and the extended Dirichlet space

The Dirichlet space 8F is a real Hubert space with inner product δλ

but it is not even a pre-Hilbert space with respect to the 0-order Dirichlet

form δ in general. We assert that (J^, δ) can be enlarged to an "extended

Dirichlet space" relative to some weighted ZΛspace if and only if the

process M is transient.

We say that the process M is transient if

(7.7) Rf(x) = ΓPtf(x)dt
Jo
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is finite m-a.e. for any non-negative Borel feLι(X;m). By making use
of Hopf's maximum ergodic inequality, we can see that M is transient
if and only if Rf{x) < oo m-a.e. for some strictly positive function
feLXX m).

A Dirichlet space (IF, $) relative to L2(X; m) is called transient if
there exists a bounded strictly positive function g e Lι(X; m) such that

(7.8) f \u\gdm ^ V#(u, u)

The function g above is called a reference function of the transient
Dirichlet space (J^, £).

PROPOSITION 7.2. The process M is transient if and only if the as-
sociated Dirichlet space (IF, S) is transient.

This proposition can be proved by utilizing the identity

sup ffig* = \\ g'Rgdm (^oo)

holding for any non-negative g e D Π L2.
A pair (J^, S) is called an extended Dirichlet space with reference

measure m if following conditions are satisfied:
(J^ l) !Fe is a real Hubert space with inner product <?,
(J^e, 2) there exists an m-integrable bounded function g strictly positive
m-a.e. such that 2F\ C Lι(X; g-m) and inequality (7.8) holds for any u e $P'„
(^β 3) ^ e Π L\X; m) is dense both in L2(X; m) and in (J^, (T),
(^β 4) every normal contraction operates on (J^, $).

PROPOSITION 7.2. Assume that the process M {and consequently the
associated Dirichlet space («̂ *, $)) is transient.
(i) The completion (J^, <$) of (JF, S) is an extended Dirichlet space with
reference measure m. ίF = J^e Π L2(X; m).
(ii) For any Borel ue^Fe, the left hand side of (7.3) increases as ί |0 to

i, u).

The ideas of the proof are found in [1] and [12], Since (J^, $) is
assumed to be regular, so is the extended Dirichlet space {^e, S) of
Proposition 7.2 in the following sense:
(J^e 3/ ^ e (Ί CQ(X) is dense both in (^e, S) and CQ(X).
Accordingly each u e S^e has a quasi-continuous version ύ ([12]). Propo-
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sition 7.2 (ii) then implies that (7.1) extends to any w e ^ . Moreover if
we define £ΐGS{u, υ) for u,ve^e by (7.5), then the identity (7.6) extends
to iίe«fe.
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