M. Fukushima
Nagoya Math. J.
Vol. 74 (1979), 137-168

A DECOMPOSITION OF ADDITIVE FUNCTIONALS
OF FINITE ENERGY

MASATOSHI FUKUSHIMA

§0. Introduction

The celebrated Ito formula for the n-dimensional Brownian motion
X, and for u e C¥R") runs as follows:

0.1) uwX)— uX,) = Zj :

U ¥ )\dB, + f L jux)ds, B =X —X,.
ox; 0o 2

In §6 of this paper we extend this to the case where u is any element
of the Sobolev space H'(R") and accordingly 4du is a tempered distribution
which is not even a signed measure in general. As a consequence the
second term of the right hand side of (0.1) may not be of bounded vari-
ation in ¢

Successful attempts have been made to generalize (0.1) to more gen-
eral processes X, than the Brownian motion (the formula due to Kunita-
Watanabe [6] and so on) or to more general functions w than the C’-
functions (Tanaka’s formula [9] and so on). They can be regarded as
specific realizations of semi-martingale decomposition [10]:

Semi-martingale = martingale + process of bounded variation.
However, since the square integrable martingale of zero quadratic
variation is identically zero, it seems to be natural and more general to
conceive (0.1) as a decomposition into the sum

(0.2) martingale + process of zero quadratic variation.

In this paper we formulate a decomposition of the type (0.2) in an
analytical way be making full use of the structure of the general sym-
metric Markov process. More specifically we introduce at the beginning
of §1 the notion of the energy e(A) of a (not necessary positive) additive
functional A. We then establish in §3 a unique decomposition
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U(X) — G(X) = Mf* + N, MWe.d, NWed,

for any function u in the associated Dirichlet space. Here .# denotes
the family of martingale additive functionals (MAF) of finite energy and
A, is the family of continuous additive functionals of zero energy.

The functional N™ is characterized in § 4 in a certain way by means
of the element T in the dual space #* corresponding to u. In particu-
lar it is shown that N[ is of bounded variation in ¢ if and only if the
associated T is expressed as a difference of smooth measures. The notion
of the stochastic integral f-Me .# based on the MAF M is introduced in
§5 with a certain relaxation of the integrability condition on f imposed
by Motoo-Watanabe [11]. These general theorems are applied in §6 to
the Brownian motion, yielding the generalization of Ito’s formula men-
tioned above together with a representation theorem of the space .# by
stochastic integrals.

This paper is actually a continuation of [4], so that before we come
to our main topics, we shall give a quick review of what have been
discussed there. The same notions and notations will appear without
detailed interpretation. Now we start with a locally compact separable
Hausdorff space X, an everywhere dense positive Radon measure m on X
and an m-symmetric Hunt process M = {2, X,,¢, P,} on X. The asso-
ciated Dirichlet form on L*(X; m) is assumed to be regular. We put &
= 9[&] and call this the Dirichlet space (relative to L(X;m)). By an
additive functional of M, we mean an ordinary additive functional with
respect to the Hunt process M |y_z, B being some proper exceptional set.
Two additive functionals A and B are identified if V¢ >0, P,(A, = B) =1
‘q.e. x€X. The effects of such relaxation of the definition of AF are
apparent in the previous paper and in the present one as well.

We also recall that the previous paper [4] has established a one-to-
one correspondence between the family A of positive continuous additive
functionals (PCAF) and the family S of smooth measures, the correspond-
ence being specified by

©3 lim = Evn((f-4)) = (fu By, Acds, peS,

for any r-excessive function 4 (y = 0) and any non-negative Borel f.
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§1. Additive functionals of finite energy

For any additive functional A, of the process M, we set
(LD e(A) = lim -1 E,(A?)
to 2t

when the limit exists. e(A) is called the energy of A. Here are three
important classes of AF’s of finite energy:

(I) APF’s generated by functions

Suppose that a function © on X possesses a version @ (v = & m-a.e.)
such that @ is finely continuous g.e. and finite g.e. Then

(1.2) A =aX) - uX), tz0

defines an AF in our sense and indeed a unique equivalence class inde-
pendent of the choice of the version u ([3]).

When ue &, A™ is well defined because we may take as & a quasi-
continuous version of u. Moreover A is of finite energy and

(1.3) e(A™) = £™(u, u) , ueF ,

by virtue of the formula (7.6) of the Appendices. Here &™ denotes the
resurrected Dirichlet form defined by (7.5). & equals & if and only if
there is no killing inside X (Corollary to Proposition 7.1). When the process
M is transient, the relation (1.3) extends to all functions u belonging to
the extended Dirichlet space &%, (see Appendices).

(II) Martingale additive functionals of finite energy

Consider the family

M ={M: M is an AF such that for each t > 0 E,(M}) < o and E,(M,) =
0 gqe. xeX}.

Since E,(M}) is subadditive in ¢, e(M) is well defined and
(1.9) (M) = sup ——E, (M) (= +oo)
>0 2t

for any Me #. We set

(1.5) M ={Me M:e(M) < oo} .
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An AF M belongs to the family .# if and only if M is a square
integrable martingale AF in the ordinary sense with respect to the Hunt
process M |y_p, where B is some proper exceptional set depending on M
in general. Hence the argument of P. A. Meyer [10; III. Théoréme 3] ap-
plies and there exists for each M e .# a unique AF (M) e 4; such that
for any £ >0

(1.6) E.(M>,) = E (M) ge xeX.

We call (M) the quadratic variation of Me .#. The smooth measure
tary corresponding to (M) by (0.3) is called the energy measure of M.
From (1.1) and (1.6) we see that the energy of M is just half of the total
mass of its energy measure:

1.7 e(M) = 3par(X) Mea .

(III) CAPF’s of zero energy
Let us put

(1.8) A, ={N: N is a continuous AF such that e(N) = 0 and E,(N,)) is
finite q.e. for each t > 0} .

The quadratic variation of Ne A , vanishes in the following sense:
9) 3} Narnse = Nep >0, n—> oo, in L(P),
because the expectation of the left hand side equals
3 BuBr, (N3) < nT B, >0, n— oo
An example of Ne A, is given by
(1.10) N, = f f(X,)ds

for any Borel function fe LX(X;m). Then E,(J‘tl f(Xs)lds) < e'R,|f|(x) is
0
finite for q.e. x€ X and N is a CAF. Furthermore

E, (N = 2E,,,( j 0 £(X) j f(X,,)dvds) - 2Em(I j 0 f(Xs)pvf(Xs)dvds>

= 2_[6 IM (p1, f-p.f)dvds . Hence
0Jo
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A1) B0 = L[ (oL f-Shds with Sf@) = [ pfwd.

Since the right hand side of (1.11) is dominated by %f sds-(f,f), N of
0

(1.10) is of zero energy, namely Ne /..

In this paper we are particularly interested in the sum of the classes
II) and (III):

(1.12) g =MDN,
namely, </ consists of AF’s A such that
(1.13) A,=M,+ N,, Me.d, Ne V..

Evidently & is a linear space of AF’s of finite energy. Moreover the
expression (1.13) of A ¢ ./ is unique because

(1.14) M NN, = {0}

where 0 denotes the additive functional identically zero. In fact, if A e .#
is of zero energy, then pu,, vanishes by (1.7) and so does {A). Hence
A = 0 by (1.6).

We define the mutual energy of A, Be o/ by

(1.15) e(A, B) = lim —21—tEm(ALBt) .
tl0

We know by Schwarz inequality that e(A, B) = 0 when either A or B is
in A",. Therefore

(1.16) e(A) = e(M) if A=M+ N,Me.#,Ne A, .

The main purpose of this paper is to show that any AF A™ (ue %)
inJthe first class (I) actually belongs to ./, which is enough to get a
unique decomposition of A™ indicated in Introduction. We first prove
that the space .7 is a Hilbert space with inner product (1.15).

§2. Completeness of the space (.7, ¢)

TueEoREM 1. .7 is a real Hilbert space with inner product e. More
specifically, if M e .4 constitutes a Cauchy sequence with respect to e,
then there exist a unique Me .# and a subsequence n,— oo such that

limeM™ — M) =0, and for qe. xeX,

N 00
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P (M converges uniformly in any finite interval of f) = 1.
The proof is based on the next lemma.

LemMma 1. Consider Ac A} and the associated smooth measure p,.
Then for any ve S, and t >0

(2.1 E(A) = 1+ 9| Uplle-pa(X) (£ 00).

Proof. Assume first that 4 = p, is of finite energy integral: pe€S,.
By setting c(x) = E (A), x€ X, we claim that

2.2) c.e# and é&(c,v) =<y, U —pd), YveF .

By Proposition 1 of [4], the potential ul(x) of A is a quasicontinuous
version of the potential Uy of . Hence (g, ¢,) < ey, uy) = e'€,(1) < oo.

On the other hand’ l‘(ct» C, — psct) = l (cz, Cs — pzcs) = ‘]‘:’(Ct — DPCy, Cx)
s s s
which is, by Lemma 9 of [4], equal to lf {p, pole, — pic)ddu = 1 I : L
S Jo s Jo

2C,.q — Cy — Cyyuydit. Therefore we get lim -l—(ct, ¢, — psC) =, 2¢, — €3
s

80
= {y, ¢, — p;c;) < oo, proving that ¢,e # and &(c,c)={¢,c, — p.cy. In
the same way we have the relation of (2.2).

(2.2) leads us to, for pe S8, and ve S, E/(A)={,c)>=8E(Uy,c,)
= (g, Uy — pUp)y + (¢, Up) < [ Up]. (/J(X) + L c,(x)m(dx)), which

proves the inequality (2.1) by noting that sup ;_f c(x)m(dx) = lim %Em(A,)
t>0 pe tl0
= p(X).

When g = p, is a general smooth measure, we may consider the in-
creasing sequence {F,} of closed sets of Lemma 3 of [4]. Since I, -A is
related to I, -p€ S, we have

E(Ir,-A)) = 1+ D) Up|l..- u(F,) .
By letting n tend to infinity, we arrive at (2.1). g.e.d.

Proof of Theorem 1. Lemma 1 together with (1.6) and (1.7) implies
for any Me .4

2.3 E(M) <20 + )l Up|.e(M), veSy.

(M,, P,),s, is then a square integrable martingale and we have
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(2.4) P sup| M. > a) 2(1 + D) Upll.. ed)
0<s<T 44

on account of Doob’s inequality.
Assume that M e .# constitutes an e-Cauchy sequence and select a

L By (24

subsequence n, — oo such that e(M™=+v — M) < o

Pv( sup | M0 — M| > ?1[) < 20+ D U»|.

0Ss=T

= T
Applying the Borel-Cantelli lemma to this inequality, we see
(2.5) P»(AU) == ]_ N Y E SDD

where /J,={we 2; M converges uniformly in s on each finite intervall.

In view of Lemma 1 of [4], (2.5) implies P, (4,) = 1 q.e. x€ X. Denote

by I', a defining set of M and put 4, = (\[;,. We further put for w
k

edyN 4, M(w) = lim M (w),s = 0. M, is then an AF with defining set

Ay, N A, Since M™ is L*P,) convergent to M, by virtue of (2.3), we see
E(M}) < o and E,(M,) =0 for any vesS, It is easy to conclude from
this with the help of Lemma 1 of [4] that E(M}) < o and E, (M, = 0
g.e. x€ X, that is, Me #/.

For any ¢ > 0, choose IV such that e(M™ — M™) <e,n,m>N. We
have —217Em((M,<") — M))’) < ¢ by Fatow’s lemma and (14). Then e(M® — M)
< e Hence Me.# and M™ is e-convergent to M. q.e.d.

§3. Decomposition of Al = (X)) — (X)), ue F

THEOREM 2. For any ue %, the AF A!™ belongs to the class o
M D N, and so that A™ can be expressed uniquely as

3.1) Al = Mt L N MMe /7, N¥e .
Moreover it holds that
3.2) e(M™) = &™(u, u) .

In transient case, the above statements extend to any ue %, (see Appendices
for notions).

Proof. We already know in § 1 the uniqueness of the decomposition
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(3.1) and hence it suffices to show the existence of such M and N,

We start with a special case that u is in the range of the resolvent:
u = R/f, R, being the resolvent of the process M and f being a Borel
function in L¥X;m). In this case (3.1) is reduced to the usual semi-
martingale decomposition, namely, we may put

N = [ X)) ~ AX)ds
M = u(X) — uX) — N§”, £z 0

(3.3)

As we saw in §1 (III), N™ of (3.3) belongs to /.. Since u is an ele-
ment of F, Al = u(X)) — w(X,) is of finite energy and M ! of (3.3) satis-
fies the relation (3.2) in view of (1.8). Since <{y, B,f*> < | Up|.-(f,f) < oo,
vveS,, we can see that M™ e # and hence M e 4.

Next take any Borel function we # and define the approximating
functions u, by

(3.4 u, = nR,,,u = Rf, with f, = n(u — nR,,u) .

By the uniqueness of the decomposition (3.1) for u,’s, we have then
M[un] —_— M[’”'m] _— M[un“um] and

(3.5) e(Mtl — Mtnl) = £™(u, — Uy, Uy, — Uy) .

Since u,e % are &i-convergent to v and &,(v, v) dominates &*(v, v) for
any ve %, we conclude that {M™-1} is an e-Cauchy sequence in the
space .Z.

By virtue of Theorem 1, the formula

M™ = lim M¥» in (Z,e)
(3.6) e

N = At — M| ueF
makes sense and
3.7 Me d, eM™) = éu,u), uesF .

It only remains to show that N™ of (8.6) belongs to the space A"..
Notice that a subsequcnce n, exists and

(8.8) PN/l converges to N[*! uniformly on any finite interval of )
=1q.e xeX,

because the same statements for A™* and MU hold on account of
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Theorem 1 and [4: Lemma 6] respectively. From this and (3.3), we know
that N™ is a CAF.

On the other hand we have from (3.6) N[*! = Al¥~usl — (M — M)
+ N and consequently

Tm LB, (VE)) < 3e(A™) + 8e(M™~ — M1
tl0

Owing to (1.3), (3.5) and (3.6), the right hand side equals 66™%(v — u,,
u — u,), which can be made arbitrarily small with large n. Therefore
e(N™) =0 and N™e 4.

When the process is transient, we may consider the extended Dirichlet
space (%, &) according to Appendices. Then exactly in the same way
as above, we can extend the decomposition (8.1) and the relation (3.2) to
any ue %, by making use of an approximating sequence u,c % which
is é-convergent to ue F,. q.e.d.

CorOLLARY 1. The following linearity and continuity hold:
(1) Mtev+edd = gM™ + pM™, N+l = gNt™ 4+ pN™ o, be R, u, ve F(u,
ve F, in transient case).
() u,, ueZF (u,,ueF, in transient case), 6(u, — u, u, — u) >0, n— oo
= 3n, a subsequence of n:lim M~ = M, lim Nf*= = NI uniformly on

ng— oo Ng— 00

each finite interval of t, P,-a.s. for q.e. x € X.

In fact, the relation (i) follows from the uniqueness of the decomposi-
tion (3.1). The equality (3.2) means that the linear transform

3.9) D:u—~—> M

is continuous from the Dirichlet space (¥, &) (the extended Dirichlet space
(Z., &) in transient case) into the space (.#,e). Combining this with
Theorem 1 and [4; Lemma 6], we conclude the continuity statement (ii).

(3.2) also implies the following embedding statement telling us that
the structure of the Dirichlet space may be studied entirely within the
framework of the space .# of martingales of finite energy.

CoROLLARY 2. Suppose that the process M is transient and that there
is no killing inside X. Then the transformation @ of (3.9) is isometry
and the extended Dirichlet space (¥ ., &) can be identified by @ with a
closed subspace of (.7, e).
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§4. Characterizations of N™

We saw in §1 (III) that any AF in /", is of zero quadratic variation
in a certain sense. Nevertheless the class ./, contains in general a lot
of CAF’s which are not of bounded variation. In this section we make
the situation clear by giving some characterizations of the CAF N
constructed in the preceding section for ue & (ue &, in transient case).
See §6 for some related examples.

THEOREM 3. Following conditions are equivalent for an AF A and
for a function ue F (ue ¥, in transient case):

(i) A= Nt
(ii) Ae N, and, for each t > 0,
“.1) E.(A,) = p.u(x) — u(x), q.e. x€X.

Gil)) Ae N, lim E (A,) =0 q.e. and
tl0
(4.2) lim %Et.m(At) = —Su,v), YveF.
tio

Proof. The implication (i) = (ii) = (iii) is clear. Assume that an AF
A satisfies the condition (iii). Let us put ¢,(x) = E.(A,), then we see from
A e ', and the relation

4.3) ¢,.(x) = e(x) + p.c(x) g.e. for each t,s >0,
that ¢, e LA(X; m), t > 0.
By (4.2) and (4.3), we have for any ve %, t >0, and T > 0,
(v — psv,¢) = lim —i—(STv, — pSpv, ¢) = lifrol %(Srv — pSrv, ¢,)
si0 s

= —&(Spv — p.Spv, u) = —E(Spv, u — pu) = —(v — P, U — put) .

Hence, I, = (v, ¢, + ©u — p.u) is linear in ¢; !, = I,,, — I;. Since lim% =0
10

by (4.2), I, = 0 and, consequently,
4.4) c,=pu-—u m-a.e.

(4.4) particularly means that ¢, € #(c, € &, in transient case). More-
over c,(x) is a q.e. limit of a quasi-continuous function p.c,_,(x) in view of
(4.3) and a condition in (iii). Hence ¢, is quasi-continuous and (4.1) fol-
lows from (4.4). The implication (iii) = (ii) is proven.
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Finally we assume condition (ii) for A. In order to derive (i), we
put B, = N1 — A, = a(X,) — a(X,) — M — A, t >0, q(x) = E,(B? and
claim that

(4.5) qx)=0 g.e. for each t > 0.

Clearly B, is a CAF of zero energy and E,(B, = 0 on account of the
assumption (ii). But then J q.(x)m(dx) = 0 because the left hand side is
X

subadditive in . We thus have g¢,(x) =0 m-a.e., from which we can
conclude p,g, =0 q.e. for each s > 0. By using Fatou’s lemma q,(x)

= E<11_m Biram — Bun)2> < lim p,/,q(x) = 0 q.e., getting (4.5). q.e.d.

An AF A is said to be of bounded variation if A, (w) is of bounded
variation in ¢ on each compact subinterval of [0, {(w)) for every fixed w
in a defining set of A. A CAF A is of bounded variation if and only if
A can be expressed as a difference of two PCAF’s:

(4.6) Afo) = A(0) — AP(0), AV, A®e A

If an AF A is continuous and of bounded variation, then its total vari-

ation {A}( =Jt ldAs|> is a PCAF ([10, ITII, Proposition 1]) and an expres-
0

sion (4.6) is provided by A" = {A},, A® = {A}, — A, for instance.

In [4], we have introduced the space S, of positive Radon measures
on X. For definiteness we say each measure v€ S, to be of finite 1-order
energy integral. In transient case, the same role is played by a measure
v of finite 0-order energy integral which is defined as a positive Radon
measure satisfying

[ v@is@n < clol,  veF n .

Let us say that a signed Radon measure v on X is of bounded 1-order
(resp. 0-order) energy integral if so is the total variation |v|. This is the
case if and only if v can be expressed as v = v — v® L™ and v® being
positive Radon measures of the same type. We can then define the a-
potential of v by Uy = Up® — Up® (resp. 0-potential of v by Uy = U™
— Uy®) which does not depend on the choice of v® and v®. Moreover
the quasi-continuous version ¥ of any ve % (resp. ve #,) is integrable
with respect to the total variation |v| and it holds that
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4.7 ELU,v) = (v, D) Yve F
(4.8) Uy, v) = (v, 0) Yve F,
respectively.

Given a signed Radon measure v of finite l-order (resp. 0-order in
transient case) energy integral, we express it as v = v — v® in the above
way and put

(4.9) A — A(l) _ A(Z)

where A® and A® are PCAF corresponding to »* and »® respectively.
A of (4.9) is a CAF of bounded variation and does not depend on the
choice of v* and v®.

LEmMMmA 2. For any signed Radon measure as above, it holds that
(4.10) N = [ TXds — A, 20,
0

and in transient case that
(4.11) NIl = —A4,
where A is the CAF of bounded variation associated with v by (4.9).

Proof. In view of the linearity (Corollary 1 to Theorem 2), we may
assume that v is non-negaive. Let us first prove (4.10).

Now take v € S, and a quasi-continuous version z of Uy. By virtue
of (3.6) and (3.8), we then have

(4.12) NI — lim Z(nR,,Hu(Xs) — £A(X))ds
where f, = n(u — nR,,,u) and the convergence in (4.12) is uniform in ¢
on each finite interval P,-a.s. for q.e. x€ X. The equality (4.10) then
follows immediately from (4.12) together with [4; Lemma 6] and the way
of the construction of A € 4; carried out in [4; Proposition 1].

In order to prove (4.11), observe that any positive Radon measure of
finite 0-order energy integral is also an element of S, and

(4.13) Uv = Uy + R(Ty),
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where R denotes the 0-order resolvent of the process M.

Put f =%, then, in view of Appendices, R,.f(€ %) converges as
al0 to Rf in (¥, &). Therefore, by the continuity again and by an ob-
vious modification of [4; Lemma 6], we see

Ni* = lim Njo = Tim || @R.A(X) — fX)ds = — [ fX)ds .
al 0 0

al0

(4.11) follows from this and (4.13). g.e.d.

Before formulating the next theorem, recall Lemma 3 of [4] (resp. its
obvious modification in transient case): if a non-negative Borel measure
v is smooth, then there exists an increasing sequence {F,} of closed set
satisfying

(4.14) Pz<1im Grr < c) —0 gqe xeX,

k~oo

(4.15) Ip-vesS, (resp. I, v is of finite O-order energy integral) for each k.

Let us call such {F,} a nest associated with ve S.

Given two smooth measures v and v®, we can always choose a
common nest {F,} associated with »* and v®. We put then

(4.16) Ve = Lov® — I®, k=12 -,

and call v, the restriction to F, of the difference v* — v®. Each v, is
a signed Radon measure of finite 1-order energy integral (resp. of finite
0-order energy integral in transient case). It we put

4.17) Fo={ueF;i=0qe on X— Fj},
then on account of [4; Lemma 7] and (4.7),

(4.18) 6 Uy, — H, (T3, v) = & 0, Yo Z,,
where H, ,f(x) = E (e **w(X,)), 0, = 0x_p,

The same statement for « = 0 holds in transient case. Keeping these in
mind we proceed to the proof of the next theorem.

THEOREM 4. Following two conditions are equivalent each other for
ue¥ (ue ¥, in transient case):
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(i) N’ is a CAF of bounded variation.
(ii) there exist smooth measures v and v*® such that

(4'19) (’{’a(u’ U) = <”k’ 5> ’ Vve '?k ’

for every k. Here v, is the restriction to F, of the difference v — v {F,}
being a common nest associated with v¥ and v?. %, is the space defined
by (4.17).

Moreover in this case N'™ is characterized as the unique CAF A of
bounded variation satisfying for every k

(4.20) lim—i— w(A) = =, B, YveF,.
tlo

Proof. We only give the proof for ue F.

Proof of (i) = (i1): Suppose N e 4", is of bounded variation, then N
= —AY + A® for some A and A® e 4;. Denote by »* and »? the
smooth measures associated with A and A® respectively. Then (4.20)
holds for a function v=h — H,,h(e %,), h being any l-excessive func-
tion in & in accordance with (0.3). Hence the relation (4.19) is valid
for such type of functions in view of Theorem 3. For any ve %, we
can choose a sequence {v,} of the above type which is &,-convergent to
v. Since |v;| is of finite 1-energy integral, v, is L\(X;|v,])-convergent to
v as well. Thus (4.19) is established for any ve %, for each k.

Proof of (i) = (i): Assume that the relation (ii) holds. Let A® and A®
be the PCAF associated with the smooth measures v and v® respec-
tively. We set A = —A® + A® and claim that

(4.21) N+ = A,
Fix k and rewrite (4.19) as
(422) gl(ua U) = </"lc’ 5> Yve gzlc ’

where p; = u-m + v,. Since the left hand side of (4.22) equals to
&(u — H, i, v) for any ve F;, we get from (4.18) and (4.22)

(4.29) u— Hy i = Uy, — H (U .

Now the CAF I,-A= —I. -A® + I, -A® is associated with the
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measure —vy,. Hence f w(X,)ds — (Ip,-A), is associated with p, and by
[}

Lemma 2 we arrive at the equality
@29 Npwd = [(OEX) - uX)ds + T A), >0,
0

On the other hand, Hl,k(UNl;tk) is also a l-potential of a measure 7.y, €8,
supported by X — F, ([4; Lemma 7]). Denote by B the PCAF associated
with z.u,. Then using Lem,ma 2 again

(4.25) N @) — L H (Up)(X)ds — B,, ¢=0.
(4.23), (4.24), (4.25) and Corollary to Theorem 2 imply

(4.26)  Np-#as) — _ L H,.(X)ds + (I,-A), + B,, ¢>0.

Since B, = 0, ¥t < g, we then conclude

(4.27) Nps-msil — j 0 H (X3)ds + A,, t<a.

It is easy to see that H, i€ &% constitutes an &,-Cauchy sequence.
Since we may take as @i a quasi-continuous version of u in the restricted
sense ([2]), we have lim (X, ) = @(X,-) for all £¢]0, o), P,-a.s. for q.e.

t1e

x€ X. Therefore the property (4.14) of the nest {F,} and the quasi-left
continuity of the process M imply

(4.28) lim H, ,i(x) = E.e"a(X)) =0 qe. xecX,
k—oco

from which we conclude that lim &,(H, i, H, i) = 0. We can now derive

k—roo

the desired equality (4.21) from (4.27) by letting & tend to infinity and by
using (4.14), Corollary to Theorem 2 and [4; Lemma 6].

The proof of the equivalence (i) & (ii) has been completed. In order
to prove the latter statement of Theorem 4, it suffices to show A =0 by
assuming that

(4.29) lim% (A) =0 VoeF k=12 -
tlo

for a CAF A of bounded variation and for an increasing sequence {F,} of
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closed sets satisfying (4.14). Express A as A =AY — A® AP e dr,i=1,
2, and consider v® € § associated with A®,i =1,2. Without loss of gen-
erality, we may suppose that I -v?eS,i=1,2,k=1,2, ..., Then we
have for each k&

(4.30) [ spoan = [, @

for any ve &, such that v is a difference of 1-excessive functions. Hence
in the same way as in the proof of the implication (i) = (ii), we see that
(4.30) holds for all ve #,. Since any fe Cy(X) with Supp (f) C F, can be
approximated uniformly by ve # N C(X) such that Supp [v] < Supp [f],

we conclude from (4.30) that I, v = I, -v® k=12 -.... We have
v = y® because v*¥ does not charges the exceptional set X — (i, F},
i =1,2. Therefore A = AV — A® = 0 completing the proof of Theorem 4.

q.e.d.

CoroLLARY. The following conditions are equivalent each other for
ueZ (resp. ue %, in transient case).
(1) u is a difference of two 1-excessive functions in F (resp. 0-excessive
functions in & ,).
(ii) u = Up (resp. u = Uv) with a signed Radon measure v of bounded 1-
order (resp. 0-order) energy integral.
(iil) N™ js a CAF of bounded variation and the associated measure vV
— v® in Theorem 4 has the additional property that lim]vk[ is a positive

Radon measure of bounded 1-order (resp. 0-order) energy integral.

In fact, relations (i) & (i1) and (ii) = (iii) are implied in [4; Lemma 4]
and Lemma 2 respectively. (iii) = (ii) is trivial.

Denote by #* the dual space of the Dirichlet space &# with metric
&,. Each element ue % defines a unique 7™ e #* by

(4.31) é(u, v) = (T™, vy, VeEF .
Sometimes it is convenient to express the relation (4.2) as

(4.32) lim—i— (A) = —(T™, 0>, wweF .
tio

In transient case, the dual space F ¥ of the extended Dirichlet space
(#., &) plays a more specific role in characterizing the CAF’s NI, ue & ,:
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THEOREM 5. Suppose the process M is transient, then the family
(N, ueF,} of CAF’s stands in one-to-one correspondence with the dual
space F} of the extended Dirichlet space &, the correspondence being
characterized by the conditions that Ae A, ltle)n E (A) =0 ge. and

(4.33) lim-lt— AA)= —(T,v>, veZ,.
ti0
Moreover A is of bounded variation if and only if Te F} is expressible
as
(4.34) T — V(l) _ U(Z) s D(I), U(Z) [ S R

in the sense of (4.20).

In fact the relation (4.31) defines a one-to-one correspondence be-
tween # ¥ and &, in this case. Hence Theorem 5 follows from Theorem
3 and Theorem 4.

§5. Stochastic integrals

We put
(5.1) 4,={A — B:A,Be A4}, E(A)< oo, E(B) < o0,vVt>0, q.e. x} .
For M, Le #, there exists a unique element (M, LY of 4, such that
(5.2) E,(M,L,) = E.(M,L)), vt >0, q.e. xeX.

This follows from the remark made in the paragraph after (1.5) and we
may set (M, L) = }{(M + L) — (M) — (L)}
Let us consider the family

(5.3) My={Me M: py(eS) is a Radon measure} .

Obviously .#, is a linear space containing our family .#Z. There exists
for M, Le .#, a unique signed Radon measure gy, ;, such that

(5.4) f F@ptar, (@) = lim %Em< f : f(x)d(M, L>s) . Ve (X)) .

In fact, it suffices to put gz, = ez, — tan — o)

Lemma 3. If M,Le 4, fe LXX; par) and ge LXX; pi1y), then f-g is
integrable with respect to the absolute variation |pu,zy| of tar,z; and
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(5.5) (JX |f-8lldpar,1 I)Z = L’ frau, JX gdpa, -

Proof. The proof is essentially the same as in Motoo-Watanabe [11,
Lemma 10.1]. Making the expression du ., = kv, dp, = kdy and dpy,,
= k3du With Yy = ﬂ(M) + ﬂ(L) + |/‘£<M,L>I’ we get from (5.2) and (5.4) d/'t(a.M+bL) = (a2k2
+ 2abk, + b’k;)dv for any a,be R. Therefore the set B,= | {xeX;

a,b:rational
a’ky(x) + 2abk,(x) + b*ky(x) < 0} is v-negligible and we have for each @, fe R
’f(x)°ky(x) + 20|f(x)8(x)ky(x)| + B'g(x)’ks(x) = 0  for every xe X — B,.

Integrating this with y,
@ [ Fdpc, + 208 [ gl ducus| + [ g 2 0,

which proves (5.5). q.e.d.

THEOREM 6. Given Me 4, and fe L*(X; wu,), there exists a unique
element f-Me .# such that

(5.6) e(f- ML) = 1| f@pundd, YLed.

The mapping f——> f-M is linear and continuous from LXX; p.u,) into the
space (A, e).

Proof. By virtue of Lemma 3

= Ve(l), Le..

ex) 5 [ fon| £ o Wiy

Hence Theorem 1 implies Theorem 6 together with the inequality

.9 Ve(f- M) < % 1y -

f-Me.#Z constructed in Theorem 6 is called the stochastic integral.
This terminology is legitimate in view of the following theorem.

THEOREM 7. Let M, f and f-M be as in Theorem 6. Then
(5.9 dpronsy = -y,  YLe A .
Moreover the following approximation holds for fe Cy(X):
(5.10) lim E,({(f- M) — (F-M)}) =0,  £>0, qe x
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where
(6.11) (F- M) = 5 f(X, )M, — M)

4 denotes the partition 0 = t, < t, < --- <t, =1t and |4| = max (¢, — t,_,).

15i=n

Proof. Let B be a common proper exceptional set for M and (M)
such that the relation (1.6) holds for every x € X — B. Applying the same
argument as in P. A. Meyer [10; III, Théoréme 4] to the Hunt process
M|;_p and its AF’s M and (M) in the ordinary sense, we can see for
fe C(X) that there exists a unique martingale AF M of M|y_5z in the
ordinary sense such that

(5.12) lim E.({(f- M)s> — M}y)=0, xeX-—B.
Furthermore
(5.13) E() = E( f o f(Xs)2d<M>s) . xeX-B.

Tt follows from this that e(}) = lim —2.1t_Em(M3) - %f o < oo and
tlo X

consequently Me .7,
On the other hand (5.2) and (5.12) imply

~ 13
(5.19) B, L) = E.( [ fX)dM, Ly,
for any Le .# and qe. x€ X. When Le.Z, uu,, is a bounded signed
measure and hence lim —217Eh.m(<]\~4, Ly) = f h(xX)pi,1,(dx) for any bound-
tlo X

ed r-excessive function A in view of the relation (0.3). Therefore we have
from (5.14)

615 [ @) = [ @ @pn@d),  Led.

By setting & = aR.A, h e C(X), and letting « tend to infinity, we conclude
that (5.15) holds for any he C(X). Therefore dyi 1, = f-dn,1y, YL € A.

In particular e(M, L) = %I fduy,, which means M=f M.
X

We have proved Theorem 7 when fe Cy(X). But on account of in-
equalities (5.7) and (5.8), the relation (5.15) for M = f-M readily extends
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to fe LX(X; pan). The proof of Theorem 7 is completed. q.e.d.
CoRrROLLARY (i) For Me A, fe L(X; pu,) and g LAX; frran),

(5.16) g-(f-M)=gf-M.
@) For M,Le A, fe LXX; py) and g€ L(X; py),

(.17) of- Mg L) = 1+ | fe@ponods).

Our stochastic integral f-M can be reduced to the stochastic integral
due to Motoo-Watanabe [11] in the following way. Suppose that Me .#
and fe LAX; py). Then

(5.18) : E(L f(Xs)‘*d(M)s) < oo qe.  xeX.

In fact we have by Lemma 1

Ev(_[: f(Xs)2d<M>s) <@+l Ulvllm-fx [0 par(dx) < o for any ve Sy .

Let B be a common proper exceptional set for M and (M) such that
(1.6) and (5.18) hold for every x€ X — B. According to a general theo-
rem [10; III, Théoréme 4] applied to the Hunt process M|;_p, the stochastic

integral f”-?\’/.r in the sense of Motoo-Watanabe is well defined. We claim
for Me #,

(5.19) fM=fM,

the equality being understood in the present sense of the equivalence of
AF’s.

Indeed (5.19) for fe C(X) has been shown in the proof of the preced-
ing theorem. It is then easy to extend the relation (5.19) to general f
as above.

We exhibit in the next section examples of fe LX(X; pu,) for which

Ez(f (X)) d{M >s> = oo for some x. For such f, the stochastic integral
0

f-M in our sense is well defined, while the stochastic integral fr\]'\//l in
Motoo-Watanabe sense can not be defined unless we admit an exceptional

set B as above.
In the remainder of this section, we study some properties of the
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stochastic integral f- M relevant to the martingale AF M™e 7 con-
structed in § 3 for ue Z.

TueorReEM 8. The family {f- M™} of stochastic integrals is dense in the
space (4, €), provided that f (resp. u) runs over a uniformly dense subfamily
of C(X) (resp. an &,-dense subfamily of F).

Proof. Suppose that M e .# is orthogonal to the family {f- M} in the

statement of Theorem 8: e(M, f-M™) = 0. Then by (5.6) f F(®) 1200, mtuay(dx)

= 0, which in turn extends to all uwe % by virtue of (38.2) and (5.7).
Therefore gy, ., = 0 and hence(M, M™) = 0 for any ue &.
By setting © = R,g, g € C(X), we can conclude M = 0 on account of
Motoo-Watanabe [11; Theorem 12.2]. q.ed.
We now express the energy of the stochastic integral in terms of the

Dirichlet form.

Lemma 4. For ue %, and a quasi-continuous function fe F,,
(5.20) [ f@maca(dd = 267w f,1) — @, ).

Proof. By (0.3) and (1.6),
(5.21) fX FO)putan(dx) = I}gl % E, (M)

when f is a bounded 7r-excessive function in %#. Since M = #(X,)
— (X,) — NI and E,. (V")) < |Iflle En(NFf)?), we can see that the

yight hand side of (5.21) equals lim % E,.(w(X) — w(X,))) = lim {%(uf,
t10 tl0

u—pa) = I(f = pifyw) — 2f, 1~ P} =26, w) — E(f, w) — [ wra,

which can be rewritten as (5.20).
(5.20) is now valid if f is replaced by aR.f,fe %, After letting «
tend to infinity, we get (5.20) for general fe &,. g.e.d.

CoROLLARY 1. For any u,ve ¥, and a quasi-continuous function f
eZF,

IX f/flu![u],‘u[vb(dx) = é)res(uf’ U) + éares(vf’ u) - éfres(uv’ f) .
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By making use of the relation (5.17), we further have

COROLLARY 2. For u,, u, € &, and quasi-continuous functions f, f, € %,
the stochastic integrals f,- M™, f,- M) e .4 are well defined and

2e(fy- M™1, f,- M™) = E™(w, fife, ) + E™(Wafifoy W) — E™(usuy, fif)

M. L. Silverstein [12; Theorem 11.3] first singled out the measure
ey, for ue #, through the formula (5.20). For example, if & is a
Dirichlet form on L*R") given by

swoy= 3 [ L, Gy, uveCr®),
,7=1J &» Qx,; 0x;
. . ou dv wf P
then it holds that dyuuyury = 2 25 — —v;;, 4, vE C*(R").
47=1 0x,; 0X,

Using the formula (5.20), Yves Lejan [8] then derived the following
transformation rule of the energy measure: in case that the process M is
continuous

(5.22) dﬂ(,\[[d)(u)],M[vb = Zl ¢zi(u)dﬂ<M[ui],M[vl> ) ve '?b )

where u = (u, u,, - -+, u,) is a collection of quasi-continuous functions in
F,, @ is C'-function on R" vanishing at the origin and possessing bound-
ed derivatives. An integration of fe C(X) by means of the both hand
sides of (5.22) leads us to

(5:23) oMW, f- M) =3 e@, (@) MM, f-M¥),  veF,,
=1

with the aid of (5.17). Hence, by Theorem 8, we arrive at the following
version of Ito’s formula.

THEOREM 9. Suppose that the process M is continuous. Let u = (u,,
Uy, -+, U,) and @ be as above. Then the composite function @(u) belongs
to &, again and

(5.24) Mrew] — z D, (u)- Mt ,
§6. Case of the Brownian motion

Applying the general theorems obtained so far, we examine in this
section the case that M = (X,, P,) is the Brownian motion on R*. In
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particular we represent the space .# by means of the stochastic integrals
and thereby generalize Ito’s formula.

The associated Dirichlet space on L*R") is the Sobolev space

6.1) H'{R") = {u ¢ L(RY): gl eL(R),1<i< n} .
X;
with
1 & ou v
6.2 S(u, v) = = I O g
( ) (u v) 2 ZZ:=1 Rn axz axi *

the derivatives being taken in the sense of Schwartz distribution. When
n = 3, M is transient and the associated extended Dirichlet space (£#,, &)
is the completion of C;°(R™) by means of the Dirichlet integral. The
quasi-continuous function in &, is called the BLD function of potential
type. In view of the Sobolev inequality |u|,, < CVé(u, u), ue Cy(R™),

1 _;? — l, we can regard the space &, as a closed subspace of
Do n
(6.3) g — {u e LL(R"): gli eL(RY), 1<i< n}

Xs

with inner product (6.2).
Let X/ be the i-th coordinate of X, and put B = X® — X, t>0,
1<i<n. Then B®e .#, with

(6.4) (B®, B9y, = §,-t, tepmy(dx) = dx .

Therefore the stochastic integral f-B“e.Z in the sense of §5 is well

defined for any fe LAR"). According to a remark made in § 5, any Borel
function fe L*(R") satisfies

13
6.5) E(f f(Xs)st> < oo

0
for q.e. x€ R™ and the stochastic integral f- B’ coincides with the ordi-
nary one of Motoo-Watanabe with respect to the Brownian motion M

retsricted to R" — B, B being some Borel polar set.
For instance the function in L*R")

fx) = f@)lxl, a< —g—, fre C(R"),
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satisfies (6.5) for all xe R* if « < 1. In this case the AF f-B® in the
sense of Motoo-Watanabe can be well defined for every starting point
x€R". When « =1 however, (6.5) is violated for x = 0 and the origin 0
must be excluded as the exceptional set for the AF f-B®,

TueoReM 10. (i) The space .4 of MAF’s of finite energy can be ex-
pressed as

(6.6) A= {M - 21 f-BY:fe (R, 1<i< n}

and the following isometry between the space .# and vector fields (f., f
<+, fx) holds:

©7) o) = 2 3. | ilfsn -

(ii) Me .4 equals M™ for some uec H(R") (ue %, in case n = 3) if and
only if the vector field corresponding to M is grad u:

(6.8) M™ — grad u-B (: 5 E‘i.Bm) .

i=1 3x,
(iii) When n = 8, the extended Dirichlet space (¥ ., &) is identified by the
mapping u~——> grad u-B with a closed subspace of (.4, e).

Proof. We first prove the relation (6.8) for u e C3(R"™). In this case,
Ito formula gives

(6.9) wWX) — w(Xy) = 3 f o xygBo + L I " Ju(X)ds
w=1Jo dx; 2 Jo

which holds P,-a.e. for every xe R". Since the first term on the right
hand side is a version of the stochastic integral (grad u-B), in our sense
and the second term belongs to 4 ,, we are led to (6.8) with the help of
the uniqueness of the decomposition (3.1).

We know from Theorem 8 that the family {f- M': fe Cy(R™), u e C}(R")}
spans the space (.7, e). By the above observation and (5.17), each mem-
ber f-M™ of the family can be expressed as the stochastic integral

f_} (f‘g—u—)-B”’ based on B®’s. Hence any Me.# can be approximated
i=1 x;

by a sequence {M " = i [B.-B9: f®ec [XR"), k=12, -- } with e-metric.
i=1
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On the other hand (5.18) and (6.4) imply

(610) e(M(k) — M(Z)) — % i Hfi(k) — i(e)“2L2(Rn) .

1=1
Denote by f; the L*-limit of f*,1< i< n. Then we have M = > *_,f,- B®
together with the equality (6.7).

If ue H(R") (ue &, when n = 3), we can select u'® e C}(R") which is
&-convergent to u. By the continuity embodied in (3.2), M™®? is then
ou® are L’-convergent to —ai,

x5 0x;

we see as above that grad u'®-B is e-convergent to grad u-B. We thus
extend the identity (6.8) for the present w.

(ii1) follows from Corollary 2 to Theorem 2. g.e.d.

Let p. be a mollifier: p, is a non-negative C~-function vanishing when

e-convergent to M!™, Since derivatives

|x] = ¢ and f p.(x)dx = 1. The additive functional
R™

(6.11) t(t,y) = %j p(X, — y)ds

expresses a normalized sojourn time of the Brownian path near the point
y. We then have for ue L} (R") and u,(x) = pfu(x), x € R",

6.12) -;. j du(X)ds = {2, (¢, -), du)

4 on the right hand side being taken in the sense of Schwartz distribu-
tion.
We now state an extension of Ito’s formula in our direction.

THEOREM 11. Let ue H'(R") (ue %, when n = 3).
(i) Let @z be a quasi-continuous version of u. Then the identity

(6.13) (X)) — @(X;) = (grad u-B), + N
holds with
(6.14) N = lim L [ du, (X)ds .

el 2 Jo

Here the convergence is uniform in t on each finite interval P,-a.s. for gq.e.
xeR". {e,} is some sequence decreasing to 0 and depending only on the
function u.
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(i) N™ is characterized as ¢ unique element of A", such that lim E (N}*“)
tlo

=0 g.e. and

im L [ E@0V)g@dx = <lAu, ¢> . Ve Co(RY) .
to t JRe 2

(iii)) When n = 3, the relation (ii) determines a one-to-one correspondence

between the family {N™, ue #,} of CAF of zero energy and the family

{3du, ue F,} of distributions. The latter family exhausts the dual space

F ¥ of &, described explicitly as follows:

F¥ = {T: tempered distribution, Te L (&|™ as)}
where T denotes the Fourier transform.

(iv) N™ is of bounded variation if and only if the distribution —%Au
is represented by a difference vV — v® of some smooth measures vV and
v? in the manner of (4.19). In particular if v* and v*® are positive Radon
measures or more generally if a common nest {F,} associated with v and
v® can be chosen in such a way that each F, is compact and contained in
the interior Ifs”k+1 of F,,, then

(6.15) Nl =lim | ¢, y)v(dy), y =@ — p®
Rn

s
enl0

the convergence being in the same sense as in (6.14).

Proof. (i) is a consequence of Theorem 2, its Corollary and Theorem
9. Since u, converges as ¢ 0 to u with respect to the Dirichlet integral,

Corollary 1 (ii) to Theorem 2 implies that Nf* = %r Au (X,)ds is con-
0

vergent to N[ in the sense of the statement of the theorem.

(i1), (iii) and (iv) are applications to the Brownian motion of Theorem
3, Theorem 4 and Theorem 5 respectively. Suppose that a nest {F,} as-
sociated with v = v® — p® gatisfies the property stated in (iv). For q.e.
starting point x and P,-a.s., w € 2, the set {X,(v), 0 < s < ¢} is then contain-
ed in some F,. Consequently Supp [z.(Z, -)] C F,,, for sufficiently small
¢ > 0 and hence the relation (4.19) yields

e, ), duy = [t ().

Combining (6.14) with (6.12), we arrive at (6.15). q.e.d.
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In general we can not reduce the difference of smooth measures in
the statement (iv) of the above theorem to a difference of positive meas-
ures of finite energy integrals. For instance consider a signed measure
f(x)dx on R*® with

S
(6.16) oy = ST x| < 1

0 » lxl=1.

f(x)dx can always be expressed as a difference f*(x)dx — f(x)dx of smooth
measures and

(6.17) A, = [ fx)ds

defines a CAF of bounded variation of the 3-dimensional Brownian motion
with a possible exceptional set being the origin 0 (see [4]). The O-order
1 1

resolvent is now given by the Newtonian kernel g(x,y) = 4—! l
Tlx —y

and the limit

(6.18) u(x) = ligx IWD &(x, »f(y)dy

converges for every x< R* whenever o« > —3. The Dirichlet integral of
u equals

(6.19) lim &(x, f(x)f(y) dxdy .

el0 1Z1>elyl>e

When —3 < «, (6.19) is convergent and consequently, u of (6.18) belongs
to &,. Moreover —N'™ is given by (6.17) on account of Corollary to
Theorem 2. When —3 < a £ —4% however, (6.19) is not absolutely con-
vergent, which means that —44u = fdx can not be expressed as a differ-
ence of positive Radon measures of finite energy integrals. In the last
case, u can neither be expressed as a difference of excessive functions
belonging to &, (Corollary to Theorem 4).

In the case of the one-dimensional Brownian motion, non-empty ex-
ceptional set is absent. This considerably simplify the situation. The
quasi-continuity and the smooth measure reduce to the ordinary contin-
uity and the positive Radon measure respectively. In particular Theorem
11 now reads as follows:
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TaEOREM 12. Let n =1 and uec H'(RY).
(i) wX)— wX) = f ‘W(X)dB, + N P-as. VxeR.
0

Here the first term on the right hand side is the stochastic integral in the
ordinary sense of Motoo-Watanabe and N is given by (6.14), the conver-
gence being uniform in t on each finite interval Pa.s. Vx e R".

(ii) N™ is characterized as a unique element of V", such that 1:11011 E (N[

=0,xc R, and

. 1( w /1, 1
lim 2 [ BNP)g(e)d = <—2—u : ¢> ,  Vge C(RY).

&0

(iil)) N™ is of bounded variation if and only if the distribution tu” is a
(signed) Radon measure or equivalently u' is of bounded variation on each
finite interval. When this is the case, N1 is expressed by the measure
v = u" as the local time integral:

(6.20) NP — L #t, y(dy), P.-as
where t(t,y) is the local time of the Brownian path.
In view of the identity I 1(t, 2)p(2)dz = %Jﬁ #(X,)ds, P,~a.s.,, we get
Rt 0

t(t,y) = JR‘ 1(t, 2)p.(z — y)dz which converges as |0 to #(ty). Hence

(6.20) follows from the expression (6.15).
As an example of Theorem 12 (iii), consider a function ge C(R?)

satisfying ‘[R g(x)dx = 0 and set u(x) = r g(x)dx. Then N™ is of bound-

ed variation if and only if the function g is of bounded variation.

Appendices
(I) Killing measure and resurrected Dirichlet form

ProrositioN 7.1. There exists a unique positive Radon measure k
charging no exceptional set such that

(1.1) lim _} IK w(x(1 — p,L(x)m(dx) = I (Y (d)

for any ue #. It holds that
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72 E,u(f(X); € < 0 = [ <P pyds

for any f, he #* and t > 0. In particular E (e *f(X..)) is a quasi-contin-
uous version of the potential UJf-k) when a >0 and f is of compact sup-
port.

We call the measure k the killing measure of the process M.

Proof. In view of the formula

@8 o[ @@ = ue)pl dim@) + L [ u@@ — pl@)m(d)

%(u, u—puw)léw,u, tl0,

and the regularity of the Dirichlet space, we can subtract a sequence

t, |0 such that the measure tl(l — p.. 1(x))m(dx) converges vaguely to a

n

positive Radon measure £ on X and
(1.4) f wWxk(dn) < Eu, v), ueF N CX).
X

In particular I;-% is of finite energy integral for any compact set K and
hence k is smooth.

By making use of (7.3) and (7.4) again, we can easily see that the
equality (7.1) holds provided that we take the limit of the left hand side
only along the sequence {¢,}. Therefore it suffices to show (7.2) because
the measure & is then independent of the choice of {¢,}.

Take non-negative f, g € C(X) and we first show (7.2) for f and A = aR,g.
Notice that h e 2(A) N LY(X; m), A being the infinitesimal generator of the
L’-semigroup determined by p,. We have then

. [t/ta]
Eon(f(X: 3 8 £ 0 = lim By 2 FXe ) T vincceaen)

[t/tn]

=lim 3, B, [f(Xe-ne {1 — P, U X-ne)}]

n-oo k=1
[t/tn]

= lim kZ::l (p(k—bt,,h, f(l - pfnl)) :

n—oco

Choose 6 > 0 such that ||p,h — hl;. < 2s||Ah|,. for any s < 4. For ¢, <34,
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[t/tn]

25 Pacsedt 1 = pu1) = L [[ (0, L = P, D)ds

[t/tn] 1 ktn

|(P-1eh — Pk, f(1 — p.,1)|ds

ji=1 tn (k—=1)tn

+ = [ 1@k FQ = p D)l ds < 28] A s [fL — P

+ 1Al If @ = PsDs

which decreases to zero as 6|0. Therefore

t t

E,n(fX); £ = #) = lim tl fl (psh, f(1 — p,))ds = fo {p:h-f, kyds

proving (7.2) for fe C(X) and A = aR.g, g€ Cif(X). Letting « tend to

infinity, we know that (7.2) holds for any f, h € C;*(X). q.ed.
We define the resurrected Dirichlet form &™ by

(15) &5 (u, v) = E(u, v) — L{ DN Dkdr), uveF .

Then the formula (7.3) leads us to

(7.6) §™u, u) = lim % E (X)) — uX)), uesF.

As an immediate consequence of Proposition 7.1, we have

CoroLLARY. Following conditions are equivalent:
(i) there is no killing inside X: P (X,_ e X,{ < ) =0 q.e. xe X.
(ii) k=0
(i) &™(u,v) = E(u,v), u,ve F.

(I) Transience and the extended Dirichlet space

The Dirichlet space & is a real Hilbert space with inner product &,
but it is not even a pre-Hilbert space with respect to the 0-order Dirichlet
form & in general. We assert that (¥, &) can be enlarged to an “extended
Dirichlet space” relative to some weighted Ll-space if and only if the
process M is transient.

We say that the process M is transient if

@ Bf@) = [ pfdt

https://doi.org/10.1017/50027763000018493 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018493

ADDITIVE FUNCTIONALS 167

is finite m-a.e. for any non-negative Borel fe L'(X;m). By making use
of Hopf’s maximum ergodic inequality, we can see that M is transient
if and only if Rf(x) < oo m-a.e. for some strictly positive function
fe L(X; m).

A Dirichlet space (%, &) relative to LXX; m) is called transient if
there exists a bounded strictly positive function ge L'(X; m) such that

(1.8) Llulgdmg VEw W  VuesF .

The function g above is called a reference function of the transient
Dirichlet space (&, &).

ProposiTioN 7.2. The process M is transient if and only if the as-
sociated Dirichlet space (¥, &) is transient.

This proposition can be proved by utilizing the identity

(2,8 _ I o Podm oo
S Vi uy "N TR (5

holding for any non-negative ge L' N L

A pair (¥, &) is called an extended Dirichlet space with reference
measure m if following conditions are satisfied:
(#.-1) £, 1is a real Hilbert space with inner product &,
(¥ .,2) there exists an m-integrable bounded function g strictly positive
m-a.e. such that #,C LY(X; g-m) and inequality (7.8) holds for any ue %.,
(#.-3) F,N LAX; m) is dense both in L*(X;m) and in (¥, &),
(#.-4) every normal contraction operates on (%,, &).

ProposiTiON 7.2. Assume that the process M (and consequently the
associated Dirichlet space (¥, &)) is transient.
(i) The completion (¥ ., 8) of (¥, &) is an extended Dirichlet space with
reference measure m. % = %, LX(X; m).
(ii) For any Borel ue %, the left hand side of (7.3) increases as t|0 to
éE(u, u).

The ideas of the proof are found in [1] and [12]. Since (&, &) is
assumed to be regular, so is the extended Dirichlet space (¥., &) of
Proposition 7.2 in the following sense:

(7.3 F.,N C(X) is dense both in (F,, &) and C«(X).
Accordingly each ue %, has a quasi-continuous version # ([12]). Propo-
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sition 7.2 (ii) then implies that (7.1) extends to any ue %#,. Moreover if
we define &6*(u, v) for u,ve F, by (7.5), then the identity (7.6) extends
to ue#,.
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