A CHARAGTERIZATION OF MACHINE MAPPINGS

SEYMOUR GINSBURG AND GENE F. ROSE

Introduction. A generalized sequential machine (abbreviated gsm) is a 6 -tuple ($K, \Sigma, \Delta, \delta, \lambda, p_{1}$), where K, Σ, Δ are finite non-empty sets (of "states," "inputs," and "outputs" respectively), δ (the "next state" function) is a mapping of $K \times \Sigma$ into K, λ (the "output" function) is a mapping of $K \times \Sigma$ into Δ^{*}, and p_{1} (the "start" state) is a distinguished element of K. (For sets of words X and Y,

$$
X Y=\{x y / x \in X, y \in Y\} \quad \text { and } \quad X^{*}=\bigcup_{i=0}^{\infty} X^{i}
$$

where $X^{0}=\{\epsilon\}, \epsilon$ being the empty word. Thus, for an arbitrary set E of symbols, E^{*} is the free semi-group generated by E.) The functions δ and λ are extended to $K \times \Sigma^{*}$ by defining

$$
\delta(p, \epsilon)=p, \quad \delta\left(p, x_{1} \ldots x_{k}\right)=\delta\left[\delta\left(p, x_{1} \ldots x_{k-1}\right), x_{k}\right], \quad \lambda(p, \epsilon)=\epsilon,
$$

and

$$
\lambda\left(p, x_{1} \ldots x_{k}\right)=\lambda\left(p, x_{1} \ldots x_{k-1}\right) \lambda\left[\delta\left(p, x_{1} \ldots x_{k-1}\right), x_{k}\right]
$$

for each p in K and each sequence x_{1}, \ldots, x_{k} of elements of Σ. A function f of Σ^{*} into Δ^{*} is said to be a machine mapping, or realized by a gsm, if $f(x)=\lambda\left(p_{1}, x\right)$ for all x in Σ^{*} for some gsm S. The machine mapping of a gsm S is also denoted by S.

The purpose of this note is to show that a function f of Σ^{*} into Δ^{*} is realized by a gsm if and only if it satisfies each of the following conditions:
(i) $f(\epsilon)=\epsilon$.
(ii) f preserves initial subwords, i.e., if u is an initial subword of v, then $f(u)$ is an initial subword of $f(v)$.
(iii) f has bounded output, i.e., there is a number M such that

$$
|f(u a)|-|f(u)| \leqslant M
$$

for all u in Σ^{*} and a in Σ (if u is a word, then $|u|$ denotes its length).
(iv) f^{-1} preserves regular sets, i.e., for each regular set $Y \subseteq \Delta^{*}, f^{-1}(Y)=$ $\{x / f(x) \in Y\}$ is regular. (An automaton is a 5 -tuple $A=\left(K, \Sigma, \delta, p_{1}, F\right)$, where K and Σ are finite non-empty sets, δ is a mapping of $K \times \Sigma$ into K, p_{1} is a distinguished element of K, and F is a (possibly empty) subset of $K . \delta$ is extended to $K \times \Sigma^{*}$ as in a gsm. A set U is regular if there exists an automaton A such that $U=\left\{w \in \Sigma^{*} \mid \delta\left(p_{1}, w\right) \in F\right\}$.)

[^0]Since conditions (i)-(iv) imply that f is realized by a gsm, these conditions imply (5):
(v) f preserves regular sets.

There are three sections. A proof of the main result constitutes §1. Counterexamples that show the independence of conditions (i)-(iv) even in the presence of (v), are furnished in §2. Two corollaries are given in §3.

1. Proof. If f is realized by a gsm, then conditions (i), (ii), and (iii) are obvious, while (iv) is proved in (5).

Suppose that f satisfies (i)-(iv). By (iii) there exists an integer M such that

$$
\begin{equation*}
|f(w a)|-|f(w)| \leqslant M \tag{1}
\end{equation*}
$$

for each w in Σ^{*} and a in Σ. Let

$$
U(a, w)=\{u / f(u a)=f(u) w\}
$$

for each w in $\cup_{0}{ }^{M} \Delta^{j}$ and each a in Σ. We first show that

$$
\begin{equation*}
U(a, w) \text { is a regular set. } \tag{2}
\end{equation*}
$$

To see this, let $g_{a}(X)=\{u / u a \in X\}$ for each a in Σ and $X \subseteq \Sigma^{*}$. By (5, Theorem 2.2) $g_{a}(X)$ is regular if X is regular. Let $\Delta_{t}=\left(\Delta^{M+1}\right)^{*} \Delta^{t}$ for each $0 \leqslant t \leqslant M$ and

$$
V(a, w)=\bigcup_{0}^{M} g_{a}\left[f^{-1}\left(\Delta_{t} w\right)\right] \cap f^{-1}\left(\Delta_{t}\right)
$$

for each $a \in \Sigma$ and

$$
w \in \bigcup_{j=0}^{M} \Delta^{j} .
$$

Since $\Delta_{t} w$ is regular, $f^{-1}\left(\Delta_{t} w\right)$ is regular by (iv). (The family of regular sets is the smallest family of sets containing the finite sets and closed under union, product, and *. Furthermore, the regular sets are closed under subtraction and intersection (3).) Thus $g_{a}\left[f^{-1}\left(\Delta_{t} w\right)\right]$ is regular. Since Δ_{t} is regular, $f^{-1}\left(\Delta_{t}\right)$ is regular. Therefore $V(a, w)$ is regular. Consider any word $u \in U(a, w)$. Since

$$
\bigcup_{t=0}^{M} \Delta_{t}=\Delta^{*},
$$

there exists an integer t such that $f(u) \in \Delta_{t}$, thus $u \in f^{-1}\left(\Delta_{t}\right)$. Since

$$
f(u a)=f(u) w \in \Delta_{t} w, \quad u a \in f^{-1}\left(\Delta_{t} w\right)
$$

and $u \in g_{a}\left[f^{-1}\left(\Delta_{t} w\right)\right]$. Thus $U(a, w) \subseteq V(a, w)$. Now consider any word $u \in V(a, w)$. Then for some t, u is in both $g_{a}\left[f^{-1}\left(\Delta_{t} w\right)\right]$ and $f^{-1}\left(\Delta_{t}\right)$. Thus $u a \in f^{-1}\left(\Delta_{t} w\right)$, i.e., $f(u a) \in \Delta_{t} w$, and $f(u) \in \Delta_{t}$. Then for some integers h and i,

$$
\begin{equation*}
|f(u a)|=h(M+1)+t+|w| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(u)|=i(M+1)+t \tag{4}
\end{equation*}
$$

By (ii) and (1), $f(u a)=f(u) v$ for some word $v,|v| \leqslant M$. Hence

$$
\begin{equation*}
|f(u a)|=i(M+1)+t+|v| . \tag{5}
\end{equation*}
$$

Since $|v|,|w| \leqslant M$, it follows from (3) and (5) that $|w|=|v|$. Therefore $w=v$, so that $f(u a)=f(u) w$. Thus $u \in U(a, w)$. Then $U(a, w)=V(a, w)$ and (2) holds.

Consider the finite set of all homomorphisms τ of Σ^{*} into Δ^{*} such that

$$
\tau(a) \in \bigcup_{0}^{M} \Delta^{j}
$$

for each a in Σ. For each such τ, let

$$
U(\tau)=\left\{u \in \Sigma^{*} \mid f(u a)=f(u) \tau(a) \text { for all } a \in \Sigma\right\} .
$$

Since

$$
U(\tau)=\bigcap_{a \in \Sigma} U(a, \tau(a)),
$$

$U(\tau)$ is regular by (2). The sets $U(\tau)$ are also pairwise disjoint and have Σ^{*} as union. For each τ, let A_{τ} be an automaton ($K_{\tau}, \Sigma, \delta_{\tau}, p_{\tau}, F_{\tau}$) such that $U(\tau)=\left\{u \mid \delta_{\tau}\left(p_{\tau}, u\right) \in F_{\tau}\right\}$. Let $\tau_{1}, \ldots, \tau_{\tau}$ be the distinct mappings τ. Consider the structure $A=\left(K, \Sigma, \delta_{A}, p_{A}, H_{1}, \ldots, H_{\tau}\right)$, where

$$
\begin{aligned}
& p_{A}=\left(p_{\tau_{1}}, \ldots, p_{\tau_{r}}\right), \quad K=K_{\tau_{1}} \times \ldots \times K_{\tau_{r}}, \\
& \delta_{A}\left(\left(p_{1}, \ldots, p_{\tau}\right), a\right)=\left(\delta_{\tau_{1}}\left(p_{1}, a\right), \ldots, \delta_{\tau_{r}}\left(p_{r}, a\right)\right)
\end{aligned}
$$

for each $\left(p_{1}, \ldots, p_{r}\right) \in K$ and $a \in \Sigma$; and for each i,

$$
H_{i j}=K_{\tau_{j}}-F_{\tau_{j}} \quad \text { or } \quad H_{i j}=F_{\tau_{j}}
$$

according as $j \neq i$ or $j=i$, and $H_{i}=H_{i 1} \times \ldots \times H_{i r}$. Then $\left\{H_{i} / 1 \leqslant i \leqslant r\right\}$ is a family of disjoint subsets of $K\left(3\right.$, p. 109) and a word x is in $U\left(\tau_{i}\right)$ if and only if $\delta_{A}\left(p_{A}, x\right) \in H_{i}$. Finally, let S be the gsm ($\left.K, \Sigma, \Delta, \delta_{A}, \lambda, p_{A}\right)$, where for each $p \in K$ and $a \in \Sigma, \lambda(p, a)=\tau_{i}(a)$ if H_{i} contains p and $\lambda(p, a)=\epsilon$ if

$$
p \in K-\bigcup_{1}^{\tau} H_{i} .
$$

To complete the proof, it suffices to show that $\lambda\left(p_{A}, x\right)=f(x)$ for all words x. Now $\lambda\left(p_{A}, \epsilon\right)=f(\epsilon)=\epsilon$. Suppose $\lambda\left(p_{A}, x\right)=f(x)$ for all words $x,|x| \leqslant s$. For $a \in \Sigma$, consider $\lambda\left(p_{A}, x a\right)$. Then

$$
\lambda\left(p_{A}, x a\right)=\lambda\left(p_{A}, x\right) \lambda\left[\delta_{A}\left(p_{A}, x\right), a\right]=f(x) \lambda\left[\delta_{A}\left(p_{A}, x\right), a\right] .
$$

Now $x \in U\left(\tau_{i}\right)$ for some i. Then $\delta_{A}\left(p_{A}, x\right) \in H_{i}$. By the definition of λ, $\tau_{i}(a)=\lambda\left[\delta_{A}\left(p_{A}, x\right), a\right]$. Since $x \in U\left(\tau_{i}\right)$,

$$
f(x a)=f(x) \tau_{i}(a)=f(x) \lambda\left[\delta_{A}\left(p_{A}, x\right), a\right]=\lambda\left(p_{A}, x a\right),
$$

completing the proof.

Remark. The proof shows that condition (iv) may be weakened to require only that $f^{-1}(Y)$ be regular for all sets $Y=\left(\Delta^{M+1}\right) \Delta^{t} w$, where $0 \leqslant t \leqslant M$ and

$$
w \in \bigcup_{j=0}^{M} \Delta^{j} .
$$

2. Counter-examples. We now show that none of the conditions (i)-(iv) can be relaxed, even in the presence of (v). Although we do not prove it, both f and f^{-1} preserve context-free languages for each of the functions f presented.

Example 1. Let $\Sigma=\Delta=\{a, b\}$. For each word $w \in \Sigma^{*}$ let $f(w)=a w$. Then f clearly satisfies (ii)-(v) but not (i).

Example 2. Let $\Sigma=\Delta=\{a, b\}$. Let $f(a)=b, f(b)=a$, and $f(x)=x$ otherwise. Obviously f satisfies (i), (iii)-(v), but not (ii).

Example 3. Let $\Sigma=\{a, b\}$ and $\Delta=\{a\}$. Let $f\left(a^{i}\right)=a^{i}$ and $f\left(a^{i} b u\right)=a^{2 i}$ for $i \geqslant 0$ and $u \in \Sigma^{*}$. Obviously f satisfies (i) and (ii), but not (iii). Consider (iv). Let S be the $\operatorname{gsm}\left(\left\{p_{1}, p_{2}\right\},\{a\},\{a\}, \delta_{S}, \lambda_{S}, p_{1}\right)$ where

$$
\delta_{S}\left(p_{1}, a\right)=p_{2}, \quad \delta_{S}\left(p_{2}, a\right)=p_{1}, \quad \lambda_{S}\left(p_{1}, a\right)=\epsilon, \quad \text { and } \lambda_{S}\left(p_{2}, a\right)=a .
$$

For each $Y \subseteq a^{*}$,

$$
f^{-1}(Y)=Y \cup\left[S\left(Y \cap\left(a^{2}\right)^{*}\right)\right] b \Sigma^{*}
$$

Thus f^{-1} preserves regular sets. Consider (v). Let T be the gsm

$$
\left(\left\{q_{1}, q_{2}\right\}, \Sigma, \Delta, \delta_{T}, \lambda_{T}, q_{1}\right)
$$

where

$$
\begin{gathered}
\delta_{T}\left(q_{1}, a\right)=q_{1}, \quad \delta_{T}=q_{2} \text { otherwise } \\
\lambda_{T}\left(q_{1}, a\right)=a^{2}, \quad \text { and } \lambda_{T}=\epsilon \text { otherwise }
\end{gathered}
$$

For each $X \subseteq \Sigma^{*}$,

$$
f(X)=\left(X \cap a^{*}\right) \cup T\left(X \cap a^{*} b \Sigma^{*}\right)
$$

Thus f preserves regular sets.
Example 4. Let $\Sigma=\Delta=\{a, b\}$. Let $f\left(a^{i} b v w\right)=a^{2 i+1} b^{|w|}$ if $|v|=i \geqslant 0$ and $f(x)=a^{|x|}$ otherwise. Clearly f is a length-preserving function which satisfies (i), (ii), and (iii). To see that f does not satisfy (iv), in view of the main theorem it suffices to show that f is not realized by a gsm.

Suppose that there exists a gsm $S=\left(K, \Sigma, \Delta, \delta, \lambda, p_{1}\right)$ such that $f(x)=S(x)$ for all x in Σ^{*}. Let p_{1}, \ldots, p_{t} be the distinct elements of K. Then there exist integers i and $j, 1 \leqslant \imath<i+j \leqslant t+1$, such that $\delta\left(p_{1}, a^{i}\right)=\delta\left(p_{1}, a^{i+j}\right)$. Now

$$
\begin{aligned}
a^{2 t+3} & =f\left(a^{t+1} b^{t+2}\right)=\lambda\left(p_{1}, a^{t+1} b^{t+2}\right) \\
& \left.=\lambda\left(p_{1}, a^{i+j}\right) \lambda\left[\delta\left(p_{1}, a^{i+j}\right), a^{t+1-i-j} b^{t+2}\right)\right] \\
& =a^{i+j} \lambda\left[\delta\left(p_{1}, a^{i+j}\right), a^{t+1-i-j} b^{i+2}\right]
\end{aligned}
$$

so that

$$
\lambda\left[\delta\left(p_{1}, a^{i+j}\right), a^{t+1-i-j} b^{t+2}\right]=a^{2 t+3-i-j} .
$$

Then

$$
\begin{aligned}
& \lambda\left(p_{1}, a^{t+1-j} b^{i+2}\right)=\lambda\left(p_{1}, a^{i}\right) \lambda\left[\delta\left(p_{1}, a^{i}\right), a^{t+1-i-j} b^{t+2}\right] \\
& \quad=a^{i} \lambda\left[\delta\left(p_{1}, a^{i+j}\right), a^{t+1-i-j} b^{t+2}\right]=a^{i} a^{2 t+3-i-j}=a^{2 t+3-j} \neq f\left(a^{t+1-j} b^{t+2}\right),
\end{aligned}
$$

a contradiction.
Consider (v). Let g be the function of Δ^{*} into Δ^{*} defined by $g\left(a^{i}\right)=a^{i}$ and $g\left(a^{i} b w\right)=a^{i} b^{|w|+1}, i \geqslant 0$. Then g is realized by the gsm

$$
U=\left(\left\{r_{1}, r_{2}\right\},\{a, b\},\{a, b\}, \delta_{u}, \lambda_{u}, r_{1}\right),
$$

where $\delta_{u}\left(r_{1}, a\right)=r_{1}, \delta_{T}=r_{2}$ otherwise, $\lambda_{u}\left(p_{1}, a\right)=a$, and $\lambda_{u}=b$ otherwise. Now $f(x)=f g(x)$ for all x in Σ^{*}. For if $x=a^{i}$, then $f\left(a^{i}\right)=f g\left(a^{i}\right)$. If $x=a^{i} b w$, with $|w| \leqslant i$, then

$$
f(x)=a^{|x|}=f\left(a^{i} b b^{|w|}\right)=f g(x) .
$$

If $x=a^{i} b w$, with $|w|>i$, then

$$
f(x)=a^{2 i+1} b^{|w|-i}=f\left(a^{i} b b^{|w|}\right)=f g(x) .
$$

To see that f preserves regular sets, let R be an arbitrary regular set. Since g is realized by a gsm, g preserves regular sets. Thus $g(R) \subseteq a^{*} b^{*}$ is regular. Now $\left\{a^{i} b^{j} / j \leqslant i+1\right\}$ and $\left\{a^{i} b^{j} / j>i+1\right\}$ are context-free languages. (A grammar is a 4-tuple (V, Σ, P, σ), where V is a finite set, Σ is a subset of V, σ is an element of $V-\Sigma$, and P is a finite set of productions $\xi \rightarrow w$ with $\xi \in V-\Sigma$ and $w \in V^{*}$. For $x, y \in V^{*}$, write $x \stackrel{*}{\Rightarrow} y$ if either $x=y$ or there exists an integer k and words

$$
x=x_{1}, \ldots, x_{k}=y, u_{1}, \ldots, u_{k-1}, v_{1}, \ldots, v_{k-1}, y_{1}, \ldots, y_{k-1}, z_{1}, \ldots, z_{k-1}
$$

such that $x_{i}=u_{i} y_{i} v_{i}, x_{i+1}=u_{i} z_{i} v_{i}$, and $y_{i} \rightarrow z_{i}$ is in P for $1 \leqslant i \leqslant k-1$. A subset L of Σ^{*} is said to be a context-free language if there exists a grammar (V, Σ, P, σ) such that $L=\left\{w \in \Sigma^{*} / \sigma \stackrel{*}{\Rightarrow} w\right\}$.) Since the intersection of a context-free language and a regular set is a context-free language (1),

$$
R_{1}=g(R) \cap\left\{a^{i} b^{j} / j \leqslant i+1\right\} \quad \text { and } \quad R_{2}=g(R) \cap\left\{a^{i} b^{j} / j>i+1\right\}
$$

are context-free languages. Let τ be the homomorphism of Σ^{*} into a^{*} defined by $\tau(a)=\tau(b)=a$. As a homomorphism, τ preserves regular sets and contextfree languages (1). Thus $f\left(R_{1}\right)=\tau\left(R_{1}\right) \subseteq a^{*}$ is a context-free language. By (4, Theorem 4. Corollary 2), each context-free language in a^{*} is regular. Thus $f\left(R_{1}\right)$ is regular. Since $g(R)=R_{1} \cup R_{2}$ and

$$
f(R)=f g(R)=f\left(R_{1} \cup R_{2}\right)=f\left(R_{1}\right) \cup f\left(R_{2}\right),
$$

it suffices to show that $f\left(R_{2}\right)$ is regular. To do this, we need
Lemma. For each regular set B, there exist regular sets $U_{1}, \ldots, U_{r}, V_{1}, \ldots, V_{r}$ with the following properties:
(1) $\cup_{1}^{r} U_{i} V_{i}=B$.
(2) For all words u, v such that $u v \in B$, there exists an integer k such that $u \in U_{k}$ and $V \in V_{k}$.

Proof. Let $A=\left(K, \Sigma, \delta, p_{1}, F\right)$ be an automaton such that

$$
B=\left\{w \mid \delta\left(w, p_{1}\right) \in F\right\} .
$$

Let p_{1}, \ldots, p_{r} be the elements of K. For each i let

$$
\begin{aligned}
U_{i} & =\left\{u \in \Sigma^{*} \mid \delta\left(p_{1}, u\right)=p_{i}\right\} \\
V_{i} & =\left\{u \in \Sigma^{*} \mid \delta\left(p_{i}, u\right) \in F\right\} .
\end{aligned}
$$

and
Obviously $U_{1}, \ldots, U_{r}, V_{1}, \ldots, V_{r}$ satisfy the conclusion of the lemma.
Now consider $f\left(R_{2}\right)$. Since $g(R)$ is regular, by the lemma there exist regular sets $U_{1}, \ldots, U_{r}, V_{1}, \ldots, V_{r}$ such that

$$
\text { (a) } \bigcup_{i=1}^{r} U_{i} V_{i}=g(R)
$$

and (b) for all u, v such that $u v \in g(R)$, there exists an integer i such that $u \in U_{i}$ and $v \in V_{i}$. For each k let

$$
U^{\prime}{ }_{k} b=U_{k} \cap\left\{a^{i} b^{i+2} / i \geqslant 0\right\} .
$$

Clearly

$$
R_{2}=\bigcup_{k=1}^{r} U_{k}^{\prime} b V_{k} .
$$

Since U_{k} is regular, $U^{\prime}{ }_{k} b$ is a context-free language (1); thus $U^{\prime}{ }_{k}$ is a contextfree language (5). For each $k, 1 \leqslant k \leqslant r, f\left(U^{\prime}{ }_{k} b V_{k}\right)=\tau\left(U^{\prime}{ }_{k}\right) \mu\left(b V_{k}\right)$, where μ is the homomorphism defined by $\mu(a)=\mu(b)=b$. Then $\tau\left(U^{\prime}{ }_{k}\right) \subseteq a^{*}$ is a context-free language and thus regular (4). Since $\mu\left(b V_{k}\right)$ is regular, $f\left(U^{\prime}{ }_{k} b V_{k}\right)$, hence $f\left(R_{2}\right)=\cup_{1}{ }^{\tau} f\left(U_{k}^{\prime} b V_{k}\right)$ is regular.
3. Corollaries. If f is a length-preserving function, then we obtain the following result, first proved (unpublished) by J. Rhodes and E. Shamir:

Corollary 1. Let f be a length and initial subword preserving function of Σ^{*} into Δ^{*} such that f^{-1} preserves regular sets. Then f is realized by a complete sequential machine, i.e. by agsm in which λ maps $K \times \Sigma$ into Δ.

Remarks. (1) Other characterizations of functions that are realized by complete sequential machines are known; cf. (2;7).
(2) We know of no way to use Corollary 1 to prove the main result.

The question arises as to what conditions on a partial function f allow f to be extended to a function that is realized by a gsm. One set of conditions is now given. (A set of conditions for f to be extended to a complete sequential machine is given in (6).)

Corollary 2. Let $X \subseteq \Sigma^{*}$ and f be a mapping from X into Δ^{*} satisfying the following conditions:
(i) If $\epsilon \in X$, then $f(\epsilon)=\epsilon$.
(ii) If $u \leqslant v, u$ and v in X, then $f(u) \leqslant f(v)$. (The relation \leqslant on Σ^{*} is the partial order defined by $u \leqslant v$ if and only if u is an initial subword of v.)
(iii) There exists an integer M with the property that if u and v are in X, $u<v$, and $u<x<v$ for no $x \in X$, then $|f(v)|-|f(u)| \leqslant M$.
(iv) f^{-1} preserves regular sets.

Then f can be extended to a function g over Σ^{*} that is realized by a gsm.
Proof. Let g be defined as follows. For $x \in X$ let $g(x)=f(x)$. If $u \geqslant x$ for no element $x \in X$, let $g(u)=\epsilon$. If $x \in X$ and $u>x$, with no element $y \in X$ such that $x<y \leqslant u$, let $g(u)=g(x)$. Clearly g is an extension of f over Σ^{*} which satisfies conditions (i), (ii), and (iii) of the Introduction. To see that g is realized by a gsm, it suffices to show that g^{-1} preserves regular sets.

Let $Z \subseteq \Delta^{*}$ be a regular set. By hypothesis, $f^{-1}(Z)$ and $X=f^{-1}\left(\Delta^{*}\right)$ are regular. Then $H_{1}=f^{-1}(Z), H_{2}=X-f^{-1}(Z)$, and $H_{3}=\Sigma^{*}-X$ are disjoint regular sets whose union is Σ^{*}. Thus there exists a structure

$$
\left(K, \Sigma, \delta, p_{1}, F_{1}, F_{2}, F_{3}\right),
$$

the F_{i} being disjoint with union K, such that

$$
H_{i}=\left\{w \in \Sigma^{*} \mid \delta\left(p_{1}, w\right) \in F_{i}\right\} \quad \text { for } i=1,2,3(3)
$$

For each $p \in K$ let p^{\prime} and $p^{\prime \prime}$ be abstract symbols. For each $a \in \Sigma$ let a^{\prime} and $a^{\prime \prime}$ be abstract symbols. Let $\Sigma^{\prime}=\left\{a^{\prime} \mid a \in \Sigma\right\}, \Sigma_{1}=\left\{a^{\prime}, a^{\prime \prime} \mid a \in \Sigma\right\}$, and let s_{0} be a symbol not in $\left\{p^{\prime}, p^{\prime \prime} \mid p \in K\right\}$. Let τ be the homomorphism of $\Sigma_{1}{ }^{*}$ into Σ^{*} defined by $\tau\left(a^{\prime}\right)=\tau\left(a^{\prime \prime}\right)=a$ for each a^{\prime} and $a^{\prime \prime}$ in Σ_{1}. We shall construct a gsm $S=\left(K_{S}, \Sigma, \Sigma_{1}, \delta_{S}, \lambda_{S}, s_{0}\right)$, where

$$
K_{S}=\left\{s_{0}\right\} \cup\left\{p^{\prime}, p^{\prime \prime} \mid p \in K\right\}
$$

such that for $D=\tau\left[S\left(\Sigma^{*}\right) \cap \Sigma_{1}{ }^{*} \Sigma^{\prime}\right]$ either

$$
\begin{equation*}
D \cup\{\epsilon\}=g^{-1}(Z) \tag{}
\end{equation*}
$$

or

$$
\begin{equation*}
D=g^{-1}(Z) \tag{**}
\end{equation*}
$$

thereby proving that $g^{-1}(Z)$ is regular.
$(\alpha) \in \in Z$. Let a be in Σ. If $\delta\left(p_{1}, a\right) \in F_{2}$, let $\delta_{S}\left(s_{0}, a\right)=\delta\left(p_{1}, a\right)^{\prime \prime}$ and $\lambda_{S}\left(s_{0}, a\right)=a^{\prime \prime}$. Otherwise let $\delta_{S}\left(s_{0}, a\right)=\delta\left(p_{1}, a\right)^{\prime}$ and $\lambda_{S}\left(s_{0}, a\right)=a^{\prime}$. If $\delta(p, a) \in F_{2}$, let $\delta_{S}\left(p^{\prime}, a\right)=\delta(p, a)^{\prime \prime}$ and $\lambda_{S}\left(p^{\prime}, a\right)=a^{\prime \prime}$. Otherwise let

$$
\delta_{S}\left(p^{\prime}, a\right)=\delta(p, a)^{\prime}
$$

and $\lambda_{S}\left(p^{\prime}, a\right)=a^{\prime}$. If $\delta(p, a) \in F_{1}$, let $\delta_{S}\left(p^{\prime \prime}, a\right)=\delta(p, a)^{\prime}$ and $\lambda_{S}\left(p^{\prime \prime}, a\right)=a^{\prime}$. Otherwise let $\delta_{S}\left(p^{\prime \prime}, a\right)=\delta(p, a)^{\prime \prime}$ and $\lambda_{S}\left(p^{\prime \prime}, a\right)=a^{\prime \prime}$.

Now $\epsilon \in D \cup\{\epsilon\}$ and $\epsilon \in g^{-1}(Z)$. If $u \geqslant x, u \neq \epsilon$, for no $x \in X$, then $u \in D$ and, since $g(u)=\epsilon, u \in g^{-1}(Z)$. If $u \neq \epsilon$ is in $f^{-1}(Z)$, then $u \in g^{-1}(Z) \cup D$. If $x \in f^{-1}(Z)$ and $u>x$, with no $y \in X$ such that $x<y \leqslant u$, then

$$
u \in g^{-1}(Z) \cap D
$$

If $u \in X-f^{-1}(Z)$, then u is in $\Sigma^{*}-[D \cup\{\epsilon\}]$ and in $\Sigma^{*}-g^{-1}(Z)$. If $x \in X-f^{-1}(Z)$ and $u>x$, with no $y \in X$ such that $x<y \leqslant u$, then u is in $\Sigma^{*}-g^{-1}(Z)$ and $\Sigma^{*}-[D \cup\{\epsilon\}]$. Thus $\left(^{*}\right)$ holds.
$(\beta) \in \notin Z$. Let $a \in \Sigma$. If $\delta\left(p_{1}, a\right) \in F_{1}$, let $\delta_{S}\left(s_{0}, a\right)=\delta\left(p_{1}, a\right)^{\prime}$ and

$$
\lambda_{S}\left(s_{0}, a\right)=a^{\prime}
$$

Otherwise let $\delta_{S}\left(s_{0}, a\right)=\delta\left(p_{1}, a\right)^{\prime \prime}$ and $\lambda_{S}\left(s_{0}, a\right)=a^{\prime \prime}$. Let $\delta_{S}\left(p^{\prime}, a\right), \delta_{S}\left(p^{\prime \prime}, a\right)$, $\lambda_{S}\left(p^{\prime}, a\right)$, and $\lambda_{S}\left(p^{\prime \prime}, a\right)$ be defined as in (α). By an argument as in (α), we may show that $\left({ }^{* *}\right)$ holds.

References

1. Y. Bar-Hillel, M. Perles, and E. Shamir, On formal properties of simple phrase structure grammars, Z. Phonetik, Sprachwiss. und Kommunikationsforsch., 14 (1961), 143-172.
2. C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc., 98 (1961), 21-51.
3. S. Ginsburg, An introduction to mathematical machine theory (Reading, Mass., 1962).
4. S. Ginsburg and H. G. Rice, Two families of languages related to ALGOL, J. Assoc. Comput. Mach., 9 (1962), 350-371.
5. S. Ginsburg and G. F. Rose, Operations which preserve definability in languages, J. Assoc. Comput. Mach., 19 (1963), 175-195.
6. A. Letichevskii, Automatic expansions of representations of free semigroups, U.S.S.R. Comput. Math. and Math. Phys. (1963), 489-496.
7. G. Raney, Sequential functions, J. Assoc. Comput. Mach., 5 (1958), 177-180.

System Development Corporation,
 Santa Monica, California

[^0]: Received December 28, 1964. This work was supported in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF 19(628)-485.

