Abstracts of Australasian Ph.D. theses

Superlinear variational boundary value problems and nonuniqueness

Joachim A. Hempel

Nonlinear eigenvalues arising in elliptic variational boundary value problems have been studied extensively by F.E. Browder (for this and other references see the author's paper [1]). In strictly non-linear problems there arises the possibility of many qualitatively different solutions corresponding to a single eigenvalue.

In his thesis the author has studied the problems

(1)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left[a_{ij}(x) \frac{\partial u}{\partial x_{j}} \right] + c(x)u + b(x, u) = 0$$
$$u = 0 \quad \text{on} \quad \partial \Omega$$

and

(2)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left[a_{ij}(x) \frac{\partial u}{\partial x_{j}} \right] + c(x)u - b(x, u) = 0$$
$$u = 0 \quad \text{on} \quad \partial \Omega$$

where the function b(x, t) is odd in t and satisfies the superlinearity condition:

there exists $\sigma > 1$ such that, for all $x \in \Omega$, $t^{-\sigma}b(x, t)$ is a non-decreasing function in t > 0.

Problem (1), considered as an integral equation, has been investigated by Z. Nehari and C.V. Coffman. There exists an infinity of solutions each characterised by a mini-max property. In the case n = 1 there is a further characterization in terms of numbers of zeros. The results are

Received 11 June 1971. Thesis submitted to the University of New England, August 1970. Degree approved, April 1971. Supervisor: Professor G.R. Morris.

closely related to the linear eigenvalue problem

(3)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + \mu \sigma(x) u = 0$$
$$u = 0 \quad \text{on} \quad \partial \Omega .$$

For the problem (2) the author establishes the existence of a finite number of solutions, the multiplicity depending on the number of eigenvalues μ_k of (3) which are less than one. In the case n = 1 there is again a characterisation in terms of zeros. For details see [1].

Rather than using nonlinear integral equations the author adopts a more direct approach to both problems using the Sobolev space $\dot{W}_2^1(\Omega)$. The problems are easily translated into the nonlinear operator equations

$$Au + Cu \pm Bu = 0$$

in a Hilbert space. The treatment of a constrained variational problem, using Galerkin approximations and a convenient topological invariant, bears resemblance to the work of Browder mentioned above.

Reference

[1] J.A. Hempel. "Multiple solutions for a class of nonlinear boundary value problems", Indiana Univ. Math. J. 21 (1971-72), 983-996.