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Diagrammatics

The diagrammatic method is one of the most powerful tools of theoretical
physics. It allows us to efficiently organize perturbative computations in statis-
tical physics, quantum many-body theory and quantum field theory. The main
feature of this method is a representation of individual terms of a perturbative
expansion as diagrams (graphs). Diagrams consist of vertices representing terms
in the perturbation, lines representing pairings between vertices and, possibly,
external legs.

There exist several kinds of diagrams. We will try to present them in a sys-
tematic way.

In Sect. 20.1 we present a diagrammatic formalism whose goal is to organize
integration of polynomials with respect to a Gaussian measure. This formalism
is used extensively in classical statistical physics. It also plays an important role
in quantum physics, especially in the Euclidean approach, since many quantum
quantities can be expressed in terms of Gaussian integrals over classical variables.

We use the term “Gaussian integration” in a rather broad sense. Beside com-
muting “bosonic” variables, we also consider anti-commuting “fermionic” vari-
ables, where we use the Berezin integral with respect to a Gaussian weight. Even
in the case of commuting variables, the “Gaussian integral” is not necessarily
meant in the sense of measure theory. It denotes an algebraic operation per-
formed on polynomials (or formal power series), which in the case of a positive
definite covariance coincides with the usual integral with a Gaussian weight.
However, we allow the covariance to be complex, or even negative definite, and
do not insist that the operation have a measure theoretic meaning.

We distinguish two kinds of spaces on which we perform the integrals: real and
complex. As in many other places in our work, we treat these two cases in parallel.
Of course, the difference between the real (i.e. neutral), and the complex (i.e.
charged) formalism is mainly that of a different notation. In particular, charged
lines need to be equipped with an arrow, whereas neutral lines need not.

The terminology that we use is inspired by quantum field theory. Therefore, the
variables that enter the integral are associated with “particles”; they are divided
into “bosons” and “fermions”, each subdivided into “neutral” and “charged”
particles.

In the main part of the chapter we describe the diagram formalism used in
quantum many-body physics and quantum field theory. As a preparation, we
include a brief Sect. 20.2 devoted to the basic terminology of perturbation theory
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for quantum dynamics. We focus on the concept of the scattering operator and
of the energy shift of the ground state.

We discuss first the situation of a time-dependent perturbation of a fixed free
Hamiltonian. In this case, the usual scattering operator is guaranteed to exist,
e.g. if the perturbation decays in time sufficiently fast.

If the perturbation is time-independent, one can still try to use the usual
definition of the scattering operator. It is well known that this definition works
well in quantum mechanics, where the free Hamiltonian is the Laplacian and
the perturbation is a short-range potential. However, in quantum field theory
the standard definition of the scattering operator is usually inapplicable, even
on the level of formal expressions. This is related to the fact that the interacting
Hamiltonian has a different ground state than the free Hamiltonian.

There exists a different formalism for scattering theory, which has more
applicability and in some situations can be used in quantum field theory. The
main idea of this formalism is the so-called adiabatic switching of the interac-
tion. More precisely, we multiply the interaction with a time-dependent coupling
constant eI/l and introduce the scattering operator depending on the parame-
ter €. Then we take the limit of the scattering operator as € \ 0, dividing it by
its expectation value with respect to a distinguished vector (typically, the non-
interacting vacuum). This procedure is associated with the names of Gell-Mann
and Low, and is usually (more or less implicitly) taken as the basic definition of
the scattering operator in quantum field theory.

This procedure works, at least on the perturbative level, for sufficiently regular
perturbations localized in space. If we assume that the perturbation is translation
invariant, which is the usual assumption in quantum field theory, the situation
becomes more complicated. In particular, one needs to perform the so-called
wave function renormalization. We will not discuss this topic.

Starting with Sect. 20.3, we describe diagrams used in many-body quantum
theory and quantum field theory. Our main aim is the computation of the scat-
tering operator and the energy shift of the ground state.

It seems natural to divide diagrams into two categories. The first are the so-
called Friedrichs diagrams and the second Feynman diagrams.

Friedrichs diagrams appear naturally when we want to compute the Wick
symbol of a product of Wick-ordered operators. An algorithm for its computation
is usually called the Wick theorem. It can be given a graphical interpretation,
which we describe in Sect. 20.3.

In this formalism, a vertex represents a Wick monomial. It has two kinds of
legs, those representing annihilation operators and those representing creation
operators. We draw the former on the right of a vertex and the latter on the left.

A typical Hamiltonian in many-body quantum physics and in quantum field
theory can be written as the sum of a quadratic term of the form dI'(h) for
some one-particle Hamiltonian i and an interaction given by a Wick polynomial.
One can use Friedrichs diagrams to compute the scattering operator for such
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Hamiltonians, as we describe in Sect. 20.4. A characteristic feature of this for-
malism is the presence of time labels on all vertices and the fact that diagrams
with different time orderings are considered distinct.

Naively, this formalism seems very natural and physically intuitive. In fact,
Friedrichs diagrams would provide natural illustrations for typical computations
of the early years of quantum field theory (even though diagrams were apparently
not used in that time). Weinberg calls a formalism essentially equivalent to that
of Friedrichs diagrams the old-fashioned perturbation theory.

Since the late 1940s, a different diagram formalism has been developed. Since
then it has dominated the calculations of quantum field theory. It originated
especially in the work of Feynman, and therefore is called the formalism of Feyn-
man diagrams. Again, the main goal is to compute the scattering operator for a
Hamiltonian of the form dI'(h) perturbed by a quantization of a Wick polyno-
mial. It is convenient to express this perturbation using the neutral or charged
formalism.

In Sect. 20.5. we describe Feynman diagrams used to compute the vacuum
expectation value of the scattering operator. They can be essentially interpreted
as a special case of the diagrams described in Sect. 20.1 used to compute Gaus-
sian integrals. In this formalism, the order of times associated with individual
vertices does not play any role. This allows us to cut down on the number
of diagrams, as compared with Friedrichs diagrams. In the case of relativistic
theories, each Feynman diagram is manifestly covariant, which is not the case
for Friedrichs diagrams. Therefore, Feynman diagrams are usually preferred for
practical computations over Friedrichs diagrams.

Feynman diagrams used to compute the Wick symbol of the scattering opera-
tor have in addition external legs. These legs are either incoming or outgoing. The
former are then paired with creation operators and the latter with annihilation
operators. Again, the temporal order of vertices is not relevant.

The main goal of this chapter is a formal description of the diagrammatic
method. We will disregard the problems of convergence. We will often treat
vector spaces as if they were finite-dimensional, even if in applications they are
usually infinite-dimensional.

We try to describe the graphical method using a rigorous formalized language.
This is perhaps not always the most natural thing to do. One can argue that an
informal account involving a more colloquial language is more convenient in this
context. Nevertheless, some readers may appreciate a formalized description.

20.1 Diagrams and Gaussian integration

In this section we present a diagrammatic formalism used to describe the inte-
gration and the Wick transformation w.r.t. a Gaussian measure.

We start with a description of purely graphical and combinatorial elements of
the formalism. We will introduce the analytic part later.
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We will freely use basic terminology of set theory. In particular, we will always
include the possibility that a set can be empty. #X will denote the number of
elements of the set X. Recall also the following definition:

Definition 20.1 Let {A;};cs be a family of sets indexed by a set J. The disjoint
union of the sets A;, j € J, is defined as

|_|Aj ={(j,a) : j€J, ac A}
jes

Let us stress that the notion of a disjoint union of sets does not coincide with
the notion of the union of disjoint sets.

At some places in this section it will be convenient to totally order sets that
we consider. In the case of bosonic particles, the end result does not depend on
this ordering. For fermions, however, some quantities may depend on the order,
but only modulo even permutations. In order to express this dependence, we
introduce the following definition:

Definition 20.2 Let A be a set of n elements. Let p,q be bijections {1,...,n} —
A. We say that they are equivalent if g~' o p is an even permutation. There are
precisely two equivalence classes of this relation.

We say that the set A is oriented if one of these equivalence classes is chosen.
This equivalence class is then called the orientation of A. We say that a total
order of A is admissible if it is given by an element of the orientation of A.

Let {A;}ic; be a finite family of oriented disjoint sets, each with an even

number of elements. Then |J A; has a natural orientation.
i€l

20.1.1 Vertices

Definition 20.3 Let Pr be a set. Its elements are called (species of) particles.
Pr is subdivided into disjoint sets Pry and Pr,, whose elements are called (species
of) bosons, resp. fermions. We assume that the set Pr, is oriented. For p € Pry
we set €, = 1, and for p € Pr, we set e, = —1.

Definition 20.4 Prg, resp. Pr, are subdivided into disjoint sets
Pry = Pry UPr;, resp. Pr, =Pr, UPr.
We set
Pr" :=Pry UPr,, Pr:=PriUPr.

Elements of Pr", resp. Pr° are called (species of) neutral, resp. charged
particles.
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Definition 20.5 A multi-degree is a triple of functions

Pr">p—m, €{0,1,2,...},
Pr‘sg—m" €{0,1,2,...},
Prsq—m;” €{0,1,2,... }.

For brevity a multi-degree is typically denoted by a single letter, e.g. m.
We say that m is fermion-even if

Z my, + Z (mi" +mi7) s even. (20.1)

pEPr: qEPrg

Definition 20.6 A vertex, denoted F, is a finite set Lg(F) equipped with a
map

Lg(F) > 1+ pr(l) € Pr (20.2)
and a partition into three disjoint subsets
Lg"(F), Lg""(F), Lg'™(F)

such that the image of Lg" (F) under (20.2) is contained in Pr" and the images
of Lg'"(F) and Lg' ™ (F) are contained in Pr°.

Elements of Lg"(F) are called neutral legs of the vertex F. Elements of
Lg' ™ (F), resp. Lg' ' (F) are called charge creating, resp. charge annihilating
legs of the vertex F.

We set

Lg,(F) = {l e Lg"(F) : pr(]) :p}, p € Pr®,
Lg® (F) == {l e Lg™(F) : pr(l) =q}, qe€Pr

We assume that the sets Lg,(F), p € Pry, and Lgili) (F), q € Pry, are oriented.
The multi-degree of F is defined by

mP(F) = #Lgp(F)’ p S Prn7

+ — +
myP (F) = #Lg,” (F), q¢€ Pr’.

Graphically a leg is depicted by a line segment attached to the vertex at one
end. The shape or the decoration of a leg corresponds to the particle type.
For example, traditionally, photon legs are represented by wavy lines, while
electron legs are represented by straight lines. Moreover lines corresponding to
charge creating, resp. charge annihilating legs are decorated with an arrow point-
ing away, resp. towards the origin of the line. Neutral legs have no arrows at
all.

A vertex F is depicted by a dot with the legs of Lg(F) originating at the dot.
Each kind of a vertex is represented by a different dot.
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Figure 20.1 A vertex with four neutral legs.

Figure 20.2 A vertex with two electron legs and two photon legs.

20.1.2 Diagrams

Vertices are linked with one another to form diagrams. A rigorous definition of
a diagram (used in the Gaussian integration) is given below.

Definition 20.7 Let {F;};cs be a finite family of vertices. Set
Le( 11 Fy) = | | La(F).
jedJ ;
=
FElements ong( I Fj> are called legs of II F;. Forl= (j,1) € Lg( I Fj) we
jeT jeJ jer
define nr(1) :== j and pr(l) := pr(l).

Lg( II Fj> s the union of disjoint sets
jeJ

Lo (10 ) o= [ Le7 (), 7 =n.(4).().
’ JjeJ

Elements of Lgn(H F]> are called neutral legs of II F;. Elements of
jeg jET
Lg™ ( I F,-), resp. Lg'™ ( I F,-) are called charge annihilating, resp. charge
jeJ - jeJ -
creating legs of II Fj.
jeT

A labeled diagram over II Fj is a pair D = (Lg(D),Ln(D)), where
jes

(1) Lg(D) is a subset of Lg( I Fj), whose elements are called legs or external
jes -

lines of D;
(2) Ln(D) is a partition of Lg( I Fj)\Lg(D) into pairs such that, if {LLI'} €
jeJ
Ln(D), then

(i) pr(l) = pr(l');

(i) if1e L~ (11 Fy), thenV e g™ (11 F).
jeJ jes

Pairs in Im(D) are called links or internal lines of D.
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P
e

Figure 20.3 Various diagrams.

We set
Lg™ (D) := Lg(D) N Lg" (jg} Fy),  m=n,(+) ().

We define In" (D) to be the set of links consisting of meutral particles and
Ln®(D) to be the set of links consisting of charged particles. Sometimes we
will treat charged links as ordered pairs, writing (17 ,17) € Ln®(D) with 1 €

Lg® (11 Fj).
5= (0, 5)
We set
Lgp(D) = {l e Lg"(D) : pr(l) = p}, p e Pr',

Lg;i)(D) ={le Lg® (D) : pr(l) = q}, qePr’
The multi-degree of D is defined by

my (D) := #Lg, (D), pePr’,

+ — + c
mg~ (D) = #Lg™ (D), q € Pr’.

The number of vertices of D is denoted by
vert(D) := #J.
The set of all labeled diagrams over ( I FJ) will be denoted ]3;;( I FJ)
jet jeJ
Thus to draw a diagram over vertices {Fj};cs, we first draw the vertices
themselves, then join some of the legs. We are allowed to join only pairs of legs
that belong to the same particle species. In the case of charged particles, we are

only allowed to join a charge creating with a charge annihilating leg. Neutral
lines have no arrow, whereas charged lines are decorated with an arrow.

Definition 20.8 Let D be a diagram over {F;};cs. We say that D has no self-
lines if {1,I'} € Ln(D) implies nr(l) # nr(l'). The set of all labeled diagrams over

{F;}jcs without self-lines will be denoted Dg(jle'[JFj).
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Figure 20.4 A diagram with a self-line.

Thus, in a diagram without self-lines, there are no lines that start and end at
the same vertex.
Diagrams can be multiplied:

Definition 20.9 Consider two diagrams D € ﬁé( II E) and D' € ]Sé( 11 Fj>
i€l jEJ

Clearly, Lg(D) and Lg(D’) can be considered as subsets of Lg( ImE, x 10 F]>
iel jeJ
Likewise, Ln(D) and Ln(D') can be considered as sets of pairs in
Lg(n F % I FJ)
i€l jer
The product of D and D’, denoted DD’ = D'D, is defined as the diagram over

I1 F; x II Fj such that
iel JjEJ

Lg(DD') :=Lg(D)ULg(D'), Ln(DD'):=1Ln(D)ULn(D").
Thus, graphically, multiplication of diagrams consists simply in their juxta-
position. Clearly, a product of diagrams with no self-lines is a diagram with no
self-lines.

A vertex is an example of a diagram with no self-lines. The diagram whose set

of legs equals Lg( II Fj>, and whose set of lines is empty equals II Fj. This
jed jes -

explains the notation used in Def. 20.7.

20.1.3 Connected diagrams

The following concepts have self-explanatory names.
Definition 20.10 A diagram D € ]/DVg( II F]) s called connected if for all
jEeJ

J,j' € J there exist

L.V}, ... {11} € Ln(D)

such that nr(l,) = j, nr(l)) = nr(ly_1), k=n,...,1, nr(l)) = 45"
For A C f)é( II Fj), we set
jeJ

Acon :={D € A : D is connected }.
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Figure 20.5 A disconnected diagram.

Clearly, each diagram can be decomposed into a product of connected dia-
grams. This decomposition is unique up to a permutation of factors.

Definition 20.11 We say that a diagram D has no external legs if Lg(D) = ().
If AC ]Sé( II FJ), then we set
jeJ
A :={D €A : D has no external legs},
Acnl = (Anl)cona
Alink = (A\Anl)con~

20.1.4 Particle spaces and Gaussian integration
Now we introduce the analytical part of the diagram formalism.

Definition 20.12 (1) For any p € Pr", let V, be a real vector space equipped
with a form o, € L(V},V),), where 0, is non-degenerate symmetric if p € Pry
and non-degenerate anti-symmetric if p € Pr,. We set

Vii= @V, €= & gly, o= O o,.
pePr pePr pePr

(2) For any q € Pr°, let V, be a complex vector space equipped with a form
o € L(V},V,), where o is non-degenerate Hermitian if ¢ € Pry and non-
degenerate anti-Hermitian if ¢ € Pr,. We set

Vii= @ VY, €= @ ¢ly, ofi= @ oy
qePre qePre qePre

(3) Set
V=CVaVael, e=crDe DE.

We will treat V™, V¢ and V as super-spaces (see Subsect. 1.1.15). In particular,
we can define the set of holomorphic polynomials over V, denoted Pol(V). As
usual, if G € Pol(V), then G(0) denotes the zero-th order component of G.

Definition 20.13 For G € Pol(V), we define

/GI: (exp( Z %vadpvup + Z Vquqvvq)G> (0) (203)

pePrt gePre
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Applying respectively the identities (4.15), (4.16) and (2) of Prop. 7.19, we
obtain the following interpretation of (20.3):

(1) If p € Pry, G € Pols(CV,) and o, is positive definite, then (20.3) coincides
with the usual integral over V, w.r.t. the probability Gaussian measure with
covariance o, that is,

/ G=C / G(v,)e 7% du,.

(2) If g € Pr{, G € Poly(V, ®V,) and o, is positive definite, (20.3) coincides with
the usual integral over V, g ~ Re(V, ®V,) w.r.t. the probability Gaussian
measure with covariance o, that is,

/G = C/G(vq75q)e_"7’4”;1’”qdﬁqdvq.

(3) If p € Pr,, , G € Pol,(CV,), then (20.3) coincides with the Berezin integral
1 —1
with the weight e 277 “» that is,

/G C’/ )e —1u0, “rdv,.

(4) If g € Prl, G € Pol,(V, ® V,), then (20.3) coincides with the Berezin integral
— —1
with the weight e™"¢% “¢ that is,

/G: c/G(vq,@q)e*@ﬁ%d@dvq.

In all these cases, C' is the normalizing constant.

Definition 20.14 Define the Wick transform of G € Pol(V) by

G = exp( Z V“,Up vy Z Vz, 0,V 1,,1) . (20.4)

pEPI“ q€ePre

If G = :Gy:, then Gy will be sometimes called the Wick symbol of G.

Note that Def. 20.14 generalizes the Wick transform from Def. 9.18, where it
was a construction closely related to the Gram—Schmidt orthogonalization.
Clearly,

G=exp( Y %v,l,,p 0V, + > V5,0,V )G (20.5)

pePr® qePre
/:G: = G(0)
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20.1.5 Monomials

Let m be a multi-degree.

Definition 20.15 Set

" (V)= ® @ (CV,)e ® @™ V)e & ™ (V) (20.6)
peP™ qePre q€ePre
m) )
W)= @ IMCV)e o It V)e o Tot (V) (20.7)
pePr qEPT qePr¢

m*) m(—)
Pol"(V):= ® Pol”(CV,)® ® Pol," (V,)® ® Pol," (V). (20.8)
peP™ r geP1° q€Pr°

FElements of Pol™ (V) are called complex polynomials of multi-degree m.
Clearly, "™ (V) C @™ (V) and Pol™ (V) = T™(V)*.
Definition 20.16
"= © O™ g On ® 8 On
pepPr qePre qEPe
denotes the usual projection of @™ (V) onto I'" (V). Therefore, ©™# is the usual
projection of @™ (V)* onto Pol™ (V).
Let F' be a vertex with multi-degree m. With every leg of the vertex we
associate a space
W ~V,, l€Lg,(F), pePr”,
Vi ~ Vg, ke Lg,” (F),q € Pr’,
Ve~V kelg,(F),qePr. (20.9)
Within each family

Lg,(F),p € Pr",
Lg,"” (F),q € Pr*,
Lg, ' (F),q € Pr°,

we label the legs by consecutive integers. For fermionic particles we assume that
the numbering is admissible. Note that apart from this condition, the numbering
is arbitrary and plays only an auxiliary role. Thanks to this numbering, we have
a natural bijection between the set of legs of the vertex F' and the factors of
(20.6). Thus ®™ (V) can be identified with

Ve ®© 9 Wwe ® Vi, (20.10)
leLg® (F) keLg(t) (F) keLg(—) (F)

and an element of ®” (V)* can be viewed as a multi-linear function on

11 WV X 11 Vi X II Vk. (20.11)
leLg" (F) keLg(+) (F) keLg(—) (F)
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In this way we can associate with a monomial in Pol™ (V) a vertex F of
the same multi-degree. Therefore, we will use the same letter F' to denote a
monomial and its associated vertex, and we will usually not distinguish between
them.

It is convenient to adopt natural names of the corresponding generic variables:

v for the generic variable in ), 1€ Lg"(F),
vk for the generic variable in Vi, k € Lg'™ (F),
v for the generic variable in Vg, k € Lg' ™ (F).

20.1.6 FEwvaluation of diagrams
Let {Fj}jcs be a family of fermion-even monomials. Let D € f)é( II F]), that
jeJ

is, let D be a diagram over II Fj}.
j€s

Definition 20.17 The evaluation of D is an element of Polm(D)(V) denoted by
the same symbol D and given by

D :=@mP) II Vvuov.,
(={LI’}eLn*(D)

x H Voo 0n Vo) H . (20.12)

k=(k(+) k(=))€Ln¢ (D) Jjed

Here, if £ = {1,1'} € Lg"(D) and p = pr(l) = pr(l'), then o; denotes o,.
Likewise, if k = (k" k7)) € Lg®(D) and q = pr(k'") = pr(k' ™), then o
denotes oy .

(20.12) should be interpreted as follows:
1) We treat II Fj; as a multi-linear function depending on the variables
J
jeJ
neEN, le Lg“( 1I F]),
jedJ

Uk € Vka ke Lg(+)( H F/>7
jeJ

u €V, kelg” (1 ).
jeJ

(2) We perform the differentiation indicated in (20.12), which produces a multi-
linear function depending on

v €W, 1€ Lg"(D),
Tk € Vx, k € Lg (D),
vk € Vg, k€ Lg 7 (D).
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(3) We label the set J by consecutive integers in an arbitrary way. This gives an
obvious ordering of the legs in each family

L ( F) € P,
gp jG.] J p
Lg,” (11 Fy),q e Pr,
jeJ
L™ (ngFj),q € Pr°. (20.13)

(4) We order the set of particles. The ordering of fermionic particles should be
admissible.

(5) The ordering determined in the previous two points allows us to identify the
result of differentiation with an element of @™ (P)(V)*.

(6) We symmetrize/anti-symmetrize, obtaining an element of Pol™?) (V).

Note that if Dy,..., D, are diagrams and D = D; --- D,,, then the evaluation
of D equals the product of the evaluations of D;, i =1,...,n.

Remark that if D has no external legs, then as a monomial it is a number,
hence : D := D.

Note that the group of permutations of J leaves invariant the monomial asso-

ciated with diagrams in Dg( I Fj) because all monomials F}; are fermion-even.
jed

20.1.7 Gaussian integration of products of monomials

The following theorem shows that diagrams can be efficiently used to compute
the Wick symbol and the Gaussian integral of products of monomials. In the
bosonic case, for a positive definite o, (20.15) and (20.17) are graphical interpre-
tations of Thm. 9.25.

Theorem 20.18 Let {F,...,F,} be fermion-even monomials. Then

F, - F = > : D, (20.14)
DeDg(F,,...,Fy)
cFy e By = Z D, (20.15)

DeDg(Fy,..., Fy)

/Fn---F1 = > D, (20.16)

DeDg(Fn s B )nl

/:Fn:~-:F1:: > D (20.17)

DeDg(Fn,....,Fi)nl

Proof (20.14) is a restatement of (20.5) applied to F), - - F}, where we repeat-
edly use the formula (3.36).
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(20.15) follows from (20.5) applied to :F,,:---:F;: and (20.4) applied to F;.
(20.16), resp. (20.17) follow from (20.14), resp. (20.15) by (20.3). O

In Fig. 20.6, we illustrate the above theorem by the diagrams needed to eval-
uate the identities

phs it = 0%+ 40 4 T2:0% 4 96:0%: + 24,
(2m) 71/ /19254: (phie T dg = 24.

>< |
yd
N

X

.
VAN 96
N
o

Figure 20.6 Diagrams for :¢*: :¢:.

20.1.8 Identical diagrams

Let {F,,...,F1} be a certain finite set of vertices. For brevity, this set will be
denoted by 0.

Recall that S,, denotes the group of permutations of n elements.
T
Suppose that n,...,n, € {0,1,...}. The group II S,, acts in the obvious
i=1

way on Dg( ﬁ Fy‘,"’)'
i=1
Definition 20.19 We set
Dg{w} = || Dg(ﬁ1 F”) / .ﬁl S, . (20.18)
N,y =1 = =

Elements of (20.18) will be called unlabeled diagrams with vertices in 2.
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In other words, Dg{U} consists of classes of diagrams made with vertices
from U, which differ just by a permutation. Typically, we will write [D] for an
unlabeled diagram, D being a labeled diagram and the square bracket denoting
the equivalence class.

20.1.9 Gaussian integration of exponentials

Let U = {F1,...,F.} be a set of fermion-even monomials and A a coupling con-
stant. Set G := F} + - - - + F,.. Our main aim is to compute the Gaussian integral
and the Wick symbol of exp(A:G:).

As indicated before, with each monomial F;, 7 = 1,...,r, we associate a vertex
of the same multi-degree, denoted by the same symbol F;.

Let D € Dg( o ) The evaluation of the diagram D (see Def. 20.17) does
i=1
not depend on the action of the group ﬁ Sy, . Hence, it is well defined for
i=1

unlabeled diagrams.

Theorem 20.20

exp(A:G:) = Z Avert(P). . (20.19)
[D]eDg{U}
Proof Clearly,
- 1
exp()\;G;) = Z m)\m+u.+nr B
een,)

Avert(D)

= > > ! D
_ - w1 Ty
N1yee,ny =0 DeDg(F, L)

= i Z AvertP). .. O

et =0 (Dlepg(F] P/ LS,

Theorem 20.21 (Linked cluster theorem)

exp(\:G:) =: exp( Z )\VE""“C)C> : (20.20)

[CleDg{V}con
log(/exp()\:G:)) = Z Avert@ e (20.21)
[CleDg{V}enm
exp()‘:G:) ( vert(C') )
= texp oo cl:. (20.22)
Jexp(X:G) (C]€Dg{T i
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Proof Let us prove (20.20). Let C} 6Dg<1‘[ Fm”), ji=1,...,p, be dis-
tinct connected labeled diagrams. Let k; 6 {0,1,...}, j=1,...,p. Let D:=
chopr e Dg( I FZn) Clearly, n; = E m;; and

i=1 j=1

= Hni!, #[CJ] = Hm”‘
i=1 i=1

An elementary combinatorial argument shows that each diagram in [D] repre-

r p
sents [T ni! IT (my:!) =% (k;1)~! times the same diagram in the Cartesian prod-
=1 j=1

p
ct [T1[C;]% . Therefore,
j=1 .

D= Y D

i=1 D’e[D)

T Tom 60 11 > e

i=1j=1 I=1C€lC)

& k
=[J®"Hc; .

J=1

Now (20.21) and (20.22) follow from (20.20). O

20.2 Perturbations of quantum dynamics

In this section we recall the terminology used in quantum physics in the context
of a dynamics and its perturbations. We will consider first the case of time-
dependent, and then time-independent perturbations.

We recall in particular the basic concepts of scattering theory. Its central
notion is the scattering operator. There are several varieties of scattering opera-
tors. We recall the standard definition, which is successfully used in the context
of Schrodinger operators with short-range potentials. Note, however, that the
standard definition usually does not apply to quantum field theory, even on a
formal level. We introduce also the adiabatic scattering operator, which is often
used to develop the formalism of quantum field theory in standard textbooks.

Our presentation throughout this section will be rather formal. In order to
make rigorous some of the formulas we give, one needs to make relatively com-
plicated technical assumptions — we refrain from describing them.

Throughout the section H is a Hilbert space.

20.2.1 Time-ordered exponentials

Let R>tw— B;i(t)e B(H), i=1,...,n, be time-dependent families of
operators.
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Definition 20.22 Let t,,...,t; € R be pairwise distinct. We define Dyson’s
time-ordered product of By, (t,),..., Bi(t1) by
T (Bu(tn)--- Bi(t1)) == By, (ti, ) -+~ By (L)),
where (iy,,...,11) is the permutation of (n,...,1) such that t; > -+ >1t;, .

Consider now a single family of operators R > ¢ — B(t).

Definition 20.23 Fort, >t_, the time-ordered exponential is defined as

Texp </, B(t)dt): / / B(t,)--- B(t1)dt, - - dhy

O, >ty >3t >t

— Z/t+ /+ %T(B(tn)"'B(tl))dtn"'dtl,

Ift,. <t_, then we set

Texp ( /, f B(t)dt) - (Texp /f - B(t)dt) R

For brevity, let us write

Ulty,t )—Texp</ B(t dt)

d
?U(twLat—) = B(t+)U(t+7t—)a
+

?U(t+7 ) = _U(t+7t7)B(t*)7
Ut,t) =1,
Ulta, t1)U(t1,t0) = Ulta, to)-

Note that

If B(t) = B, then U(t,,t_) = elt+ ~1-)B,

20.2.2 Perturbation theory

Let Hy be a self-adjoint operator. Let R 3 ¢ +— V() be a family of self-adjoint
operators. Set H(t) := Hy + AV (t). Consider the unitary evolution

H(t)dt> .

te
U(t+ ) ) TGXp <

t_

Let R > ¢ — A(t) be an operator-valued function.
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Definition 20.24 The operator A(t) in the interaction picture is defined as
Ap(t) == eltHo A(t)e_itH”.
The evolution in the interaction picture is defined as
Up(ty,t ) = et oy, ¢ )e t-Ho,

Note that

Ui(t, 1) = Texp (—iA / " %(t)dt) .

In some cases we can take the limit ¢ — —oo or t. — oco. In particular this
is the case if V'(¢) decays in time sufficiently fast.

Definition 20.25 The Mgller or wave operators, resp. the scattering operator
(if they exist) are defined as

St =5 — tliimoo Ur(0,¢),

S = 8t*5~.

Theorem 20.26 (1) If ST exist, then they are isometric.
(2) S:=w — lim Ur(ty,t).

(ty ,t—)—(400,—00)

(3) If Ran ST = RanS™, then S is unitary.

Note that the operators Ur(t,,t_), S, resp. ST* can be viewed as special
cases of the scattering operator, if we multiply V(¢) by Ny_, (t), Ij_o0((t),
resp. jog o (%)-

20.2.3 Standard Mgller and scattering operators

Until the end of the section, Hy and V are fixed self-adjoint operators and H :=
Hy + \V. We have U(t,,t_) = e (s =t and Vf(t) = eltHo Ve 1tHo,
Clearly, the Mgller and scattering operators (if they exist) are

St =5 — lim e'He 0
t—doo

S =W — lim eit+ Hy e—i(t+ —t7>H —it_Hy

(t+,t—)—(400,—00)

e
Definition 20.27 In what follows, we will call S* and S defined as above the
standard Mgller and scattering operators.

Theorem 20.28 Suppose that the standard Moller operators exist.

(1) The standard Moller operators satisfy ST Hy = HST.
(2) The standard scattering operator satisfies HyS = SHy.
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We have, at least formally,

0
ST = Texp (—/ i)\VI(t)dt) ,

+ oo

0
S~ = Texp <—/ i)\VI(t)dt> ,

S = Texp (- / o i)\VI(t)dt) .

— 00

20.2.4 Stone formula
For € > 0, set
5.(6) = —(€ + )7

which is a family of approximations of the delta function. For any a < b, we have
the Stone formula,

b
. 1
sl [ 661~ H)AE = 5 (1) (H) + Bo(HD))
We will formally write
6(¢1~ Hy) for lim 5.(¢1~ H),
((6+10)1— Hy) ™" for 11\{1(1)((5 tie)l— Hy) L.

These limits do not exist as bounded operators, but can sometimes be given a
rigorous meaning as operators between appropriate weighted spaces.

20.2.5 Stationary formulas for Moller and scattering operators
We have the identities (see e.g. Yafaev (1992)):

St = /(11+ (€ Fi0)1 - H)*Av)a(gn— Hy)d¢

- /i A" (((5 Fi0)1 — Ho)’lv)né(gll — Hy)dé.

n=0
S—1= —27r/(5(§]l — Hy) ()\V + NV ((€+i0)1 - H)‘lv)a(gﬂ — Hy)d¢

- —27r/§(§]1 — Hy) ivv(((g +i0)1 — HO)‘lv)na(gﬂ — Hy)d¢.

n=0

20.2.6 Problem with eigenvalues
It is easy to show the following fact:

Theorem 20.29 If the standard Mpller operators exist and HyW = EV, then
HY = EV.
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In practice, the standard formalism of scattering theory is usually applied to
Hamiltonians H,; which only have absolutely continuous spectra. In such a case,
Thm. 20.29 is irrelevant.

Thm. 20.29 becomes relevant in models inspired by quantum field theory.
Suppose that the starting point of a model is a pair of Hamiltonians Hy and H
(possibly defined only on a formal level). In typical situations both Hamiltonians
have a ground state, and these ground states are different. Thm. 20.29 then shows
that the standard scattering theory is not applicable. Instead one can sometimes
try other approaches, such as the adiabatic approach developed by Gell-Mann
and Low, which we describe below.

20.2.7 Adiabatic dynamics

Definition 20.30 The adiabatically switched on interaction, or simply the adia-
batic interaction, is defined as V. (t) := eIV, ¢ > 0. The adiabatic Hamiltonian
is H.(t) := Hy + AV.(t). The corresponding dynamics is denoted by U, (t;,t_)
and the corresponding dynamics in the interaction picture by U.(ty,t_). We
also define the adiabatic Mgller and scattering operators

R [
SEi=s = lim_Ua(0,),
S, =SS~

Note that if the standard Mgller operators exist and, if some mild additional
assumptions hold, we have

S* =5 — lim S*,
eN0
S=w —limS,.
eN\0
As we argued in Subsect. 20.2.6, in quantum field theory the standard scatter-
ing theory usually fails. One needs to use non-standard definition of scattering
operators. (Analogs of Mgller operators are rarely used in quantum field theory
anyway.) One possible modification of the definition of the scattering operator

is given below. In this definition, ®, is a distinguished unit vector, typically the
ground state of Hy (e.g. the free vacuum in quantum field theory).

Definition 20.31 The Gell-Mann-Low scattering operator (if it exists) is

S,
Sop i=w — lim ————.
GL =W A% (®o|ScDo)

20.2.8 Bound state energy

Suppose that &y and Ej, resp. ® and FE are eigenvectors and eigenvalues of Hy,
resp H, so that

Hy®y = Ey®,, H® = Ed.
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We assume that ®, E are small perturbations of ®,, Fy when the coupling
constant A is small enough.
The following heuristic formulas can be sometimes rigorously proven:

: c— d i —i
BBy = N 17 gy log(Bole™ e @), (20.23)
d ) ) )
E—Ey = lim (21)_1& log(®g|e 1 Hoei2tHH =it Ho @), (20.24)
— 100

To see why we can expect (20.23) to be true, we write
(®ole e 0 @) = |(Bg| @) F~E0) 4 (1),

Then, if we can argue that for large ¢ the term C(t) does not play a role, we
obtain (20.23). (20.24) follows by essentially the same argument.
Note that (20.23) involves e’ e~ o which can be called an approximate

—itHo oi2tH o—itHo ap approximate scatter-

Mgller operator, and (20.24) involves e
ing operator.
Still heuristic, but a little more satisfactory, are the formulas that give the

energy shift in terms of the adiabatic Mgller and scattering operators:

E—FEy = li{% ieADy log(<I>0|S;L(I>O), (20.25)
E—-FEy=1 E81 (Dy]S:Py) (20.26)
0 —E{I(l) B) A 108( R0 [0 P0 )- .

(20.26) is called the Sucher formula.

20.3 Friedrichs diagrams and products of Wick monomials

The main aim of the remaining part of this chapter is to describe the perturbation
theory for the dynamics of the form dI'(h) plus the quantization of a (possibly
time-dependent) Wick polynomial. We will describe two distinct formalisms for
this purpose. In this and the next section we discuss the formalism of Friedrichs
diagrams. The characteristic feature of these diagrams is the fact that the vertices
are ordered in time.

One can argue that the formalism of Friedrichs diagrams was implicitly used
in quantum field theory since its birth. Strangely, however, before the late 1940s
it was not common to draw pictures to keep track of terms in the perturbation
expansion. Apparently, the first to use pictorial representations of the perturba-
tion theory was Stueckelberg and, on a larger scale, Feynman. Their diagrams,
however, are different, and will be discussed in Sects. 20.5 and 20.6 under the
name Feynman diagrams. In Feynman diagrams the order of the time label does
not play a role, which usually is a serious advantage. Thus Feynman’s inven-
tion is not limited to the use of pictorial diagrams. The idea of making pictures
when one tries to do computations in perturbation theory is actually quite easy
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to come by. What was more important and less obvious was to group together
various time orderings.

Even though Feynman diagrams dominate, especially in relativistic computa-
tions, Friedrichs diagrams are also useful in some situations. In particular, they
can be used to compute leading singularities of certain terms of the perturbation
expansion.

We divided the discussion of Friedrichs diagrams into two sections. In this
section, the goal is to explain how to represent pictorially the symbol of the
product of Wick monomials. In the next section we discuss how to compute the
scattering operator using Friedrichs diagrams.

20.3.1 Friedrichs vertices

Just as in Sect. 20.1, we start with a description of purely graphical and com-
binatorial aspects of the formalism. It is quite similar to that of Sect. 20.1,
and we will often use the same terms, sometimes with a slightly different
meaning.
We assume that we have a set Pr = Prg LI Pr, describing particles, which are
bosonic or fermionic, as in Def. 20.3. We assume that the set Pr, is oriented.
We adapt the definition of the multi-degree to the context of this section.

Definition 20.32 A multi-degree is a function

Prap—m, €{0,1,2,...}.

Definition 20.33 A Friedrichs vertex, denoted W, is a pair of disjoint sets
(LgJr (W),Lg™ (W)), each equipped with a function

Lg* (W) 51— pr(l) € Pr.

Elements of Lgi (W) are called outgoing, resp. incoming legs of the vertex W.
The sets Lg;t(W), p € Pr,, are oriented.
The outgoing, resp. incoming multi-degree of W is given by

mE(W) == 4{l € Lg=(W) : pr(l) =p}, pePr.

We say that W is fermion-even if

Z (m} (W) +m, (W)) is even. (20.27)

P
pEPT,

A Friedrichs vertex W is graphically depicted by a dot with legs of Lg(W)
originating at the dot. Incoming legs are on the right and the outgoing legs
are on the left. Again, legs for different particle types are depicted by different
graphical styles.

https://doi.org/10.1017/9781009290876.021 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290876.021

20.3 Friedrichs diagrams and products of Wick monomials 577

T

T
eSS

time

Figure 20.7 Various Friedrichs vertices.

time

Figure 20.8 A disconnected Friedrichs diagram.

20.3.2 Friedrichs diagrams
Definition 20.34 Let (W,,,...,W1) be a sequence of Friedrichs vertices. Set
Lg(Wo,....W1) = | | Le(W)),
n>j>1
L™ (W,....Wh) == | | Lg*(W)).
n=j=>1
Clearly, Lg(W,,, ..., W) is the union of disjoint sets
Lng(Wn, e ,Wl), Lgi(Wn, [N 7W1).

Elements of Lgi(Wn, ..., W) are called incoming, resp. outgoing legs of
(W, ,W1). Forl= (j,k) € LgE(W,,...,W1) we define nr(l) = j and pr(l) =
pr(k). (Note that j € {n,...,1} and k € Lg(Wj); see Def. 20.1.)

A Friedrichs diagram B over (W,,--- ,Wi) is a  triple
(Lg™(B),Lg" (B),Ln(B)), where
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(1) Lg™ (B) is a subset of Lg~ (W, ..., W1);
(2) Lg* (B) is a subset of Lg™ (W,,...,Wy);
(3) Lu(B) is a partition of

(Le* (W,,...,Wi)\Lg" (B)) U (Lg~ (W,,..., W1)\Lg™ (B))

into two-element sets such that
(i) {l4,1-} € Ln(B) implies nr(ly) # nr(l_),
(i) if {1+,1-} € Ln(B) and nr(ly) >nr(lo), then 1y € Lg (B), - €
Lg" (B),
(iii) {1+,1-} € Ln(B) implies pr(1;) = pr(l_).

The incoming and outgoing multi-degree of B is defined by
miy(B) = #{l€ Lg"(B) : pr(l) = p}, p€Pr,
The number of vertices of B is denoted by vert(B) =n. The set of all

Friedrichs diagrams over (W, ..., W1) will be denoted FDg(W,,, ..., Wq).

Thus, to draw a Friedrichs diagram we first put the Friedrichs vertices in the
correct order, and then we join some of the outgoing legs with later incoming
legs of the same particle species.

Remark 20.35 Note that the vertices in a Friedrichs diagram are ordered, con-
trarily to those appearing in Subsect. 20.1.2. Typically each vertex is associated
with a time and vertices are ordered according to increasing times. To our knowl-
edge, in the literature one can find three conventions concerning the time arrow
in a diagram: time flows to the left, right or upwards. We adopt the convention
that time flows to the left, because it agrees with the order of multiplication of
operators.

20.3.3 Connected Friedrichs diagrams

The following definitions are very similar to the analogous definitions of Sect.
20.1.

Definition 20.36 A Friedrichs diagram B is called connected if for all j,j’ €
{n,...,1} there exist

{1, 1}, ... {1;,1)} € Ln(B) (20.28)

such that nr(l,) = 7, nr(l}) = nr(ly—1), k=m,...,2, nr(l}) = 5.
If AC FDg(W,,,..., W), then we set

Acon :={B €A : B is connected }.

Note that the sequence of lines in (20.28) does not have to be ordered in time.
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Definition 20.37 We say that a Friedrichs diagram B has no external legs if
Lg' (B)=Lg (B) =0.
If A C FDg(W,,,..., W), then we set
An:={B €A : B has no external legs},
A(:nl = (Anl)cona
Alink = (A\Anl)con~

20.3.4 One-particle spaces
Definition 20.38 With each p € Pr we associate a complex Hilbert space Z,.
Z, is called the one-particle space of p. We set

Z:= © Z,, e= ©® ¢lg,.
pEPr pEPr

We treat (Z,¢€) as a super-space.
Let Q € Bin(Z). Its Wick quantization, denoted as usual Op®*(Q), is an
operator on the Fock space

® I, (2,) ~T(2).
pEPr
20.3.5 Incoming and outgoing diagram spaces

Let m be a multi-degree.

Definition 20.39 We set

" Zi= ® Q™ Z, (20.29)
pEPr
"(2) = ® I"™(Z,), (20.30)
pebPr *
Pol"(2) := ® Pol™ (Z,). (20.31)
p€EPr r

'™ (Z) is called the m-particle space. Let ©™ denote the usual projection from
Q™ Z onto T™(Z).

Let (m™,m™) be a pair of multi-degrees. An important role will be played by
B(I™ (2),1™ (2)). (20.32)
(20.32) will sometimes be interpreted as a polynomial in
Pol” (Z) ® Pol” (Z).
More precisely, with W that belongs to (20.32) we associate

W({Eiﬁﬂp}i:l,.“,m,f pEPL? {zjs*sq}jzl,“.,m;.qur)

+

= ( [} é Zi+.p W ® é Zjﬁf_q>.

pEPri=1 qePrj=1
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We will sometimes view (20.32) as a subspace of B(®" Z,@" Z): an ele-
ment of W of (20.32) is extended to an operator on ®™ Z by setting 0 on the
orthogonal complement of I (Z).

Let W be a vertex of multi-degrees (m™,m™). With every leg of the vertex
we associate a space

Z ~Z2, leLgr (W), pePr (20.33)

Within each family Lgpi(W) we order the legs by consecutive integers. For
fermionic particles we assume that the numbering is admissible. Note that apart
from this condition, the numbering is arbitrary and plays only an auxiliary role.
Thanks to this numbering, we have a natural bijection between Lgi(W) and the
factors of ®’”iZ. Thus ®™" Z can be identified with

2. (20.34)
leLg® (W)

Consequently, B(®™ Z,®™ Z) can be identified with

B( ® Z, ® zk). (20.35)
leLgt (W) keLg— (W)

Elements of (20.35) can be viewed as multi-linear functions on

II ?1 X 11 2. (2036)
leLg™ (W) keLg— (W)

Indeed, consider an element of (20.35), denoted also by W. We associate with it
a function

W({zl}lel‘y(w’)’{zk}keLf(W)) = (1eLgQ?(W) Zl’WkeLg@(W) Zk)’ (20.37)

where 2 € Z+, 2 € Z1-.

20.3.6 FEwvaluation of a Friedrichs diagram
Let W; € B(me (Z),le+ (Z)), i=mn,...,1, be a sequence of Wick monomials.
Let B be a Friedrichs diagram over W, - -- W, with m* = m*(B).
Definition 20.40 The evaluation of the Friedrichs diagram B, usually denoted
by the same letter B, is defined by

1
B=ow 0"+ J[ V. V. [[W. (20.38)

{1+ ,1-}€Ln(B) j=n

The above definition uses the polynomial interpretation of a Friedrichs vertex.
W; are treated as polynomials, as in (20.37).
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(20.38) thus defines a multi-linear function with variables z € 2, 1€
Lg"(W,,...,W1), z1 € Z1, 1€ Lg~ (W,,...,W;). The differential operator kills
some of the variables; only those in Lg* (B) survive. Then we apply the
symmetrization/anti-symmetrization operators.

It is also possible to give an equivalent definition that uses a purely operator
language.

Definition 20.41 For j=1,...,n, we set
L/(B) = {leLg"(B) : j>nr((l)}
U{leLg™(B) : nr(l) > j}
U{(l+,1-) € Ln(B) : nr(ly) >j >nr(l-)}.
L/ (B) is called the set of lines bypassing the vertex W;.
Note that

=
o

+

=
I

L"(B) ULg" (W,,).

Definition 20.42 For each ¢ ={l;,1_} € Ln(B) with nr(ly) > nr(l), let Z
denote the space Z|_ ~ Z;, . Let ]IJB denote the identity on

® Z.
(eLi (B)

Let W; be interpreted as operators in

B( ® Zla ® Z]).
IeELg—(W;)  leLg* (W;)

In the operator language, the diagram B can be computed as

B=0"" (W,®1}) - (W, @1y)em .

20.3.7 Products of operators
Theorem 20.43

Op™™*(W,)---0p™ (W)= Y O0p"(B),
BEFDg(W,,...,W1)
(Qop* ™ (W,,) -+ - Op" " (W)Q) = > B.

BeFDg(W, ..., W1 )n1

Proof This is essentially a restatement of Thm. 9.36. O

This theorem describes a method of computing the Wick symbol of a product
of operators. We first draw the Friedrichs vertices in the appropriate order. Then
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we draw all possible diagrams by joining the legs. Next we evaluate the diagrams,
pairing the external legs with creation and annihilation operators. Finally, we
sum up all the contributions.

To compute the vacuum expectation value, we do the same steps, except that
we consider only diagrams without external legs.

20.4 Friedrichs diagrams and the scattering operator

In this section we describe how to use the formalism of Friedrichs diagrams to
compute two quantities useful for many-body quantum theory and quantum field
theory: the scattering operator and the energy shift. From the point of view of
diagrams, the new feature is the time label that will appear on each vertex. We
will always demand that the order of vertices is consistent with the order of time
labels.

Throughout the section we keep the terminology and notation of the previous
section.

20.4.1 Multiplication of Friedrichs diagrams

Definition 20.44 A pair consisting of a Friedrichs vertex andt € R will be called
a time-labeled Friedrichs vertex. It will be typically denoted W (t). A sequence
(Wn (tn)y..., W1 (tl)) of time-labeled Friedrichs vertices is time-ordered if t, >
N

We will consider only time-ordered sequences of time-labeled Friedrichs ver-
tices.

Definition 20.45 Consider two sequences of time-labeled Friedrichs vertices

(W (tn), ..., Wi(t1)) and (W), (th,), ..., W{(t})). Assume that none of t,, ...t

m
coincides with t), ..., t1. Let (Symin,--.,51) be the union of

{tn,...,;t1}, {t,,,....,th}

in decreasing order. Let (Qnim (Sman),---,Q1(s1)) be the time-ordered union of
(an(t’ﬂ)v""wl(tl))’ (W'r/n(t;n)avwll(tll))

Note that we obtain an identification of Lg™ (Wn (tn),..., W (tl)) and
Lg* (W (), ..., W{(t])) with complementary subsets of

m m

Lgi (Qner (Ser”), sy Ql (51)) .

Consider two Friedrichs diagrams

B e FDg(Wn (tn)> o ~aW1(t1))7 B € FDg(W,; (t;n,)a R Wl/(tll))
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BB' = B'B 18 defined as the Friedrichs diagram mn
FDg(Qn+m (Smtn )y @1 (31)) such that

Lg*(BB') = Lg*(B)ULg*(B'), Ln(BB')=Ln(B)ULn(B).

20.4.2 One-particle dynamics

Let h, be a self-adjoint operator on Z,. Set h:= @ h, as an operator on Z.

p€Pr
Let
Hy =dI'(h). (20.39)
Note that if W is a Wick monomial, then
etHoOp® e (W)e o = Op*™* (et o WemitHo) | (20.40)

where on the right we interpret W as a Wick operator.

Let B be a Friedrichs diagram and 1 € Lgi(B). Then hy will denote Ay, (1),
understood as an operator on Zj. Similarly, if £ = (17 107)) € Ln(B), and p =
pr(17) = pr(1'7)), then hy denotes h, understood as an operator from Z; -, to
ZIH) .

We will sometimes use the symbol Hj in a meaning slightly different from
(20.39).

Definition 20.46 Let L be a subset of Lg™ (B) ULg™ (B) ULn(B). Then Hy,

understood as an operator on the space ® Z;, will denote the operator Y hy.
teL =

20.4.3 Time-dependent Wick monomials

Suppose that R>t+— W;(t), j=1,...,r, are fermion-even Wick monomials
depending on time, each with a fixed multi-degree. We represent each W; with
a vertex, independent of the time ¢ but distinct for distinct indices j.

We modify the prescription (20.38).

Definition 20.47 The evaluation of the diagram B at times t¢,,...,t; € R is

B(ty,. .. ,t1) — H eltnr H e ttury

leLg, (B) leLg _(B)
1
S | R C L P | R ()
¢={1, 1_}eLn(B) j=n
In the operator language we have

B(tn, o 7t1) — @Eeitho (VVn (tn) ® ﬂ%)e_i(tn —tn—1)Ho |
xe =t (1, (1) @ T )e 1 Ho @,
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The following identity follows immediately from Thm. 20.43 and (20.40).
Theorem 20.48

eitn Ho Opa*,a (Wn (t"))e*i(tn —tn—1)Ho | o=i(ta—t1)Hy Opa*’a (Wl (tl))e*itl Hy

- > Op" " (B(ty,...,t1))-

BeFDg(W,, ,...,W})

20.4.4 Diagrams for the scattering operator

Set

Q) :=Wi(t) + -+ W, (),
H(t) :== Hy + A0p®"* (Q(t)),

where W;(t) are self-adjoint Wick monomials. Our main goal is to describe a
method of computing the scattering operator S for Hy and {H (t)},er (see Def.
20.25). Recall that

$ = Texp(-iA / Op" ™ (Q(1)) dt), (20.41)
where
Op"™ (Q(1)), = ¢ 0p" “ (Q(1)e ™ = Op*"* (Qi(1)),

with Qi(t) = () Q(E)T (1M,

We denote by W; the Friedrichs vertices in the sense of Def. 20.33 correspond-
ing to the Wick monomials W;(t). We also often need to use the corresponding
time-labeled vertices, which we denote W (t).

For brevity, we will denote by 20 the set of vertices {W1,..., W, }.

Definition 20.49 We introduce the notation

W), (20.42)
(nrveert) €4 Lo}

Note that FDg(W;, ---Wj,) are disjoint for distinct sequences (jy,...,j1) €
{1,...,r}". Therefore, the union in (20.42) involves disjoint sets.

Note also that when we evaluate a diagram in (20.42) on the monomials W;(¢;),
we obtain a function that depends on t,,...,t; € R.

The following theorem follows easily from (20.41) and Thm. 20.43:

Theorem 20.50

s=> > (—i/\)”/"~/Op”’*’“(B(tn,...,tl))dtn---dtl.

HZOBEFDg" {2} tp>->1
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The above theorem is an analog of Thm. 20.20 about the Gaussian integration.
Recall that Thm. 20.20 implies Thm. 20.21, the linked cluster theorem for the
Gaussian integration. Thm. 20.50 has an analogous consequence:

Theorem 20.51 (Linked cluster theorem for Friedrichs diagrams)

S = Op*° exp(Z Z (=iA)"

n=0 BEFDg, {W}con

X /”-/B(t,“...,tl)dtn"'dt1>

ty >-->1t

log (2/5Q) = Z > (—i/\)”’/---/B(tn,...,tl)dtn~-~dt1,

n=0 Be€FDg, {W}cu ty>->1t

S a*a = S\
GED) = Op exp(Z Z (—iX)

n=0 BEFDg, {Whink

o f it -an |

ty > >t

20.4.5 Stationary evaluation of a diagram

Let us now assume that the monomials W;(¢) = W; do not depend on time and
Q=W;+---+W,.Let H:= Hy+ AOp® "*(Q).
Let ¢ € C\spec (Hp).

Definition 20.52 For a diagram B € FDg(W,,,...,W1) and & € C we define
its stationary evaluation as

Bl¢] = 05 (W, @ 1) (61— Hy) ™' -+ (61— Hy) ™' (W) ® 1) 5.

20.4.6 Scattering operator for a time-independent Hamiltonian

The Gell-Mann—Low scattering operator
Sar = gi{r(l)(msjﬂ)—lse

is often used as the starting point for computations in quantum field theory. In
the following theorem we give two expressions for this operator: a time-dependent
one and a stationary one. Note that the division by (£2|S; Q) removes diagrams
without external legs, which if non-zero would give a divergent contribution.
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Theorem 20.53

Sar, = Op** eXp(Z Z (—i)\)”/~--/B(tn,...,t1)dtn -~-dt1>

n=0 BEFDg, {Whinx ty>->t

= Opa*’a exp <2i7r i Z A

n=0 BEFDg, {Whiux

x /5(H0 — €M) B¢ +i0]6(Hy — gﬂ)dg)) .

Proof The first identity follows from Thm. 20.51. Next we compute the inte-

grand using the operator interpretation of B(t,,...,t1):

Blty,...,t1) = Ope 10 (W, @ 1) e~ (=t -l ..

Xe_i(t2 —t1)Ho (I/V1 ® ‘ﬂ%) e~ it1Ho @g

- / 8(Hy — £1)dEO,; (W, @ ) e (oD ..

Xe—iuz(Ho —&1) (Wl Q ]1‘173) e~ il (Ho —511)@];7

where
Up =Ty —Tp—1,..., Uy :=1s —11.
Now
/---/B(tn,...,tl)dtn---dt1
by >t

:/dg/ dun~~/ dul/ dt,6(Hy — £1)05 (W, @ 1) e iun (Ho=¢1)
0 0 —00

% e—iuz(HU —f]l) (W1 ® ]11B) e—itl (H() —fﬂ)@g

= 27 (—i)" ! /dga(Ho — ED)OF, (W, ® 1) (Hy — (£ —i0)1) -+

. —1 _
x (Ho — (£ —i0)1) " (Wh ® 1) 6(Hy — £1)Oj,
where we have used the heuristic relations

+oo -1
/ el Ho=E0 gy = i(H, — (¢ +10)1) ",
0
0 . -
/ e (o=t gy — —i(H, — (£ —i0)1)

/eit(Ho—fﬂ)dt = 270 (Hy — £1).
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Figure 20.9 Goldstone diagram.

20.4.7 Goldstone theorem

Recall that E denotes the ground-state energy of H, that is, F := infspec H.
We assume that we can use the heuristic formula for the energy shift

E = lim i_lélog(MeitHe_”HOQ), (20.46)

t——o0

which follows from (20.23) if we note that Ey = 0. Then we can derive the fol-
lowing diagrammatic expansion for the energy E:

Theorem 20.54 (Goldstone theorem)
(o)
E=)" > A" B[0].
n=0 BEFDg, {W}cn

Proof As explained at the end of Subsect. 20.2.2, e e~ *H0 for ¢t < 0 is the
scattering operator for the time-dependent perturbation s — A g;(s)Op” **(Q).
Applying Thm. 20.51, we get

log(Q|eitHe_imU 0)

:i > (= // B(ty,...,t)dt, ---dt;.

n=0 BEFDg, {W}cu 0>ty > >t >t
So
it i log(Q|eitHe7itH° Q)
de
oo
=y > i(—iA)" // Bltn, ... ta, t)dt, - - dts.
n=0 BGFDg,, {Qn}cnl 0>t, >->ty>t

Now introduce

ug =1 —"tg,... Uy :=tp_1 — by
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Then ug, ..., u, <0, t<wug+---+u, <0, and

Bty,... tay,t) = Wye it (W, @171y -
x (W @ 13) e i =D Hoyy,
= Wy o (W, @ 17") -
x (Wo ® 13) 2 Hop,.

Then we replace t by —oco and evaluate the integral using the heuristic relation
(20.44). O

Note that an identical expansion can be derived from Sucher’s formula,

ieA
E = lim — 9, log(Q2|S.Q). 20.4
61\n{1)2aAog( |582) (20.47)

20.5 Feynman diagrams and vacuum expectation value

We continue to study diagrammatic expansions of many-body quantum physics
and quantum field theory. Until the end of this chapter we will, however, use
diagrams different from those of the previous two sections: the so-called Feyn-
man diagrams. They are closely related to the diagrams discussed in Sect.
20.1. The main topic of that section was integration w.r.t. a Gaussian mea-
sure. This includes in particular the Euclidean quantum field theory. We will
see that the formalism of Sect. 20.1 can be adapted to compute scattering
operators in many-body quantum theory and quantum field theory. In prac-
tice, Feynman diagrams are usually preferred over the Friedrichs diagrams of
Sects. 20.3 and 20.4. Their main advantages are a smaller number of diagrams
and, in the case of relativistic theories, manifest Lorentz covariance of each
diagram.

The main idea in passing from Friedrichs diagrams to Feynman diagrams con-
sists in combining the evolution going forwards and backwards in time in a single
line. It is done in a different way for neutral and charged particles. The starting
point of the formalism is usually a classical system, neutral or charged, described
by its dual phase space ),. The one-particle space Z, is introduced in the stan-
dard way, as explained in Chap. 18. In the case of neutral particles, the lines
with both time directions are combined into one unoriented line. In the case
of charged lines, one combines particles going forwards and anti-particles going
backwards in a single line decorated with an arrow pointing forwards. Similarly,
one combines particles going backwards and anti-particles going forwards in a
single line oriented backwards.

Our discussion of Feynman diagrams in many-body quantum physics and
quantum field theory is divided into two sections. In this section we will show how
to compute the vacuum expectation value of scattering operators. This method
can be interpreted as a special case of the formalism described in Sect. 20.1 on
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the Gaussian integration. In Sect. 20.6 we will describe how to compute scat-
tering operators. Diagrams needed for scattering operators have some features
of Friedrichs diagrams, since their external legs are divided into incoming and
outgoing ones.

Throughout this and the next section we will use the terminology and notation
of Sect. 20.1. In particular Pr will denote the set of particles, divided into four
parts Pr = Pry UPr; UPr, UPr};, as in Defs. 20.3 and 20.4. We will often write
I'1(2) instead of I'y(Z) and I'_1 (Z) instead of T, (Z).

Let us first describe the constructions related to the free dynamics. As usual,
it is convenient to describe separately the neutral and charged cases.

20.5.1 Free neutral particles

We assume that for every p € Pr" we are given a real dual phase space ),
equipped with a dynamics {ry ; }+er. More precisely,

(1) for p € Pry, ), is a symplectic vector space and {ry;}:cr is a stable sym-
plectic dynamics on J,;

(2) for p € Pry, Y, is a real Hilbert space and {r,}icr is a non-degenerate
orthogonal dynamics on J,.

We use the constructions described in Sect. 18.1. In particular, we write 7, ,; =
e’® , and construct the corresponding one-particle spaces Z, and the one-particle
Hamiltonians h, > 0. Recall that we have a natural decomposition C), = Z, @
Z,, and a,¢ = ih, @ (—ihy,). On the Fock space I, (Z,) we have the Hamiltonian
dI'(h,) and the fields ), 3 ¢ — ¢, (¢). We write ¢, ;(C) := ¢, (rp,—:()-

20.5.2 Free charged particles

We assume that for every ¢ € Pr° we are given a complex dual phase space ),
equipped with a dynamics {r,,};er. More precisely,

(1) for ¢ € Prg, Y, is a charged symplectic vector space and {ry };cr is a stable
charged symplectic dynamics;

(2) for g € Pry, Y, is a complex Hilbert space and {r,;};cr is a non-degenerate
unitary dynamics.

Following Sect 18.2, we write r,; = e’

one-particle spaces Z, and the one-particle Hamiltonians h, > 0. We have a
natural decomposition ), = y;ﬁ © YV, with by = b7 @ (=b,7). Then Z[*) =
Wb, Z7 = ?;*), so that Z, = Z(Y @ Z{7), hy = b @ b;”". On the Fock
space I'c, (Z,) we have the Hamiltonian dI'(h,) and the field V; > ¢ = 9 ().

We set o7 ,(C) := 9 (rg,—C)-

, and construct the corresponding
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20.5.3 Full Hilbert space
Definition 20.55 Sometimes, for brevity, we will write
Z= @ Z,
pEPr

for the total one-particle space.

Clearly, Z can be treated as a super-space with the grading e = @ ¢,1z,
pEPr

The Hilbert space of the system will be

I'(2) ~ @ T, (Z,).

The free Hamiltonian is

Hy= Y dI(h,).

pEPr

20.5.4 Wick’s time-ordered product

In the presence of fermionic degrees of freedom, it is convenient to modify the
definition of the time-ordered product. The so-called Dyson’s time-ordered prod-
uct, defined in Def. 20.22, will be replaced by Wick’s time-ordered product, which
takes into account the fermionic nature of some operators.

Definition 20.56 An operator B on I'(Z) is called bosonic, resp. fermionic if
B =T(e)BI'(¢), resp. B = —I'(¢)BT'(¢).

Definition 20.57 Let R >t Bi(t),...,Bi(t) be time-dependent operators,
each either bosonic or fermionic. Let t,,...,t1 € R be pairwise distinct. We
define Wick’s time-ordered product of By, (t,),..., By (t1) by

T(Bn (tn) - B (tl)) :=sgn, (0)By, (s, ) -+ By, (to, ),

where oy, ...,01 is a permutation of m,...,1 such that t, >--->1t,, and
sgn, (o) is the sign of the permutation of the fermionic elements among
B, (t,),...,Bi(t1).

20.5.5 Feynman 2-point functions: general remarks

An important ingredient of Feynman’s diagrammatic approach to quantum field
theory is the so-called Feynman’s 2-point functions. They are given by the vac-
uum expectation values of time-ordered products of fields. They will be discussed
in Subsects. 20.5.6-20.5.9. We will consider separately the neutral and charged
cases, which are very similar.

In practice, in the bosonic case one uses two kinds of 2-point functions:
the phase-space and the configuration space 2-point functions. We start with
a description of the phase space 2-point functions, since they can be discussed in
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a parallel way for bosons and fermions. However, in the bosonic case, one usu-
ally prefers to use 2-point configuration space functions. They will be discussed
separately in Subsects. 20.5.8 and 20.5.9. They are used in particular when the
interaction depends only on configuration space, which is often the case.

As usual, we will use t € R to denote the time variable. The variable £ € R
will have the meaning of energy.

20.5.6 Feynman’s phase space 2-point functions for
neutral particles

Let us start with neutral particles, bosonic or fermionic.

Definition 20.58 For p € Prl, resp. p € Pr, the corresponding Feynman’s
phase space 2-point function s the function with values in operators on C),
defined as
e ith, —ith,
Sp(t) :==0(t)e""7 1z £0(—t)e " ]lgp

Note that if (1,2 € ), then
G- Sy = (T (G4 (G1)0(62)) Q) -
The Fourier transform of .S, is
Sy (E) = (ih, —1E) 'z, F (<ih, —iE) 'z .
If p € Pr},, this simplifies to
$,(B) = (a, —iB)™".

On the space C°(R,CY,) we obtain a symmetric, resp. anti-symmetric form

f1-Spfo 5://f1(t1)'5p(t1 — t2) fa(ta)dt  dts.

20.5.7 Feynman’s phase space 2-point functions for
charged particles

Next we consider bosonic and fermionic charged particles.

Definition 20.59 For q € Pr{, resp. q € Pr the corresponding Feynman’s phase
space 2-point function is the function with values in operators on ), defined as

Sy(t) = 0B W) £ O(—H)e -
Note that if (1, (> € YV, then
G- Sy(t)C = (T (e (G5 (¢2))9) -

The Fourier transform of S, is

Sy(E) =i — E) M0 FiTN(=0 - E) T L.
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If ¢ € Pr, this simplifies to
Sy(B) =i""(b, — B)".

On the space C°(R, Y,) we obtain a Hermitian, resp. anti-Hermitian form

F1-Sf 3=//f1(t1)'5q(t1 — tg) fo(t2)dt, dts.

20.5.8 Feynman’s configuration space 2-point functions
for neutral bosons

Consider a neutral boson whose phase space is split into a configuration and
momentum space.
More precisely, suppose that p € Pr{ and 7, € L(}/,) satisfies

(TpY1) wWpTpla = —Y1-wpla, Y1,42 €V,
TpGp = —TpQyp, 7'1? =1y,.
Set
X, ={ye), : y=vy},
Ep = {y €Yy : Y= _y}7

and 1y, = 1(1y +7,).

In other words, 7, is a time reversal in the terminology of Def. 18.13, the
dynamics is time reversal invariant and A),, resp. 2, is the corresponding con-
figuration, resp. momentum space according to Subsect. 18.3.1, and 1y, is the
projection onto X}, along Z,. Following our standard notation, 1x, ¢ denotes the
linear extension of 1y, to the projection onto CX, along CZ,.

Definition 20.60 The configuration space Feynman’s 2-point function is the
function with values in operators on CX, defined as

Dp(t) = ]lXp 7@Sp(t>]lxp7(c,
where S, (t) was introduced in Def. 20.58.
Define
Tp = ]lzp ]1)(]7_(3

as a map 1}, : CA,, — Z,. Note that 7, ¢ is a unitary map transforming Z, onto
Z, and such that Tp,@hpT;é = h,,. Therefore,
D,(t) =Tyl T,
The Fourier transform of D, is
- 2h,

D,(E) =T*

Y h%Tp.
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On the space C®(R, CX,) we obtain a symmetric form,

91-Dpgo 5://91(t1)'Dp(t1 — t2)ga(t2)dt  dts.

20.5.9 Feynman’s configuration space 2-point functions
for charged bosons

Consider now a charged boson whose phase space is split into a configuration
and momentum space.
More precisely, let ¢ € Pr; and suppose that r, is a linear map on Y, satisfying

RqUl'WekgYa = —Y1WelY2, Y1,Y2 €V,

Kgby = —Kgbg, Iig =1y,.
Set
X, ={yed, : kKpy=y},
=, ={yed, : Ky =—y},
and Iy, := %(]ly + Kp). In other words, k, is an involutive Racah time reversal

in the terminology of Def. 18.38, the dynamics is Racah time reversal invariant
and X, resp. 2, is the configuration, resp. momentum space in the terminology
of Subsect. 18.3.4, and 1y, is the projection onto &), along =,.

Definition 20.61 The configuration space Feynman’s 2-point function is the
function with values in operators on X, defined as

Dy (t) := T, Sy (1),
where Sy (t) was introduced in Def. 20.58.
Define
Tq = ]ly,§+) lqu

as amap T, : Xy — V;*). Note that r, is a unitary map transforming Y{*’ onto
Y, and such that mqb51+>/i;1 = b,"). Therefore,

D,(t) = Trelh' T,
The Fourier transform of D, is

. 26, )
Dq(E) = Tq WT‘]

On the space C°(R, &,) we obtain a Hermitian form,

gl-Dqgg = //gl(t1)~Dq(t1 —tg)gg(tg)dtldtg.
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20.5.10 Wick quantization of Feynman polynomials

In the Feynman formalism, perturbations are described by polynomials on the
phase space.

Definition 20.62 We set
V= o ypa Vo= @ yq-

pePr® q€ePr°

A polynomial on' Y := CY* & Y & T will be called a Feynman polynomial.

Definition 20.63 We set
2= @ 2, Z2%:= o ZP.
pePr® qgePr

Clearly, C)" = 2" 0 2", Y = AN 25, y¢ = ZH) g 2. Therefore, we

can identify Z @ Z with ), where Z is defined in Def. 20.55. It is convenient to
introduce a special notation for this identification.

Definition 20.64 p: Z @ Z — Y denotes the map

n _(+) (=)
p(zlazl ) 21

BEE) = (074" 077, 5" @47).
Definition 20.65 Given a Feynman polynomial G € Pol(Y), we will write
Gop:=T(p")G, which is a polynomial in Pol(Z & Z). Its Wick quantization,
which is an operator on I'(Z), will have a special notation:

:G(¢, 9", )z == Op" (G 0 p). (20.48)

We will use the concept of the multi-degree introduced in Def. 20.5. The fol-
lowing definition is parallel to Def. 20.15:

Definition 20.66 Given a multi-degree m, we define

Pol™ (2) ;:( ® Pol™ (zp))
peP® r

o, g, P ) o g, Pl @)
rz)=( @ T(E)
®( ® Pl"(q”(zgﬂ))@( ® PT;7)(Z<T>)).
qeP1° ! g'epre ! 4

We also define
+ m() —
Hy o= % dD™ () + D A0 () + DA™ (),

pePr q€ePr° q'€Pr®
(+) m(7)
M= @ M ® M ® ® O
pePr q€ePre q'€Pr¢

as operators on I (Z).
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20.5.11 FEwvaluation of Feynman diagrams with no external legs
Let R > t— Fi(t),...,F,(t) be time-dependent Feynman monomials, each of a
constant multi-degree. Set

G(t) = () +--- + F (1),
H(t) i= Hy + NG(t, 6, 6", ).

Our aim is to compute the scattering operator
S = Texp(—i)\ / 0 G(t, ¢, 9%, 4p):e 10 dt). (20.49)

We use the terminology of Section 20.1. We will denote by Fi, ..., F,. distinct
vertices of the same multi-degree as the Feynman monomials Fi(t),..., F,(t).
For brevity, we will write U for the set {F,..., F,}.

Let (Fj,,...,Fj; ) be a sequence of Feynman vertices in U and let D be a
Feynman diagram over H}:n Fj;, with no external legs.

Definition 20.67 The evaluation of the diagram D at times t,,...,t; € R is
D(ty,...,t1)

- IT  VuStarq = tua) Va,
¢(={1,)’}€Ln, (D)

X H ng(_) Sk (tnr(kH)) - tnr yk +) H FL

k={k(+) k(=) }€Ln. (D) i=n

Remark 20.68 If for some particle p € Pry the polynomials F; depend only on
the configuration space, and not on the momentum space, which is often the case
for bosons, we can replace the phase space 2-point function S, by the configuration
space 2-point function D,.

20.5.12 Vacuum expectation value of the scattering operator

Feynman diagrams with no external legs can be used to compute the vacuum
expectation value of scattering operators. The following theorem is closely related
to Thm. 20.21.

Theorem 20.69

log (QSQ) = Z > (—i)\)"’/--~/D(tn,...,t1)dtn---dtl. (20.50)

n=0D€eDg, {V}cn

Proof We first obtain

(Q|SQ) = Z > (—i)\)"/-~-/D(tn,...,tl)dtn--~dt1. (20.51)

n=0DeDg, {T}n
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Following the arguments of Thm. 20.21, (20.51) equals

Cxp<§: > (—i/\)"/-~~/D(tn,...,t1)dt"--~dt1>

n=0 DEDg, {T}eni =

Here is a reformulation of (20.50) in terms of the Fourier transforms of the
diagrams:

log (S =>" > (=iN"D(0,...,0).

n=0 DeDg, {m}cnl

20.5.13 Energy shift

Assume now that F;(¢) = F; do not depend on time. Then the Fourier transform
D(r,,...,7) is supported in 7, + --- + 71 = 0 and one can write
D(ry,... 1) =278(T + -+ Tl)D[Tn, ceyT1s
where E[Tn, ...,71] is defined on 7, + -+ 7 = 0.
Let E be the ground-state energy of H. The (partly heuristic) arguments that
gave Thm. 20.54 can be used to give a formula for the energy shift in terms of

Feynman diagrams:

Theorem 20.70

E=)i(-iN" > D[o,...,0]
n=0 DeDg, {D}en
Proof The function D(t,,...,t1) is translation invariant; therefore it can be

written as
D(ty,....t1) = d(ty —t1,....ts — t1),
for some function d. We compute

.D(Tn,...,’l'l)
:/.../e_itnTn_"‘—itlTlD(tn’”.7t1)dtn...dtl

— / . /eis,,, Tp —++—iS9To —is] (Tl+...+7'n)d(8" s SQ)dSn . d81
=275(m + -+ Tl)d(Tn, CeyT2),
where we have used the substitution
sj:t]-—tl,anZQ, Slztl.
Thus, with 1 = —7,, — -+ - — 1,

D(ty,...,m) =d(Tn,. .., 7).
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Now we would like to use Sucher’s formula, (20.26). Terms in the expansion for
71eA0) log([S. Q) are of the form i(—i))" times

%ne/.../e—e(\tn\+...\t1|)D(t”,...,tl)dt” codty
1

_ §ne/efe(|sl+5n\+...+|51+52|+\51|)d(5n’ » '752)(1871 - dss.

We perform the integral in s;:

%716/6_6(‘51+5" |+~-+|s1+52|+\51|)d81

2

1
— = “rluldy = 1.
2n/e u

1
lim 7ne/e*f<|’-‘~|+""“‘>D(tn,,...,tl)dtn coedty
e\ 2

:/d(sn,...,SQ)dsn~~d52
=d(0,...,0) = D(0,...,0). 0

_ 7n/e—(|u+fs,,|+~~+\u+eszl+\u|)du

Therefore,

20.5.14 Polynomsials on path spaces

The formalism of Feynman diagrams can be interpreted to some extent as a
special case of the formalism described in Sect. 20.1. With this interpretation
we say that to obtain the vacuum expectation values of scattering operators we
need to integrate over various paths (trajectories).

Paths are functions of time with values in the phase space or the configuration
space. We equip path spaces with an appropriate (bilinear or sesquilinear) form
defined with the help of the Feynman propagator. In this way we obtain one of
the basic ingredients of the formalism of Gaussian integration described in Sect.
20.1: the family of spaces V, equipped with a form o,,.

We can distinguish two kinds of paths: phase space paths and configuration
space paths. Their names are quite awkward; therefore we will abbreviate them:
ph-paths for the former and c-paths for the latter.

Definition 20.71 (1) Let p € Pr" (p is a neutral particle). For the space of
corresponding smooth ph-paths we can take C°(R,Y),). It is equipped with
the form

[Spf = /f(t)-Sp(t — ) () dtdt.

Note that S, is symmetric, resp. anti-symmetric for p € Pry, resp. p € Prj.
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(2) Letq € Pr° (q is a charged particle). For the space of corresponding ph-paths
we can take CX(R,Y,). It is equipped with the form

7-S,9 = /@Sq (t —t")g'(t")dtdt'.

Note that S, is Hermitian, resp. anti-Hermitian for q € Prg, resp. p € Pry.

In the bosonic case, one often prefers to use paths with values in the configu-
ration space A&, rather than in the dual phase space },.

Definition 20.72 (1) Let p € Pry (p is a neutral boson). For the space of cor-
responding c-paths we can take CX (R, X,). It is equipped with the form

£-D,f = [ 1Dyt~ ¢)f (¢ )aedt.

Note that D, is symmetric.
(2) Let q € Pr{ (q is a charged boson). For the space of corresponding c-paths
we can take C°(R, X,). It is equipped with the form

g-Dug = [ GE-Di (¢ - )g ()t
Note that D, is Hermitian.

Remark 20.73 Note that most textbooks start their exposition of the path inte-
gration formalism from what we call configuration space paths for neutral bosons.

For a neutral particle p, the spaces (C*(R, Y,), S,) or (C®(R, X,), D, ) can be
treated as (V,, p) of Def. 20.12 (1). A similar remark applies to charged particles.
We introduce the space V as in Def. 20.12 (3) and note that V = C*(R,)),
where ) is defined as in Def. 20.62. We introduce the Wick transform, denoted
by double dots, the Gaussian integral, etc.

As discussed in Sect. 20.1, we would like to integrate “monomials of degree
m”, that is, m-linear symmetric or anti-symmetric functions on V. The space
of such monomials was denoted by Pol™ (V). In Sect. 20.1 we assumed that the
spaces V are finite-dimensional, which allowed us to ignore questions about their
topology. Path spaces are necessarily infinite-dimensional and difficulties arising
from various possible topologies show up. We will keep the notation Pol™ (V) for
monomials of degree m, but we need to make precise what we mean by this. To
reduce the complexity of notation, let us assume that we have a single species of
particles, which are neutral. They can be bosonic or fermionic. For definiteness,
we will use phase space paths.

A reasonable and sufficiently broad definition of Pol™ (V) is the following. We
say that P € Pol™ (V) if it is given by a family of distributions

m

P(-,...,) ED'(R™, (& YV)")
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with the appropriate symmetry or anti-symmetry properties, and its action on
fieCPR,Y),i=1,...,m,is

Plfiseeednd = [ [Pt ) o)t -

We will see that Pol™ (V) is large enough to contain objects that we need to
integrate when computing the scattering operator.

Note that our choice of spaces of the form C°(R,Y) for path spaces is to some
extent arbitrary. One could try to replace C° by some other class of functions.
Nevertheless, one really needs Pol™ (V) to be quite large, which is made possible
with this choice.

When we compute the scattering operator, a special role is played by the time
variable. In fact, in this context we often deal with monomials whose associ-
ated functions depend on a single time variable, as explained in the following
definition.

Definition 20.74 Let
R >t~ F(t) € Pol™(Y)

be a function. We will still denote by F the element of Pol™ (V) whose associated
distribution F(t1,... ty) 1

Pty ty) = /F(t)é(tl ) Bt — £)dt,

that 1is,

(Ffiye oy fm) = /F(t)fl(t),...,fm(t)dt.

20.5.15 Feynman formalism and Gaussian integration

Let Fi(t),..., F.(t), G(t) be as in Subsect. 20.5.11. Note that the function ¢ —
G(t) takes values in Pol()). We will denote by G its interpretation as an element
of Pol(V), using the convention in Def. 20.74.

We define the scattering operator S as in (20.49). The following theorem shows
that one can reduce computations in quantum field theory to Gaussian integrals
on appropriate path spaces. The theorem follows from a comparison of the for-
mulas for the evaluation of diagrams in Defs. 20.17, 20.67, using the covariance
of Defs. 20.71 or 20.72.

Theorem 20.75 We have the following identity:
(QISQ) = /e“’“, (20.52)

where the right hand side is given by the formalism of Sect. 20.1.

https://doi.org/10.1017/9781009290876.021 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290876.021

600 Diagrammatics

20.6 Feynman diagrams and the scattering operator

In this section we describe how to modify the formalism of the previous section
to compute the scattering operator. Diagrams for the scattering operator will
have external legs of two kinds: incoming and outgoing, similarly to Friedrichs
diagrams. Vertices, however, will be typical for Feynman diagrams — diagrams
with a different order of time labels will not be distinguished.

Throughout this section we keep the terminology and notation of the previ-
ous section. In particular, let R 5 ¢t — F(t),..., F,(t) be time-dependent Feyn-
man monomials, each of a constant multi-degree with the corresponding vertices
denoted by Fi,..., F.. U denotes the set {F},..., F,}. We set

Git):=F @)+ -+ F.(b),
and perturb Hy by :G(¢, ¢,v*,1):. Our aim is to compute the scattering operator

S = Texp(—i)\ / et .G(t, ¢, ", 4p):e D dt). (20.53)

20.6.1 Feynman diagrams with external legs

We assume that Fj,, i =n,...,1, is a sequence in U. Let D be a Feynman
diagram over H}:n F;, .
Definition 20.76 Let i =n,...,1. The multi-degree of D at the ith vertex,
denoted m; (D), is defined as

my, (D) := #Lg, (D) NLg,(F},), p € Pry,

Dt

m( ¥ (D) == #Lg* (D) NLg,® (F},), q € Pre.

q.t
The detailed multi-degree of D is the sequence m(D) = (m, (D),...,m1(D)).

Note that the diagram has no legs iff all entries of m(D) are zero.

Recall that in Def. 20.67 we defined the evaluation of a Feynman diagram
without external legs. We would like to generalize this definition to all Feynman
diagrams. In the literature one can find two conventions for evaluation of such
diagrams: either one includes the propagators for external legs or not. In the
definition below we adopt the latter convention.

Definition 20.77 The amputated evaluation of the diagram D at times
1
tn,...,t1 € Ris an element of ® 7 (P)(Y) given by

DM (4, 1)
1 )
= (*1)\)“ ® @m,(D)# H Vy, Sg(tnr(l) — tm.(y))vyl, (2054)

= (={1LV}eLn" (D)

1
X H V;Uk(,) Sk (t111'(k(+>) - tnr(k(*)))vyku) H F‘i (ti)'

rk={k(+) k(=) }€Ln°(D)
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out in

Figure 20.11 Scattering-type Feynman diagram.

Note that if D has no legs, then (20.54) coincides with D(%,,...,t;) defined
in Def. 20.67.

The precise interpretation of (20.54) is similar to that of (20.12); see the dis-
cussion after Def. 20.17. The main difference is that we symmetrize or anti-
symmetrize only within each vertex.

20.6.2 Feynman diagrams with incoming and
outgoing external legs

Let m be a multi-degree. Recall the identification p : Z ® Z — ) defined in Sub-
sect. 20.5.10. Clearly, we have the identification
I'(p)* : Pol™ (YY) — Pol™ (Z @ 2)
~ @ Pol" (Z)®@Pol" (2).

mt+m-=m

If m = (my,...,m,) is a sequence of multi-degrees, then this yields

,élr(p)# : _él Pol™ (V) — -iél Pol” (Z & 2Z)

1= 1= 1=

1 _ _
~ @&  ® Pol™ (Z)®Pol™ (Z). (20.55)

m* +m-=mi=n
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Let D*™P(t,,...,t1) be the evaluation of a Feynman diagram with external
legs, which, following Def. 20.65, is an element of ® Pol™ ()). By (20.55), we
i=1
have a unique decomposition

9 T(p)* D™ (... 1) = DY™P (4. 1), (20.56
B L) D™ (it = Y DI (e ). (2056)

mt+m==m(D)

7

Here, Diiﬁlfm, (tn,...,t1) are elements of

1 + —
® Pol™ (Z) @ Pol™i (Z),
=n

m(D) is the detailed multi-degree of D and m*,m~ sum up to the detailed
multi-degree of D. In other words,

+
m, (D) =m, +m,;, pe€Pr",
(%) _ (Bt (£) c
my (D) = m,; +m; . qE€Pr

We also set

1
m*[ =" m.

i=n

Definition 20.78 The amputated evaluation of D with m™ incoming and m™
outgoing legs at times t,,...,t1 € R, denoted D™"P _(t,,...,t1), is defined by
(20.56).

Note that Dzr}fjm, (tn,...,t1) can be interpreted as an operator in

1 _ 1 .
B( @ I (2), ® I (2)),

i=n =
In what follows we stick to this interpretation.
Definition 20.79 The scattering evaluation of D with m~ incoming and m™
outgoing legs at times t,,...,t; € R is an operator in B(I‘MW(Z),F'm+ 1(2))
defined by
D3t (tn, ..., t)

m*t,m=

it H 1 —itH
m/ pamp (tna--~7t1)_® e m ] ®|ﬂ |

m* . m=
_ = i=n

— @lm"| é, e

i=n

Remark 20.80 The fact that a single Feynman diagram gives rise to many
terms in the scattering operator and each of them is an analytic continuation of
the others is called the crossing symmetry.

20.6.3 Scattering operator and Feynman diagrams

Here is the analog of Thm. 20.51 in the formalism of Feynman diagrams:
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Theorem 20.81

=3 > (=wropt
"=0 pepg, {v}

IIL +m " =m(

(/ / DIty ty)dy, --~dt1>

= Op*™° (exp <Z Z (—in)"
n=0 DEDg” {m}coll

m*+m”=m(D)

/ /D;iitm ...,tl)dtn-~-dt1>>

S 3 n
OED) = Op* (exp <Z Z (=iN)

DeDg, {m}Cl]l

m* +m~=m(D)

/ /D/br?it,m '"""’tl)dt” dt1>>

Here is a reformulation of the last formula in terms of Fourier transforms of
the diagrams:

S a”a = _
Qs = Op"’ (exp(Z Z (—iN)" / /d@j defde, - dgg

n=0
DeDg, {Dhink
m*+m " =m(D)

X0 | & §(H,. — & MDD (6 & & )

mt m—
i=n

x & 6(H - —giﬂ)@ﬂ)).
n=1 i

Note that if the ith vertex has no incoming lines, then H, - = 0. Therefore, the

delta function §(H - — & 1) sets { = 0. Hence, we can drop the variable &~
altogether from the formula. A similar remark concerns outgoing lines.

20.6.4 Gell-Mann—Low scattering operator for
time-independent perturbations

Assume now that F;(t) = F; do not depend on time. Then the Fourier transform
of D*P (7, ... 7) is supported in 7, + --- + 7 = 0, and one can write

D™ (., 71) = 20(7 + - + 7D s,

where D*™P[r,, ..., 7] is defined on 7, +--- + 7 = 0.
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Usually, the standard scattering operator does not exist; instead one can define
the Gell-Mann-Low scattering operator:

Ser = Op™ ™ (eXP (Z Z (—=iA)"
n=0

DeDg, {Bhink

m*+m”=m(D)

x [ [dg gt agy g € - -6
<Ol & §(H, . — MDY [ef —&r,. & — &)

i=n

1=n

x ® 8(H,, - — gin)el'M)).

20.6.5 Friedrichs diagrams as Feynman diagrams

It is possible to interpret Friedrichs diagrams as a kind of Feynman diagrams. In
fact, suppose we use the framework of Sects. 20.3 and 20.4. All the particles from
Pr we interpret as charged particles, renaming Z,, ¢ € Pr, as ),. In the bosonic
case, we use the charged symplectic form equal to i times the scalar product.
In the fermionic case, we just keep the scalar product. Note that there are no
anti-particles: J), = Y. Therefore, the Feynman propagator is zero for negative
times. We write the scattering operator using Wick’s chronological product.

Note that the above trick, even if somewhat artificial, can be used to reduce
the theory of Friedrichs diagrams to Feynman diagrams, which gives in particular
a convenient way to show the linked cluster theorem in the context of Friedrichs
diagrams.

20.7 Notes

A description of some elements of the diagram formalism can be found in any
textbook on quantum field theory, e.g. Schweber (1962), Weinberg (1995) or
Srednicki (2007).

A mathematical exposition of what we call the Friedrichs diagrams is contained
in the books by Friedrichs (1963) and by Hepp (1969). Hepp describes and proves
the linked cluster theorem.

The diagram formalism is also one of the basic tools of non-relativistic many-
body quantum theory. Therefore, its exposition can be found in many textbooks
on this subject, such as the monograph of Fetter—Walecka (1971).

A book that specializes in the topic of Feynman diagrams was written by
Mattuck (1967).
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