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THE MINIMAL PRIME SPECTRUM OF A
COMMUTATIVE RING

M. HOCHSTER

0. Introduction. We call a topological space X minspectral if it is homeo-
morphic to the space .#(4) of minimal prime ideals of a commutative ring 4
in the usual (hull-kernel or Zariski) topology (see [2, p. 111]). Note that if
A has an identity, .#(4) is a subspace of Spec 4 (as defined in [1, p. 124]). It
is well known that a minspectral space is Hausdorff and has a clopen basis
(and hence is completely regular). We give here a topological characterization
of the minspectral spaces, and we show that all minspectral spaces can actually
be obtained from rings with identity and thatopen (but not closed) subspaces of
minspectral spacesare minspectral (Theorem 1, Proposition 5). In the metrizable
case, we prove, surprisingly, that a minspectral space has a metric in which it is
complete (is an absolute Gs; see [4, p. 207, K]), and we give an analogous
result in the general case. If X is metrizable and Ind X = 0 (disjoint closed
sets have disjoint clopen neighbourhoods) we show that X is minspectral if
and only if it has a metric in which it is complete. If X is separable and metriz-
able, ind X = 0 (X has a basis of clopen sets) implies that Ind X = 0, but
this is false in general, even if X has a metric in which it is complete [5].

1. The characterization. By an m-subbasis (respectively, an m-basts)
B for a Hausdorff space X we mean a subbasis (respectively, a basis) for the
open sets such that each subset of B with the FIP (finite intersection prop-
erty) intersects. Thus, 8 is an m-subbasis if and only if B is a subbasis and
at the same time a subbasis for the closed sets of a (usually different) quasi-
compact topology on X (we reserve the term compact for quasicompact
Hausdorff spaces); this is immediate from the Alexander Subbasis Theorem
[4, p. 139]. We call a basis B full if §, S € B and B is closed under finite
union and intersection.

If R is a commutative ring with identity, let £ (R) be the set of quasi-
compact open subspaces of Spec R.

ProrosiTION 1. The following conditions on a basis B for a Hausdorff space
X are equivalent.

1) B s a full m-basis.

(2) There is a commutative ring with identity R and a surjective homeomor-
phism h: X — M (R) C Spec R such that h induces a bijection of B onto
@ = 10N MR): Q€ 2(R)}.
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Proof. Suppose that R, & are given. It suffices to show that the given basis
for A (R) is a full m-basis. It is well known that £ (R) is a full basis for
Spec R, and so ¥ is a full basis for #(R). Now let {Q\}xea be a family of
sets in Z(R) such that {O\ M #(R)}rea has the FIP. Then {OQ\}xca has the
FIP, and by [3, Theorem 1], MyQx = @. Let p € MyQOr. Choose p' C p mini-
mal. Since Q, is open, p € Q) implies that p’ € Qy, and so p’ € Ox M\ A (R).
Hence, p' € My(Oh N A (R)), as required.

Now suppose that X and a full m-basis 8 are given. Let W = {0, 1} with
the topology given by the set of open sets = {@, {0}, {0, 1}}. We assume
that one copy W5 of W is given for each B € B, and we let fz be the con-
tinuous map from X to W defined by fp(x) = 0if x € B, fg(x) = 1if x ¢ B.
We then get a continuous map f = Hgenfp from X to HgpWp = P. We
give P two topologies: the product topology coming from the topology 7~
specified before, which we call the weak topology, and the product topology
obtained by letting each W35 have the discrete topology, which we call the
strong topology. If no specification is made, weak is assumed.

Let Y be the strong closure of f(X) in P. Topologize ¥ by giving it the
inherited weak topology from P. By [3, Proposition 9], V is speciral, i.e.,
there is a commutative ring R with identity such that ¥ is homeomorphic
to Spec R. We write p, for the prime of R corresponding to a given y € Y.
Given y, ' € ¥, the following are equivalent: (1) ¥" € Cly{y}, (2) for every
open (respectively, quasicompact open) neighbourhood U of y’, y € U, and
(3) p, C p,r. The subspace A (R) corresponds to

YVo=1{y e V:y e Cl{y} implies v = y}.

Now, since 8B is a basis for the Hausdorff space X, the maps f5 separate
points and closed sets, and hence f is an embedding of X into P (with the
weak topology). We now want to show that f(X) = ¥,. We first prove that
for each y € ¥ there is an x € X such that y € Cly{f(x)}. Let ¥ € ¥ be
given. Let 8, = {B € 8B: fz(y) = 0}. A basis for the weak neighbourhoods
of ¥ in P is given by the sets of the form U(D) = {z € P: f5(z) = 0 for
each D € D}, where D runs through the finite subsets of B,. It suffices to
show that Ng(U(D) N f(X)) = 0; for if f(x) is in the intersection, then
y € Cl{f(x)}. This is equivalent to showing that Ngf~1(U(D)) = 0. But
fFHUD)) = NpepD. Since each D € B and a family of sets in B with the
FIP intersects, we need only show thatif D4, ..., D C B, then N, (M pep, D)
# , where 1 = 7 < k. But y is in the strong closure of f(X) in P and the
set M (Mpep, D) = N(ND,) = {2 € P:fp(z) =0 for each D ¢ U, T} is
an open neighbourhood of y in the strong topology on P’; hence, it meets
f(X). But this says precisely that the intersection of the sets in \U,D, is not
empty.

We can now prove that f(X) = V. Given vy € Yy, choose x ¢ X such
that v € Cly{f(x)}. By definition of Y, v = f(x). Thus, ¥, C f(X). Now
let x € X be given. For some y € ¥y, f(x) € Cly{y}. We also know that
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y = f(x’) for some &’ € X. Since f induces a homeomorphism of X onto f(X),
and f(x) € Cle{f(x")} = f(x) € Clyx{f(x')}, we must have x € Clg{x'}.
Since X is Hausdorff, x = &" and f(x) =y € V.

Thus, f induces a homeomorphism of X onto Y. It remains to show that
this establishes a bijective correspondence between 6 and {Q M Yy: Q quasi-
compact open in Y}. To see this, first note that for a given B € B,
fB) =1y € Yo fa(y) =0} = (0N Y)Yy, where Qp = {z € P: fz(z) = 0}
is quasicompact open in P, and Qz M Y is quasicompact open in Y. The sets
Qs,MN ... M Qp, M Y are a basis for ¥, and hence every quasicompact open
subset of ¥ is a finite union of sets of this form. The inverse image of such
a set is a finite union of finite intersections of sets B; € B, and, since B is full,
is in B.

If B is a subbasis for X, call the topology which has ¥ as a subbasis for
its closed sets the dual topology on X determined by B. Any subbasis B gener-
ates a least full basis containing it, consisting of @, X, and the finite unions
of finite intersections of sets in 8. This full basis and B obviously determine
the same dual topology.

ProrositioN 2. Let X be a Hausdorff space. Then:

(1) If B is an m-subbasis, the full basis generated by B is an m-basis.

(2) If B is an m-subbasis, any subset of B which is a subbasis is an m-sub-
basts.

(3) If B is an m-subbasis (respectively m-basts, full m-basis) for X, and
YV C X is closed in the dual topology determined by B, then {BM Y. B € B}
is an m-subbasis (respectively m-basis, full m-basis) for Y.

4) If B is an m-basis for X and U C X s open, then {B € B: B C U} s
an m-basis for U.

(5) If B is an m-subbasis for X, each set in B is clopen.

Proof. (1) The dual topologies involved are equal, and hence quasicom-
pact or not, alike.

(2) This is obvious.

(3) Y is quasicompact in the inherited dual topology determined by
{BCY:B¢c 9}

(4) This is obvious.

(5) Suppose that p € ClgB. Let 8, = {C € B: p € C}. For each finite
subset {C1, ..., Ci} of By, (CiN...N\C,)MN B =0, since C;N\...N Cy
is a neighbourhood of p. Hence, (M¢es,C) M B = @. But Meen,C = {p}.
Therefore, p € B.

THEOREM 1. The following conditions on o Hausdorff space X are equivalent.

(1) X is minspectral, i.e., X is homeomorphic to the space of minimal primes
M (A) for some commutative ring A.

(2) X s homeomorphic to the space of minimal primes in some commutative
ring R with identity.

https://doi.org/10.4153/CJM-1971-083-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-083-8

752 M. HOCHSTER

(3) X has an m-subbasis.
(4) X has a full m-basis.

Proof. (2) & (4) and (4) & (3) are obvious from Propositions (1) and
(2), respectively, while (2) = (1) is clear. Now assume (1). By [2, Corollary
2.11, p. 115], X is the result of deleting one point from the space of minimal
primes of a commutative ring R with identity, and hence is open in a space
satisfying (2). It is consequently open in a space satisfying (4), and there-
fore satisfies (4) itself.

2. Building minspectral spaces. In this section, all spaces are assumed
Hausdorft.

ProrositioN 3. Locally compact totally disconnected spaces are minspectral.
Proof. The compact open subsets are an m-basis.

A metric space (X, d) is called ultrametric (and d is called an ultrametric)
if for all x,y, 2 € X, d(x,y) < max {d(x, 2), d(y, 2)} with equality unless
d(x,2) = d(y,2).

ProrposiTioN 4. If X has an ultrametric d in which it is complete, X is min-
spectral.

Proof. The open balls of radius 27", # a nonnegative integer, form an m-
basis. To see this, notice that two such balls are either disjoint, or else one
is contained in the other. Given a family with the FIP, consider two cases. If
the radii are bounded away from zero, let B be a ball with minimum radius
in the family. It is evident that B is the intersection. If not, let {B,} be a
decreasing sequence of balls in the family with radius approaching zero. The
B/'s intersect in a single point, p, by completeness. Every B in the family
contains every B; of smaller radius, and hence contains .

If Ind X = 0 and X is metrizable the condition is also necessary (see § 4).

PRroPOSITION 5. Arbitrary products and arbitrary topological unions of min-
spectral spaces are minspectral. Open subspaces of minspectral spaces are min-
spectral.

Proof. Choose an m-basis for each factor of the product. The subproducts
in which all but finitely many factors equal the whole space and each of the
finitely many comes from the m-basis for that space constitute an m-basis
for the product. It is clear that they give a basis, and that they are a sub-
basis for the closed sets when the product of the dual topologies is imposed.
By the Tychonoff Theorem, the product of the dual topologies is quasicom-
pact.

As for unions, it is clear that the union of m-bases for the various spaces
in the union will be an m-basis for the union.

The last statement is part of Proposition 2.
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ProPOSITION 6. Let { Xa}aea be a family of minspectral spaces, let By be a full
m-basis for X, each N € A, let ¥V be a minspectral space with m-basis €, and
suppose that Y is contained as a closed subset in each Xy, but that the sets
{Xa — Y: N\ € A} are mutually disjoint. Assume, moreover, that for each C ¢ €,
each N € A, and each Xx-open neighbourhood U of C, there is a B € By such
that BC Uand BN'Y = C (if Y is locally compact, we can choose € so that
each C is compact, and the existence of such a B follows automatically). Finally,
suppose that for all but possibly finitely many N € A, Y is a retract of an Xx-open
neighbourhood U; say i is the retraction. Topologize \\X» in the obvious way,
t.e., first take the topological union, and then form a quotient space in which the
copies of YV are identified. Then the union is a minspectral space.

Proof. We first prove the parenthetical remark. By passing to a possibly
smaller U, we can assume that U /M Y = C. For each ¢ € C, we can choose
B, € B, such that ¢ € B, C U. Since C is compact, some finite set of B,’s
covers C, and their union is the required B.

The theorem itself reduces to two cases: the case where Y is a retract of an
Xy-open neighbourhood for all A € A, and the case where there are only two
spaces, for we can ‘‘add on’ the exceptional spaces one at a time. In the
first case we get an m-basis for the union which consists of all sets in each
P, which are contained in X — Y, and for each C € ¥, all sets of the form
U\B\, where for each \, By € 8y and By C n~1(C) (an open neighbourhood
of Cin U)). Consider a family © of sets in the specified basis with the FIP.
If one of these sets is contained in Xy — Y for some )\, the intersections of
the sets in the family with this one form a subfamily of 8B, with the FIP,
and the intersection is nonempty. Otherwise, {D M V: D € D} is a family
of sets in & and has the FIP. For suppose p € D1\ ...MN D;. Then p € Uy
for some N and n(p) € . NY)N...N\N D, NY).

If there are only two spaces X1, X,, we get an m-basis for X; \U X, which
consists of all sets in each By which are contained in X, — Y, A = 1, 2, and
all sets of the form B, \U B,, where By € Sy and By Y, BN\ YV € . The
verification that this is an m-basis is completely straightforward.

Note that if ¥ consists of just one point (or even finitely many), the re-
traction hypothesis is automatic, so that a union of minspectral spaces with
basepoint, identifying the basepoints, is always minspectral.

Since discrete spaces are locally compact, any product of discrete spaces is
minspectral. The space of irrationals is homeomorphic to a countable infinite
product of countable infinite discrete spaces. Hence, the space of irrationals
is minspectral. We shall prove later that a minspectral metrizable space has
a metric in which it is complete, so that the space Q of rationals is not. It is
possible to embed Q as a closed set in a product of 2%¢ copies of the irrationals
(see § 5), and hence in a product of 2¥° copies of a countable infinite discrete
space. Hence, closed subspaces of minspectral spaces need not be minspectral.
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3. Gs and related properties. Minspectral spaces have a property which
in the metrizable case implies that they are absolute Gs's. To formulate the
appropriate notion, we first need to introduce some notation and terminology.
In the sequel, we assume that all given spaces are completely regular Haus-
dorff spaces.

If X is any space, we write Ax (or simply A) for the diagonal in X X X,
and if ¥ C X let #%(Y) (or simply A4 (Y)) be the family of X-open neigh-
bourhoods of V. If x € X — ClgY, we call {x} X ClyY and Cly% X {x} the
slits of x and V. A directed family U C Axxx(A) will be called Y-admissible
if (1) for each x ¢ ClyY there is a U € U such that

m(UN ({x} X Cly V)N (UN (ClyV X {x})) = 0,

where w1, w2 are the product projections X X X — X, or, in other words,
there is a U € U such that for all ¥y € ClyY and for each x ¢ ClyY either
(x,y) or (y,«) is notin U, and (2) forall y € YV and for all x € ClyV — 7,
there is a U € U such that either (x,y) ¢ U or (y,x) ¢ U.

We say that ¥V C X is a G in X if there is an order-preserving function
¢: N xux (A) = N5 (¥) (which we call a Ge-map for ¥) such that for each
V-admissible I C A xxx (), Ny (U) = 7.

Let %5 be the family of symmetric neighbourhoods of A in X X X.
U C Y5 is Y-admissible if and only if for all x € C1 Y there is a U ¢ U
such that U is disjoint from one (= both) slits determined by x and Y,
and forally € Yand x € C1 Y — 7V, there is a U € U such that (x, v) ¢ U
(& (v,x) ¢ U). Suppose that ¢: Py — A5 (Y) is order-preserving and that
for each Y-admissible family I C %x, Nyeugp (U) = Y. Let p be the retraction
of N ywx(A) onto ¥y defined by p(U) = {(x,x"): (x,x’) and (x’, x) are both
in U}. p is order-preserving, p(U) C U for all U, and p takes Y-admissible
families into Y-admissible families. It easily follows that ¢p is a G.-map for
Y. Conversely, if ¢ is a Ge-map for ¥, then ¢|.#x retains the properties listed
above.

Hence, in asking whether there is a Ge-map for Y, we might as well restrict
attention to .¥y. We refer to maps defined only on .¥x as G.-maps, too. We
rarely bother to specify which kind we mean, since it is generally irrelevant.
The context should make it clear if one kind as opposed to the other is
required.

The condition that I C Sy be YV-admissible asserts that certain pointsand
slits, disjoint from A, must be disjoint from some set in UI. Hence I C Y
is Y-admissible for all ¥ C X if and only if for any slit {x} X Cl1 YV, x ¢ C1 ¥,
some U € U is disjoint from it. In particular, if U is a neighbourhood basis
for A, 1 is Y-admissible for all ¥ C X.

ProrositioN 7. The G, sets in X are closed under finite union and inter-
section and contain all open sets and all closed sets. If A has a countable neigh-

bourhood basis, and, in particular, if X is a metrizable space, then every G in
X iS a Gs.
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Proof. Let ¢1, ¢2 be Gemaps for ¥y, Vo Then U ¢,(U) U ¢5(U) (re-
spectively, U ¢:(U) N ¢2(U)) is a Gemap for VU ¥, (respectively,
YiNY,).

If Visopenin X, ¢: U— Y, all U, is a Ge-map for V.

If YV is closed in X, we define ¢ as follows: ¢(U) = \J{V open in X:
VY0 and V X V C U}. Now suppose that 11 is Y-admissible. We
must show that the intersection of the sets ¢ (U) is Y. Suppose thatx € X —7.
Choose U € U disjoint from one of the slits of x and V. Then it is easy to
see that x ¢ ¢ (U).

If W= {Uy U,, ...} is a neighbourhood basis for A, and ¢ is a G.-map
for V, then ¥ = M,¢(U,).

We call V an absolute G. if for any space X in which it is embedded, Y is
a G.in X. Evidently, if a metrizable space is an absolute G, it is an absolute
Gs, and has a metric in which it is complete.

ProrositioN 8. A mainspectral space Y 1s an absolute G..

Proof. Let B be an m-basis for V. Define ¢: ¥x — A (Y) thus: for each
U,let p1(U) = U{Vopenin X: VN Y EPBand VX V C Ul, and let ¢,
be any Gemap for Cl V. Then let ¢ be defined by ¢(U) = ¢:(U) N ¢,(U),
all U. We shall show that ¢ is a Gemap for V. First note thatif y € Y, we
can choose Vi containing y and open in X such that V; X Vi C U. We can
choose B € B containing y and contained in V. Finally, we can choose
V C Vi open such that V'Y = B. We then have y € V, VN Y = B,
and VX VC U, soy € ¢(U) for all U.

It is clear that ¢ is order-preserving. Now suppose that 1 is Y-admissible
and that x € Ny (U). Suppose that x ¢ Y. The presence of ¢, guarantees
that x € Cl Y. For each U, we can choose V' open in X such that x € Vy,
VoY =By€ 9B, and Vy X Vy C U. Given Uy, ..., U, € U, NBy, #9,
because MVy, is a neighbourhood of x in X, x € C1Y, and therefore
0= YN\ (NVy)=MNBy, Since {Bylya has the FIP, we can choose
y € NyeuBy. Sincey € Y, x € C1Y — Y, for some U € U, (x,y) ¢ U. Since
x,v € Vy, this contradicts Vy X Vi C U.

CoROLLARY. If Y s metrizable and minspectral, then Y is an absolute Gs;
equivalently, Y has o metric in which il is complete.

4. The metrizable case. We have very satisfactory results in the metriz-
able case if Ind X = 0. We first collect the basic facts about metrizable
spaces X with Ind X = 0. Call a metric space isosceles if for all x,y,2 € X
at least two of the distances d(x, v), d(x, 2), d(y, z) are equal.

ProrositioN 9. The following conditions on o space X are equivalent.
(1) There is a metric d for X such that (X, d) s ultrametric (i.e., X is ultra-
metrizable).
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(2) There is a metric d for X such that (X, d) is isosceles.

(3) X 4s metrizable and Ind X = 0 (disjoint closed sets have disjoint clopen
neighbourhoods).

(4) X is metrizable and every open set is a-clopen (a countable union of clopen
sets).

(5) X has a o-discrete basis consisting of clopen sets.

(6) X can be embedded in a countable product of discrete spaces.

Proof. We show (6) = (1) = (2) = (3) = (4) = (5) = (6). Consider a
countable product II,X, of discrete spaces, z = 1,2,... . Given x, y in the
product, say ¥ = (x1, %2, -..), ¥ = (¥, ¥z, ...), £ ¥ v, define d(x,y) = 27",
where # = min{k: x; # v,;}. [t is easy to see that d is an ultrametric, and its
restrictions give ultrametrics for the subspaces of the product. Thus,
(6) = (1). (1) = (2) is obvious. Now, if (X,d) is isosceles and V,Z C X
are closed and disjoint, it is easy to check that {x € X:d(x, V) < d(x, Z)}
is a clopen neighbourhood of ¥ disjoint from Z. Hence, (2) = (3). Assume
(3), and let U be any open set in X. For each #, let U, be the complement of
the union of the open balls of radius 1/% centered at points not in U, and let
V, be a clopen set containing U, and disjoint from X — U. Then U = U, V,.
Now assume (4). Since X is metrizable, it has a o-discrete basis B = U, B,
where each B, is a discrete family of open sets. For each open set B in X, let
B=\U, B, be an expression for B as a union of clopen sets, where m runs
through the positive integers. For each n, m let 8, = {B,: B € 8,}. Then
the union of the B,,, is clearly a o-discrete basis consisting of clopen sets.

Finally, let B, be a discrete family of clopen sets for each positive integer
n such that \U, 8, is a basis. Let C, = X — (Upgeg,B). Then C, is clopen,
since B, is a locally finite family of clopen sets, and %, = 8, \J {C,} is a
partition of X into clopen sets, and hence corresponds to a mapping g, of X
onto a discrete space (the quotient). Since ¥ is a basis, the mappings g,
separate points and closed sets, so that ILg, embeds X in a countable pro-
duct of discrete spaces.

We need a couple of topological lemmas now.

LemMa 1. Let { Va}aea be a family of subspaces of X. Let ¥ = (M\Y. Let
N Y — Y be the inclusion map. Then f = IL\fy embeds Y as a closed set in
I, V5.

The proof is left to the reader.

LEmMA 2. Let X be a countable product of discrete spaces and U C X an
open set. Then U is a disjoint (topological) union of countable products of dis-
crete spaces, and conseqeuntly can be embedded as a closed set in a countable
product of discrete spaces.

Proof. Let X = ILLX,, n = 1,2,... . For each initial segment {1, ..., k}
of the positive integers and each selection of points x; € X;, 1 < ¢ = &, the
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set Vxy, ..., x) = {x1} X ... X {x} X X, is clopen, and these sets
are a basis. Consider the set S of sequences (x) = (xi,...,%;) such that
V(x) C Ubut Y(xy, ..., xx-1) & U (if the sequence has no terms, ¥ (x) =X).
It is easy to see that U = U5V (x) expresses U as a disjoint (topological)
union of countable products of discrete spaces. The rest is left to the reader.

THEOREM 2. The following conditions on a space X are equivalent.

(1) X can be embedded as a closed set in a countadle product of discrete spaces.

(2) There is a metric d for X such that (X, d) is a complete ultrametric space.

(3) There is a metric d for X such that (X, d) is a complete isosceles metric
space.

(4) X s metrizable, Ind X = 0, and X is minspeciral.

(5) X 1s metrizable, Ind X = 0, and X has some metric in which 1t is com-
plete.

(6) X 1s metrizable, Ind X = 0, and X is an absolute Gs.

(7) X is a Gs in a countable product of discrete spaces.

Proof. The metric for a countable product of discrete spaces described at
the beginning of the proof of Proposition 9 is easily seen to be complete. Thus,
H=2). @=03), 2)=¢4)=0)= (6)= (7), and (3)= (b) are
known. It suffices to show (7) = (1). By Lemma 1, X can be embedded as a
closed set in a countable product of spaces each of which is open in a count-
able product of discrete spaces. By Lemma 2, each of the factors can be
embedded as a closed set in a countable product of discrete spaces. This com-
pletes the proof.

CoROLLARY. Let X be a metrizable space such that Ind X = 0. Then X is
manspectral if and only if it has some metric in which it is complete. In parti-
cular, if X is a separable metric space then X is minspectral if and only iof X is
zero dimensional (ind X = Ind X in this case) and X has some metric in which
it 1s complete. This is the case if and only if X is homeomorphic to a closed sub-
space of the irrationals.

Proof. The last statement follows because in the separable case we need
only to consider countable products of countable discrete spaces.

5. Closed sets and open questions. By virtue of Lemma 1 we have

ProrositioN 10. Every subspace of a minspectral space can be embedded as a
closed subspace of a minspectral space.

Proof. We can represent the subspace as an intersection of open (= min-
spectral) subspaces by deleting one point of the complement at a time.

The result of deleting one point from the irrationals is a space homeo-
morphic to the irrationals. Thus, as asserted earlier, the rationals can be
embedded in the product of 2X¢ copies of the irrationals as a closed set.
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The question of whether a closed G5 in a minspectral space must be min-
spectral is open, however, even if the space is metrizable. It is possible that
for every minspectral metrizable space X, Ind X = 0; it is also possible that
every absolute G metric space X with ind X = 0 is minspectral. These are
the extremes. Either implies that closed subspaces of metrizable minspectral
spaces are minspectral. (Note: the closed Gs's are precisely the zero sets; in
the metrizable case they are all the closed sets.) In looking at this problem
it does not matter whether we consider only closed G,'s or all Gy's, by an
easy application of Lemma 1.

It is natural to conjecture that an absolute G, in a space X with Ind X =0
is minspectral. This question is also open.
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