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CONJUGACY SEPARABILITY 
OF GENERALIZED FREE PRODUCTS 

OF CERTAIN CONJUGACY SEPARABLE GROUPS 

C. Y. TANG 

ABSTRACT. We prove that generalized free products of finitely generated free-by-
finite or nilpotent-by-finite groups amalgamating a cyclic subgroup areconjugacy sepa­
rable. Applying this result we prove a generalization of a conjecture of Fine and Rosen-
berger [7] that groups of F-type are conjugacy separable. 

1. Introduction. In [5] Dyer showed that generalized free products (g. f. p.) of two 
free groups or two finitely generated (f. g.) nilpotent groups amalgamating a cyclic sub­
group are conjugacy separable (c. s.). In general it is not known whether finite extensions 
of c. s. groups are c. s. In fact it is not known whether finite extensions of surface groups 
are c. s. although surface groups are known to be conjugacy separable. However, it is 
known that poly cyclic-by-finite groups are c. s. (Remeslennikov [10] and Formanek [8]). 
Also Dyer [4] proved that free-by-finite groups are c. s. Therefore we ask the natural 
questions whether g. f. p. of such groups with cyclic amalgamations are c. s. In this paper 
we prove the following: 

Let A, B be f. g. free-by-finite or nilpotent-by-finite groups satisfying unique root prop­
erty for elements of infinite order. Then G = A *# B, where H is cyclic, is c. s. In fact 
using similar argument it can be shown that if A, B are f. g. free-by-finite or nilpotent-
by-finite groups where H is an isolated cyclic subgroup of A and B, then G = A *# B 
is c. s. This gives a positive answer to a conjecture of Fine and Rosenberger [7] with 
slight generalization, about the c. s. of groups of F-type, which are defined by Fine and 
Rosenberger [7] as groups of the form: 

(1) G = (au...,an\a
a
x\...,a%\uv) 

where n > 2, a, = 0 or a, > 2 and w, v are cyclically reduced words of infinite or­
der on {a\,...,ap} and {ap+\,... ,an} respectively, where 1 < p < n — 1. In fact, 
in [6], Fine and Rosenberger answered positively a question of Allenby and Tang [3], 
whether Fuchsian groups are c. s. In the same paper they asked whether groups of the 
form G = (a i , . . . , an\ a

a
x
x,..., a"n, {uv)1) where t > 2 and n, a, and w, v are as in (1) 

are c. s. Allenby [1] proved that these groups are c. s. In a private communication Rosen­
berger pointed out to the author that Allenby's proof actually works for groups of F-type. 
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Applying the results of this paper we prove a generalization of these results by allowing 
u, v to be possibly of finite orders. 

Throughout this paper we made use of the following notation and terms: NchfG 
means TV is a characteristic subgroup of finite index (f. i.) in the group G. 

a ~ G b means a, b are conjugates in G. {a}G denotes the set of all conjugates of a in 
G. 

If x G G — A *// B then ||JC|| means the free product length of x in G. 
A group G is said to have unique root property for elements of infinite order if x" = yn 

implies x — y for all x, y G G of infinite order. 
A subgroup H of Gis said to be isolated if xn G H implies x G H for all x G G. 
A group G is said to be TTC if for all cyclic subgroups H of G and x G G \ H, there 

exists N </ G such that in G = G/N, x y //. 
Let x j G G and JC 7 ^ y- Then JC, y are said to be conjugacy distinguishable (c. d.) if 

there exists N <\f G such that in G = G/N, x ^- y. 
We also make use of the following result of Ribes and Zalesskii [11]. 

THEOREM RZ. Let G be free-by-finite and let H\,...,Hn be f. g. subgroups of G. 
Then H1H2 • • • Hn is closed in the profinite topology ofG. 

We also adapted some of Allenby's proofs [1] for our purposes. 

2. Weak potency. In [2] Allenby and Tang introduced the concept of potency to 
prove the residual finiteness (RF) of certain 1-relator groups. However, in many cases 
we only need a weaker version of potency. 

DEFINITION 2.1. Let G be a group and x G G. Then G is said to be weakly (x) -potent, 
briefly, (jc)-wpot, if there exists a positive integer r such that for every positive integer n 
there exists Nn <f G such that in G = G/Nn, x is of order exactly m. A group is said to 
be weakly potent if G is (;c)-wpot for all elements x of infinite order in G. 

LEMMA 2.2. Let G be f. g. free-by-finite or nilpotent-by-finite. Then G is weakly 
potent. 

PROOF. We shall only prove the case when G is free-by-finite. The case of nilpotent-
by-finite is similar. Let B <y G such that B is free. Let x G G be of infinite order. Let r 
be the smallest positive integer such that xr G B. Thus \Bx\ = r in G/B. Let xr G 
r,-_i (B) \ Ti(B), Ti(B) being the i-th term of the lower central series of B. Then rt(B) < G. 
Let G = G/Ti(B). Then Ti-\(B) is a f. g. free abelian subgroup of G. Therefore, there 
exists a basis {5*1,3*2, • • • *%} s u c n that xr G (y\), say, yj = xr. Let Mn = Ti-\(B)sn. 
Clearly Mn < G. Let ù = G/Mn. Then |^j | = sn. Thus \y\ | = n, whence |F | = n. Since 
\Bx\ = r in G/B, it follows that |f | = rn. Since B is a f. g. nilpotent group, it follows that 
5 is RF, whence G is RF. Therefore, there exists Nn<\fG such that x,...,xrn~l £ N. Let 
G = G/Nn. Then x is of order rn in the finite group G. Let Nn be the preimage of Nn in 
G. Then Nn is the required normal subgroup in G. 
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LEMMA 2.3. Let x G G such that G is (x)-wpot If hl ~c h? thenj — ±/. 

PROOF. Suppose |/| 7̂  \j\. Since G is (x)-wpot, there exists an integer r > 0 such 
that for every positive integer n there exists Nn <y G such that |x| = rn in G — G/Nn. 
Let n — \ij\. This implies |j?| = r/ and |x7| = n. It follows that xl rft- xj contradicting 
xl ~c xK Hence |/| = [/|, i.e. J — =h". 

As an immediate consequence of Lemma 2.3, we have 

LEMMA 2.4. Letx G G swc/z ?/za/ G w (x)-wpot arcd £/za£ (x) has unique root property 
in G. If u, v G G swc/z ?/z«/ w = x'vx7, //zerc either such expression is unique or v_1xv = 

PROOF. If x W is not unique, let u = x*vxz be another such expression. This implies 
xlvxj = xkvxl. Thus v~xxl~kv = xl~j. Since G is (x)-wpotby Lemma 2.3 J—j = ±(i — k). 
Thus by the unique root property of (x) in G, we have v_,xv = x±{. 

3. Main results. In order to prove our main results we need to prove some fi­
nite separability property of conjugacy classes from certain cyclic subgroups of a given 
group. Throughout the following consideration, unless otherwise stated, we assume that 
G is a finite extension of a group B, where B is either free or nilpotent. We also assume 
G has unique root property for elements of infinite order. 

LEMMA 3.1. Letx,h G G such that {x}G Pi (h) = 0. Then there exists N <f G such 

that, in G = G/N, {x}G D (h) = 0. 

PROOF. {X}G P\ (h) = 0 implies x ^Q hl for all integers /. Thus if \h\ is finite, since 
G is c. s., it follows that there exists N <y G such that {x}G Pi (h) = 0. Hence we can 
assume (h) to be infinite cyclic. 

CASE 1 : x is OF INFINITE ORDER. Since B <f G, there exists a positive integer m such 
that x™, hm G B. We show that {xm}G n (hm) = 0. Suppose this is not so. Then there 
exists g G G such that g~l^g = hkm. Since G has unique root property, g~]xg = hk 

contradicting {x}G n (h) = 0. Hence {xm}G H (hm) = 0. Now xm G B and (/zm) C B. 
Therefore, by Dyer (Lemmas 6 and 8 [5]) there exists N <\f B such that in B = Z?/7V, 
{xm}G Pi (/im) = 0. Since B <f G, we can assume Nchf B, which implies N <f G. Clearly 
N is the required normal subgroup. For if, in G = G/N, x ~^ hl then x*n ~- him 

contradicting {x™}0 H (hm) = 0. Hence {x}G n (h) = 0. 

CASE 2: x is OF FINITE ORDER, SAY, a. Let (3 be the smallest positive integer such that 
h? G B. Suppose a //?.Let(ar,/3) = d. Thus a = a\d and P = f3\d. Let N<f G such that 
iVCfi and A^H(x) = 0. Let G = G/M We show that {x}Gn(h) = 0. Suppose x ^- h[. 
Since |x| = a, it follows that |/?| = a. Thus, if |/j| = n, then rc = koc. Also n = //3, since 
h13 G 5. Therefore, ka = ka\d = l(3\d = 1/3. This implies ka\ — l(3\. Since (a\,/3\) — 1, 
we must have (3\ \ k. Let k = r/3\. Now (ft*) is a subgroup of (ft) of order a. This implies 
elements of order a in (ft) are of the form h/k where (/*, a) — 1. Therefore, x ~^ /? 
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implies W - h!k where (/, a) = 1. But * ~- #* implies Xe ^- h}M = / ^ = ^ e B. 
Since a / (3, d < a. This implies & ^ 1, whence jc4 £ B. Since # < G, it follows that 

•*** T̂ G ^ ' ^n^s *s a contradiction, whence {x}G n (/i) = 0 if or / /? . 
Next suppose a | /?, say, /? = la. Again let Af <̂  G such that Af C B. Let G = G/N. 

If Jc ~^ /? then \hl\ = a. Now |/j| = k/3 = kla. This implies / = jkl, where (/, a) = 1. 
By Lemma 2.2, G is (/z)-wpot. Therefore, we can choose N such that \h\ = k(3 and 
(k, a) = d ^ 1. Let k = kxd and a = aid. Then x ^- h!kl implies xai ^- h>kl^ = 
fiktdicd = #*,/? e # S i n c e d ^ \^ai<a, whence ;cai £ B. Thus as in the case a / /3 

we reach a contradiction. Hence {x}G H (h) — 0. This completes the proof. 
In [11] Ribes and Zalesskii proved that if H\,..., Hn are f. g. subgroups of a free-by-

finite group then the product set //1//2 • • • Hn is closed under the profinite topology of 
the group. Also, in [12] Stebe proved that if//, K are subgroups of a f. g. nilpotent group 
then HK is closed under the profinite topology of the group. Using their results we prove 
the following lemma in the form we need: 

LEMMA 3.2. Let H, K be f. g. subgroups ofG. Ifx £ G \ HK, then there exists N<fG 
such that in G = G/N, x ^ HK. 

PROOF. Let C = H n B and Z) = # n B. Clearly C and D are of f. i. in H and K re­
spectively. Let {/ = h\, /i2,... , /ia} and {1 = &i, kj,..., ^ } be the coset representatives 
of C and Din H and AT respectively. Then, 

/ / # = {chidkj ; c e C,d e D91 < i < a,l <j < P} 

= {fc/c'dAj ; c' G C, J e D, 1 < / < a, 1 <y < /?}. 

Thus x £ HK implies / i^jdr1 ^ CD for 1 < / < a, 1 < 7 < /3. If / z r 1 ^ 1 e 5 
then by Theorem RZ or by Stebe [12], there exists Ny </ B such that in B = B/Ny, 
hjxxkjx £ CD. Since B <ty G, we can assume Ny cry/?, whence Ny <fy G. By abuse of 
notation, let G = G/Ny then hjxxkjx £ CD, which implies x £ hiCDkj. If hrxxkjx £ B, 
we can let Ny = B. Then hyxxicj~x ^ 1, which implies x ^ h/kj. Let 

N= n Ny. 
1 < I < 7 

Then N <f G is the needed normal subgroup. 

COROLLARY 3.3. Letx,y EG and let H, AT &e f. g. subgroups ofG. Ifx £ HyK then 
there exists N <f G such that in G = G/N, x ^ HyK. 

PROOF. Since x £ HyK if and only if xy~x fi H(yKy~x), by Lemma 3.2, there exists 
N<fG such that in G = G/N, xy~x £ H(yKy~x). Hence JC £ HyK. 

We need the following lemma to prove our main result. 

LEMMA 3.3. Let h E G be of infinite order such that h 9 ^ h~x. Then there exists 
N<fG such that in G = G/N, hm </- hl for h[ ^ hm, where hm G B. 

PROOF. Let C be the centralizer of hm in G and D = CB. Let {d\ = 1, d2,..., J r} 
be the coset representatives of D in G. Thus if g G G then g = cbdi where c G C, 
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b e B. This implies {hm}G = \Ji=x{dyxb-xhmbdi\b G B}. Since G is (/*m)-wpot, by 

Lemma 2.3, {hm}G n (/îm) Ç {/*±m}. If hm ~ G /T m then g " 1 / ^ = h~m for some 

g G G. Since G has unique root property for elements of infinite order, this implies 

g~xhg = /z -1 contradicting /z ^G h~~]. Therefore {hm}G Pi (h) = {hm}. In particular, 

{dj-[b-lhmbdi} H (/zm) Ç {ft™}. If / ^ 1 and djxb-xhmbd{ = /zm, then to/, G C. This 

implies ^ G C£ contradicting / ^ 1. Hence {dr]b~lhmbdi} H (hm) = 0 for / ^ 1. 

Therefore, by Dyer ([5] Lemmas 6 and 8), there exists X <f B such that in B = # / X , 

{ ^ ~ 1 ^ 1 / z m R } H (ftm) = 0 for / ^ 1. Since B<\f G, as before, we can assume X<f G. To 

complete the proof we need to find A ^ G such that in G = G/N, {hm}G n(hm) = {hm}. 

Suppose \hm| = n and suppose hm G iy_L(fl) \ T^(i5). Let L = r£_, . Since L c h £ , 

L < G. Let 5 = G/L. Then |/zm| = n. Now S is f. g. nilpotent, whence RF. It follows 

that Ô is RF. Thus there exists Y <f G such that in G = G/ F, |/z| = mw. Let N = X H F. 

We shall show that N is the required normal subgroup of f. i. in G. Let G = G/N. If 

b'lhmb = h>m, \<j<n, then b~]hmb = \im. Since L C X and S " 1 ^ ^ = hm we have 

g - 1 ^ = hm. This implies ftm = kjm. Thus /^'-1)m = 1 contradicting \hm\ = n. Hence 

{hm}Bn(hm) = {hm}. Moreover, by the choice of X, {hm}Gn(hm) = {hm}. This proves 

the lemma. 

We are now ready to prove our main results. 

THEOREM 3.4. Let A, B be f. g. free-by-finite or nilpotent-by-finite groups with 

unique root property for elements of infinite order. Let G = A *// B where H — (h). 

Then G is c. s. 

PROOF. Let x,y G G such that x ^G y. We can assume x, y to be of minimal lengths 

in their respective conjugacy classes. Also by Dyer's result which states that the g. f. p. 

of two c. s. groups amalgamating a finite subgroup is c. s. (Theorem 4 [5]), we need only 

consider the case when (h) is infinite cyclic. 

CASE 1. ||JC|| = \\y\\ — 0. This implies x = hl,y = ti and hl ^G h*'• In particular 

W ' /A W and H 7 ^ h!. Since A, B are c. s., there exist NA</A and NB</B such that H ^- hj 

and/? ^- hiwhere À = A/NA and B = B/Ng. Now A, 5 are both (/z)-wpot. Let r\, r2 be 

positive integers such that for each positive integer n there exist Nn <y A and Mn <y 5 such 

that |/Vn/z| = rift and |M„/i| = r^n in A/A^ and # /M w respectively. Clearly h1 9 ^ W 

implies / ^ j . Suppose |/| ^ \j\. Let & = |/| \j\. Let G = À *^ 5 , where Â = A/N^ 

and ë = B/Mr]k. Thus |/z| = rir2&. This implies \hl\ — r\m\j\ and \h/\ — nr2 | / | . Since 

|/| ^ [y|, it follows that \hl\ ^- | / j / | . Therefore we can assume 7 = —/, i.e. hl ^G h~l. 

This implies h ^Q h~l. Let C and D be the free or nilpotent groups of f. i. in A and B 

respectively. Let C D D = (/*m). Then, by Lemma 3.3, there exist N <f A and M <\f B 

such that in A = A/N and Z? = B/M, him ^A h> and him ^B h1 for /? ^ ^/m in A or B. 

Moreover, since A, 5 are both (n)-wpot, we can assume N C\ (h) = M Pi (h) = (hhm). 

Let G = A *^ 5 . We need to show hl ^- hTl. Suppose hl ~^ h~l. Then him ^- h~im. 

But by the choice of N and M, h~im is the only conjugate in G of him in (h). Moreover, 

A, B being (/i)-wpot, we can choose M and TV such that hlfn ^ h~im in both A and 5 . It 
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follows that him ^- h im. Hence H ^- h l. Thus x 7 ^ y. Hence by Dyer's theorem [5], 
x, y are c. d. in G. 

CASE 2. \\x\\ ^ \\y\\ and ||x||, \\y\\ < 1. We shall only treat the case of ||JC|| = 0 and 
\\y\\ — 1. The other case is similar. Since y is of the minimal length in {y}G, y ^ (h). 
Thus by, Lemma 3.1, there exists MB </ B such that in B = BJMB, {yY n (h) = 0. Let 
MB H (h) = (hP). Since B is (/i)-wpot, this implies there exists a positive integer r2, say, 
such that for each positive integer n there exists Mrt <f B such that Mn D (h) = {hrin). 
Similarly there exists Nn <f A such that Nn D (h) = (hnn) for some positive integer r\. 
Thus, 

Mri0 n (h) = (hr^) = Nri0 n (h) c </.">• 

Let Ô = I * = I , where A = A/Nr20 and B = B/Mr,0. If y ~= P, then y ~^ P 

contradicting {y}B H (h) = 0. Therefore y 7^- P . This implies y ^=hk. As in Case 1, JC, 
B G 

y are c. d. in G. 
CASE 3. ||JC||, ||y|| > 2 and ||x|| ^ ||y||. Since A, B are both 7rc and (/î)-wpot, there 

exist N<^ A and M<3/# such that in G = Â*^#, ||jc|| = ||JC|| 7̂  \\y\\ = ||;y||. Hence jt 7 ^ y. 
It follows that x, y are c. d. in G. 

CASE 4. ||jt|| = \\y\\ > 2. Let* = u\U2- • - ur and v = vi V2 • • • vr be reduced words 
in G = A *// 5. Then, by Dyer [5], x ~ G y if and only if for some 1 < / < r the system 
of equations: 

7(0 

has a solution of //. Since x ^Q y, /(0 has no solution in / / for all 1 < / < r. We shall 
show that for each /, there exist finite images Â, B of A, 5 respectively such that the 
corresponding system of equations /(/) has no solution in H. 

If for each /, /(/) having no solution in H implies that there exists k (depending on /) 
such that Ui+k $_ HvkH, then by Corollary 3.3, there exists N<\fA such that in À — A/N, 
ûi+k ^ HvkH. Similarly for B = BJM if m+k, Vk £ B. Since A, B are (/z)-wpot, it is easy 
to see that we can assumeNHH = MP\H. This implies x ^- y9 where G = A *- B. It 
follows that x, y are c. d. in G. Hence we can assume that, for each /, /(/) has no solution 
in //, but for some /, each 

(3.1) ui+j =xJ'_}lvjXj 

where 1 <j<r, has a solution in H. Therefore, we need to show for this case there also 
exist finite images of Â, B of A, B respectively such that in G = À *^ B, x 7 ^ y. So, 
suppose (3.1) has a solution, say, U(+j = haVjh^. Then, by Lemma 2.4, either vjxhvj — h±l 

or the solution is unique. 

Ui+\ 

Ui+2 

Ui+r 

— xo 

= *r 

= x;_ 

V\X\ 

XV2*2 

\vrX0 À 
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(i) Suppose none of the solutions for (3.1) is unique. This implies vj hvj = h±l 

for each 1 < j < r. This means each solution m+j = haVjh^ can be substituted by 

ha+dVjha~d if vj{hvj — H~x or by ha~dVjha+d if vjxhvj = h, where d is an arbitrary 

integer. It follows that, by suitable choices of d, we can find integers ao,a\,...,ar such 

that Ui+j = h~aj~x Vjhai, 1 <j<r. Since x ^G y, a 0 ^ ar. We note that if vjxhvj — h~x 

occurs (a) an even number of times for 1 <j<r then if we replace h~a° by h~P° where 

a 0 — /3o = d, then a r — f3r = J, /.<?., (3r — ocr — d. On the other hand if vjxhvj — hTx 

occurs (b) an odd number of times for 1 < j < r then if we replace h~a° by h~^° 

where a® — /?o = d then (3r — ocr + J. In case (a) ar — ao = j3r — /3o 7̂  0. In case (b) 

a r — ao = /3r — Po — 2d. Thus, in case (a), let m be the maximum of all \ar — a 0 | for 

0 < / < r. Since A, B are (/*)-wpot, we can choose Nnn <y A and Mr,w <y 5 so that in 

G = À *^ B, where A = A/iVr2„ and B = B/Mnn, h0r~'00 ^ 1. Thus x 7 ^ y whence JC, 

^ are c. d. in G. In case (b), since ccr — OCQ ^ 0 and J can be chosen arbitrarily, we must 

have j3r — (3o to be odd. Thus, as in case (a), if we choose n even for NriJl and Mnn then 

jfir-fa) ^ 1 Therefore, again, we getx, _y c. d. in G. 

(ii) Assume, for each 0 < / < r, there exists j such that M/+7- = xj}xVjXj has a unique 

solution in H. This implies that, for each /, there are only finitely many possible solutions 

for the JC/S. Moreover, since x 9 ^ y, no combinations of these solutions is a solution of 

/(/) for each/. Since A, Bare (/z)-wpot, there exist N <j A andM<fB such that TV Pi (/z) = 

M n(h) — (/zr) such that t > 2m where m is the maximum of all \ak\ for which hak is 

a solution to an equation w+j = xf_}{ VjXj where 0 < /, j < r. Thus the corresponding 

system of equations /(/), has no solution in G = Â *- 5 where À = A/N and B = BJM. 

Therefore, x 7 ^ y, whence x, y are c. d. in G. This completes the proof. 

In proving Lemmas 2.4, 3.1 and 3.3 we made use of the unique root property for 

elements of infinite order. It is not difficult to show that by assuming (h) to be an isolated 

subgroup of G we can also prove Lemmas 2.4, 3.1 and 3.3. Thus we have: 

THEOREM 3.5. Let G = A *H B, where A, B are f. g. free-by-finite or nilpotent-by-

finite groups and H — (h) is an isolated subgroup of A and B. Then G is c. s. 

We now apply Theorem 3.4 to prove that groups of the form: 

(3.2) G = ( a 1 , . . . , « m , / 7 1 , . . . , ^ ; ^ ^ . . . , < ^ ^ ^ . . . , ^ ^ ( W v / ) 

where t > 1 and w, v are cyclically reduced words on {a\,...,am} and {b\,...,bn} 

respectively, are c. s. In the case when t = 1 and w, v are of infinite order, G is a group 

of F-type. These groups are conjectured by Fine and Rosenberger [7] to be c. s. 

THEOREM 3.6. Let G be given by (3.2). Then G is c. s. 

PROOF. 

CASE 1. If one of w, v, say, v is of infinite order, then let, 

A = (a\,... ,am,x\aa
x\ ... ,a^n, {ux)1) 

B=(bi,...,b„;bPl',...,bP"). 
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Since A, B are free products of cyclic groups, they are free-by-finite. Moreover, by Mag­
nus, Karrass and Solitar ([9] p. 194), A, B have unique root property for elements of 
infinite order. Since G = A *x=v B, by Theorem 3.4, G is c. s. 

CASE 2. Both u and v are of finite orders. Since elements of finite orders in G are 
conjugates of^ and ^,WLOG we can assume G = (a\,.. .,am,b\,.. .,bn\a"\.. .,a%", 
bPx\..., b%n

9(a
k
{b[y).Let c = (auk)mdd = (J3ul). Let W = (x,y;x\y8,(xrysY), where 

7 = 9JL9S= &,r = tmds= £. Since (7, r) = («,*)= 1, 

W&Wi = (x,y;x\/ ,(xy) ') . 

By Fine and Rosenberger [6], W\ is c. s., whence W is c. s. Since \a\\ = \x\ is finite, 
L = (a\,a^) V1=JC W is c. s. by Dyer [5]. Let M = L * ^ (Z?i;Z?f'). Again M is c. s. 
Now, let 

P = ( a 2 , . . . , a m , Z 7 2 , . . . , Z 7 n ; ^ , . . . , < « , ^ 2 , . . . , ^ ) . 

Then G = P * M, whence G is c. s. 

COROLLARY 3.7. Groups ofF-type are c. s. 
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