SHARP TRANSFERABILITY AND FINITE SUBLATTICES OF FREE LATTICES

H. S. GASKILL AND C. R. PLATT

Transferable and sharply transferable lattices were defined and characterized in [1]. Finite sublattices of free lattices were studied in [2] and a characterization of them given in [3]. In this paper, we will show that the class of finite sharply transferable lattices coincides with the class of finite sublattices of free lattices.

We recall here the relevant definitions from [1]. If X and Y are non-empty subsets of a partially ordered set, then we say $X \prec Y$ holds if and only if, for every element x of X, there exists an element y of Y such that $x \leq y$. If $\mathscr{L} = \langle L; \lor, \lor \rangle$ is a finite lattice, $x \in L$ and $U \subseteq L$, then we say $\langle x, U \rangle$ is a *minimal pair* of \mathscr{L} if and only if the following three conditions are satisfied:

(i) $x \in U$;

(ii) $x \leq \bigvee U;$

(iii) if $U' \subseteq L$, $U' \prec U$, and $x \leq \bigvee U'$, then $U \subseteq U'$.

Then we say the lattice \mathscr{L} satisfies the condition (T_{v}) if and only if there exists a linear ordering $\langle x_{1}, x_{2}, \ldots, x_{n} \rangle$ of all the elements of L such that

if $\langle x_i, U \rangle$ is a minimal pair and $x_j \in U$, then j < i.

The condition (T_{\wedge}) is the dual of (T_{\vee}) .

A lattice \mathscr{L} satisfies condition (W) if and only if, whenever $a, b, c, d \in L$ and $a \wedge b \leq c \vee d$, we have $a \leq c \vee d$ or $b \leq c \vee d$ or $a \wedge b \leq c$ or $a \wedge b \leq d$.

A lattice \mathscr{L} is called *transferable* if and only if, whenever \mathscr{L} is embeddable into the lattice $I(\mathscr{L}')$ of all ideals of a lattice \mathscr{L}' , then \mathscr{L} is embeddable into \mathscr{L}' .

If $\varphi : \mathscr{L} \to I(\mathscr{L}')$ is an embedding, then a mapping $\psi : L \to L'$ is called φ -normal if and only if, for $x, y \in L, x \leq y$ in \mathscr{L} if and only if $\psi(x) \in \varphi(y)$. Then \mathscr{L} is called *sharply transferable* if and only if, for every embedding $\varphi : \mathscr{L} \to I(\mathscr{L}')$, there is an embedding $\psi : \mathscr{L} \to \mathscr{L}'$ which is φ -normal.

In [1] it was shown that a finite lattice \mathscr{L} is sharply transferable if and only if \mathscr{L} satisfies (T_{\vee}) , (T_{\wedge}) , and (W). We will show that these conditions coincide with those used by McKenzie [3] to characterize finite sublattices of free lattices.

Throughout the following discussion, we let \mathscr{L} and \mathscr{L}' denote lattices, with underlying sets L and L', respectively, and we assume \mathscr{L} is finite.

Received March 18, 1974. The research of both authors was supported by the National Research Council of Canada.

Definition 1. (a) For any mapping $\alpha : L \to L'$ define $\alpha' : L \to L'$ so that for $x \in L$,

$$\alpha'(x) = \bigwedge \{ \bigvee \alpha(U) : x \leq \bigvee U, U \subseteq L \}.$$

(b) Define $\alpha^{(n)}$ for $n \in \omega$ by $\alpha^{(0)} = \alpha$ and $\alpha^{(i+1)} = (\alpha^{(i)})'$ for all $i \in \omega$.

We remark that if α is the inclusion map of L into the lattice freely generated by L, then $(\alpha^{(n)}|n \in \omega)$ is the lower half of the *standard limit table* for \mathcal{L} , as defined by McKenzie [3, §6].

LEMMA 1. Let $\alpha : L \to L'$ be a mapping.

(a) α' is order-preserving.

(b) For all $x \in L$, $\alpha'(x) \leq \alpha(x)$.

(c) α is join-preserving if and only if $\alpha = \alpha'$.

(d) If α is order-preserving, then for all $x \in L$, $\alpha'(x) = \alpha(x) \land \land \{ \bigvee \alpha(U) : \langle x, U \rangle \text{ is a minimal pair} \}.$

Proof. (a) is obvious. (b) follows from putting $U = \{x\}$. For (c), suppose α is join-preserving. If $U \subseteq L$ and $x \leq \bigvee U$, then $\alpha(x) \leq \bigvee \alpha(U)$. Thus, $\alpha(x) \leq \alpha'(x)$.

Suppose next that $\alpha = \alpha'$. By (a), it suffices to show that $\alpha(x \lor y) \leq \alpha(x) \lor \alpha(y)$. Let $U = \{x, y\}$. Then

$$\alpha(x \vee y) = \alpha'(x \vee y) \leq \bigvee \alpha(U) = \alpha(x) \vee \alpha(y).$$

To prove (d), let $U_0 \subseteq L$ and $x \leq \bigvee U_0$ hold. If $x \leq y$ for some $y \in U_0$, then $\alpha(x) \leq \bigvee \alpha(U_0)$. Otherwise, there clearly exists $U \subseteq L$ such that $\langle x, U \rangle$ is a minimal pair, and $U \prec U_0$. Then $\bigvee \alpha(U) \leq \bigvee \alpha(U_0)$. In any case, we have

 $\alpha(x) \land \land \{ \bigvee \alpha(U) : \langle x, U \rangle \text{ is a minimal pair} \} \leq \bigvee \alpha(U_0).$

Since this holds for every such U_0 , we conclude that

 $\alpha(x) \land \land \{ \bigvee \alpha(U) : \langle x, U \rangle \text{ is a minimal pair} \} \leq \alpha'(x).$

By (b), equality holds.

The next result yields a condition for a standard lower limit table to terminate.

LEMMA 2. Let $\alpha : L \to L'$ be an order-preserving mapping. If \mathscr{L} satisfies (T_{γ}) and N is the number of elements of L, then $\alpha^{(N+1)} = \alpha^{(N)}$.

Proof. We begin by showing that for all $n \in \omega$ and $x \in L$,

(1) $\alpha^{(n+1)}(x) = \alpha(x) \land \land \{ \lor \alpha^{(n)}(U) : \langle x, U \rangle \text{ is a minimal pair} \}.$

The proof is by induction. For n = 0, this is simply Lemma 1(d). For n > 0,

by inductive hypothesis, we have

$$\begin{aligned} \alpha^{(n+1)}(x) &= \alpha^{(n)}(x) \land \bigwedge \{ \bigvee \alpha^{(n)}(U) : \langle x, U \rangle \text{ is a minimal pair} \} \\ &= \alpha(x) \land [\bigwedge \{ \bigvee \alpha^{(n-1)}(U) : \{ x, U \} \text{ is a minimal pair} \}] \\ &\land [\bigwedge \{ \bigvee \alpha^{(n)}(U) : \langle x, U \rangle \text{ is a minimal pair} \}]. \end{aligned}$$

But, by Lemma 1(b), the first bracketed term contains the last bracketed term, so the above expression reduces to the right hand side of (1), completing the proof of (1).

Now, using $(T_{\mathbf{v}})$, let $\langle a_1, a_2, \ldots, a_N \rangle$ be an ordering of all the elements of L so that if $\langle a_i, U \rangle$ is a minimal pair and $a_j \in U$, then j < i. The lemma then follows immediately from the next statement.

Claim: Let $1 \leq i \leq N$ and $k \in \omega$. If $i \leq k$, then

(2)
$$\alpha^{(i)}(a_i) = \alpha^{(k)}(a_i).$$

The proof is by induction on *i*. For i = 1, there exist no minimal pairs of the form $\langle a_i, U \rangle$, so (1) implies that $\alpha^{(n+1)}(a_1) = \alpha(a_1)$ for all $n \in \omega$, so (2) follows.

Next, suppose $1 < j \leq N$ and that (2) holds whenever i < j. Then j < k implies

$$\alpha^{(k)}(a_i) = \alpha(a_i) \land \land \{ \bigvee \alpha^{(k-1)}(U) : \langle a_i, U \rangle \text{ is a minimal pair} \}.$$

But if $\langle a_j, U \rangle$ is a minimal pair and $a_i \in U$, then $i < j \leq k - 1$, so by the inductive hypothesis,

$$\alpha^{(k-1)}(a_i) = \alpha^{(i)}(a_i) = \alpha^{(j-1)}(a_i).$$

Thus,

$$\alpha^{(k)}(a_j) = \alpha(a_j) \land \bigwedge \{ \bigvee \alpha^{(j-1)}(U) : \langle a_j, U \rangle \text{ is a minimal pair} \}$$
$$= \alpha^{(j)}(a_j),$$

completing the proof.

Remark 1. If $\langle x, U \rangle$ is a minimal pair, then every $u \in U$ is join-irreducible. It follows that by a slight modification of the above proof, N can be replaced by M - 1, where M is the number of join-irreducible elements of \mathcal{L} .

The following notion is taken from [3].

Definition 2. An epimorphism $\varphi : \mathcal{L}' \to \mathcal{L}$ is called *upper* [respectively, *lower*] *bounded* if and only if for every $x \in L$, $\varphi^{-1}\{x\}$ has a greatest [respectively, least] element.

In the next definition, we single out two properties of McKenzie's limit tables $[3, \S 6]$.

Definition 3. Let $\varphi : L' \to L$ be a surjection.

1038

(a) A mapping $\alpha : L \to L'$ is called a φ -transversal if and only if, for all $x \in L$, $\varphi(\alpha(x)) = x$.

(b) A φ -transversal α is called *cofinal* if and only if, for all $x \in L'$, there exists $n \in \omega$ such that $\alpha^{(n)}(\varphi(x)) \leq x$.

LEMMA 3. Let $\varphi : \mathscr{L}' \to \mathscr{L}$ be an epimorphism and let $\alpha : L \to L'$ be a cofinal φ -transversal. Then φ is lower bounded if and only if $\alpha^{(n+1)} = \alpha^{(n)}$ for some $n \in \omega$. Furthermore, in this case $\alpha^{(n)}(x)$ is the least element of $\varphi^{-1}\{x\}$, for every $x \in L$.

Proof. This is trivial, since clearly $\alpha^{(n)}$ is a φ -transversal for every $n \in \omega$.

Definition 4. Let \mathscr{F} be the lattice freely generated by the set L. The homomorphism $f: \mathscr{F} \to \mathscr{L}$ whose restriction to L is the identity is called the *standard* epimorphism onto \mathscr{L} .

LEMMA 4. Let $\varphi: \mathcal{L}' \to \mathcal{L}$ be an epimorphism, and let $\alpha: L \to L'$ be a φ -transversal. Let $X \subseteq L'$ be a generating set for \mathcal{L}' . If, for all $x \in X$, there exists $n \in \omega$ such that $\alpha^{(n)}(\varphi(x)) \leq x$, then α is cofinal. In particular, if $f: \mathcal{F} \to \mathcal{L}$ is the standard epimorphism onto \mathcal{L} , then the inclusion map $\iota: L \to F$ is a cofinal f-transversal.

Proof. Let $Y \subseteq L'$ be the set of all $y \in L'$ such that $\alpha^{(n)}(\varphi(y)) \leq y$ for some $n \in \omega$. Since $X \subseteq Y$, it suffices to prove Y is a sublattice of \mathscr{L}' . Let $x, y \in Y$. Then choose $m \in \omega$, m > 0, such that $\alpha^{(m)}(\varphi(x)) \leq x$ and $\alpha^{(m)}(\varphi(y)) \leq y$. Since $\alpha^{(m)}$ is order-preserving, we have

$$\begin{aligned} x \wedge y &\geq \alpha^{(m)}(\varphi(x)) \wedge \alpha^{(m)}(\varphi(y)) &\geq \alpha^{(m)}(\varphi(x) \wedge \varphi(y)) \\ &= \alpha^{(m)}(\varphi(x \wedge y)). \end{aligned}$$

Therefore $x \land y \in Y$. Furthermore, let $U = \{\varphi(x), \varphi(y)\}$. Then $\varphi(x \lor y) \leq \bigvee U$, so

$$\alpha^{(m+1)}(\varphi(x \vee y)) \leq \bigvee \alpha^{(m)}(U) = \alpha^{(m)}(\varphi(x)) \vee \alpha^{(m)}(\varphi(y)) \leq x \vee y.$$

Thus, $x \lor y \in Y$, completing the proof.

Now we have immediately:

THEOREM 1. If a finite lattice \mathscr{L} satisfies (T_{v}) , then the standard epimorphism onto \mathscr{L} is lower bounded.

Proof. This follows by Lemmas 1(a), 2, 3, and 4.

We consider next the converse proposition. For this we will require the following result from [1].

THEOREM 2. Given a finite lattice \mathcal{L} , there exists a lattice $\hat{\mathcal{L}}$ and an embedding $\varphi: \mathcal{L} \to I(\hat{\mathcal{L}})$ such that if there exists a φ -normal join-preserving mapping $\psi: \mathcal{L} \to \hat{\mathcal{L}}$, then \mathcal{L} satisfies (T_{γ}) .

THEOREM 3. For a finite lattice \mathcal{L} , if the standard epimorphism $f: \mathcal{F} \to \mathcal{L}$ is lower bounded, then \mathcal{L} satisfies $(T_{\mathcal{V}})$.

Proof. Let $\hat{\mathscr{L}}$ and $\varphi : \mathscr{L} \to I(\hat{\mathscr{L}})$ be as given by Theorem 2. If ψ and ψ^* are φ -normal mappings of L into \hat{L} , we say that $\psi \prec \psi^*$ holds if and only if, for $x \in L$, $U \subseteq L$,

(3) if
$$x \leq \bigvee U$$
, then $\psi(x) \leq \bigvee \psi^*(U)$.

We observe that for any φ -normal mapping ψ , there exists a φ -normal mapping ψ^* with $\psi \prec \psi^*$. Indeed, given x, U such that $x \leq \bigvee U$, we have $\psi(x) \in \varphi(x) \subseteq \bigvee \varphi(U)$, so for each $y \in U$, we can select $y_{\langle x, u \rangle} \in \varphi(y)$ so that

$$\psi(x) \leq \bigvee \{y_{\langle x, u \rangle} : y \in U\}.$$

Doing this for each x and U, we then define, for $y \in L$,

$$\psi^*(y) = \bigvee \{y_{\langle x, u \rangle} : x \leq \bigvee U \text{ and } y \in U\}.$$

It is then trivial to check that ψ^* is φ -normal and that (3) holds.

Let $\iota: L \to F$ be the inclusion mapping, where $\mathscr{F} = \langle F; \land, \lor \rangle$. Then, by Lemmas 3 and 4 and the hypothesis, $\iota^{(N+1)} = \iota^{(N)}$ for some $N \in \omega$. Choose an arbitrary φ -normal mapping $\psi_0: L \to \hat{L}$, and, for $0 \leq n < N$, choose ψ_{n+1} so that $\psi_n \prec \psi_{n+1}$. Define $\beta: \mathscr{F} \to \hat{\mathscr{L}}$ to be the homomorphism whose restriction to L is ψ_N . We claim that $\beta \circ \iota^{(N)}$ is a join-preserving φ -normal mapping.

Indeed, $\iota^{(N)}$ is join-preserving by Lemma 1(b), so $\beta \circ \iota^{(N)}$ is join-preserving. If $x \in L$, then, by Lemma 3, $\iota^{(N)}(x) \leq x$, so

$$\beta \circ \iota^{(N)}(x) \leq \beta(x) = \psi_N(x) \in \varphi(x),$$

since ψ_N is φ -normal.

It remains to show that $\beta \circ \iota^{(N)}(x) \ge \psi_0(x)$, which we do by proving by induction on j that for $0 \le j \le N$,

(4) for all
$$x \in L$$
, $\beta \circ \iota^{(j)}(x) \ge \psi_{N-j}(x)$.

By definition we have $\beta \circ \iota^{(0)} = \psi_N$. If $0 \leq j < N$, then, for $x \in L$,

$$\begin{split} \beta \circ \iota^{(j+1)}(x) &= \beta (\bigwedge \{ \bigvee \iota^{(j)}(U) : U \subseteq L, x \leq \bigvee U \}) \\ &= \bigwedge \{ \bigvee \beta \circ \iota^{(j)}(U) : U \subseteq L, x \leq \bigvee U \}, \end{split}$$

the first equality by Definition 1, the second since β is a homomorphism and \mathscr{L} is finite. By inductive hypothesis, for each $y \in U$, $\beta \circ \iota^{(j)}(y) \ge \psi_{N-j}(y)$, whence

$$\beta \circ \iota^{(j+1)}(x) \ge \bigwedge \{ \bigvee \psi_{N-j}(U) : U \subseteq L, x \le \bigvee U \}$$
$$\ge \psi_{N-j-1}(x) = \psi_{N-(j+1)}(x),$$

the last inequality coming from (3). This proves (4), and therefore the claim. The conclusion of the theorem then follows by Theorem 2.

Combining Theorems 1 and 3, we have:

COROLLARY 1. A finite lattice \mathscr{L} satisfies (T_v) if and only if the standard epimorphism onto \mathscr{L} is lower bounded.

Of course we have the dual.

COROLLARY 2. A finite lattice \mathcal{L} satisfies (T_{\wedge}) if and only if the standard epimorphism onto \mathcal{L} is upper bounded.

In [3] McKenzie proved the following:

THEOREM 4. A finite lattice \mathcal{L} is embeddable into a free lattice if and only if \mathcal{L} satisfies (W) and the standard epimorphism onto \mathcal{L} is both upper and lower bounded.

The following is the principal result of [1].

THEOREM 5. A finite lattice \mathcal{L} is sharply transferable if and only if \mathcal{L} satisfies $(W), (T_{\vee}), and (T_{\wedge}).$

As a consequence, we have our main result.

THEOREM 6. A finite lattice is sharply transferable if and only if it is embeddable into a free lattice.

Remark 2. We have as a corollary that the class of sharply transferable lattices is closed under sublattices. This suggests the question: does a sublattice of a lattice satisfying (T_y) also satisfy (T_y) ?

Remark 3. Corollary 1 and Lemma 2 give a considerable improvement on the upper bound for the length of a limit table given by McKenzie $[3, \S 6]$. Remark 1 gives a further improvement.

References

- 1. H. Gaskill, G. Gratzer, and C. R. Platt, Transferable lattices (to appear).
- 2. B. Jonsson and J. Kiefer, Finite sublattices of a free lattice, Can. J. Math. 14 (1962), 487-497.
- 3. R. McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43.

University of Manitoba, Winnipeg, Manitoba